cpufreq_conservative.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649
  1. /*
  2. * drivers/cpufreq/cpufreq_conservative.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/cpufreq.h>
  17. #include <linux/cpu.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/mutex.h>
  21. #include <linux/hrtimer.h>
  22. #include <linux/tick.h>
  23. #include <linux/ktime.h>
  24. #include <linux/sched.h>
  25. /*
  26. * dbs is used in this file as a shortform for demandbased switching
  27. * It helps to keep variable names smaller, simpler
  28. */
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
  31. /*
  32. * The polling frequency of this governor depends on the capability of
  33. * the processor. Default polling frequency is 1000 times the transition
  34. * latency of the processor. The governor will work on any processor with
  35. * transition latency <= 10mS, using appropriate sampling
  36. * rate.
  37. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  38. * this governor will not work.
  39. * All times here are in uS.
  40. */
  41. #define MIN_SAMPLING_RATE_RATIO (2)
  42. static unsigned int min_sampling_rate;
  43. #define LATENCY_MULTIPLIER (1000)
  44. #define MIN_LATENCY_MULTIPLIER (100)
  45. #define DEF_SAMPLING_DOWN_FACTOR (1)
  46. #define MAX_SAMPLING_DOWN_FACTOR (10)
  47. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  48. static void do_dbs_timer(struct work_struct *work);
  49. struct cpu_dbs_info_s {
  50. cputime64_t prev_cpu_idle;
  51. cputime64_t prev_cpu_wall;
  52. cputime64_t prev_cpu_nice;
  53. struct cpufreq_policy *cur_policy;
  54. struct delayed_work work;
  55. unsigned int down_skip;
  56. unsigned int requested_freq;
  57. int cpu;
  58. unsigned int enable:1;
  59. /*
  60. * percpu mutex that serializes governor limit change with
  61. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  62. * when user is changing the governor or limits.
  63. */
  64. struct mutex timer_mutex;
  65. };
  66. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
  67. static unsigned int dbs_enable; /* number of CPUs using this policy */
  68. /*
  69. * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
  70. * different CPUs. It protects dbs_enable in governor start/stop.
  71. */
  72. static DEFINE_MUTEX(dbs_mutex);
  73. static struct dbs_tuners {
  74. unsigned int sampling_rate;
  75. unsigned int sampling_down_factor;
  76. unsigned int up_threshold;
  77. unsigned int down_threshold;
  78. unsigned int ignore_nice;
  79. unsigned int freq_step;
  80. } dbs_tuners_ins = {
  81. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  82. .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
  83. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  84. .ignore_nice = 0,
  85. .freq_step = 5,
  86. };
  87. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  88. cputime64_t *wall)
  89. {
  90. cputime64_t idle_time;
  91. cputime64_t cur_wall_time;
  92. cputime64_t busy_time;
  93. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  94. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  95. kstat_cpu(cpu).cpustat.system);
  96. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  97. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  98. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  99. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  100. idle_time = cputime64_sub(cur_wall_time, busy_time);
  101. if (wall)
  102. *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
  103. return (cputime64_t)jiffies_to_usecs(idle_time);
  104. }
  105. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  106. {
  107. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  108. if (idle_time == -1ULL)
  109. return get_cpu_idle_time_jiffy(cpu, wall);
  110. return idle_time;
  111. }
  112. /* keep track of frequency transitions */
  113. static int
  114. dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  115. void *data)
  116. {
  117. struct cpufreq_freqs *freq = data;
  118. struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
  119. freq->cpu);
  120. struct cpufreq_policy *policy;
  121. if (!this_dbs_info->enable)
  122. return 0;
  123. policy = this_dbs_info->cur_policy;
  124. /*
  125. * we only care if our internally tracked freq moves outside
  126. * the 'valid' ranges of freqency available to us otherwise
  127. * we do not change it
  128. */
  129. if (this_dbs_info->requested_freq > policy->max
  130. || this_dbs_info->requested_freq < policy->min)
  131. this_dbs_info->requested_freq = freq->new;
  132. return 0;
  133. }
  134. static struct notifier_block dbs_cpufreq_notifier_block = {
  135. .notifier_call = dbs_cpufreq_notifier
  136. };
  137. /************************** sysfs interface ************************/
  138. static ssize_t show_sampling_rate_min(struct kobject *kobj,
  139. struct attribute *attr, char *buf)
  140. {
  141. return sprintf(buf, "%u\n", min_sampling_rate);
  142. }
  143. define_one_global_ro(sampling_rate_min);
  144. /* cpufreq_conservative Governor Tunables */
  145. #define show_one(file_name, object) \
  146. static ssize_t show_##file_name \
  147. (struct kobject *kobj, struct attribute *attr, char *buf) \
  148. { \
  149. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  150. }
  151. show_one(sampling_rate, sampling_rate);
  152. show_one(sampling_down_factor, sampling_down_factor);
  153. show_one(up_threshold, up_threshold);
  154. show_one(down_threshold, down_threshold);
  155. show_one(ignore_nice_load, ignore_nice);
  156. show_one(freq_step, freq_step);
  157. static ssize_t store_sampling_down_factor(struct kobject *a,
  158. struct attribute *b,
  159. const char *buf, size_t count)
  160. {
  161. unsigned int input;
  162. int ret;
  163. ret = sscanf(buf, "%u", &input);
  164. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  165. return -EINVAL;
  166. mutex_lock(&dbs_mutex);
  167. dbs_tuners_ins.sampling_down_factor = input;
  168. mutex_unlock(&dbs_mutex);
  169. return count;
  170. }
  171. static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
  172. const char *buf, size_t count)
  173. {
  174. unsigned int input;
  175. int ret;
  176. ret = sscanf(buf, "%u", &input);
  177. if (ret != 1)
  178. return -EINVAL;
  179. mutex_lock(&dbs_mutex);
  180. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  181. mutex_unlock(&dbs_mutex);
  182. return count;
  183. }
  184. static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
  185. const char *buf, size_t count)
  186. {
  187. unsigned int input;
  188. int ret;
  189. ret = sscanf(buf, "%u", &input);
  190. mutex_lock(&dbs_mutex);
  191. if (ret != 1 || input > 100 ||
  192. input <= dbs_tuners_ins.down_threshold) {
  193. mutex_unlock(&dbs_mutex);
  194. return -EINVAL;
  195. }
  196. dbs_tuners_ins.up_threshold = input;
  197. mutex_unlock(&dbs_mutex);
  198. return count;
  199. }
  200. static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
  201. const char *buf, size_t count)
  202. {
  203. unsigned int input;
  204. int ret;
  205. ret = sscanf(buf, "%u", &input);
  206. mutex_lock(&dbs_mutex);
  207. /* cannot be lower than 11 otherwise freq will not fall */
  208. if (ret != 1 || input < 11 || input > 100 ||
  209. input >= dbs_tuners_ins.up_threshold) {
  210. mutex_unlock(&dbs_mutex);
  211. return -EINVAL;
  212. }
  213. dbs_tuners_ins.down_threshold = input;
  214. mutex_unlock(&dbs_mutex);
  215. return count;
  216. }
  217. static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
  218. const char *buf, size_t count)
  219. {
  220. unsigned int input;
  221. int ret;
  222. unsigned int j;
  223. ret = sscanf(buf, "%u", &input);
  224. if (ret != 1)
  225. return -EINVAL;
  226. if (input > 1)
  227. input = 1;
  228. mutex_lock(&dbs_mutex);
  229. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  230. mutex_unlock(&dbs_mutex);
  231. return count;
  232. }
  233. dbs_tuners_ins.ignore_nice = input;
  234. /* we need to re-evaluate prev_cpu_idle */
  235. for_each_online_cpu(j) {
  236. struct cpu_dbs_info_s *dbs_info;
  237. dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  238. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  239. &dbs_info->prev_cpu_wall);
  240. if (dbs_tuners_ins.ignore_nice)
  241. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  242. }
  243. mutex_unlock(&dbs_mutex);
  244. return count;
  245. }
  246. static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
  247. const char *buf, size_t count)
  248. {
  249. unsigned int input;
  250. int ret;
  251. ret = sscanf(buf, "%u", &input);
  252. if (ret != 1)
  253. return -EINVAL;
  254. if (input > 100)
  255. input = 100;
  256. /* no need to test here if freq_step is zero as the user might actually
  257. * want this, they would be crazy though :) */
  258. mutex_lock(&dbs_mutex);
  259. dbs_tuners_ins.freq_step = input;
  260. mutex_unlock(&dbs_mutex);
  261. return count;
  262. }
  263. define_one_global_rw(sampling_rate);
  264. define_one_global_rw(sampling_down_factor);
  265. define_one_global_rw(up_threshold);
  266. define_one_global_rw(down_threshold);
  267. define_one_global_rw(ignore_nice_load);
  268. define_one_global_rw(freq_step);
  269. static struct attribute *dbs_attributes[] = {
  270. &sampling_rate_min.attr,
  271. &sampling_rate.attr,
  272. &sampling_down_factor.attr,
  273. &up_threshold.attr,
  274. &down_threshold.attr,
  275. &ignore_nice_load.attr,
  276. &freq_step.attr,
  277. NULL
  278. };
  279. static struct attribute_group dbs_attr_group = {
  280. .attrs = dbs_attributes,
  281. .name = "conservative",
  282. };
  283. /************************** sysfs end ************************/
  284. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  285. {
  286. unsigned int load = 0;
  287. unsigned int max_load = 0;
  288. unsigned int freq_target;
  289. struct cpufreq_policy *policy;
  290. unsigned int j;
  291. policy = this_dbs_info->cur_policy;
  292. /*
  293. * Every sampling_rate, we check, if current idle time is less
  294. * than 20% (default), then we try to increase frequency
  295. * Every sampling_rate*sampling_down_factor, we check, if current
  296. * idle time is more than 80%, then we try to decrease frequency
  297. *
  298. * Any frequency increase takes it to the maximum frequency.
  299. * Frequency reduction happens at minimum steps of
  300. * 5% (default) of maximum frequency
  301. */
  302. /* Get Absolute Load */
  303. for_each_cpu(j, policy->cpus) {
  304. struct cpu_dbs_info_s *j_dbs_info;
  305. cputime64_t cur_wall_time, cur_idle_time;
  306. unsigned int idle_time, wall_time;
  307. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  308. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  309. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  310. j_dbs_info->prev_cpu_wall);
  311. j_dbs_info->prev_cpu_wall = cur_wall_time;
  312. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  313. j_dbs_info->prev_cpu_idle);
  314. j_dbs_info->prev_cpu_idle = cur_idle_time;
  315. if (dbs_tuners_ins.ignore_nice) {
  316. cputime64_t cur_nice;
  317. unsigned long cur_nice_jiffies;
  318. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  319. j_dbs_info->prev_cpu_nice);
  320. /*
  321. * Assumption: nice time between sampling periods will
  322. * be less than 2^32 jiffies for 32 bit sys
  323. */
  324. cur_nice_jiffies = (unsigned long)
  325. cputime64_to_jiffies64(cur_nice);
  326. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  327. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  328. }
  329. if (unlikely(!wall_time || wall_time < idle_time))
  330. continue;
  331. load = 100 * (wall_time - idle_time) / wall_time;
  332. if (load > max_load)
  333. max_load = load;
  334. }
  335. /*
  336. * break out if we 'cannot' reduce the speed as the user might
  337. * want freq_step to be zero
  338. */
  339. if (dbs_tuners_ins.freq_step == 0)
  340. return;
  341. /* Check for frequency increase */
  342. if (max_load > dbs_tuners_ins.up_threshold) {
  343. this_dbs_info->down_skip = 0;
  344. /* if we are already at full speed then break out early */
  345. if (this_dbs_info->requested_freq == policy->max)
  346. return;
  347. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  348. /* max freq cannot be less than 100. But who knows.... */
  349. if (unlikely(freq_target == 0))
  350. freq_target = 5;
  351. this_dbs_info->requested_freq += freq_target;
  352. if (this_dbs_info->requested_freq > policy->max)
  353. this_dbs_info->requested_freq = policy->max;
  354. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  355. CPUFREQ_RELATION_H);
  356. return;
  357. }
  358. /*
  359. * The optimal frequency is the frequency that is the lowest that
  360. * can support the current CPU usage without triggering the up
  361. * policy. To be safe, we focus 10 points under the threshold.
  362. */
  363. if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
  364. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  365. this_dbs_info->requested_freq -= freq_target;
  366. if (this_dbs_info->requested_freq < policy->min)
  367. this_dbs_info->requested_freq = policy->min;
  368. /*
  369. * if we cannot reduce the frequency anymore, break out early
  370. */
  371. if (policy->cur == policy->min)
  372. return;
  373. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  374. CPUFREQ_RELATION_H);
  375. return;
  376. }
  377. }
  378. static void do_dbs_timer(struct work_struct *work)
  379. {
  380. struct cpu_dbs_info_s *dbs_info =
  381. container_of(work, struct cpu_dbs_info_s, work.work);
  382. unsigned int cpu = dbs_info->cpu;
  383. /* We want all CPUs to do sampling nearly on same jiffy */
  384. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  385. delay -= jiffies % delay;
  386. mutex_lock(&dbs_info->timer_mutex);
  387. dbs_check_cpu(dbs_info);
  388. schedule_delayed_work_on(cpu, &dbs_info->work, delay);
  389. mutex_unlock(&dbs_info->timer_mutex);
  390. }
  391. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  392. {
  393. /* We want all CPUs to do sampling nearly on same jiffy */
  394. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  395. delay -= jiffies % delay;
  396. dbs_info->enable = 1;
  397. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  398. schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
  399. }
  400. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  401. {
  402. dbs_info->enable = 0;
  403. cancel_delayed_work_sync(&dbs_info->work);
  404. }
  405. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  406. unsigned int event)
  407. {
  408. unsigned int cpu = policy->cpu;
  409. struct cpu_dbs_info_s *this_dbs_info;
  410. unsigned int j;
  411. int rc;
  412. this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
  413. switch (event) {
  414. case CPUFREQ_GOV_START:
  415. if ((!cpu_online(cpu)) || (!policy->cur))
  416. return -EINVAL;
  417. mutex_lock(&dbs_mutex);
  418. for_each_cpu(j, policy->cpus) {
  419. struct cpu_dbs_info_s *j_dbs_info;
  420. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  421. j_dbs_info->cur_policy = policy;
  422. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  423. &j_dbs_info->prev_cpu_wall);
  424. if (dbs_tuners_ins.ignore_nice) {
  425. j_dbs_info->prev_cpu_nice =
  426. kstat_cpu(j).cpustat.nice;
  427. }
  428. }
  429. this_dbs_info->down_skip = 0;
  430. this_dbs_info->requested_freq = policy->cur;
  431. mutex_init(&this_dbs_info->timer_mutex);
  432. dbs_enable++;
  433. /*
  434. * Start the timerschedule work, when this governor
  435. * is used for first time
  436. */
  437. if (dbs_enable == 1) {
  438. unsigned int latency;
  439. /* policy latency is in nS. Convert it to uS first */
  440. latency = policy->cpuinfo.transition_latency / 1000;
  441. if (latency == 0)
  442. latency = 1;
  443. rc = sysfs_create_group(cpufreq_global_kobject,
  444. &dbs_attr_group);
  445. if (rc) {
  446. mutex_unlock(&dbs_mutex);
  447. return rc;
  448. }
  449. /*
  450. * conservative does not implement micro like ondemand
  451. * governor, thus we are bound to jiffes/HZ
  452. */
  453. min_sampling_rate =
  454. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  455. /* Bring kernel and HW constraints together */
  456. min_sampling_rate = max(min_sampling_rate,
  457. MIN_LATENCY_MULTIPLIER * latency);
  458. dbs_tuners_ins.sampling_rate =
  459. max(min_sampling_rate,
  460. latency * LATENCY_MULTIPLIER);
  461. cpufreq_register_notifier(
  462. &dbs_cpufreq_notifier_block,
  463. CPUFREQ_TRANSITION_NOTIFIER);
  464. }
  465. mutex_unlock(&dbs_mutex);
  466. dbs_timer_init(this_dbs_info);
  467. break;
  468. case CPUFREQ_GOV_STOP:
  469. dbs_timer_exit(this_dbs_info);
  470. mutex_lock(&dbs_mutex);
  471. dbs_enable--;
  472. mutex_destroy(&this_dbs_info->timer_mutex);
  473. /*
  474. * Stop the timerschedule work, when this governor
  475. * is used for first time
  476. */
  477. if (dbs_enable == 0)
  478. cpufreq_unregister_notifier(
  479. &dbs_cpufreq_notifier_block,
  480. CPUFREQ_TRANSITION_NOTIFIER);
  481. mutex_unlock(&dbs_mutex);
  482. if (!dbs_enable)
  483. sysfs_remove_group(cpufreq_global_kobject,
  484. &dbs_attr_group);
  485. break;
  486. case CPUFREQ_GOV_LIMITS:
  487. mutex_lock(&this_dbs_info->timer_mutex);
  488. if (policy->max < this_dbs_info->cur_policy->cur)
  489. __cpufreq_driver_target(
  490. this_dbs_info->cur_policy,
  491. policy->max, CPUFREQ_RELATION_H);
  492. else if (policy->min > this_dbs_info->cur_policy->cur)
  493. __cpufreq_driver_target(
  494. this_dbs_info->cur_policy,
  495. policy->min, CPUFREQ_RELATION_L);
  496. mutex_unlock(&this_dbs_info->timer_mutex);
  497. break;
  498. }
  499. return 0;
  500. }
  501. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  502. static
  503. #endif
  504. struct cpufreq_governor cpufreq_gov_conservative = {
  505. .name = "conservative",
  506. .governor = cpufreq_governor_dbs,
  507. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  508. .owner = THIS_MODULE,
  509. };
  510. static int __init cpufreq_gov_dbs_init(void)
  511. {
  512. return cpufreq_register_governor(&cpufreq_gov_conservative);
  513. }
  514. static void __exit cpufreq_gov_dbs_exit(void)
  515. {
  516. cpufreq_unregister_governor(&cpufreq_gov_conservative);
  517. }
  518. MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
  519. MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
  520. "Low Latency Frequency Transition capable processors "
  521. "optimised for use in a battery environment");
  522. MODULE_LICENSE("GPL");
  523. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  524. fs_initcall(cpufreq_gov_dbs_init);
  525. #else
  526. module_init(cpufreq_gov_dbs_init);
  527. #endif
  528. module_exit(cpufreq_gov_dbs_exit);