xfs_super.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_bit.h"
  20. #include "xfs_log.h"
  21. #include "xfs_clnt.h"
  22. #include "xfs_inum.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_dir2.h"
  27. #include "xfs_alloc.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_quota.h"
  30. #include "xfs_mount.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_bmap.h"
  41. #include "xfs_rtalloc.h"
  42. #include "xfs_error.h"
  43. #include "xfs_itable.h"
  44. #include "xfs_rw.h"
  45. #include "xfs_acl.h"
  46. #include "xfs_attr.h"
  47. #include "xfs_buf_item.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_vnodeops.h"
  50. #include "xfs_vfsops.h"
  51. #include "xfs_version.h"
  52. #include <linux/namei.h>
  53. #include <linux/init.h>
  54. #include <linux/mount.h>
  55. #include <linux/mempool.h>
  56. #include <linux/writeback.h>
  57. #include <linux/kthread.h>
  58. #include <linux/freezer.h>
  59. static struct quotactl_ops xfs_quotactl_operations;
  60. static struct super_operations xfs_super_operations;
  61. static kmem_zone_t *xfs_vnode_zone;
  62. static kmem_zone_t *xfs_ioend_zone;
  63. mempool_t *xfs_ioend_pool;
  64. STATIC struct xfs_mount_args *
  65. xfs_args_allocate(
  66. struct super_block *sb,
  67. int silent)
  68. {
  69. struct xfs_mount_args *args;
  70. args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
  71. args->logbufs = args->logbufsize = -1;
  72. strncpy(args->fsname, sb->s_id, MAXNAMELEN);
  73. /* Copy the already-parsed mount(2) flags we're interested in */
  74. if (sb->s_flags & MS_DIRSYNC)
  75. args->flags |= XFSMNT_DIRSYNC;
  76. if (sb->s_flags & MS_SYNCHRONOUS)
  77. args->flags |= XFSMNT_WSYNC;
  78. if (silent)
  79. args->flags |= XFSMNT_QUIET;
  80. args->flags |= XFSMNT_32BITINODES;
  81. return args;
  82. }
  83. __uint64_t
  84. xfs_max_file_offset(
  85. unsigned int blockshift)
  86. {
  87. unsigned int pagefactor = 1;
  88. unsigned int bitshift = BITS_PER_LONG - 1;
  89. /* Figure out maximum filesize, on Linux this can depend on
  90. * the filesystem blocksize (on 32 bit platforms).
  91. * __block_prepare_write does this in an [unsigned] long...
  92. * page->index << (PAGE_CACHE_SHIFT - bbits)
  93. * So, for page sized blocks (4K on 32 bit platforms),
  94. * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
  95. * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
  96. * but for smaller blocksizes it is less (bbits = log2 bsize).
  97. * Note1: get_block_t takes a long (implicit cast from above)
  98. * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
  99. * can optionally convert the [unsigned] long from above into
  100. * an [unsigned] long long.
  101. */
  102. #if BITS_PER_LONG == 32
  103. # if defined(CONFIG_LBD)
  104. ASSERT(sizeof(sector_t) == 8);
  105. pagefactor = PAGE_CACHE_SIZE;
  106. bitshift = BITS_PER_LONG;
  107. # else
  108. pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
  109. # endif
  110. #endif
  111. return (((__uint64_t)pagefactor) << bitshift) - 1;
  112. }
  113. STATIC_INLINE void
  114. xfs_set_inodeops(
  115. struct inode *inode)
  116. {
  117. switch (inode->i_mode & S_IFMT) {
  118. case S_IFREG:
  119. inode->i_op = &xfs_inode_operations;
  120. inode->i_fop = &xfs_file_operations;
  121. inode->i_mapping->a_ops = &xfs_address_space_operations;
  122. break;
  123. case S_IFDIR:
  124. inode->i_op = &xfs_dir_inode_operations;
  125. inode->i_fop = &xfs_dir_file_operations;
  126. break;
  127. case S_IFLNK:
  128. inode->i_op = &xfs_symlink_inode_operations;
  129. if (inode->i_blocks)
  130. inode->i_mapping->a_ops = &xfs_address_space_operations;
  131. break;
  132. default:
  133. inode->i_op = &xfs_inode_operations;
  134. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  135. break;
  136. }
  137. }
  138. STATIC_INLINE void
  139. xfs_revalidate_inode(
  140. xfs_mount_t *mp,
  141. bhv_vnode_t *vp,
  142. xfs_inode_t *ip)
  143. {
  144. struct inode *inode = vn_to_inode(vp);
  145. inode->i_mode = ip->i_d.di_mode;
  146. inode->i_nlink = ip->i_d.di_nlink;
  147. inode->i_uid = ip->i_d.di_uid;
  148. inode->i_gid = ip->i_d.di_gid;
  149. switch (inode->i_mode & S_IFMT) {
  150. case S_IFBLK:
  151. case S_IFCHR:
  152. inode->i_rdev =
  153. MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
  154. sysv_minor(ip->i_df.if_u2.if_rdev));
  155. break;
  156. default:
  157. inode->i_rdev = 0;
  158. break;
  159. }
  160. inode->i_generation = ip->i_d.di_gen;
  161. i_size_write(inode, ip->i_d.di_size);
  162. inode->i_blocks =
  163. XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
  164. inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
  165. inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
  166. inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
  167. inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
  168. inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
  169. inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
  170. if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
  171. inode->i_flags |= S_IMMUTABLE;
  172. else
  173. inode->i_flags &= ~S_IMMUTABLE;
  174. if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
  175. inode->i_flags |= S_APPEND;
  176. else
  177. inode->i_flags &= ~S_APPEND;
  178. if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
  179. inode->i_flags |= S_SYNC;
  180. else
  181. inode->i_flags &= ~S_SYNC;
  182. if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
  183. inode->i_flags |= S_NOATIME;
  184. else
  185. inode->i_flags &= ~S_NOATIME;
  186. xfs_iflags_clear(ip, XFS_IMODIFIED);
  187. }
  188. void
  189. xfs_initialize_vnode(
  190. struct xfs_mount *mp,
  191. bhv_vnode_t *vp,
  192. struct xfs_inode *ip)
  193. {
  194. struct inode *inode = vn_to_inode(vp);
  195. if (!ip->i_vnode) {
  196. ip->i_vnode = vp;
  197. inode->i_private = ip;
  198. }
  199. /*
  200. * We need to set the ops vectors, and unlock the inode, but if
  201. * we have been called during the new inode create process, it is
  202. * too early to fill in the Linux inode. We will get called a
  203. * second time once the inode is properly set up, and then we can
  204. * finish our work.
  205. */
  206. if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
  207. xfs_revalidate_inode(mp, vp, ip);
  208. xfs_set_inodeops(inode);
  209. xfs_iflags_clear(ip, XFS_INEW);
  210. barrier();
  211. unlock_new_inode(inode);
  212. }
  213. }
  214. int
  215. xfs_blkdev_get(
  216. xfs_mount_t *mp,
  217. const char *name,
  218. struct block_device **bdevp)
  219. {
  220. int error = 0;
  221. *bdevp = open_bdev_excl(name, 0, mp);
  222. if (IS_ERR(*bdevp)) {
  223. error = PTR_ERR(*bdevp);
  224. printk("XFS: Invalid device [%s], error=%d\n", name, error);
  225. }
  226. return -error;
  227. }
  228. void
  229. xfs_blkdev_put(
  230. struct block_device *bdev)
  231. {
  232. if (bdev)
  233. close_bdev_excl(bdev);
  234. }
  235. /*
  236. * Try to write out the superblock using barriers.
  237. */
  238. STATIC int
  239. xfs_barrier_test(
  240. xfs_mount_t *mp)
  241. {
  242. xfs_buf_t *sbp = xfs_getsb(mp, 0);
  243. int error;
  244. XFS_BUF_UNDONE(sbp);
  245. XFS_BUF_UNREAD(sbp);
  246. XFS_BUF_UNDELAYWRITE(sbp);
  247. XFS_BUF_WRITE(sbp);
  248. XFS_BUF_UNASYNC(sbp);
  249. XFS_BUF_ORDERED(sbp);
  250. xfsbdstrat(mp, sbp);
  251. error = xfs_iowait(sbp);
  252. /*
  253. * Clear all the flags we set and possible error state in the
  254. * buffer. We only did the write to try out whether barriers
  255. * worked and shouldn't leave any traces in the superblock
  256. * buffer.
  257. */
  258. XFS_BUF_DONE(sbp);
  259. XFS_BUF_ERROR(sbp, 0);
  260. XFS_BUF_UNORDERED(sbp);
  261. xfs_buf_relse(sbp);
  262. return error;
  263. }
  264. void
  265. xfs_mountfs_check_barriers(xfs_mount_t *mp)
  266. {
  267. int error;
  268. if (mp->m_logdev_targp != mp->m_ddev_targp) {
  269. xfs_fs_cmn_err(CE_NOTE, mp,
  270. "Disabling barriers, not supported with external log device");
  271. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  272. return;
  273. }
  274. if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
  275. xfs_fs_cmn_err(CE_NOTE, mp,
  276. "Disabling barriers, underlying device is readonly");
  277. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  278. return;
  279. }
  280. error = xfs_barrier_test(mp);
  281. if (error) {
  282. xfs_fs_cmn_err(CE_NOTE, mp,
  283. "Disabling barriers, trial barrier write failed");
  284. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  285. return;
  286. }
  287. }
  288. void
  289. xfs_blkdev_issue_flush(
  290. xfs_buftarg_t *buftarg)
  291. {
  292. blkdev_issue_flush(buftarg->bt_bdev, NULL);
  293. }
  294. STATIC struct inode *
  295. xfs_fs_alloc_inode(
  296. struct super_block *sb)
  297. {
  298. bhv_vnode_t *vp;
  299. vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
  300. if (unlikely(!vp))
  301. return NULL;
  302. return vn_to_inode(vp);
  303. }
  304. STATIC void
  305. xfs_fs_destroy_inode(
  306. struct inode *inode)
  307. {
  308. kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
  309. }
  310. STATIC void
  311. xfs_fs_inode_init_once(
  312. void *vnode,
  313. kmem_zone_t *zonep,
  314. unsigned long flags)
  315. {
  316. inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
  317. }
  318. STATIC int
  319. xfs_init_zones(void)
  320. {
  321. xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
  322. KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
  323. KM_ZONE_SPREAD,
  324. xfs_fs_inode_init_once);
  325. if (!xfs_vnode_zone)
  326. goto out;
  327. xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
  328. if (!xfs_ioend_zone)
  329. goto out_destroy_vnode_zone;
  330. xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
  331. xfs_ioend_zone);
  332. if (!xfs_ioend_pool)
  333. goto out_free_ioend_zone;
  334. return 0;
  335. out_free_ioend_zone:
  336. kmem_zone_destroy(xfs_ioend_zone);
  337. out_destroy_vnode_zone:
  338. kmem_zone_destroy(xfs_vnode_zone);
  339. out:
  340. return -ENOMEM;
  341. }
  342. STATIC void
  343. xfs_destroy_zones(void)
  344. {
  345. mempool_destroy(xfs_ioend_pool);
  346. kmem_zone_destroy(xfs_vnode_zone);
  347. kmem_zone_destroy(xfs_ioend_zone);
  348. }
  349. /*
  350. * Attempt to flush the inode, this will actually fail
  351. * if the inode is pinned, but we dirty the inode again
  352. * at the point when it is unpinned after a log write,
  353. * since this is when the inode itself becomes flushable.
  354. */
  355. STATIC int
  356. xfs_fs_write_inode(
  357. struct inode *inode,
  358. int sync)
  359. {
  360. int error = 0, flags = FLUSH_INODE;
  361. vn_trace_entry(XFS_I(inode), __FUNCTION__,
  362. (inst_t *)__return_address);
  363. if (sync) {
  364. filemap_fdatawait(inode->i_mapping);
  365. flags |= FLUSH_SYNC;
  366. }
  367. error = xfs_inode_flush(XFS_I(inode), flags);
  368. /*
  369. * if we failed to write out the inode then mark
  370. * it dirty again so we'll try again later.
  371. */
  372. if (error)
  373. mark_inode_dirty_sync(inode);
  374. return -error;
  375. }
  376. STATIC void
  377. xfs_fs_clear_inode(
  378. struct inode *inode)
  379. {
  380. xfs_inode_t *ip = XFS_I(inode);
  381. /*
  382. * ip can be null when xfs_iget_core calls xfs_idestroy if we
  383. * find an inode with di_mode == 0 but without IGET_CREATE set.
  384. */
  385. if (ip) {
  386. vn_trace_entry(ip, __FUNCTION__, (inst_t *)__return_address);
  387. XFS_STATS_INC(vn_rele);
  388. XFS_STATS_INC(vn_remove);
  389. XFS_STATS_INC(vn_reclaim);
  390. XFS_STATS_DEC(vn_active);
  391. xfs_inactive(ip);
  392. xfs_iflags_clear(ip, XFS_IMODIFIED);
  393. if (xfs_reclaim(ip))
  394. panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
  395. }
  396. ASSERT(XFS_I(inode) == NULL);
  397. }
  398. /*
  399. * Enqueue a work item to be picked up by the vfs xfssyncd thread.
  400. * Doing this has two advantages:
  401. * - It saves on stack space, which is tight in certain situations
  402. * - It can be used (with care) as a mechanism to avoid deadlocks.
  403. * Flushing while allocating in a full filesystem requires both.
  404. */
  405. STATIC void
  406. xfs_syncd_queue_work(
  407. struct xfs_mount *mp,
  408. void *data,
  409. void (*syncer)(struct xfs_mount *, void *))
  410. {
  411. struct bhv_vfs_sync_work *work;
  412. work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
  413. INIT_LIST_HEAD(&work->w_list);
  414. work->w_syncer = syncer;
  415. work->w_data = data;
  416. work->w_mount = mp;
  417. spin_lock(&mp->m_sync_lock);
  418. list_add_tail(&work->w_list, &mp->m_sync_list);
  419. spin_unlock(&mp->m_sync_lock);
  420. wake_up_process(mp->m_sync_task);
  421. }
  422. /*
  423. * Flush delayed allocate data, attempting to free up reserved space
  424. * from existing allocations. At this point a new allocation attempt
  425. * has failed with ENOSPC and we are in the process of scratching our
  426. * heads, looking about for more room...
  427. */
  428. STATIC void
  429. xfs_flush_inode_work(
  430. struct xfs_mount *mp,
  431. void *arg)
  432. {
  433. struct inode *inode = arg;
  434. filemap_flush(inode->i_mapping);
  435. iput(inode);
  436. }
  437. void
  438. xfs_flush_inode(
  439. xfs_inode_t *ip)
  440. {
  441. struct inode *inode = ip->i_vnode;
  442. igrab(inode);
  443. xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
  444. delay(msecs_to_jiffies(500));
  445. }
  446. /*
  447. * This is the "bigger hammer" version of xfs_flush_inode_work...
  448. * (IOW, "If at first you don't succeed, use a Bigger Hammer").
  449. */
  450. STATIC void
  451. xfs_flush_device_work(
  452. struct xfs_mount *mp,
  453. void *arg)
  454. {
  455. struct inode *inode = arg;
  456. sync_blockdev(mp->m_super->s_bdev);
  457. iput(inode);
  458. }
  459. void
  460. xfs_flush_device(
  461. xfs_inode_t *ip)
  462. {
  463. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  464. igrab(inode);
  465. xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
  466. delay(msecs_to_jiffies(500));
  467. xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
  468. }
  469. STATIC void
  470. xfs_sync_worker(
  471. struct xfs_mount *mp,
  472. void *unused)
  473. {
  474. int error;
  475. if (!(mp->m_flags & XFS_MOUNT_RDONLY))
  476. error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR |
  477. SYNC_REFCACHE | SYNC_SUPER);
  478. mp->m_sync_seq++;
  479. wake_up(&mp->m_wait_single_sync_task);
  480. }
  481. STATIC int
  482. xfssyncd(
  483. void *arg)
  484. {
  485. struct xfs_mount *mp = arg;
  486. long timeleft;
  487. bhv_vfs_sync_work_t *work, *n;
  488. LIST_HEAD (tmp);
  489. set_freezable();
  490. timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
  491. for (;;) {
  492. timeleft = schedule_timeout_interruptible(timeleft);
  493. /* swsusp */
  494. try_to_freeze();
  495. if (kthread_should_stop() && list_empty(&mp->m_sync_list))
  496. break;
  497. spin_lock(&mp->m_sync_lock);
  498. /*
  499. * We can get woken by laptop mode, to do a sync -
  500. * that's the (only!) case where the list would be
  501. * empty with time remaining.
  502. */
  503. if (!timeleft || list_empty(&mp->m_sync_list)) {
  504. if (!timeleft)
  505. timeleft = xfs_syncd_centisecs *
  506. msecs_to_jiffies(10);
  507. INIT_LIST_HEAD(&mp->m_sync_work.w_list);
  508. list_add_tail(&mp->m_sync_work.w_list,
  509. &mp->m_sync_list);
  510. }
  511. list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
  512. list_move(&work->w_list, &tmp);
  513. spin_unlock(&mp->m_sync_lock);
  514. list_for_each_entry_safe(work, n, &tmp, w_list) {
  515. (*work->w_syncer)(mp, work->w_data);
  516. list_del(&work->w_list);
  517. if (work == &mp->m_sync_work)
  518. continue;
  519. kmem_free(work, sizeof(struct bhv_vfs_sync_work));
  520. }
  521. }
  522. return 0;
  523. }
  524. STATIC void
  525. xfs_fs_put_super(
  526. struct super_block *sb)
  527. {
  528. struct xfs_mount *mp = XFS_M(sb);
  529. int error;
  530. kthread_stop(mp->m_sync_task);
  531. xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
  532. error = xfs_unmount(mp, 0, NULL);
  533. if (error)
  534. printk("XFS: unmount got error=%d\n", error);
  535. }
  536. STATIC void
  537. xfs_fs_write_super(
  538. struct super_block *sb)
  539. {
  540. if (!(sb->s_flags & MS_RDONLY))
  541. xfs_sync(XFS_M(sb), SYNC_FSDATA);
  542. sb->s_dirt = 0;
  543. }
  544. STATIC int
  545. xfs_fs_sync_super(
  546. struct super_block *sb,
  547. int wait)
  548. {
  549. struct xfs_mount *mp = XFS_M(sb);
  550. int error;
  551. int flags;
  552. /*
  553. * Treat a sync operation like a freeze. This is to work
  554. * around a race in sync_inodes() which works in two phases
  555. * - an asynchronous flush, which can write out an inode
  556. * without waiting for file size updates to complete, and a
  557. * synchronous flush, which wont do anything because the
  558. * async flush removed the inode's dirty flag. Also
  559. * sync_inodes() will not see any files that just have
  560. * outstanding transactions to be flushed because we don't
  561. * dirty the Linux inode until after the transaction I/O
  562. * completes.
  563. */
  564. if (wait || unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
  565. /*
  566. * First stage of freeze - no more writers will make progress
  567. * now we are here, so we flush delwri and delalloc buffers
  568. * here, then wait for all I/O to complete. Data is frozen at
  569. * that point. Metadata is not frozen, transactions can still
  570. * occur here so don't bother flushing the buftarg (i.e
  571. * SYNC_QUIESCE) because it'll just get dirty again.
  572. */
  573. flags = SYNC_DATA_QUIESCE;
  574. } else
  575. flags = SYNC_FSDATA;
  576. error = xfs_sync(mp, flags);
  577. sb->s_dirt = 0;
  578. if (unlikely(laptop_mode)) {
  579. int prev_sync_seq = mp->m_sync_seq;
  580. /*
  581. * The disk must be active because we're syncing.
  582. * We schedule xfssyncd now (now that the disk is
  583. * active) instead of later (when it might not be).
  584. */
  585. wake_up_process(mp->m_sync_task);
  586. /*
  587. * We have to wait for the sync iteration to complete.
  588. * If we don't, the disk activity caused by the sync
  589. * will come after the sync is completed, and that
  590. * triggers another sync from laptop mode.
  591. */
  592. wait_event(mp->m_wait_single_sync_task,
  593. mp->m_sync_seq != prev_sync_seq);
  594. }
  595. return -error;
  596. }
  597. STATIC int
  598. xfs_fs_statfs(
  599. struct dentry *dentry,
  600. struct kstatfs *statp)
  601. {
  602. return -xfs_statvfs(XFS_M(dentry->d_sb), statp,
  603. vn_from_inode(dentry->d_inode));
  604. }
  605. STATIC int
  606. xfs_fs_remount(
  607. struct super_block *sb,
  608. int *flags,
  609. char *options)
  610. {
  611. struct xfs_mount *mp = XFS_M(sb);
  612. struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
  613. int error;
  614. error = xfs_parseargs(mp, options, args, 1);
  615. if (!error)
  616. error = xfs_mntupdate(mp, flags, args);
  617. kmem_free(args, sizeof(*args));
  618. return -error;
  619. }
  620. STATIC void
  621. xfs_fs_lockfs(
  622. struct super_block *sb)
  623. {
  624. xfs_freeze(XFS_M(sb));
  625. }
  626. STATIC int
  627. xfs_fs_show_options(
  628. struct seq_file *m,
  629. struct vfsmount *mnt)
  630. {
  631. return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
  632. }
  633. STATIC int
  634. xfs_fs_quotasync(
  635. struct super_block *sb,
  636. int type)
  637. {
  638. return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
  639. }
  640. STATIC int
  641. xfs_fs_getxstate(
  642. struct super_block *sb,
  643. struct fs_quota_stat *fqs)
  644. {
  645. return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
  646. }
  647. STATIC int
  648. xfs_fs_setxstate(
  649. struct super_block *sb,
  650. unsigned int flags,
  651. int op)
  652. {
  653. return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
  654. }
  655. STATIC int
  656. xfs_fs_getxquota(
  657. struct super_block *sb,
  658. int type,
  659. qid_t id,
  660. struct fs_disk_quota *fdq)
  661. {
  662. return -XFS_QM_QUOTACTL(XFS_M(sb),
  663. (type == USRQUOTA) ? Q_XGETQUOTA :
  664. ((type == GRPQUOTA) ? Q_XGETGQUOTA :
  665. Q_XGETPQUOTA), id, (caddr_t)fdq);
  666. }
  667. STATIC int
  668. xfs_fs_setxquota(
  669. struct super_block *sb,
  670. int type,
  671. qid_t id,
  672. struct fs_disk_quota *fdq)
  673. {
  674. return -XFS_QM_QUOTACTL(XFS_M(sb),
  675. (type == USRQUOTA) ? Q_XSETQLIM :
  676. ((type == GRPQUOTA) ? Q_XSETGQLIM :
  677. Q_XSETPQLIM), id, (caddr_t)fdq);
  678. }
  679. STATIC int
  680. xfs_fs_fill_super(
  681. struct super_block *sb,
  682. void *data,
  683. int silent)
  684. {
  685. struct inode *rootvp;
  686. struct xfs_mount *mp = NULL;
  687. struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
  688. struct kstatfs statvfs;
  689. int error;
  690. mp = xfs_mount_init();
  691. INIT_LIST_HEAD(&mp->m_sync_list);
  692. spin_lock_init(&mp->m_sync_lock);
  693. init_waitqueue_head(&mp->m_wait_single_sync_task);
  694. mp->m_super = sb;
  695. sb->s_fs_info = mp;
  696. if (sb->s_flags & MS_RDONLY)
  697. mp->m_flags |= XFS_MOUNT_RDONLY;
  698. error = xfs_parseargs(mp, (char *)data, args, 0);
  699. if (error)
  700. goto fail_vfsop;
  701. sb_min_blocksize(sb, BBSIZE);
  702. sb->s_export_op = &xfs_export_operations;
  703. sb->s_qcop = &xfs_quotactl_operations;
  704. sb->s_op = &xfs_super_operations;
  705. error = xfs_mount(mp, args, NULL);
  706. if (error)
  707. goto fail_vfsop;
  708. error = xfs_statvfs(mp, &statvfs, NULL);
  709. if (error)
  710. goto fail_unmount;
  711. sb->s_dirt = 1;
  712. sb->s_magic = statvfs.f_type;
  713. sb->s_blocksize = statvfs.f_bsize;
  714. sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
  715. sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
  716. sb->s_time_gran = 1;
  717. set_posix_acl_flag(sb);
  718. error = xfs_root(mp, &rootvp);
  719. if (error)
  720. goto fail_unmount;
  721. sb->s_root = d_alloc_root(vn_to_inode(rootvp));
  722. if (!sb->s_root) {
  723. error = ENOMEM;
  724. goto fail_vnrele;
  725. }
  726. if (is_bad_inode(sb->s_root->d_inode)) {
  727. error = EINVAL;
  728. goto fail_vnrele;
  729. }
  730. mp->m_sync_work.w_syncer = xfs_sync_worker;
  731. mp->m_sync_work.w_mount = mp;
  732. mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
  733. if (IS_ERR(mp->m_sync_task)) {
  734. error = -PTR_ERR(mp->m_sync_task);
  735. goto fail_vnrele;
  736. }
  737. vn_trace_exit(XFS_I(sb->s_root->d_inode), __FUNCTION__,
  738. (inst_t *)__return_address);
  739. kmem_free(args, sizeof(*args));
  740. return 0;
  741. fail_vnrele:
  742. if (sb->s_root) {
  743. dput(sb->s_root);
  744. sb->s_root = NULL;
  745. } else {
  746. VN_RELE(rootvp);
  747. }
  748. fail_unmount:
  749. xfs_unmount(mp, 0, NULL);
  750. fail_vfsop:
  751. kmem_free(args, sizeof(*args));
  752. return -error;
  753. }
  754. STATIC int
  755. xfs_fs_get_sb(
  756. struct file_system_type *fs_type,
  757. int flags,
  758. const char *dev_name,
  759. void *data,
  760. struct vfsmount *mnt)
  761. {
  762. return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
  763. mnt);
  764. }
  765. static struct super_operations xfs_super_operations = {
  766. .alloc_inode = xfs_fs_alloc_inode,
  767. .destroy_inode = xfs_fs_destroy_inode,
  768. .write_inode = xfs_fs_write_inode,
  769. .clear_inode = xfs_fs_clear_inode,
  770. .put_super = xfs_fs_put_super,
  771. .write_super = xfs_fs_write_super,
  772. .sync_fs = xfs_fs_sync_super,
  773. .write_super_lockfs = xfs_fs_lockfs,
  774. .statfs = xfs_fs_statfs,
  775. .remount_fs = xfs_fs_remount,
  776. .show_options = xfs_fs_show_options,
  777. };
  778. static struct quotactl_ops xfs_quotactl_operations = {
  779. .quota_sync = xfs_fs_quotasync,
  780. .get_xstate = xfs_fs_getxstate,
  781. .set_xstate = xfs_fs_setxstate,
  782. .get_xquota = xfs_fs_getxquota,
  783. .set_xquota = xfs_fs_setxquota,
  784. };
  785. static struct file_system_type xfs_fs_type = {
  786. .owner = THIS_MODULE,
  787. .name = "xfs",
  788. .get_sb = xfs_fs_get_sb,
  789. .kill_sb = kill_block_super,
  790. .fs_flags = FS_REQUIRES_DEV,
  791. };
  792. STATIC int __init
  793. init_xfs_fs( void )
  794. {
  795. int error;
  796. static char message[] __initdata = KERN_INFO \
  797. XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
  798. printk(message);
  799. ktrace_init(64);
  800. error = xfs_init_zones();
  801. if (error < 0)
  802. goto undo_zones;
  803. error = xfs_buf_init();
  804. if (error < 0)
  805. goto undo_buffers;
  806. vn_init();
  807. xfs_init();
  808. uuid_init();
  809. vfs_initquota();
  810. error = register_filesystem(&xfs_fs_type);
  811. if (error)
  812. goto undo_register;
  813. return 0;
  814. undo_register:
  815. xfs_buf_terminate();
  816. undo_buffers:
  817. xfs_destroy_zones();
  818. undo_zones:
  819. return error;
  820. }
  821. STATIC void __exit
  822. exit_xfs_fs( void )
  823. {
  824. vfs_exitquota();
  825. unregister_filesystem(&xfs_fs_type);
  826. xfs_cleanup();
  827. xfs_buf_terminate();
  828. xfs_destroy_zones();
  829. ktrace_uninit();
  830. }
  831. module_init(init_xfs_fs);
  832. module_exit(exit_xfs_fs);
  833. MODULE_AUTHOR("Silicon Graphics, Inc.");
  834. MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
  835. MODULE_LICENSE("GPL");