1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063 |
- /*
- * tda18271c2dd: Driver for the TDA18271C2 tuner
- *
- * Copyright (C) 2010 Digital Devices GmbH
- *
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * version 2 only, as published by the Free Software Foundation.
- *
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- * 02110-1301, USA
- * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
- */
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/moduleparam.h>
- #include <linux/init.h>
- #include <linux/delay.h>
- #include <linux/firmware.h>
- #include <linux/i2c.h>
- #include <linux/version.h>
- #include <asm/div64.h>
- #include "dvb_frontend.h"
- struct SStandardParam {
- s32 m_IFFrequency;
- u32 m_BandWidth;
- u8 m_EP3_4_0;
- u8 m_EB22;
- };
- struct SMap {
- u32 m_Frequency;
- u8 m_Param;
- };
- struct SMapI {
- u32 m_Frequency;
- s32 m_Param;
- };
- struct SMap2 {
- u32 m_Frequency;
- u8 m_Param1;
- u8 m_Param2;
- };
- struct SRFBandMap {
- u32 m_RF_max;
- u32 m_RF1_Default;
- u32 m_RF2_Default;
- u32 m_RF3_Default;
- };
- enum ERegister
- {
- ID = 0,
- TM,
- PL,
- EP1, EP2, EP3, EP4, EP5,
- CPD, CD1, CD2, CD3,
- MPD, MD1, MD2, MD3,
- EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10,
- EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20,
- EB21, EB22, EB23,
- NUM_REGS
- };
- struct tda_state {
- struct i2c_adapter *i2c;
- u8 adr;
- u32 m_Frequency;
- u32 IF;
- u8 m_IFLevelAnalog;
- u8 m_IFLevelDigital;
- u8 m_IFLevelDVBC;
- u8 m_IFLevelDVBT;
- u8 m_EP4;
- u8 m_EP3_Standby;
- bool m_bMaster;
- s32 m_SettlingTime;
- u8 m_Regs[NUM_REGS];
- /* Tracking filter settings for band 0..6 */
- u32 m_RF1[7];
- s32 m_RF_A1[7];
- s32 m_RF_B1[7];
- u32 m_RF2[7];
- s32 m_RF_A2[7];
- s32 m_RF_B2[7];
- u32 m_RF3[7];
- u8 m_TMValue_RFCal; /* Calibration temperatur */
- bool m_bFMInput; /* true to use Pin 8 for FM Radio */
- };
- static int PowerScan(struct tda_state *state,
- u8 RFBand,u32 RF_in,
- u32 * pRF_Out, bool *pbcal);
- static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len)
- {
- struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD,
- .buf = data, .len = len}};
- return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1;
- }
- static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
- {
- struct i2c_msg msg = {.addr = adr, .flags = 0,
- .buf = data, .len = len};
- if (i2c_transfer(adap, &msg, 1) != 1) {
- printk("i2c_write error\n");
- return -1;
- }
- return 0;
- }
- static int WriteRegs(struct tda_state *state,
- u8 SubAddr, u8 *Regs, u16 nRegs)
- {
- u8 data[nRegs+1];
- data[0] = SubAddr;
- memcpy(data + 1, Regs, nRegs);
- return i2c_write(state->i2c, state->adr, data, nRegs+1);
- }
- static int WriteReg(struct tda_state *state, u8 SubAddr,u8 Reg)
- {
- u8 msg[2] = {SubAddr, Reg};
- return i2c_write(state->i2c, state->adr, msg, 2);
- }
- static int Read(struct tda_state *state, u8 * Regs)
- {
- return i2c_readn(state->i2c, state->adr, Regs, 16);
- }
- static int ReadExtented(struct tda_state *state, u8 * Regs)
- {
- return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS);
- }
- static int UpdateRegs(struct tda_state *state, u8 RegFrom,u8 RegTo)
- {
- return WriteRegs(state, RegFrom,
- &state->m_Regs[RegFrom], RegTo-RegFrom+1);
- }
- static int UpdateReg(struct tda_state *state, u8 Reg)
- {
- return WriteReg(state, Reg,state->m_Regs[Reg]);
- }
- #include "tda18271c2dd_maps.h"
- #undef CHK_ERROR
- #define CHK_ERROR(s) if ((status = s) < 0) break
- static void reset(struct tda_state *state)
- {
- u32 ulIFLevelAnalog = 0;
- u32 ulIFLevelDigital = 2;
- u32 ulIFLevelDVBC = 7;
- u32 ulIFLevelDVBT = 6;
- u32 ulXTOut = 0;
- u32 ulStandbyMode = 0x06; // Send in stdb, but leave osc on
- u32 ulSlave = 0;
- u32 ulFMInput = 0;
- u32 ulSettlingTime = 100;
- state->m_Frequency = 0;
- state->m_SettlingTime = 100;
- state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2;
- state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2;
- state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2;
- state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2;
- state->m_EP4 = 0x20;
- if( ulXTOut != 0 ) state->m_EP4 |= 0x40;
- state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F;
- state->m_bMaster = (ulSlave == 0);
- state->m_SettlingTime = ulSettlingTime;
- state->m_bFMInput = (ulFMInput == 2);
- }
- static bool SearchMap1(struct SMap Map[],
- u32 Frequency, u8 *pParam)
- {
- int i = 0;
- while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency) )
- i += 1;
- if (Map[i].m_Frequency == 0)
- return false;
- *pParam = Map[i].m_Param;
- return true;
- }
- static bool SearchMap2(struct SMapI Map[],
- u32 Frequency, s32 *pParam)
- {
- int i = 0;
- while ((Map[i].m_Frequency != 0) &&
- (Frequency > Map[i].m_Frequency) )
- i += 1;
- if (Map[i].m_Frequency == 0)
- return false;
- *pParam = Map[i].m_Param;
- return true;
- }
- static bool SearchMap3(struct SMap2 Map[],u32 Frequency,
- u8 *pParam1, u8 *pParam2)
- {
- int i = 0;
- while ((Map[i].m_Frequency != 0) &&
- (Frequency > Map[i].m_Frequency) )
- i += 1;
- if (Map[i].m_Frequency == 0)
- return false;
- *pParam1 = Map[i].m_Param1;
- *pParam2 = Map[i].m_Param2;
- return true;
- }
- static bool SearchMap4(struct SRFBandMap Map[],
- u32 Frequency, u8 *pRFBand)
- {
- int i = 0;
- while (i < 7 && (Frequency > Map[i].m_RF_max))
- i += 1;
- if (i == 7)
- return false;
- *pRFBand = i;
- return true;
- }
- static int ThermometerRead(struct tda_state *state, u8 *pTM_Value)
- {
- int status = 0;
- do {
- u8 Regs[16];
- state->m_Regs[TM] |= 0x10;
- CHK_ERROR(UpdateReg(state,TM));
- CHK_ERROR(Read(state,Regs));
- if( ( (Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20 ) ||
- ( (Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00 ) ) {
- state->m_Regs[TM] ^= 0x20;
- CHK_ERROR(UpdateReg(state,TM));
- msleep(10);
- CHK_ERROR(Read(state,Regs));
- }
- *pTM_Value = (Regs[TM] & 0x20 ) ? m_Thermometer_Map_2[Regs[TM] & 0x0F] :
- m_Thermometer_Map_1[Regs[TM] & 0x0F] ;
- state->m_Regs[TM] &= ~0x10; // Thermometer off
- CHK_ERROR(UpdateReg(state,TM));
- state->m_Regs[EP4] &= ~0x03; // CAL_mode = 0 ?????????
- CHK_ERROR(UpdateReg(state,EP4));
- } while(0);
- return status;
- }
- static int StandBy(struct tda_state *state)
- {
- int status = 0;
- do {
- state->m_Regs[EB12] &= ~0x20; // PD_AGC1_Det = 0
- CHK_ERROR(UpdateReg(state,EB12));
- state->m_Regs[EB18] &= ~0x83; // AGC1_loop_off = 0, AGC1_Gain = 6 dB
- CHK_ERROR(UpdateReg(state,EB18));
- state->m_Regs[EB21] |= 0x03; // AGC2_Gain = -6 dB
- state->m_Regs[EP3] = state->m_EP3_Standby;
- CHK_ERROR(UpdateReg(state,EP3));
- state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LP_Fc[2] = 0
- CHK_ERROR(UpdateRegs(state,EB21,EB23));
- } while(0);
- return status;
- }
- static int CalcMainPLL(struct tda_state *state, u32 freq)
- {
- u8 PostDiv;
- u8 Div;
- u64 OscFreq;
- u32 MainDiv;
- if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) {
- return -EINVAL;
- }
- OscFreq = (u64) freq * (u64) Div;
- OscFreq *= (u64) 16384;
- do_div(OscFreq, (u64)16000000);
- MainDiv = OscFreq;
- state->m_Regs[MPD] = PostDiv & 0x77;
- state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F);
- state->m_Regs[MD2] = ((MainDiv >> 8) & 0xFF);
- state->m_Regs[MD3] = ((MainDiv ) & 0xFF);
- return UpdateRegs(state, MPD, MD3);
- }
- static int CalcCalPLL(struct tda_state *state, u32 freq)
- {
- //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d)\n",freq));
- u8 PostDiv;
- u8 Div;
- u64 OscFreq;
- u32 CalDiv;
- if( !SearchMap3(m_Cal_PLL_Map,freq,&PostDiv,&Div) )
- {
- return -EINVAL;
- }
- OscFreq = (u64)freq * (u64)Div;
- //CalDiv = u32( OscFreq * 16384 / 16000000 );
- OscFreq*=(u64)16384;
- do_div(OscFreq, (u64)16000000);
- CalDiv=OscFreq;
- state->m_Regs[CPD] = PostDiv;
- state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF);
- state->m_Regs[CD2] = ((CalDiv >> 8) & 0xFF);
- state->m_Regs[CD3] = ((CalDiv ) & 0xFF);
- return UpdateRegs(state,CPD,CD3);
- }
- static int CalibrateRF(struct tda_state *state,
- u8 RFBand,u32 freq, s32 * pCprog)
- {
- //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " ID = %02x\n",state->m_Regs[ID]));
- int status = 0;
- u8 Regs[NUM_REGS];
- do {
- u8 BP_Filter=0;
- u8 GainTaper=0;
- u8 RFC_K=0;
- u8 RFC_M=0;
- state->m_Regs[EP4] &= ~0x03; // CAL_mode = 0
- CHK_ERROR(UpdateReg(state,EP4));
- state->m_Regs[EB18] |= 0x03; // AGC1_Gain = 3
- CHK_ERROR(UpdateReg(state,EB18));
- // Switching off LT (as datasheet says) causes calibration on C1 to fail
- // (Readout of Cprog is allways 255)
- if( state->m_Regs[ID] != 0x83 ) // C1: ID == 83, C2: ID == 84
- {
- state->m_Regs[EP3] |= 0x40; // SM_LT = 1
- }
- if( ! ( SearchMap1(m_BP_Filter_Map,freq,&BP_Filter) &&
- SearchMap1(m_GainTaper_Map,freq,&GainTaper) &&
- SearchMap3(m_KM_Map,freq,&RFC_K,&RFC_M)) )
- {
- return -EINVAL;
- }
- state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter;
- state->m_Regs[EP2] = (RFBand << 5) | GainTaper;
- state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2);
- CHK_ERROR(UpdateRegs(state,EP1,EP3));
- CHK_ERROR(UpdateReg(state,EB13));
- state->m_Regs[EB4] |= 0x20; // LO_ForceSrce = 1
- CHK_ERROR(UpdateReg(state,EB4));
- state->m_Regs[EB7] |= 0x20; // CAL_ForceSrce = 1
- CHK_ERROR(UpdateReg(state,EB7));
- state->m_Regs[EB14] = 0; // RFC_Cprog = 0
- CHK_ERROR(UpdateReg(state,EB14));
- state->m_Regs[EB20] &= ~0x20; // ForceLock = 0;
- CHK_ERROR(UpdateReg(state,EB20));
- state->m_Regs[EP4] |= 0x03; // CAL_Mode = 3
- CHK_ERROR(UpdateRegs(state,EP4,EP5));
- CHK_ERROR(CalcCalPLL(state,freq));
- CHK_ERROR(CalcMainPLL(state,freq + 1000000));
- msleep(5);
- CHK_ERROR(UpdateReg(state,EP2));
- CHK_ERROR(UpdateReg(state,EP1));
- CHK_ERROR(UpdateReg(state,EP2));
- CHK_ERROR(UpdateReg(state,EP1));
- state->m_Regs[EB4] &= ~0x20; // LO_ForceSrce = 0
- CHK_ERROR(UpdateReg(state,EB4));
- state->m_Regs[EB7] &= ~0x20; // CAL_ForceSrce = 0
- CHK_ERROR(UpdateReg(state,EB7));
- msleep(10);
- state->m_Regs[EB20] |= 0x20; // ForceLock = 1;
- CHK_ERROR(UpdateReg(state,EB20));
- msleep(60);
- state->m_Regs[EP4] &= ~0x03; // CAL_Mode = 0
- state->m_Regs[EP3] &= ~0x40; // SM_LT = 0
- state->m_Regs[EB18] &= ~0x03; // AGC1_Gain = 0
- CHK_ERROR(UpdateReg(state,EB18));
- CHK_ERROR(UpdateRegs(state,EP3,EP4));
- CHK_ERROR(UpdateReg(state,EP1));
- CHK_ERROR(ReadExtented(state,Regs));
- *pCprog = Regs[EB14];
- //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Cprog = %d\n",Regs[EB14]));
- } while(0);
- return status;
- }
- static int RFTrackingFiltersInit(struct tda_state *state,
- u8 RFBand)
- {
- //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
- int status = 0;
- u32 RF1 = m_RF_Band_Map[RFBand].m_RF1_Default;
- u32 RF2 = m_RF_Band_Map[RFBand].m_RF2_Default;
- u32 RF3 = m_RF_Band_Map[RFBand].m_RF3_Default;
- bool bcal = false;
- s32 Cprog_cal1 = 0;
- s32 Cprog_table1 = 0;
- s32 Cprog_cal2 = 0;
- s32 Cprog_table2 = 0;
- s32 Cprog_cal3 = 0;
- s32 Cprog_table3 = 0;
- state->m_RF_A1[RFBand] = 0;
- state->m_RF_B1[RFBand] = 0;
- state->m_RF_A2[RFBand] = 0;
- state->m_RF_B2[RFBand] = 0;
- do {
- CHK_ERROR(PowerScan(state,RFBand,RF1,&RF1,&bcal));
- if( bcal ) {
- CHK_ERROR(CalibrateRF(state,RFBand,RF1,&Cprog_cal1));
- }
- SearchMap2(m_RF_Cal_Map,RF1,&Cprog_table1);
- if( !bcal ) {
- Cprog_cal1 = Cprog_table1;
- }
- state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1;
- //state->m_RF_A1[RF_Band] = ????
- if( RF2 == 0 ) break;
- CHK_ERROR(PowerScan(state,RFBand,RF2,&RF2,&bcal));
- if( bcal ) {
- CHK_ERROR(CalibrateRF(state,RFBand,RF2,&Cprog_cal2));
- }
- SearchMap2(m_RF_Cal_Map,RF2,&Cprog_table2);
- if( !bcal )
- {
- Cprog_cal2 = Cprog_table2;
- }
- state->m_RF_A1[RFBand] =
- (Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) /
- ((s32)(RF2)-(s32)(RF1));
- if( RF3 == 0 ) break;
- CHK_ERROR(PowerScan(state,RFBand,RF3,&RF3,&bcal));
- if( bcal )
- {
- CHK_ERROR(CalibrateRF(state,RFBand,RF3,&Cprog_cal3));
- }
- SearchMap2(m_RF_Cal_Map,RF3,&Cprog_table3);
- if( !bcal )
- {
- Cprog_cal3 = Cprog_table3;
- }
- state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3)-(s32)(RF2));
- state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2;
- } while(0);
- state->m_RF1[RFBand] = RF1;
- state->m_RF2[RFBand] = RF2;
- state->m_RF3[RFBand] = RF3;
- #if 0
- printk("%s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __FUNCTION__,
- RFBand,RF1,state->m_RF_A1[RFBand],state->m_RF_B1[RFBand],RF2,
- state->m_RF_A2[RFBand],state->m_RF_B2[RFBand],RF3);
- #endif
- return status;
- }
- static int PowerScan(struct tda_state *state,
- u8 RFBand,u32 RF_in, u32 * pRF_Out, bool *pbcal)
- {
- //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d,%d)\n",RFBand,RF_in));
- int status = 0;
- do {
- u8 Gain_Taper=0;
- s32 RFC_Cprog=0;
- u8 CID_Target=0;
- u8 CountLimit=0;
- u32 freq_MainPLL;
- u8 Regs[NUM_REGS];
- u8 CID_Gain;
- s32 Count = 0;
- int sign = 1;
- bool wait = false;
- if( ! (SearchMap2(m_RF_Cal_Map,RF_in,&RFC_Cprog) &&
- SearchMap1(m_GainTaper_Map,RF_in,&Gain_Taper) &&
- SearchMap3(m_CID_Target_Map,RF_in,&CID_Target,&CountLimit) )) {
- printk("%s Search map failed\n", __FUNCTION__);
- return -EINVAL;
- }
- state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper;
- state->m_Regs[EB14] = (RFC_Cprog);
- CHK_ERROR(UpdateReg(state,EP2));
- CHK_ERROR(UpdateReg(state,EB14));
- freq_MainPLL = RF_in + 1000000;
- CHK_ERROR(CalcMainPLL(state,freq_MainPLL));
- msleep(5);
- state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1; // CAL_mode = 1
- CHK_ERROR(UpdateReg(state,EP4));
- CHK_ERROR(UpdateReg(state,EP2)); // Launch power measurement
- CHK_ERROR(ReadExtented(state,Regs));
- CID_Gain = Regs[EB10] & 0x3F;
- state->m_Regs[ID] = Regs[ID]; // Chip version, (needed for C1 workarround in CalibrateRF )
- *pRF_Out = RF_in;
- while( CID_Gain < CID_Target ) {
- freq_MainPLL = RF_in + sign * Count + 1000000;
- CHK_ERROR(CalcMainPLL(state,freq_MainPLL));
- msleep( wait ? 5 : 1 );
- wait = false;
- CHK_ERROR(UpdateReg(state,EP2)); // Launch power measurement
- CHK_ERROR(ReadExtented(state,Regs));
- CID_Gain = Regs[EB10] & 0x3F;
- Count += 200000;
- if( Count < CountLimit * 100000 ) continue;
- if( sign < 0 ) break;
- sign = -sign;
- Count = 200000;
- wait = true;
- }
- CHK_ERROR(status);
- if( CID_Gain >= CID_Target )
- {
- *pbcal = true;
- *pRF_Out = freq_MainPLL - 1000000;
- }
- else
- {
- *pbcal = false;
- }
- } while(0);
- //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Found = %d RF = %d\n",*pbcal,*pRF_Out));
- return status;
- }
- static int PowerScanInit(struct tda_state *state)
- {
- //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
- int status = 0;
- do
- {
- state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12;
- state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); // If level = 0, Cal mode = 0
- CHK_ERROR(UpdateRegs(state,EP3,EP4));
- state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03 ); // AGC 1 Gain = 0
- CHK_ERROR(UpdateReg(state,EB18));
- state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03 ); // AGC 2 Gain = 0 (Datasheet = 3)
- state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06 ); // ForceLP_Fc2_En = 1, LPFc[2] = 1
- CHK_ERROR(UpdateRegs(state,EB21,EB23));
- } while(0);
- return status;
- }
- static int CalcRFFilterCurve(struct tda_state *state)
- {
- //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
- int status = 0;
- do
- {
- msleep(200); // Temperature stabilisation
- CHK_ERROR(PowerScanInit(state));
- CHK_ERROR(RFTrackingFiltersInit(state,0));
- CHK_ERROR(RFTrackingFiltersInit(state,1));
- CHK_ERROR(RFTrackingFiltersInit(state,2));
- CHK_ERROR(RFTrackingFiltersInit(state,3));
- CHK_ERROR(RFTrackingFiltersInit(state,4));
- CHK_ERROR(RFTrackingFiltersInit(state,5));
- CHK_ERROR(RFTrackingFiltersInit(state,6));
- CHK_ERROR(ThermometerRead(state,&state->m_TMValue_RFCal)); // also switches off Cal mode !!!
- } while(0);
- return status;
- }
- static int FixedContentsI2CUpdate(struct tda_state *state)
- {
- static u8 InitRegs[] = {
- 0x08,0x80,0xC6,
- 0xDF,0x16,0x60,0x80,
- 0x80,0x00,0x00,0x00,
- 0x00,0x00,0x00,0x00,
- 0xFC,0x01,0x84,0x41,
- 0x01,0x84,0x40,0x07,
- 0x00,0x00,0x96,0x3F,
- 0xC1,0x00,0x8F,0x00,
- 0x00,0x8C,0x00,0x20,
- 0xB3,0x48,0xB0,
- };
- int status = 0;
- memcpy(&state->m_Regs[TM],InitRegs,EB23-TM+1);
- do {
- CHK_ERROR(UpdateRegs(state,TM,EB23));
- // AGC1 gain setup
- state->m_Regs[EB17] = 0x00;
- CHK_ERROR(UpdateReg(state,EB17));
- state->m_Regs[EB17] = 0x03;
- CHK_ERROR(UpdateReg(state,EB17));
- state->m_Regs[EB17] = 0x43;
- CHK_ERROR(UpdateReg(state,EB17));
- state->m_Regs[EB17] = 0x4C;
- CHK_ERROR(UpdateReg(state,EB17));
- // IRC Cal Low band
- state->m_Regs[EP3] = 0x1F;
- state->m_Regs[EP4] = 0x66;
- state->m_Regs[EP5] = 0x81;
- state->m_Regs[CPD] = 0xCC;
- state->m_Regs[CD1] = 0x6C;
- state->m_Regs[CD2] = 0x00;
- state->m_Regs[CD3] = 0x00;
- state->m_Regs[MPD] = 0xC5;
- state->m_Regs[MD1] = 0x77;
- state->m_Regs[MD2] = 0x08;
- state->m_Regs[MD3] = 0x00;
- CHK_ERROR(UpdateRegs(state,EP2,MD3)); // diff between sw and datasheet (ep3-md3)
- //state->m_Regs[EB4] = 0x61; // missing in sw
- //CHK_ERROR(UpdateReg(state,EB4));
- //msleep(1);
- //state->m_Regs[EB4] = 0x41;
- //CHK_ERROR(UpdateReg(state,EB4));
- msleep(5);
- CHK_ERROR(UpdateReg(state,EP1));
- msleep(5);
- state->m_Regs[EP5] = 0x85;
- state->m_Regs[CPD] = 0xCB;
- state->m_Regs[CD1] = 0x66;
- state->m_Regs[CD2] = 0x70;
- CHK_ERROR(UpdateRegs(state,EP3,CD3));
- msleep(5);
- CHK_ERROR(UpdateReg(state,EP2));
- msleep(30);
- // IRC Cal mid band
- state->m_Regs[EP5] = 0x82;
- state->m_Regs[CPD] = 0xA8;
- state->m_Regs[CD2] = 0x00;
- state->m_Regs[MPD] = 0xA1; // Datasheet = 0xA9
- state->m_Regs[MD1] = 0x73;
- state->m_Regs[MD2] = 0x1A;
- CHK_ERROR(UpdateRegs(state,EP3,MD3));
- msleep(5);
- CHK_ERROR(UpdateReg(state,EP1));
- msleep(5);
- state->m_Regs[EP5] = 0x86;
- state->m_Regs[CPD] = 0xA8;
- state->m_Regs[CD1] = 0x66;
- state->m_Regs[CD2] = 0xA0;
- CHK_ERROR(UpdateRegs(state,EP3,CD3));
- msleep(5);
- CHK_ERROR(UpdateReg(state,EP2));
- msleep(30);
- // IRC Cal high band
- state->m_Regs[EP5] = 0x83;
- state->m_Regs[CPD] = 0x98;
- state->m_Regs[CD1] = 0x65;
- state->m_Regs[CD2] = 0x00;
- state->m_Regs[MPD] = 0x91; // Datasheet = 0x91
- state->m_Regs[MD1] = 0x71;
- state->m_Regs[MD2] = 0xCD;
- CHK_ERROR(UpdateRegs(state,EP3,MD3));
- msleep(5);
- CHK_ERROR(UpdateReg(state,EP1));
- msleep(5);
- state->m_Regs[EP5] = 0x87;
- state->m_Regs[CD1] = 0x65;
- state->m_Regs[CD2] = 0x50;
- CHK_ERROR(UpdateRegs(state,EP3,CD3));
- msleep(5);
- CHK_ERROR(UpdateReg(state,EP2));
- msleep(30);
- // Back to normal
- state->m_Regs[EP4] = 0x64;
- CHK_ERROR(UpdateReg(state,EP4));
- CHK_ERROR(UpdateReg(state,EP1));
- } while(0);
- return status;
- }
- static int InitCal(struct tda_state *state)
- {
- int status = 0;
- do
- {
- CHK_ERROR(FixedContentsI2CUpdate(state));
- CHK_ERROR(CalcRFFilterCurve(state));
- CHK_ERROR(StandBy(state));
- //m_bInitDone = true;
- } while(0);
- return status;
- };
- static int RFTrackingFiltersCorrection(struct tda_state *state,
- u32 Frequency)
- {
- int status = 0;
- s32 Cprog_table;
- u8 RFBand;
- u8 dCoverdT;
- if( !SearchMap2(m_RF_Cal_Map,Frequency,&Cprog_table) ||
- !SearchMap4(m_RF_Band_Map,Frequency,&RFBand) ||
- !SearchMap1(m_RF_Cal_DC_Over_DT_Map,Frequency,&dCoverdT) )
- {
- return -EINVAL;
- }
- do
- {
- u8 TMValue_Current;
- u32 RF1 = state->m_RF1[RFBand];
- u32 RF2 = state->m_RF1[RFBand];
- u32 RF3 = state->m_RF1[RFBand];
- s32 RF_A1 = state->m_RF_A1[RFBand];
- s32 RF_B1 = state->m_RF_B1[RFBand];
- s32 RF_A2 = state->m_RF_A2[RFBand];
- s32 RF_B2 = state->m_RF_B2[RFBand];
- s32 Capprox = 0;
- int TComp;
- state->m_Regs[EP3] &= ~0xE0; // Power up
- CHK_ERROR(UpdateReg(state,EP3));
- CHK_ERROR(ThermometerRead(state,&TMValue_Current));
- if( RF3 == 0 || Frequency < RF2 )
- {
- Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table;
- }
- else
- {
- Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table;
- }
- TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000;
- Capprox += TComp;
- if( Capprox < 0 ) Capprox = 0;
- else if( Capprox > 255 ) Capprox = 255;
- // TODO Temperature compensation. There is defenitely a scale factor
- // missing in the datasheet, so leave it out for now.
- state->m_Regs[EB14] = (Capprox );
- CHK_ERROR(UpdateReg(state,EB14));
- } while(0);
- return status;
- }
- static int ChannelConfiguration(struct tda_state *state,
- u32 Frequency, int Standard)
- {
- s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency;
- int status = 0;
- u8 BP_Filter = 0;
- u8 RF_Band = 0;
- u8 GainTaper = 0;
- u8 IR_Meas;
- state->IF=IntermediateFrequency;
- //printk("%s Freq = %d Standard = %d IF = %d\n",__FUNCTION__,Frequency,Standard,IntermediateFrequency);
- // get values from tables
- if(! ( SearchMap1(m_BP_Filter_Map,Frequency,&BP_Filter) &&
- SearchMap1(m_GainTaper_Map,Frequency,&GainTaper) &&
- SearchMap1(m_IR_Meas_Map,Frequency,&IR_Meas) &&
- SearchMap4(m_RF_Band_Map,Frequency,&RF_Band) ) )
- {
- printk("%s SearchMap failed\n", __FUNCTION__);
- return -EINVAL;
- }
- do
- {
- state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0;
- state->m_Regs[EP3] &= ~0x04; // switch RFAGC to high speed mode
- // m_EP4 default for XToutOn, CAL_Mode (0)
- state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax )? state->m_IFLevelDigital : state->m_IFLevelAnalog );
- //state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
- if( Standard <= HF_AnalogMax ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog;
- else if( Standard <= HF_ATSC ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT;
- else if( Standard <= HF_DVBC ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC;
- else state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
- if( (Standard == HF_FM_Radio) && state->m_bFMInput ) state->m_Regs[EP4] |= 80;
- state->m_Regs[MPD] &= ~0x80;
- if( Standard > HF_AnalogMax ) state->m_Regs[MPD] |= 0x80; // Add IF_notch for digital
- state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22;
- // Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM )
- if( Standard == HF_FM_Radio ) state->m_Regs[EB23] |= 0x06; // ForceLP_Fc2_En = 1, LPFc[2] = 1
- else state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LPFc[2] = 0
- CHK_ERROR(UpdateRegs(state,EB22,EB23));
- state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter; // Dis_Power_level = 1, Filter
- state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas;
- state->m_Regs[EP2] = (RF_Band << 5) | GainTaper;
- state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) |
- (state->m_bMaster ? 0x04 : 0x00); // CALVCO_FortLOn = MS
- // AGC1_always_master = 0
- // AGC_firstn = 0
- CHK_ERROR(UpdateReg(state,EB1));
- if( state->m_bMaster )
- {
- CHK_ERROR(CalcMainPLL(state,Frequency + IntermediateFrequency));
- CHK_ERROR(UpdateRegs(state,TM,EP5));
- state->m_Regs[EB4] |= 0x20; // LO_forceSrce = 1
- CHK_ERROR(UpdateReg(state,EB4));
- msleep(1);
- state->m_Regs[EB4] &= ~0x20; // LO_forceSrce = 0
- CHK_ERROR(UpdateReg(state,EB4));
- }
- else
- {
- u8 PostDiv;
- u8 Div;
- CHK_ERROR(CalcCalPLL(state,Frequency + IntermediateFrequency));
- SearchMap3(m_Cal_PLL_Map,Frequency + IntermediateFrequency,&PostDiv,&Div);
- state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77);
- CHK_ERROR(UpdateReg(state,MPD));
- CHK_ERROR(UpdateRegs(state,TM,EP5));
- state->m_Regs[EB7] |= 0x20; // CAL_forceSrce = 1
- CHK_ERROR(UpdateReg(state,EB7));
- msleep(1);
- state->m_Regs[EB7] &= ~0x20; // CAL_forceSrce = 0
- CHK_ERROR(UpdateReg(state,EB7));
- }
- msleep(20);
- if( Standard != HF_FM_Radio )
- {
- state->m_Regs[EP3] |= 0x04; // RFAGC to normal mode
- }
- CHK_ERROR(UpdateReg(state,EP3));
- } while(0);
- return status;
- }
- static int sleep(struct dvb_frontend* fe)
- {
- struct tda_state *state = fe->tuner_priv;
- StandBy(state);
- return 0;
- }
- static int init(struct dvb_frontend* fe)
- {
- //struct tda_state *state = fe->tuner_priv;
- return 0;
- }
- static int release(struct dvb_frontend* fe)
- {
- kfree(fe->tuner_priv);
- fe->tuner_priv = NULL;
- return 0;
- }
- static int set_params(struct dvb_frontend *fe,
- struct dvb_frontend_parameters *params)
- {
- struct tda_state *state = fe->tuner_priv;
- int status = 0;
- int Standard;
- state->m_Frequency = params->frequency;
- if (fe->ops.info.type == FE_OFDM)
- switch (params->u.ofdm.bandwidth) {
- case BANDWIDTH_6_MHZ:
- Standard = HF_DVBT_6MHZ;
- break;
- case BANDWIDTH_7_MHZ:
- Standard = HF_DVBT_7MHZ;
- break;
- default:
- case BANDWIDTH_8_MHZ:
- Standard = HF_DVBT_8MHZ;
- break;
- }
- else if (fe->ops.info.type == FE_QAM) {
- Standard = HF_DVBC_8MHZ;
- } else
- return -EINVAL;
- do {
- CHK_ERROR(RFTrackingFiltersCorrection(state,params->frequency));
- CHK_ERROR(ChannelConfiguration(state,params->frequency,Standard));
- msleep(state->m_SettlingTime); // Allow AGC's to settle down
- } while(0);
- return status;
- }
- #if 0
- static int GetSignalStrength(s32 * pSignalStrength,u32 RFAgc,u32 IFAgc)
- {
- if( IFAgc < 500 ) {
- // Scale this from 0 to 50000
- *pSignalStrength = IFAgc * 100;
- } else {
- // Scale range 500-1500 to 50000-80000
- *pSignalStrength = 50000 + (IFAgc - 500) * 30;
- }
- return 0;
- }
- #endif
- static int get_frequency(struct dvb_frontend *fe, u32 *frequency)
- {
- struct tda_state *state = fe->tuner_priv;
- *frequency = state->IF;
- return 0;
- }
- static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
- {
- //struct tda_state *state = fe->tuner_priv;
- //*bandwidth = priv->bandwidth;
- return 0;
- }
- static struct dvb_tuner_ops tuner_ops = {
- .info = {
- .name = "NXP TDA18271C2D",
- .frequency_min = 47125000,
- .frequency_max = 865000000,
- .frequency_step = 62500
- },
- .init = init,
- .sleep = sleep,
- .set_params = set_params,
- .release = release,
- .get_frequency = get_frequency,
- .get_bandwidth = get_bandwidth,
- };
- struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe,
- struct i2c_adapter *i2c, u8 adr)
- {
- struct tda_state *state;
- state = kzalloc(sizeof(struct tda_state), GFP_KERNEL);
- if (!state)
- return NULL;
- fe->tuner_priv = state;
- state->adr = adr;
- state->i2c = i2c;
- memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops));
- reset(state);
- InitCal(state);
- return fe;
- }
- EXPORT_SYMBOL_GPL(tda18271c2dd_attach);
- MODULE_DESCRIPTION("TDA18271C2 driver");
- MODULE_AUTHOR("DD");
- MODULE_LICENSE("GPL");
- /*
- * Local variables:
- * c-basic-offset: 8
- * End:
- */
|