time.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <asm/io.h>
  56. #include <asm/processor.h>
  57. #include <asm/nvram.h>
  58. #include <asm/cache.h>
  59. #include <asm/machdep.h>
  60. #include <asm/uaccess.h>
  61. #include <asm/time.h>
  62. #include <asm/prom.h>
  63. #include <asm/irq.h>
  64. #include <asm/div64.h>
  65. #include <asm/smp.h>
  66. #include <asm/vdso_datapage.h>
  67. #include <asm/firmware.h>
  68. #include <asm/cputime.h>
  69. #ifdef CONFIG_PPC_ISERIES
  70. #include <asm/iseries/it_lp_queue.h>
  71. #include <asm/iseries/hv_call_xm.h>
  72. #endif
  73. /* powerpc clocksource/clockevent code */
  74. #include <linux/clockchips.h>
  75. #include <linux/clocksource.h>
  76. static cycle_t rtc_read(struct clocksource *);
  77. static struct clocksource clocksource_rtc = {
  78. .name = "rtc",
  79. .rating = 400,
  80. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  81. .mask = CLOCKSOURCE_MASK(64),
  82. .shift = 22,
  83. .mult = 0, /* To be filled in */
  84. .read = rtc_read,
  85. };
  86. static cycle_t timebase_read(struct clocksource *);
  87. static struct clocksource clocksource_timebase = {
  88. .name = "timebase",
  89. .rating = 400,
  90. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  91. .mask = CLOCKSOURCE_MASK(64),
  92. .shift = 22,
  93. .mult = 0, /* To be filled in */
  94. .read = timebase_read,
  95. };
  96. #define DECREMENTER_MAX 0x7fffffff
  97. static int decrementer_set_next_event(unsigned long evt,
  98. struct clock_event_device *dev);
  99. static void decrementer_set_mode(enum clock_event_mode mode,
  100. struct clock_event_device *dev);
  101. static struct clock_event_device decrementer_clockevent = {
  102. .name = "decrementer",
  103. .rating = 200,
  104. .shift = 0, /* To be filled in */
  105. .mult = 0, /* To be filled in */
  106. .irq = 0,
  107. .set_next_event = decrementer_set_next_event,
  108. .set_mode = decrementer_set_mode,
  109. .features = CLOCK_EVT_FEAT_ONESHOT,
  110. };
  111. struct decrementer_clock {
  112. struct clock_event_device event;
  113. u64 next_tb;
  114. };
  115. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  116. #ifdef CONFIG_PPC_ISERIES
  117. static unsigned long __initdata iSeries_recal_titan;
  118. static signed long __initdata iSeries_recal_tb;
  119. /* Forward declaration is only needed for iSereis compiles */
  120. static void __init clocksource_init(void);
  121. #endif
  122. #define XSEC_PER_SEC (1024*1024)
  123. #ifdef CONFIG_PPC64
  124. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  125. #else
  126. /* compute ((xsec << 12) * max) >> 32 */
  127. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  128. #endif
  129. unsigned long tb_ticks_per_jiffy;
  130. unsigned long tb_ticks_per_usec = 100; /* sane default */
  131. EXPORT_SYMBOL(tb_ticks_per_usec);
  132. unsigned long tb_ticks_per_sec;
  133. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  134. u64 tb_to_xs;
  135. unsigned tb_to_us;
  136. #define TICKLEN_SCALE NTP_SCALE_SHIFT
  137. static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  138. static u64 ticklen_to_xs; /* 0.64 fraction */
  139. /* If last_tick_len corresponds to about 1/HZ seconds, then
  140. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  141. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  142. DEFINE_SPINLOCK(rtc_lock);
  143. EXPORT_SYMBOL_GPL(rtc_lock);
  144. static u64 tb_to_ns_scale __read_mostly;
  145. static unsigned tb_to_ns_shift __read_mostly;
  146. static unsigned long boot_tb __read_mostly;
  147. extern struct timezone sys_tz;
  148. static long timezone_offset;
  149. unsigned long ppc_proc_freq;
  150. EXPORT_SYMBOL(ppc_proc_freq);
  151. unsigned long ppc_tb_freq;
  152. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  153. static DEFINE_PER_CPU(u64, last_jiffy);
  154. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  155. /*
  156. * Factors for converting from cputime_t (timebase ticks) to
  157. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  158. * These are all stored as 0.64 fixed-point binary fractions.
  159. */
  160. u64 __cputime_jiffies_factor;
  161. EXPORT_SYMBOL(__cputime_jiffies_factor);
  162. u64 __cputime_msec_factor;
  163. EXPORT_SYMBOL(__cputime_msec_factor);
  164. u64 __cputime_sec_factor;
  165. EXPORT_SYMBOL(__cputime_sec_factor);
  166. u64 __cputime_clockt_factor;
  167. EXPORT_SYMBOL(__cputime_clockt_factor);
  168. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  169. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  170. static void calc_cputime_factors(void)
  171. {
  172. struct div_result res;
  173. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  174. __cputime_jiffies_factor = res.result_low;
  175. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  176. __cputime_msec_factor = res.result_low;
  177. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  178. __cputime_sec_factor = res.result_low;
  179. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  180. __cputime_clockt_factor = res.result_low;
  181. }
  182. /*
  183. * Read the PURR on systems that have it, otherwise the timebase.
  184. */
  185. static u64 read_purr(void)
  186. {
  187. if (cpu_has_feature(CPU_FTR_PURR))
  188. return mfspr(SPRN_PURR);
  189. return mftb();
  190. }
  191. /*
  192. * Read the SPURR on systems that have it, otherwise the purr
  193. */
  194. static u64 read_spurr(u64 purr)
  195. {
  196. /*
  197. * cpus without PURR won't have a SPURR
  198. * We already know the former when we use this, so tell gcc
  199. */
  200. if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
  201. return mfspr(SPRN_SPURR);
  202. return purr;
  203. }
  204. /*
  205. * Account time for a transition between system, hard irq
  206. * or soft irq state.
  207. */
  208. void account_system_vtime(struct task_struct *tsk)
  209. {
  210. u64 now, nowscaled, delta, deltascaled, sys_time;
  211. unsigned long flags;
  212. local_irq_save(flags);
  213. now = read_purr();
  214. nowscaled = read_spurr(now);
  215. delta = now - get_paca()->startpurr;
  216. deltascaled = nowscaled - get_paca()->startspurr;
  217. get_paca()->startpurr = now;
  218. get_paca()->startspurr = nowscaled;
  219. if (!in_interrupt()) {
  220. /* deltascaled includes both user and system time.
  221. * Hence scale it based on the purr ratio to estimate
  222. * the system time */
  223. sys_time = get_paca()->system_time;
  224. if (get_paca()->user_time)
  225. deltascaled = deltascaled * sys_time /
  226. (sys_time + get_paca()->user_time);
  227. delta += sys_time;
  228. get_paca()->system_time = 0;
  229. }
  230. if (in_irq() || idle_task(smp_processor_id()) != tsk)
  231. account_system_time(tsk, 0, delta, deltascaled);
  232. else
  233. account_idle_time(delta);
  234. per_cpu(cputime_last_delta, smp_processor_id()) = delta;
  235. per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
  236. local_irq_restore(flags);
  237. }
  238. /*
  239. * Transfer the user and system times accumulated in the paca
  240. * by the exception entry and exit code to the generic process
  241. * user and system time records.
  242. * Must be called with interrupts disabled.
  243. */
  244. void account_process_tick(struct task_struct *tsk, int user_tick)
  245. {
  246. cputime_t utime, utimescaled;
  247. utime = get_paca()->user_time;
  248. get_paca()->user_time = 0;
  249. utimescaled = cputime_to_scaled(utime);
  250. account_user_time(tsk, utime, utimescaled);
  251. }
  252. /*
  253. * Stuff for accounting stolen time.
  254. */
  255. struct cpu_purr_data {
  256. int initialized; /* thread is running */
  257. u64 tb; /* last TB value read */
  258. u64 purr; /* last PURR value read */
  259. u64 spurr; /* last SPURR value read */
  260. };
  261. /*
  262. * Each entry in the cpu_purr_data array is manipulated only by its
  263. * "owner" cpu -- usually in the timer interrupt but also occasionally
  264. * in process context for cpu online. As long as cpus do not touch
  265. * each others' cpu_purr_data, disabling local interrupts is
  266. * sufficient to serialize accesses.
  267. */
  268. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  269. static void snapshot_tb_and_purr(void *data)
  270. {
  271. unsigned long flags;
  272. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  273. local_irq_save(flags);
  274. p->tb = get_tb_or_rtc();
  275. p->purr = mfspr(SPRN_PURR);
  276. wmb();
  277. p->initialized = 1;
  278. local_irq_restore(flags);
  279. }
  280. /*
  281. * Called during boot when all cpus have come up.
  282. */
  283. void snapshot_timebases(void)
  284. {
  285. if (!cpu_has_feature(CPU_FTR_PURR))
  286. return;
  287. on_each_cpu(snapshot_tb_and_purr, NULL, 1);
  288. }
  289. /*
  290. * Must be called with interrupts disabled.
  291. */
  292. void calculate_steal_time(void)
  293. {
  294. u64 tb, purr;
  295. s64 stolen;
  296. struct cpu_purr_data *pme;
  297. pme = &__get_cpu_var(cpu_purr_data);
  298. if (!pme->initialized)
  299. return; /* !CPU_FTR_PURR or early in early boot */
  300. tb = mftb();
  301. purr = mfspr(SPRN_PURR);
  302. stolen = (tb - pme->tb) - (purr - pme->purr);
  303. if (stolen > 0) {
  304. if (idle_task(smp_processor_id()) != current)
  305. account_steal_time(stolen);
  306. else
  307. account_idle_time(stolen);
  308. }
  309. pme->tb = tb;
  310. pme->purr = purr;
  311. }
  312. #ifdef CONFIG_PPC_SPLPAR
  313. /*
  314. * Must be called before the cpu is added to the online map when
  315. * a cpu is being brought up at runtime.
  316. */
  317. static void snapshot_purr(void)
  318. {
  319. struct cpu_purr_data *pme;
  320. unsigned long flags;
  321. if (!cpu_has_feature(CPU_FTR_PURR))
  322. return;
  323. local_irq_save(flags);
  324. pme = &__get_cpu_var(cpu_purr_data);
  325. pme->tb = mftb();
  326. pme->purr = mfspr(SPRN_PURR);
  327. pme->initialized = 1;
  328. local_irq_restore(flags);
  329. }
  330. #endif /* CONFIG_PPC_SPLPAR */
  331. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  332. #define calc_cputime_factors()
  333. #define calculate_steal_time() do { } while (0)
  334. #endif
  335. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  336. #define snapshot_purr() do { } while (0)
  337. #endif
  338. /*
  339. * Called when a cpu comes up after the system has finished booting,
  340. * i.e. as a result of a hotplug cpu action.
  341. */
  342. void snapshot_timebase(void)
  343. {
  344. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  345. snapshot_purr();
  346. }
  347. void __delay(unsigned long loops)
  348. {
  349. unsigned long start;
  350. int diff;
  351. if (__USE_RTC()) {
  352. start = get_rtcl();
  353. do {
  354. /* the RTCL register wraps at 1000000000 */
  355. diff = get_rtcl() - start;
  356. if (diff < 0)
  357. diff += 1000000000;
  358. } while (diff < loops);
  359. } else {
  360. start = get_tbl();
  361. while (get_tbl() - start < loops)
  362. HMT_low();
  363. HMT_medium();
  364. }
  365. }
  366. EXPORT_SYMBOL(__delay);
  367. void udelay(unsigned long usecs)
  368. {
  369. __delay(tb_ticks_per_usec * usecs);
  370. }
  371. EXPORT_SYMBOL(udelay);
  372. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  373. u64 new_tb_to_xs)
  374. {
  375. /*
  376. * tb_update_count is used to allow the userspace gettimeofday code
  377. * to assure itself that it sees a consistent view of the tb_to_xs and
  378. * stamp_xsec variables. It reads the tb_update_count, then reads
  379. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  380. * the two values of tb_update_count match and are even then the
  381. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  382. * loops back and reads them again until this criteria is met.
  383. * We expect the caller to have done the first increment of
  384. * vdso_data->tb_update_count already.
  385. */
  386. vdso_data->tb_orig_stamp = new_tb_stamp;
  387. vdso_data->stamp_xsec = new_stamp_xsec;
  388. vdso_data->tb_to_xs = new_tb_to_xs;
  389. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  390. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  391. vdso_data->stamp_xtime = xtime;
  392. smp_wmb();
  393. ++(vdso_data->tb_update_count);
  394. }
  395. #ifdef CONFIG_SMP
  396. unsigned long profile_pc(struct pt_regs *regs)
  397. {
  398. unsigned long pc = instruction_pointer(regs);
  399. if (in_lock_functions(pc))
  400. return regs->link;
  401. return pc;
  402. }
  403. EXPORT_SYMBOL(profile_pc);
  404. #endif
  405. #ifdef CONFIG_PPC_ISERIES
  406. /*
  407. * This function recalibrates the timebase based on the 49-bit time-of-day
  408. * value in the Titan chip. The Titan is much more accurate than the value
  409. * returned by the service processor for the timebase frequency.
  410. */
  411. static int __init iSeries_tb_recal(void)
  412. {
  413. struct div_result divres;
  414. unsigned long titan, tb;
  415. /* Make sure we only run on iSeries */
  416. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  417. return -ENODEV;
  418. tb = get_tb();
  419. titan = HvCallXm_loadTod();
  420. if ( iSeries_recal_titan ) {
  421. unsigned long tb_ticks = tb - iSeries_recal_tb;
  422. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  423. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  424. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  425. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  426. char sign = '+';
  427. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  428. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  429. if ( tick_diff < 0 ) {
  430. tick_diff = -tick_diff;
  431. sign = '-';
  432. }
  433. if ( tick_diff ) {
  434. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  435. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  436. new_tb_ticks_per_jiffy, sign, tick_diff );
  437. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  438. tb_ticks_per_sec = new_tb_ticks_per_sec;
  439. calc_cputime_factors();
  440. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  441. tb_to_xs = divres.result_low;
  442. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  443. vdso_data->tb_to_xs = tb_to_xs;
  444. }
  445. else {
  446. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  447. " new tb_ticks_per_jiffy = %lu\n"
  448. " old tb_ticks_per_jiffy = %lu\n",
  449. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  450. }
  451. }
  452. }
  453. iSeries_recal_titan = titan;
  454. iSeries_recal_tb = tb;
  455. /* Called here as now we know accurate values for the timebase */
  456. clocksource_init();
  457. return 0;
  458. }
  459. late_initcall(iSeries_tb_recal);
  460. /* Called from platform early init */
  461. void __init iSeries_time_init_early(void)
  462. {
  463. iSeries_recal_tb = get_tb();
  464. iSeries_recal_titan = HvCallXm_loadTod();
  465. }
  466. #endif /* CONFIG_PPC_ISERIES */
  467. /*
  468. * For iSeries shared processors, we have to let the hypervisor
  469. * set the hardware decrementer. We set a virtual decrementer
  470. * in the lppaca and call the hypervisor if the virtual
  471. * decrementer is less than the current value in the hardware
  472. * decrementer. (almost always the new decrementer value will
  473. * be greater than the current hardware decementer so the hypervisor
  474. * call will not be needed)
  475. */
  476. /*
  477. * timer_interrupt - gets called when the decrementer overflows,
  478. * with interrupts disabled.
  479. */
  480. void timer_interrupt(struct pt_regs * regs)
  481. {
  482. struct pt_regs *old_regs;
  483. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  484. struct clock_event_device *evt = &decrementer->event;
  485. u64 now;
  486. /* Ensure a positive value is written to the decrementer, or else
  487. * some CPUs will continuue to take decrementer exceptions */
  488. set_dec(DECREMENTER_MAX);
  489. #ifdef CONFIG_PPC32
  490. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  491. do_IRQ(regs);
  492. #endif
  493. now = get_tb_or_rtc();
  494. if (now < decrementer->next_tb) {
  495. /* not time for this event yet */
  496. now = decrementer->next_tb - now;
  497. if (now <= DECREMENTER_MAX)
  498. set_dec((int)now);
  499. return;
  500. }
  501. old_regs = set_irq_regs(regs);
  502. irq_enter();
  503. calculate_steal_time();
  504. #ifdef CONFIG_PPC_ISERIES
  505. if (firmware_has_feature(FW_FEATURE_ISERIES))
  506. get_lppaca()->int_dword.fields.decr_int = 0;
  507. #endif
  508. if (evt->event_handler)
  509. evt->event_handler(evt);
  510. #ifdef CONFIG_PPC_ISERIES
  511. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  512. process_hvlpevents();
  513. #endif
  514. #ifdef CONFIG_PPC64
  515. /* collect purr register values often, for accurate calculations */
  516. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  517. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  518. cu->current_tb = mfspr(SPRN_PURR);
  519. }
  520. #endif
  521. irq_exit();
  522. set_irq_regs(old_regs);
  523. }
  524. void wakeup_decrementer(void)
  525. {
  526. unsigned long ticks;
  527. /*
  528. * The timebase gets saved on sleep and restored on wakeup,
  529. * so all we need to do is to reset the decrementer.
  530. */
  531. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  532. if (ticks < tb_ticks_per_jiffy)
  533. ticks = tb_ticks_per_jiffy - ticks;
  534. else
  535. ticks = 1;
  536. set_dec(ticks);
  537. }
  538. #ifdef CONFIG_SUSPEND
  539. void generic_suspend_disable_irqs(void)
  540. {
  541. preempt_disable();
  542. /* Disable the decrementer, so that it doesn't interfere
  543. * with suspending.
  544. */
  545. set_dec(0x7fffffff);
  546. local_irq_disable();
  547. set_dec(0x7fffffff);
  548. }
  549. void generic_suspend_enable_irqs(void)
  550. {
  551. wakeup_decrementer();
  552. local_irq_enable();
  553. preempt_enable();
  554. }
  555. /* Overrides the weak version in kernel/power/main.c */
  556. void arch_suspend_disable_irqs(void)
  557. {
  558. if (ppc_md.suspend_disable_irqs)
  559. ppc_md.suspend_disable_irqs();
  560. generic_suspend_disable_irqs();
  561. }
  562. /* Overrides the weak version in kernel/power/main.c */
  563. void arch_suspend_enable_irqs(void)
  564. {
  565. generic_suspend_enable_irqs();
  566. if (ppc_md.suspend_enable_irqs)
  567. ppc_md.suspend_enable_irqs();
  568. }
  569. #endif
  570. #ifdef CONFIG_SMP
  571. void __init smp_space_timers(unsigned int max_cpus)
  572. {
  573. int i;
  574. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  575. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  576. previous_tb -= tb_ticks_per_jiffy;
  577. for_each_possible_cpu(i) {
  578. if (i == boot_cpuid)
  579. continue;
  580. per_cpu(last_jiffy, i) = previous_tb;
  581. }
  582. }
  583. #endif
  584. /*
  585. * Scheduler clock - returns current time in nanosec units.
  586. *
  587. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  588. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  589. * are 64-bit unsigned numbers.
  590. */
  591. unsigned long long sched_clock(void)
  592. {
  593. if (__USE_RTC())
  594. return get_rtc();
  595. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  596. }
  597. static int __init get_freq(char *name, int cells, unsigned long *val)
  598. {
  599. struct device_node *cpu;
  600. const unsigned int *fp;
  601. int found = 0;
  602. /* The cpu node should have timebase and clock frequency properties */
  603. cpu = of_find_node_by_type(NULL, "cpu");
  604. if (cpu) {
  605. fp = of_get_property(cpu, name, NULL);
  606. if (fp) {
  607. found = 1;
  608. *val = of_read_ulong(fp, cells);
  609. }
  610. of_node_put(cpu);
  611. }
  612. return found;
  613. }
  614. void __init generic_calibrate_decr(void)
  615. {
  616. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  617. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  618. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  619. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  620. "(not found)\n");
  621. }
  622. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  623. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  624. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  625. printk(KERN_ERR "WARNING: Estimating processor frequency "
  626. "(not found)\n");
  627. }
  628. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  629. /* Clear any pending timer interrupts */
  630. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  631. /* Enable decrementer interrupt */
  632. mtspr(SPRN_TCR, TCR_DIE);
  633. #endif
  634. }
  635. int update_persistent_clock(struct timespec now)
  636. {
  637. struct rtc_time tm;
  638. if (!ppc_md.set_rtc_time)
  639. return 0;
  640. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  641. tm.tm_year -= 1900;
  642. tm.tm_mon -= 1;
  643. return ppc_md.set_rtc_time(&tm);
  644. }
  645. unsigned long read_persistent_clock(void)
  646. {
  647. struct rtc_time tm;
  648. static int first = 1;
  649. /* XXX this is a litle fragile but will work okay in the short term */
  650. if (first) {
  651. first = 0;
  652. if (ppc_md.time_init)
  653. timezone_offset = ppc_md.time_init();
  654. /* get_boot_time() isn't guaranteed to be safe to call late */
  655. if (ppc_md.get_boot_time)
  656. return ppc_md.get_boot_time() -timezone_offset;
  657. }
  658. if (!ppc_md.get_rtc_time)
  659. return 0;
  660. ppc_md.get_rtc_time(&tm);
  661. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  662. tm.tm_hour, tm.tm_min, tm.tm_sec);
  663. }
  664. /* clocksource code */
  665. static cycle_t rtc_read(struct clocksource *cs)
  666. {
  667. return (cycle_t)get_rtc();
  668. }
  669. static cycle_t timebase_read(struct clocksource *cs)
  670. {
  671. return (cycle_t)get_tb();
  672. }
  673. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
  674. {
  675. u64 t2x, stamp_xsec;
  676. if (clock != &clocksource_timebase)
  677. return;
  678. /* Make userspace gettimeofday spin until we're done. */
  679. ++vdso_data->tb_update_count;
  680. smp_mb();
  681. /* XXX this assumes clock->shift == 22 */
  682. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  683. t2x = (u64) clock->mult * 4611686018ULL;
  684. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  685. do_div(stamp_xsec, 1000000000);
  686. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  687. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  688. }
  689. void update_vsyscall_tz(void)
  690. {
  691. /* Make userspace gettimeofday spin until we're done. */
  692. ++vdso_data->tb_update_count;
  693. smp_mb();
  694. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  695. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  696. smp_mb();
  697. ++vdso_data->tb_update_count;
  698. }
  699. static void __init clocksource_init(void)
  700. {
  701. struct clocksource *clock;
  702. if (__USE_RTC())
  703. clock = &clocksource_rtc;
  704. else
  705. clock = &clocksource_timebase;
  706. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  707. if (clocksource_register(clock)) {
  708. printk(KERN_ERR "clocksource: %s is already registered\n",
  709. clock->name);
  710. return;
  711. }
  712. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  713. clock->name, clock->mult, clock->shift);
  714. }
  715. static int decrementer_set_next_event(unsigned long evt,
  716. struct clock_event_device *dev)
  717. {
  718. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  719. set_dec(evt);
  720. return 0;
  721. }
  722. static void decrementer_set_mode(enum clock_event_mode mode,
  723. struct clock_event_device *dev)
  724. {
  725. if (mode != CLOCK_EVT_MODE_ONESHOT)
  726. decrementer_set_next_event(DECREMENTER_MAX, dev);
  727. }
  728. static void __init setup_clockevent_multiplier(unsigned long hz)
  729. {
  730. u64 mult, shift = 32;
  731. while (1) {
  732. mult = div_sc(hz, NSEC_PER_SEC, shift);
  733. if (mult && (mult >> 32UL) == 0UL)
  734. break;
  735. shift--;
  736. }
  737. decrementer_clockevent.shift = shift;
  738. decrementer_clockevent.mult = mult;
  739. }
  740. static void register_decrementer_clockevent(int cpu)
  741. {
  742. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  743. *dec = decrementer_clockevent;
  744. dec->cpumask = cpumask_of(cpu);
  745. printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
  746. dec->name, dec->mult, dec->shift, cpu);
  747. clockevents_register_device(dec);
  748. }
  749. static void __init init_decrementer_clockevent(void)
  750. {
  751. int cpu = smp_processor_id();
  752. setup_clockevent_multiplier(ppc_tb_freq);
  753. decrementer_clockevent.max_delta_ns =
  754. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  755. decrementer_clockevent.min_delta_ns =
  756. clockevent_delta2ns(2, &decrementer_clockevent);
  757. register_decrementer_clockevent(cpu);
  758. }
  759. void secondary_cpu_time_init(void)
  760. {
  761. /* FIME: Should make unrelatred change to move snapshot_timebase
  762. * call here ! */
  763. register_decrementer_clockevent(smp_processor_id());
  764. }
  765. /* This function is only called on the boot processor */
  766. void __init time_init(void)
  767. {
  768. unsigned long flags;
  769. struct div_result res;
  770. u64 scale, x;
  771. unsigned shift;
  772. if (__USE_RTC()) {
  773. /* 601 processor: dec counts down by 128 every 128ns */
  774. ppc_tb_freq = 1000000000;
  775. tb_last_jiffy = get_rtcl();
  776. } else {
  777. /* Normal PowerPC with timebase register */
  778. ppc_md.calibrate_decr();
  779. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  780. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  781. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  782. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  783. tb_last_jiffy = get_tb();
  784. }
  785. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  786. tb_ticks_per_sec = ppc_tb_freq;
  787. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  788. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  789. calc_cputime_factors();
  790. /*
  791. * Calculate the length of each tick in ns. It will not be
  792. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  793. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  794. * rounded up.
  795. */
  796. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  797. do_div(x, ppc_tb_freq);
  798. tick_nsec = x;
  799. last_tick_len = x << TICKLEN_SCALE;
  800. /*
  801. * Compute ticklen_to_xs, which is a factor which gets multiplied
  802. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  803. * It is computed as:
  804. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  805. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  806. * which turns out to be N = 51 - SHIFT_HZ.
  807. * This gives the result as a 0.64 fixed-point fraction.
  808. * That value is reduced by an offset amounting to 1 xsec per
  809. * 2^31 timebase ticks to avoid problems with time going backwards
  810. * by 1 xsec when we do timer_recalc_offset due to losing the
  811. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  812. * since there are 2^20 xsec in a second.
  813. */
  814. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  815. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  816. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  817. ticklen_to_xs = res.result_low;
  818. /* Compute tb_to_xs from tick_nsec */
  819. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  820. /*
  821. * Compute scale factor for sched_clock.
  822. * The calibrate_decr() function has set tb_ticks_per_sec,
  823. * which is the timebase frequency.
  824. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  825. * the 128-bit result as a 64.64 fixed-point number.
  826. * We then shift that number right until it is less than 1.0,
  827. * giving us the scale factor and shift count to use in
  828. * sched_clock().
  829. */
  830. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  831. scale = res.result_low;
  832. for (shift = 0; res.result_high != 0; ++shift) {
  833. scale = (scale >> 1) | (res.result_high << 63);
  834. res.result_high >>= 1;
  835. }
  836. tb_to_ns_scale = scale;
  837. tb_to_ns_shift = shift;
  838. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  839. boot_tb = get_tb_or_rtc();
  840. write_seqlock_irqsave(&xtime_lock, flags);
  841. /* If platform provided a timezone (pmac), we correct the time */
  842. if (timezone_offset) {
  843. sys_tz.tz_minuteswest = -timezone_offset / 60;
  844. sys_tz.tz_dsttime = 0;
  845. }
  846. vdso_data->tb_orig_stamp = tb_last_jiffy;
  847. vdso_data->tb_update_count = 0;
  848. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  849. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  850. vdso_data->tb_to_xs = tb_to_xs;
  851. write_sequnlock_irqrestore(&xtime_lock, flags);
  852. /* Register the clocksource, if we're not running on iSeries */
  853. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  854. clocksource_init();
  855. init_decrementer_clockevent();
  856. }
  857. #define FEBRUARY 2
  858. #define STARTOFTIME 1970
  859. #define SECDAY 86400L
  860. #define SECYR (SECDAY * 365)
  861. #define leapyear(year) ((year) % 4 == 0 && \
  862. ((year) % 100 != 0 || (year) % 400 == 0))
  863. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  864. #define days_in_month(a) (month_days[(a) - 1])
  865. static int month_days[12] = {
  866. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  867. };
  868. /*
  869. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  870. */
  871. void GregorianDay(struct rtc_time * tm)
  872. {
  873. int leapsToDate;
  874. int lastYear;
  875. int day;
  876. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  877. lastYear = tm->tm_year - 1;
  878. /*
  879. * Number of leap corrections to apply up to end of last year
  880. */
  881. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  882. /*
  883. * This year is a leap year if it is divisible by 4 except when it is
  884. * divisible by 100 unless it is divisible by 400
  885. *
  886. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  887. */
  888. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  889. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  890. tm->tm_mday;
  891. tm->tm_wday = day % 7;
  892. }
  893. void to_tm(int tim, struct rtc_time * tm)
  894. {
  895. register int i;
  896. register long hms, day;
  897. day = tim / SECDAY;
  898. hms = tim % SECDAY;
  899. /* Hours, minutes, seconds are easy */
  900. tm->tm_hour = hms / 3600;
  901. tm->tm_min = (hms % 3600) / 60;
  902. tm->tm_sec = (hms % 3600) % 60;
  903. /* Number of years in days */
  904. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  905. day -= days_in_year(i);
  906. tm->tm_year = i;
  907. /* Number of months in days left */
  908. if (leapyear(tm->tm_year))
  909. days_in_month(FEBRUARY) = 29;
  910. for (i = 1; day >= days_in_month(i); i++)
  911. day -= days_in_month(i);
  912. days_in_month(FEBRUARY) = 28;
  913. tm->tm_mon = i;
  914. /* Days are what is left over (+1) from all that. */
  915. tm->tm_mday = day + 1;
  916. /*
  917. * Determine the day of week
  918. */
  919. GregorianDay(tm);
  920. }
  921. /* Auxiliary function to compute scaling factors */
  922. /* Actually the choice of a timebase running at 1/4 the of the bus
  923. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  924. * It makes this computation very precise (27-28 bits typically) which
  925. * is optimistic considering the stability of most processor clock
  926. * oscillators and the precision with which the timebase frequency
  927. * is measured but does not harm.
  928. */
  929. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  930. {
  931. unsigned mlt=0, tmp, err;
  932. /* No concern for performance, it's done once: use a stupid
  933. * but safe and compact method to find the multiplier.
  934. */
  935. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  936. if (mulhwu(inscale, mlt|tmp) < outscale)
  937. mlt |= tmp;
  938. }
  939. /* We might still be off by 1 for the best approximation.
  940. * A side effect of this is that if outscale is too large
  941. * the returned value will be zero.
  942. * Many corner cases have been checked and seem to work,
  943. * some might have been forgotten in the test however.
  944. */
  945. err = inscale * (mlt+1);
  946. if (err <= inscale/2)
  947. mlt++;
  948. return mlt;
  949. }
  950. /*
  951. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  952. * result.
  953. */
  954. void div128_by_32(u64 dividend_high, u64 dividend_low,
  955. unsigned divisor, struct div_result *dr)
  956. {
  957. unsigned long a, b, c, d;
  958. unsigned long w, x, y, z;
  959. u64 ra, rb, rc;
  960. a = dividend_high >> 32;
  961. b = dividend_high & 0xffffffff;
  962. c = dividend_low >> 32;
  963. d = dividend_low & 0xffffffff;
  964. w = a / divisor;
  965. ra = ((u64)(a - (w * divisor)) << 32) + b;
  966. rb = ((u64) do_div(ra, divisor) << 32) + c;
  967. x = ra;
  968. rc = ((u64) do_div(rb, divisor) << 32) + d;
  969. y = rb;
  970. do_div(rc, divisor);
  971. z = rc;
  972. dr->result_high = ((u64)w << 32) + x;
  973. dr->result_low = ((u64)y << 32) + z;
  974. }
  975. /* We don't need to calibrate delay, we use the CPU timebase for that */
  976. void calibrate_delay(void)
  977. {
  978. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  979. * as the number of __delay(1) in a jiffy, so make it so
  980. */
  981. loops_per_jiffy = tb_ticks_per_jiffy;
  982. }
  983. static int __init rtc_init(void)
  984. {
  985. struct platform_device *pdev;
  986. if (!ppc_md.get_rtc_time)
  987. return -ENODEV;
  988. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  989. if (IS_ERR(pdev))
  990. return PTR_ERR(pdev);
  991. return 0;
  992. }
  993. module_init(rtc_init);