mmzone.h 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coalesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. #define MIGRATE_UNMOVABLE 0
  34. #define MIGRATE_RECLAIMABLE 1
  35. #define MIGRATE_MOVABLE 2
  36. #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
  37. #define MIGRATE_RESERVE 3
  38. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  39. #define MIGRATE_TYPES 5
  40. #define for_each_migratetype_order(order, type) \
  41. for (order = 0; order < MAX_ORDER; order++) \
  42. for (type = 0; type < MIGRATE_TYPES; type++)
  43. extern int page_group_by_mobility_disabled;
  44. static inline int get_pageblock_migratetype(struct page *page)
  45. {
  46. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  47. }
  48. struct free_area {
  49. struct list_head free_list[MIGRATE_TYPES];
  50. unsigned long nr_free;
  51. };
  52. struct pglist_data;
  53. /*
  54. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  55. * So add a wild amount of padding here to ensure that they fall into separate
  56. * cachelines. There are very few zone structures in the machine, so space
  57. * consumption is not a concern here.
  58. */
  59. #if defined(CONFIG_SMP)
  60. struct zone_padding {
  61. char x[0];
  62. } ____cacheline_internodealigned_in_smp;
  63. #define ZONE_PADDING(name) struct zone_padding name;
  64. #else
  65. #define ZONE_PADDING(name)
  66. #endif
  67. enum zone_stat_item {
  68. /* First 128 byte cacheline (assuming 64 bit words) */
  69. NR_FREE_PAGES,
  70. NR_LRU_BASE,
  71. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  72. NR_ACTIVE_ANON, /* " " " " " */
  73. NR_INACTIVE_FILE, /* " " " " " */
  74. NR_ACTIVE_FILE, /* " " " " " */
  75. NR_UNEVICTABLE, /* " " " " " */
  76. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  77. NR_ANON_PAGES, /* Mapped anonymous pages */
  78. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  79. only modified from process context */
  80. NR_FILE_PAGES,
  81. NR_FILE_DIRTY,
  82. NR_WRITEBACK,
  83. NR_SLAB_RECLAIMABLE,
  84. NR_SLAB_UNRECLAIMABLE,
  85. NR_PAGETABLE, /* used for pagetables */
  86. NR_KERNEL_STACK,
  87. /* Second 128 byte cacheline */
  88. NR_UNSTABLE_NFS, /* NFS unstable pages */
  89. NR_BOUNCE,
  90. NR_VMSCAN_WRITE,
  91. NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
  92. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  93. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  94. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  95. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  96. NR_DIRTIED, /* page dirtyings since bootup */
  97. NR_WRITTEN, /* page writings since bootup */
  98. #ifdef CONFIG_NUMA
  99. NUMA_HIT, /* allocated in intended node */
  100. NUMA_MISS, /* allocated in non intended node */
  101. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  102. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  103. NUMA_LOCAL, /* allocation from local node */
  104. NUMA_OTHER, /* allocation from other node */
  105. #endif
  106. NR_ANON_TRANSPARENT_HUGEPAGES,
  107. NR_VM_ZONE_STAT_ITEMS };
  108. /*
  109. * We do arithmetic on the LRU lists in various places in the code,
  110. * so it is important to keep the active lists LRU_ACTIVE higher in
  111. * the array than the corresponding inactive lists, and to keep
  112. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  113. *
  114. * This has to be kept in sync with the statistics in zone_stat_item
  115. * above and the descriptions in vmstat_text in mm/vmstat.c
  116. */
  117. #define LRU_BASE 0
  118. #define LRU_ACTIVE 1
  119. #define LRU_FILE 2
  120. enum lru_list {
  121. LRU_INACTIVE_ANON = LRU_BASE,
  122. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  123. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  124. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  125. LRU_UNEVICTABLE,
  126. NR_LRU_LISTS
  127. };
  128. #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
  129. #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
  130. static inline int is_file_lru(enum lru_list lru)
  131. {
  132. return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
  133. }
  134. static inline int is_active_lru(enum lru_list lru)
  135. {
  136. return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
  137. }
  138. static inline int is_unevictable_lru(enum lru_list lru)
  139. {
  140. return (lru == LRU_UNEVICTABLE);
  141. }
  142. struct lruvec {
  143. struct list_head lists[NR_LRU_LISTS];
  144. };
  145. /* Mask used at gathering information at once (see memcontrol.c) */
  146. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  147. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  148. #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
  149. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  150. /* Isolate inactive pages */
  151. #define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1)
  152. /* Isolate active pages */
  153. #define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2)
  154. /* Isolate clean file */
  155. #define ISOLATE_CLEAN ((__force isolate_mode_t)0x4)
  156. /* Isolate unmapped file */
  157. #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8)
  158. /* Isolate for asynchronous migration */
  159. #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x10)
  160. /* LRU Isolation modes. */
  161. typedef unsigned __bitwise__ isolate_mode_t;
  162. enum zone_watermarks {
  163. WMARK_MIN,
  164. WMARK_LOW,
  165. WMARK_HIGH,
  166. NR_WMARK
  167. };
  168. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  169. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  170. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  171. struct per_cpu_pages {
  172. int count; /* number of pages in the list */
  173. int high; /* high watermark, emptying needed */
  174. int batch; /* chunk size for buddy add/remove */
  175. /* Lists of pages, one per migrate type stored on the pcp-lists */
  176. struct list_head lists[MIGRATE_PCPTYPES];
  177. };
  178. struct per_cpu_pageset {
  179. struct per_cpu_pages pcp;
  180. #ifdef CONFIG_NUMA
  181. s8 expire;
  182. #endif
  183. #ifdef CONFIG_SMP
  184. s8 stat_threshold;
  185. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  186. #endif
  187. };
  188. #endif /* !__GENERATING_BOUNDS.H */
  189. enum zone_type {
  190. #ifdef CONFIG_ZONE_DMA
  191. /*
  192. * ZONE_DMA is used when there are devices that are not able
  193. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  194. * carve out the portion of memory that is needed for these devices.
  195. * The range is arch specific.
  196. *
  197. * Some examples
  198. *
  199. * Architecture Limit
  200. * ---------------------------
  201. * parisc, ia64, sparc <4G
  202. * s390 <2G
  203. * arm Various
  204. * alpha Unlimited or 0-16MB.
  205. *
  206. * i386, x86_64 and multiple other arches
  207. * <16M.
  208. */
  209. ZONE_DMA,
  210. #endif
  211. #ifdef CONFIG_ZONE_DMA32
  212. /*
  213. * x86_64 needs two ZONE_DMAs because it supports devices that are
  214. * only able to do DMA to the lower 16M but also 32 bit devices that
  215. * can only do DMA areas below 4G.
  216. */
  217. ZONE_DMA32,
  218. #endif
  219. /*
  220. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  221. * performed on pages in ZONE_NORMAL if the DMA devices support
  222. * transfers to all addressable memory.
  223. */
  224. ZONE_NORMAL,
  225. #ifdef CONFIG_HIGHMEM
  226. /*
  227. * A memory area that is only addressable by the kernel through
  228. * mapping portions into its own address space. This is for example
  229. * used by i386 to allow the kernel to address the memory beyond
  230. * 900MB. The kernel will set up special mappings (page
  231. * table entries on i386) for each page that the kernel needs to
  232. * access.
  233. */
  234. ZONE_HIGHMEM,
  235. #endif
  236. ZONE_MOVABLE,
  237. __MAX_NR_ZONES
  238. };
  239. #ifndef __GENERATING_BOUNDS_H
  240. /*
  241. * When a memory allocation must conform to specific limitations (such
  242. * as being suitable for DMA) the caller will pass in hints to the
  243. * allocator in the gfp_mask, in the zone modifier bits. These bits
  244. * are used to select a priority ordered list of memory zones which
  245. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  246. */
  247. #if MAX_NR_ZONES < 2
  248. #define ZONES_SHIFT 0
  249. #elif MAX_NR_ZONES <= 2
  250. #define ZONES_SHIFT 1
  251. #elif MAX_NR_ZONES <= 4
  252. #define ZONES_SHIFT 2
  253. #else
  254. #error ZONES_SHIFT -- too many zones configured adjust calculation
  255. #endif
  256. struct zone_reclaim_stat {
  257. /*
  258. * The pageout code in vmscan.c keeps track of how many of the
  259. * mem/swap backed and file backed pages are refeferenced.
  260. * The higher the rotated/scanned ratio, the more valuable
  261. * that cache is.
  262. *
  263. * The anon LRU stats live in [0], file LRU stats in [1]
  264. */
  265. unsigned long recent_rotated[2];
  266. unsigned long recent_scanned[2];
  267. };
  268. struct zone {
  269. /* Fields commonly accessed by the page allocator */
  270. /* zone watermarks, access with *_wmark_pages(zone) macros */
  271. unsigned long watermark[NR_WMARK];
  272. /*
  273. * When free pages are below this point, additional steps are taken
  274. * when reading the number of free pages to avoid per-cpu counter
  275. * drift allowing watermarks to be breached
  276. */
  277. unsigned long percpu_drift_mark;
  278. /*
  279. * We don't know if the memory that we're going to allocate will be freeable
  280. * or/and it will be released eventually, so to avoid totally wasting several
  281. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  282. * to run OOM on the lower zones despite there's tons of freeable ram
  283. * on the higher zones). This array is recalculated at runtime if the
  284. * sysctl_lowmem_reserve_ratio sysctl changes.
  285. */
  286. unsigned long lowmem_reserve[MAX_NR_ZONES];
  287. /*
  288. * This is a per-zone reserve of pages that should not be
  289. * considered dirtyable memory.
  290. */
  291. unsigned long dirty_balance_reserve;
  292. #ifdef CONFIG_NUMA
  293. int node;
  294. /*
  295. * zone reclaim becomes active if more unmapped pages exist.
  296. */
  297. unsigned long min_unmapped_pages;
  298. unsigned long min_slab_pages;
  299. #endif
  300. struct per_cpu_pageset __percpu *pageset;
  301. /*
  302. * free areas of different sizes
  303. */
  304. spinlock_t lock;
  305. int all_unreclaimable; /* All pages pinned */
  306. #ifdef CONFIG_MEMORY_HOTPLUG
  307. /* see spanned/present_pages for more description */
  308. seqlock_t span_seqlock;
  309. #endif
  310. struct free_area free_area[MAX_ORDER];
  311. #ifndef CONFIG_SPARSEMEM
  312. /*
  313. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  314. * In SPARSEMEM, this map is stored in struct mem_section
  315. */
  316. unsigned long *pageblock_flags;
  317. #endif /* CONFIG_SPARSEMEM */
  318. #ifdef CONFIG_COMPACTION
  319. /*
  320. * On compaction failure, 1<<compact_defer_shift compactions
  321. * are skipped before trying again. The number attempted since
  322. * last failure is tracked with compact_considered.
  323. */
  324. unsigned int compact_considered;
  325. unsigned int compact_defer_shift;
  326. int compact_order_failed;
  327. #endif
  328. ZONE_PADDING(_pad1_)
  329. /* Fields commonly accessed by the page reclaim scanner */
  330. spinlock_t lru_lock;
  331. struct lruvec lruvec;
  332. struct zone_reclaim_stat reclaim_stat;
  333. unsigned long pages_scanned; /* since last reclaim */
  334. unsigned long flags; /* zone flags, see below */
  335. /* Zone statistics */
  336. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  337. /*
  338. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  339. * this zone's LRU. Maintained by the pageout code.
  340. */
  341. unsigned int inactive_ratio;
  342. ZONE_PADDING(_pad2_)
  343. /* Rarely used or read-mostly fields */
  344. /*
  345. * wait_table -- the array holding the hash table
  346. * wait_table_hash_nr_entries -- the size of the hash table array
  347. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  348. *
  349. * The purpose of all these is to keep track of the people
  350. * waiting for a page to become available and make them
  351. * runnable again when possible. The trouble is that this
  352. * consumes a lot of space, especially when so few things
  353. * wait on pages at a given time. So instead of using
  354. * per-page waitqueues, we use a waitqueue hash table.
  355. *
  356. * The bucket discipline is to sleep on the same queue when
  357. * colliding and wake all in that wait queue when removing.
  358. * When something wakes, it must check to be sure its page is
  359. * truly available, a la thundering herd. The cost of a
  360. * collision is great, but given the expected load of the
  361. * table, they should be so rare as to be outweighed by the
  362. * benefits from the saved space.
  363. *
  364. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  365. * primary users of these fields, and in mm/page_alloc.c
  366. * free_area_init_core() performs the initialization of them.
  367. */
  368. wait_queue_head_t * wait_table;
  369. unsigned long wait_table_hash_nr_entries;
  370. unsigned long wait_table_bits;
  371. /*
  372. * Discontig memory support fields.
  373. */
  374. struct pglist_data *zone_pgdat;
  375. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  376. unsigned long zone_start_pfn;
  377. /*
  378. * zone_start_pfn, spanned_pages and present_pages are all
  379. * protected by span_seqlock. It is a seqlock because it has
  380. * to be read outside of zone->lock, and it is done in the main
  381. * allocator path. But, it is written quite infrequently.
  382. *
  383. * The lock is declared along with zone->lock because it is
  384. * frequently read in proximity to zone->lock. It's good to
  385. * give them a chance of being in the same cacheline.
  386. */
  387. unsigned long spanned_pages; /* total size, including holes */
  388. unsigned long present_pages; /* amount of memory (excluding holes) */
  389. /*
  390. * rarely used fields:
  391. */
  392. const char *name;
  393. } ____cacheline_internodealigned_in_smp;
  394. typedef enum {
  395. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  396. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  397. ZONE_CONGESTED, /* zone has many dirty pages backed by
  398. * a congested BDI
  399. */
  400. } zone_flags_t;
  401. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  402. {
  403. set_bit(flag, &zone->flags);
  404. }
  405. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  406. {
  407. return test_and_set_bit(flag, &zone->flags);
  408. }
  409. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  410. {
  411. clear_bit(flag, &zone->flags);
  412. }
  413. static inline int zone_is_reclaim_congested(const struct zone *zone)
  414. {
  415. return test_bit(ZONE_CONGESTED, &zone->flags);
  416. }
  417. static inline int zone_is_reclaim_locked(const struct zone *zone)
  418. {
  419. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  420. }
  421. static inline int zone_is_oom_locked(const struct zone *zone)
  422. {
  423. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  424. }
  425. /*
  426. * The "priority" of VM scanning is how much of the queues we will scan in one
  427. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  428. * queues ("queue_length >> 12") during an aging round.
  429. */
  430. #define DEF_PRIORITY 12
  431. /* Maximum number of zones on a zonelist */
  432. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  433. #ifdef CONFIG_NUMA
  434. /*
  435. * The NUMA zonelists are doubled because we need zonelists that restrict the
  436. * allocations to a single node for GFP_THISNODE.
  437. *
  438. * [0] : Zonelist with fallback
  439. * [1] : No fallback (GFP_THISNODE)
  440. */
  441. #define MAX_ZONELISTS 2
  442. /*
  443. * We cache key information from each zonelist for smaller cache
  444. * footprint when scanning for free pages in get_page_from_freelist().
  445. *
  446. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  447. * up short of free memory since the last time (last_fullzone_zap)
  448. * we zero'd fullzones.
  449. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  450. * id, so that we can efficiently evaluate whether that node is
  451. * set in the current tasks mems_allowed.
  452. *
  453. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  454. * indexed by a zones offset in the zonelist zones[] array.
  455. *
  456. * The get_page_from_freelist() routine does two scans. During the
  457. * first scan, we skip zones whose corresponding bit in 'fullzones'
  458. * is set or whose corresponding node in current->mems_allowed (which
  459. * comes from cpusets) is not set. During the second scan, we bypass
  460. * this zonelist_cache, to ensure we look methodically at each zone.
  461. *
  462. * Once per second, we zero out (zap) fullzones, forcing us to
  463. * reconsider nodes that might have regained more free memory.
  464. * The field last_full_zap is the time we last zapped fullzones.
  465. *
  466. * This mechanism reduces the amount of time we waste repeatedly
  467. * reexaming zones for free memory when they just came up low on
  468. * memory momentarilly ago.
  469. *
  470. * The zonelist_cache struct members logically belong in struct
  471. * zonelist. However, the mempolicy zonelists constructed for
  472. * MPOL_BIND are intentionally variable length (and usually much
  473. * shorter). A general purpose mechanism for handling structs with
  474. * multiple variable length members is more mechanism than we want
  475. * here. We resort to some special case hackery instead.
  476. *
  477. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  478. * part because they are shorter), so we put the fixed length stuff
  479. * at the front of the zonelist struct, ending in a variable length
  480. * zones[], as is needed by MPOL_BIND.
  481. *
  482. * Then we put the optional zonelist cache on the end of the zonelist
  483. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  484. * the fixed length portion at the front of the struct. This pointer
  485. * both enables us to find the zonelist cache, and in the case of
  486. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  487. * to know that the zonelist cache is not there.
  488. *
  489. * The end result is that struct zonelists come in two flavors:
  490. * 1) The full, fixed length version, shown below, and
  491. * 2) The custom zonelists for MPOL_BIND.
  492. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  493. *
  494. * Even though there may be multiple CPU cores on a node modifying
  495. * fullzones or last_full_zap in the same zonelist_cache at the same
  496. * time, we don't lock it. This is just hint data - if it is wrong now
  497. * and then, the allocator will still function, perhaps a bit slower.
  498. */
  499. struct zonelist_cache {
  500. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  501. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  502. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  503. };
  504. #else
  505. #define MAX_ZONELISTS 1
  506. struct zonelist_cache;
  507. #endif
  508. /*
  509. * This struct contains information about a zone in a zonelist. It is stored
  510. * here to avoid dereferences into large structures and lookups of tables
  511. */
  512. struct zoneref {
  513. struct zone *zone; /* Pointer to actual zone */
  514. int zone_idx; /* zone_idx(zoneref->zone) */
  515. };
  516. /*
  517. * One allocation request operates on a zonelist. A zonelist
  518. * is a list of zones, the first one is the 'goal' of the
  519. * allocation, the other zones are fallback zones, in decreasing
  520. * priority.
  521. *
  522. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  523. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  524. * *
  525. * To speed the reading of the zonelist, the zonerefs contain the zone index
  526. * of the entry being read. Helper functions to access information given
  527. * a struct zoneref are
  528. *
  529. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  530. * zonelist_zone_idx() - Return the index of the zone for an entry
  531. * zonelist_node_idx() - Return the index of the node for an entry
  532. */
  533. struct zonelist {
  534. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  535. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  536. #ifdef CONFIG_NUMA
  537. struct zonelist_cache zlcache; // optional ...
  538. #endif
  539. };
  540. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  541. struct node_active_region {
  542. unsigned long start_pfn;
  543. unsigned long end_pfn;
  544. int nid;
  545. };
  546. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  547. #ifndef CONFIG_DISCONTIGMEM
  548. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  549. extern struct page *mem_map;
  550. #endif
  551. /*
  552. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  553. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  554. * zone denotes.
  555. *
  556. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  557. * it's memory layout.
  558. *
  559. * Memory statistics and page replacement data structures are maintained on a
  560. * per-zone basis.
  561. */
  562. struct bootmem_data;
  563. typedef struct pglist_data {
  564. struct zone node_zones[MAX_NR_ZONES];
  565. struct zonelist node_zonelists[MAX_ZONELISTS];
  566. int nr_zones;
  567. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  568. struct page *node_mem_map;
  569. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  570. struct page_cgroup *node_page_cgroup;
  571. #endif
  572. #endif
  573. #ifndef CONFIG_NO_BOOTMEM
  574. struct bootmem_data *bdata;
  575. #endif
  576. #ifdef CONFIG_MEMORY_HOTPLUG
  577. /*
  578. * Must be held any time you expect node_start_pfn, node_present_pages
  579. * or node_spanned_pages stay constant. Holding this will also
  580. * guarantee that any pfn_valid() stays that way.
  581. *
  582. * Nests above zone->lock and zone->size_seqlock.
  583. */
  584. spinlock_t node_size_lock;
  585. #endif
  586. unsigned long node_start_pfn;
  587. unsigned long node_present_pages; /* total number of physical pages */
  588. unsigned long node_spanned_pages; /* total size of physical page
  589. range, including holes */
  590. int node_id;
  591. wait_queue_head_t kswapd_wait;
  592. struct task_struct *kswapd;
  593. int kswapd_max_order;
  594. enum zone_type classzone_idx;
  595. } pg_data_t;
  596. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  597. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  598. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  599. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  600. #else
  601. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  602. #endif
  603. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  604. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  605. #define node_end_pfn(nid) ({\
  606. pg_data_t *__pgdat = NODE_DATA(nid);\
  607. __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
  608. })
  609. #include <linux/memory_hotplug.h>
  610. extern struct mutex zonelists_mutex;
  611. void build_all_zonelists(void *data);
  612. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  613. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  614. int classzone_idx, int alloc_flags);
  615. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  616. int classzone_idx, int alloc_flags);
  617. enum memmap_context {
  618. MEMMAP_EARLY,
  619. MEMMAP_HOTPLUG,
  620. };
  621. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  622. unsigned long size,
  623. enum memmap_context context);
  624. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  625. void memory_present(int nid, unsigned long start, unsigned long end);
  626. #else
  627. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  628. #endif
  629. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  630. int local_memory_node(int node_id);
  631. #else
  632. static inline int local_memory_node(int node_id) { return node_id; };
  633. #endif
  634. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  635. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  636. #endif
  637. /*
  638. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  639. */
  640. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  641. static inline int populated_zone(struct zone *zone)
  642. {
  643. return (!!zone->present_pages);
  644. }
  645. extern int movable_zone;
  646. static inline int zone_movable_is_highmem(void)
  647. {
  648. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
  649. return movable_zone == ZONE_HIGHMEM;
  650. #else
  651. return 0;
  652. #endif
  653. }
  654. static inline int is_highmem_idx(enum zone_type idx)
  655. {
  656. #ifdef CONFIG_HIGHMEM
  657. return (idx == ZONE_HIGHMEM ||
  658. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  659. #else
  660. return 0;
  661. #endif
  662. }
  663. static inline int is_normal_idx(enum zone_type idx)
  664. {
  665. return (idx == ZONE_NORMAL);
  666. }
  667. /**
  668. * is_highmem - helper function to quickly check if a struct zone is a
  669. * highmem zone or not. This is an attempt to keep references
  670. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  671. * @zone - pointer to struct zone variable
  672. */
  673. static inline int is_highmem(struct zone *zone)
  674. {
  675. #ifdef CONFIG_HIGHMEM
  676. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  677. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  678. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  679. zone_movable_is_highmem());
  680. #else
  681. return 0;
  682. #endif
  683. }
  684. static inline int is_normal(struct zone *zone)
  685. {
  686. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  687. }
  688. static inline int is_dma32(struct zone *zone)
  689. {
  690. #ifdef CONFIG_ZONE_DMA32
  691. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  692. #else
  693. return 0;
  694. #endif
  695. }
  696. static inline int is_dma(struct zone *zone)
  697. {
  698. #ifdef CONFIG_ZONE_DMA
  699. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  700. #else
  701. return 0;
  702. #endif
  703. }
  704. /* These two functions are used to setup the per zone pages min values */
  705. struct ctl_table;
  706. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  707. void __user *, size_t *, loff_t *);
  708. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  709. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  710. void __user *, size_t *, loff_t *);
  711. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  712. void __user *, size_t *, loff_t *);
  713. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  714. void __user *, size_t *, loff_t *);
  715. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  716. void __user *, size_t *, loff_t *);
  717. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  718. void __user *, size_t *, loff_t *);
  719. extern char numa_zonelist_order[];
  720. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  721. #ifndef CONFIG_NEED_MULTIPLE_NODES
  722. extern struct pglist_data contig_page_data;
  723. #define NODE_DATA(nid) (&contig_page_data)
  724. #define NODE_MEM_MAP(nid) mem_map
  725. #else /* CONFIG_NEED_MULTIPLE_NODES */
  726. #include <asm/mmzone.h>
  727. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  728. extern struct pglist_data *first_online_pgdat(void);
  729. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  730. extern struct zone *next_zone(struct zone *zone);
  731. /**
  732. * for_each_online_pgdat - helper macro to iterate over all online nodes
  733. * @pgdat - pointer to a pg_data_t variable
  734. */
  735. #define for_each_online_pgdat(pgdat) \
  736. for (pgdat = first_online_pgdat(); \
  737. pgdat; \
  738. pgdat = next_online_pgdat(pgdat))
  739. /**
  740. * for_each_zone - helper macro to iterate over all memory zones
  741. * @zone - pointer to struct zone variable
  742. *
  743. * The user only needs to declare the zone variable, for_each_zone
  744. * fills it in.
  745. */
  746. #define for_each_zone(zone) \
  747. for (zone = (first_online_pgdat())->node_zones; \
  748. zone; \
  749. zone = next_zone(zone))
  750. #define for_each_populated_zone(zone) \
  751. for (zone = (first_online_pgdat())->node_zones; \
  752. zone; \
  753. zone = next_zone(zone)) \
  754. if (!populated_zone(zone)) \
  755. ; /* do nothing */ \
  756. else
  757. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  758. {
  759. return zoneref->zone;
  760. }
  761. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  762. {
  763. return zoneref->zone_idx;
  764. }
  765. static inline int zonelist_node_idx(struct zoneref *zoneref)
  766. {
  767. #ifdef CONFIG_NUMA
  768. /* zone_to_nid not available in this context */
  769. return zoneref->zone->node;
  770. #else
  771. return 0;
  772. #endif /* CONFIG_NUMA */
  773. }
  774. /**
  775. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  776. * @z - The cursor used as a starting point for the search
  777. * @highest_zoneidx - The zone index of the highest zone to return
  778. * @nodes - An optional nodemask to filter the zonelist with
  779. * @zone - The first suitable zone found is returned via this parameter
  780. *
  781. * This function returns the next zone at or below a given zone index that is
  782. * within the allowed nodemask using a cursor as the starting point for the
  783. * search. The zoneref returned is a cursor that represents the current zone
  784. * being examined. It should be advanced by one before calling
  785. * next_zones_zonelist again.
  786. */
  787. struct zoneref *next_zones_zonelist(struct zoneref *z,
  788. enum zone_type highest_zoneidx,
  789. nodemask_t *nodes,
  790. struct zone **zone);
  791. /**
  792. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  793. * @zonelist - The zonelist to search for a suitable zone
  794. * @highest_zoneidx - The zone index of the highest zone to return
  795. * @nodes - An optional nodemask to filter the zonelist with
  796. * @zone - The first suitable zone found is returned via this parameter
  797. *
  798. * This function returns the first zone at or below a given zone index that is
  799. * within the allowed nodemask. The zoneref returned is a cursor that can be
  800. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  801. * one before calling.
  802. */
  803. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  804. enum zone_type highest_zoneidx,
  805. nodemask_t *nodes,
  806. struct zone **zone)
  807. {
  808. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  809. zone);
  810. }
  811. /**
  812. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  813. * @zone - The current zone in the iterator
  814. * @z - The current pointer within zonelist->zones being iterated
  815. * @zlist - The zonelist being iterated
  816. * @highidx - The zone index of the highest zone to return
  817. * @nodemask - Nodemask allowed by the allocator
  818. *
  819. * This iterator iterates though all zones at or below a given zone index and
  820. * within a given nodemask
  821. */
  822. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  823. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  824. zone; \
  825. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  826. /**
  827. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  828. * @zone - The current zone in the iterator
  829. * @z - The current pointer within zonelist->zones being iterated
  830. * @zlist - The zonelist being iterated
  831. * @highidx - The zone index of the highest zone to return
  832. *
  833. * This iterator iterates though all zones at or below a given zone index.
  834. */
  835. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  836. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  837. #ifdef CONFIG_SPARSEMEM
  838. #include <asm/sparsemem.h>
  839. #endif
  840. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  841. !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  842. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  843. {
  844. return 0;
  845. }
  846. #endif
  847. #ifdef CONFIG_FLATMEM
  848. #define pfn_to_nid(pfn) (0)
  849. #endif
  850. #ifdef CONFIG_SPARSEMEM
  851. /*
  852. * SECTION_SHIFT #bits space required to store a section #
  853. *
  854. * PA_SECTION_SHIFT physical address to/from section number
  855. * PFN_SECTION_SHIFT pfn to/from section number
  856. */
  857. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  858. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  859. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  860. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  861. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  862. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  863. #define SECTION_BLOCKFLAGS_BITS \
  864. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  865. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  866. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  867. #endif
  868. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  869. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  870. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  871. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  872. struct page;
  873. struct page_cgroup;
  874. struct mem_section {
  875. /*
  876. * This is, logically, a pointer to an array of struct
  877. * pages. However, it is stored with some other magic.
  878. * (see sparse.c::sparse_init_one_section())
  879. *
  880. * Additionally during early boot we encode node id of
  881. * the location of the section here to guide allocation.
  882. * (see sparse.c::memory_present())
  883. *
  884. * Making it a UL at least makes someone do a cast
  885. * before using it wrong.
  886. */
  887. unsigned long section_mem_map;
  888. /* See declaration of similar field in struct zone */
  889. unsigned long *pageblock_flags;
  890. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  891. /*
  892. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  893. * section. (see memcontrol.h/page_cgroup.h about this.)
  894. */
  895. struct page_cgroup *page_cgroup;
  896. unsigned long pad;
  897. #endif
  898. };
  899. #ifdef CONFIG_SPARSEMEM_EXTREME
  900. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  901. #else
  902. #define SECTIONS_PER_ROOT 1
  903. #endif
  904. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  905. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  906. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  907. #ifdef CONFIG_SPARSEMEM_EXTREME
  908. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  909. #else
  910. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  911. #endif
  912. static inline struct mem_section *__nr_to_section(unsigned long nr)
  913. {
  914. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  915. return NULL;
  916. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  917. }
  918. extern int __section_nr(struct mem_section* ms);
  919. extern unsigned long usemap_size(void);
  920. /*
  921. * We use the lower bits of the mem_map pointer to store
  922. * a little bit of information. There should be at least
  923. * 3 bits here due to 32-bit alignment.
  924. */
  925. #define SECTION_MARKED_PRESENT (1UL<<0)
  926. #define SECTION_HAS_MEM_MAP (1UL<<1)
  927. #define SECTION_MAP_LAST_BIT (1UL<<2)
  928. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  929. #define SECTION_NID_SHIFT 2
  930. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  931. {
  932. unsigned long map = section->section_mem_map;
  933. map &= SECTION_MAP_MASK;
  934. return (struct page *)map;
  935. }
  936. static inline int present_section(struct mem_section *section)
  937. {
  938. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  939. }
  940. static inline int present_section_nr(unsigned long nr)
  941. {
  942. return present_section(__nr_to_section(nr));
  943. }
  944. static inline int valid_section(struct mem_section *section)
  945. {
  946. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  947. }
  948. static inline int valid_section_nr(unsigned long nr)
  949. {
  950. return valid_section(__nr_to_section(nr));
  951. }
  952. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  953. {
  954. return __nr_to_section(pfn_to_section_nr(pfn));
  955. }
  956. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  957. static inline int pfn_valid(unsigned long pfn)
  958. {
  959. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  960. return 0;
  961. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  962. }
  963. #endif
  964. static inline int pfn_present(unsigned long pfn)
  965. {
  966. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  967. return 0;
  968. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  969. }
  970. /*
  971. * These are _only_ used during initialisation, therefore they
  972. * can use __initdata ... They could have names to indicate
  973. * this restriction.
  974. */
  975. #ifdef CONFIG_NUMA
  976. #define pfn_to_nid(pfn) \
  977. ({ \
  978. unsigned long __pfn_to_nid_pfn = (pfn); \
  979. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  980. })
  981. #else
  982. #define pfn_to_nid(pfn) (0)
  983. #endif
  984. #define early_pfn_valid(pfn) pfn_valid(pfn)
  985. void sparse_init(void);
  986. #else
  987. #define sparse_init() do {} while (0)
  988. #define sparse_index_init(_sec, _nid) do {} while (0)
  989. #endif /* CONFIG_SPARSEMEM */
  990. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  991. bool early_pfn_in_nid(unsigned long pfn, int nid);
  992. #else
  993. #define early_pfn_in_nid(pfn, nid) (1)
  994. #endif
  995. #ifndef early_pfn_valid
  996. #define early_pfn_valid(pfn) (1)
  997. #endif
  998. void memory_present(int nid, unsigned long start, unsigned long end);
  999. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  1000. /*
  1001. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  1002. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  1003. * pfn_valid_within() should be used in this case; we optimise this away
  1004. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  1005. */
  1006. #ifdef CONFIG_HOLES_IN_ZONE
  1007. #define pfn_valid_within(pfn) pfn_valid(pfn)
  1008. #else
  1009. #define pfn_valid_within(pfn) (1)
  1010. #endif
  1011. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  1012. /*
  1013. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1014. * associated with it or not. In FLATMEM, it is expected that holes always
  1015. * have valid memmap as long as there is valid PFNs either side of the hole.
  1016. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1017. * entire section.
  1018. *
  1019. * However, an ARM, and maybe other embedded architectures in the future
  1020. * free memmap backing holes to save memory on the assumption the memmap is
  1021. * never used. The page_zone linkages are then broken even though pfn_valid()
  1022. * returns true. A walker of the full memmap must then do this additional
  1023. * check to ensure the memmap they are looking at is sane by making sure
  1024. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1025. * of the full memmap are extremely rare.
  1026. */
  1027. int memmap_valid_within(unsigned long pfn,
  1028. struct page *page, struct zone *zone);
  1029. #else
  1030. static inline int memmap_valid_within(unsigned long pfn,
  1031. struct page *page, struct zone *zone)
  1032. {
  1033. return 1;
  1034. }
  1035. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1036. #endif /* !__GENERATING_BOUNDS.H */
  1037. #endif /* !__ASSEMBLY__ */
  1038. #endif /* _LINUX_MMZONE_H */