cci.txt 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. =======================================================
  2. ARM CCI cache coherent interconnect binding description
  3. =======================================================
  4. ARM multi-cluster systems maintain intra-cluster coherency through a
  5. cache coherent interconnect (CCI) that is capable of monitoring bus
  6. transactions and manage coherency, TLB invalidations and memory barriers.
  7. It allows snooping and distributed virtual memory message broadcast across
  8. clusters, through memory mapped interface, with a global control register
  9. space and multiple sets of interface control registers, one per slave
  10. interface.
  11. Bindings for the CCI node follow the ePAPR standard, available from:
  12. www.power.org/documentation/epapr-version-1-1/
  13. with the addition of the bindings described in this document which are
  14. specific to ARM.
  15. * CCI interconnect node
  16. Description: Describes a CCI cache coherent Interconnect component
  17. Node name must be "cci".
  18. Node's parent must be the root node /, and the address space visible
  19. through the CCI interconnect is the same as the one seen from the
  20. root node (ie from CPUs perspective as per DT standard).
  21. Every CCI node has to define the following properties:
  22. - compatible
  23. Usage: required
  24. Value type: <string>
  25. Definition: must be set to
  26. "arm,cci-400"
  27. - reg
  28. Usage: required
  29. Value type: Integer cells. A register entry, expressed as a pair
  30. of cells, containing base and size.
  31. Definition: A standard property. Specifies base physical
  32. address of CCI control registers common to all
  33. interfaces.
  34. - ranges:
  35. Usage: required
  36. Value type: Integer cells. An array of range entries, expressed
  37. as a tuple of cells, containing child address,
  38. parent address and the size of the region in the
  39. child address space.
  40. Definition: A standard property. Follow rules in the ePAPR for
  41. hierarchical bus addressing. CCI interfaces
  42. addresses refer to the parent node addressing
  43. scheme to declare their register bases.
  44. CCI interconnect node can define the following child nodes:
  45. - CCI control interface nodes
  46. Node name must be "slave-if".
  47. Parent node must be CCI interconnect node.
  48. A CCI control interface node must contain the following
  49. properties:
  50. - compatible
  51. Usage: required
  52. Value type: <string>
  53. Definition: must be set to
  54. "arm,cci-400-ctrl-if"
  55. - interface-type:
  56. Usage: required
  57. Value type: <string>
  58. Definition: must be set to one of {"ace", "ace-lite"}
  59. depending on the interface type the node
  60. represents.
  61. - reg:
  62. Usage: required
  63. Value type: Integer cells. A register entry, expressed
  64. as a pair of cells, containing base and
  65. size.
  66. Definition: the base address and size of the
  67. corresponding interface programming
  68. registers.
  69. - CCI PMU node
  70. Parent node must be CCI interconnect node.
  71. A CCI pmu node must contain the following properties:
  72. - compatible
  73. Usage: required
  74. Value type: <string>
  75. Definition: must be "arm,cci-400-pmu"
  76. - reg:
  77. Usage: required
  78. Value type: Integer cells. A register entry, expressed
  79. as a pair of cells, containing base and
  80. size.
  81. Definition: the base address and size of the
  82. corresponding interface programming
  83. registers.
  84. - interrupts:
  85. Usage: required
  86. Value type: Integer cells. Array of interrupt specifier
  87. entries, as defined in
  88. ../interrupt-controller/interrupts.txt.
  89. Definition: list of counter overflow interrupts, one per
  90. counter. The interrupts must be specified
  91. starting with the cycle counter overflow
  92. interrupt, followed by counter0 overflow
  93. interrupt, counter1 overflow interrupt,...
  94. ,counterN overflow interrupt.
  95. The CCI PMU has an interrupt signal for each
  96. counter. The number of interrupts must be
  97. equal to the number of counters.
  98. * CCI interconnect bus masters
  99. Description: masters in the device tree connected to a CCI port
  100. (inclusive of CPUs and their cpu nodes).
  101. A CCI interconnect bus master node must contain the following
  102. properties:
  103. - cci-control-port:
  104. Usage: required
  105. Value type: <phandle>
  106. Definition: a phandle containing the CCI control interface node
  107. the master is connected to.
  108. Example:
  109. cpus {
  110. #size-cells = <0>;
  111. #address-cells = <1>;
  112. CPU0: cpu@0 {
  113. device_type = "cpu";
  114. compatible = "arm,cortex-a15";
  115. cci-control-port = <&cci_control1>;
  116. reg = <0x0>;
  117. };
  118. CPU1: cpu@1 {
  119. device_type = "cpu";
  120. compatible = "arm,cortex-a15";
  121. cci-control-port = <&cci_control1>;
  122. reg = <0x1>;
  123. };
  124. CPU2: cpu@100 {
  125. device_type = "cpu";
  126. compatible = "arm,cortex-a7";
  127. cci-control-port = <&cci_control2>;
  128. reg = <0x100>;
  129. };
  130. CPU3: cpu@101 {
  131. device_type = "cpu";
  132. compatible = "arm,cortex-a7";
  133. cci-control-port = <&cci_control2>;
  134. reg = <0x101>;
  135. };
  136. };
  137. dma0: dma@3000000 {
  138. compatible = "arm,pl330", "arm,primecell";
  139. cci-control-port = <&cci_control0>;
  140. reg = <0x0 0x3000000 0x0 0x1000>;
  141. interrupts = <10>;
  142. #dma-cells = <1>;
  143. #dma-channels = <8>;
  144. #dma-requests = <32>;
  145. };
  146. cci@2c090000 {
  147. compatible = "arm,cci-400";
  148. #address-cells = <1>;
  149. #size-cells = <1>;
  150. reg = <0x0 0x2c090000 0 0x1000>;
  151. ranges = <0x0 0x0 0x2c090000 0x10000>;
  152. cci_control0: slave-if@1000 {
  153. compatible = "arm,cci-400-ctrl-if";
  154. interface-type = "ace-lite";
  155. reg = <0x1000 0x1000>;
  156. };
  157. cci_control1: slave-if@4000 {
  158. compatible = "arm,cci-400-ctrl-if";
  159. interface-type = "ace";
  160. reg = <0x4000 0x1000>;
  161. };
  162. cci_control2: slave-if@5000 {
  163. compatible = "arm,cci-400-ctrl-if";
  164. interface-type = "ace";
  165. reg = <0x5000 0x1000>;
  166. };
  167. pmu@9000 {
  168. compatible = "arm,cci-400-pmu";
  169. reg = <0x9000 0x5000>;
  170. interrupts = <0 101 4>,
  171. <0 102 4>,
  172. <0 103 4>,
  173. <0 104 4>,
  174. <0 105 4>;
  175. };
  176. };
  177. This CCI node corresponds to a CCI component whose control registers sits
  178. at address 0x000000002c090000.
  179. CCI slave interface @0x000000002c091000 is connected to dma controller dma0.
  180. CCI slave interface @0x000000002c094000 is connected to CPUs {CPU0, CPU1};
  181. CCI slave interface @0x000000002c095000 is connected to CPUs {CPU2, CPU3};