memcontrol.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. */
  19. #include <linux/res_counter.h>
  20. #include <linux/memcontrol.h>
  21. #include <linux/cgroup.h>
  22. #include <linux/mm.h>
  23. #include <linux/smp.h>
  24. #include <linux/page-flags.h>
  25. #include <linux/backing-dev.h>
  26. #include <linux/bit_spinlock.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/slab.h>
  29. #include <linux/swap.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/fs.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/vmalloc.h>
  34. #include <asm/uaccess.h>
  35. struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  36. static struct kmem_cache *page_cgroup_cache __read_mostly;
  37. #define MEM_CGROUP_RECLAIM_RETRIES 5
  38. /*
  39. * Statistics for memory cgroup.
  40. */
  41. enum mem_cgroup_stat_index {
  42. /*
  43. * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  44. */
  45. MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
  46. MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
  47. MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
  48. MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
  49. MEM_CGROUP_STAT_NSTATS,
  50. };
  51. struct mem_cgroup_stat_cpu {
  52. s64 count[MEM_CGROUP_STAT_NSTATS];
  53. } ____cacheline_aligned_in_smp;
  54. struct mem_cgroup_stat {
  55. struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
  56. };
  57. /*
  58. * For accounting under irq disable, no need for increment preempt count.
  59. */
  60. static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
  61. enum mem_cgroup_stat_index idx, int val)
  62. {
  63. int cpu = smp_processor_id();
  64. stat->cpustat[cpu].count[idx] += val;
  65. }
  66. static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
  67. enum mem_cgroup_stat_index idx)
  68. {
  69. int cpu;
  70. s64 ret = 0;
  71. for_each_possible_cpu(cpu)
  72. ret += stat->cpustat[cpu].count[idx];
  73. return ret;
  74. }
  75. /*
  76. * per-zone information in memory controller.
  77. */
  78. enum mem_cgroup_zstat_index {
  79. MEM_CGROUP_ZSTAT_ACTIVE,
  80. MEM_CGROUP_ZSTAT_INACTIVE,
  81. NR_MEM_CGROUP_ZSTAT,
  82. };
  83. struct mem_cgroup_per_zone {
  84. /*
  85. * spin_lock to protect the per cgroup LRU
  86. */
  87. spinlock_t lru_lock;
  88. struct list_head active_list;
  89. struct list_head inactive_list;
  90. unsigned long count[NR_MEM_CGROUP_ZSTAT];
  91. };
  92. /* Macro for accessing counter */
  93. #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
  94. struct mem_cgroup_per_node {
  95. struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  96. };
  97. struct mem_cgroup_lru_info {
  98. struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
  99. };
  100. /*
  101. * The memory controller data structure. The memory controller controls both
  102. * page cache and RSS per cgroup. We would eventually like to provide
  103. * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  104. * to help the administrator determine what knobs to tune.
  105. *
  106. * TODO: Add a water mark for the memory controller. Reclaim will begin when
  107. * we hit the water mark. May be even add a low water mark, such that
  108. * no reclaim occurs from a cgroup at it's low water mark, this is
  109. * a feature that will be implemented much later in the future.
  110. */
  111. struct mem_cgroup {
  112. struct cgroup_subsys_state css;
  113. /*
  114. * the counter to account for memory usage
  115. */
  116. struct res_counter res;
  117. /*
  118. * Per cgroup active and inactive list, similar to the
  119. * per zone LRU lists.
  120. */
  121. struct mem_cgroup_lru_info info;
  122. int prev_priority; /* for recording reclaim priority */
  123. /*
  124. * statistics.
  125. */
  126. struct mem_cgroup_stat stat;
  127. };
  128. static struct mem_cgroup init_mem_cgroup;
  129. /*
  130. * We use the lower bit of the page->page_cgroup pointer as a bit spin
  131. * lock. We need to ensure that page->page_cgroup is at least two
  132. * byte aligned (based on comments from Nick Piggin). But since
  133. * bit_spin_lock doesn't actually set that lock bit in a non-debug
  134. * uniprocessor kernel, we should avoid setting it here too.
  135. */
  136. #define PAGE_CGROUP_LOCK_BIT 0x0
  137. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
  138. #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
  139. #else
  140. #define PAGE_CGROUP_LOCK 0x0
  141. #endif
  142. /*
  143. * A page_cgroup page is associated with every page descriptor. The
  144. * page_cgroup helps us identify information about the cgroup
  145. */
  146. struct page_cgroup {
  147. struct list_head lru; /* per cgroup LRU list */
  148. struct page *page;
  149. struct mem_cgroup *mem_cgroup;
  150. int ref_cnt; /* cached, mapped, migrating */
  151. int flags;
  152. };
  153. #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
  154. #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
  155. static int page_cgroup_nid(struct page_cgroup *pc)
  156. {
  157. return page_to_nid(pc->page);
  158. }
  159. static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
  160. {
  161. return page_zonenum(pc->page);
  162. }
  163. enum charge_type {
  164. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  165. MEM_CGROUP_CHARGE_TYPE_MAPPED,
  166. };
  167. /*
  168. * Always modified under lru lock. Then, not necessary to preempt_disable()
  169. */
  170. static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
  171. bool charge)
  172. {
  173. int val = (charge)? 1 : -1;
  174. struct mem_cgroup_stat *stat = &mem->stat;
  175. VM_BUG_ON(!irqs_disabled());
  176. if (flags & PAGE_CGROUP_FLAG_CACHE)
  177. __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
  178. else
  179. __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
  180. if (charge)
  181. __mem_cgroup_stat_add_safe(stat,
  182. MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
  183. else
  184. __mem_cgroup_stat_add_safe(stat,
  185. MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
  186. }
  187. static struct mem_cgroup_per_zone *
  188. mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
  189. {
  190. return &mem->info.nodeinfo[nid]->zoneinfo[zid];
  191. }
  192. static struct mem_cgroup_per_zone *
  193. page_cgroup_zoneinfo(struct page_cgroup *pc)
  194. {
  195. struct mem_cgroup *mem = pc->mem_cgroup;
  196. int nid = page_cgroup_nid(pc);
  197. int zid = page_cgroup_zid(pc);
  198. return mem_cgroup_zoneinfo(mem, nid, zid);
  199. }
  200. static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
  201. enum mem_cgroup_zstat_index idx)
  202. {
  203. int nid, zid;
  204. struct mem_cgroup_per_zone *mz;
  205. u64 total = 0;
  206. for_each_online_node(nid)
  207. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  208. mz = mem_cgroup_zoneinfo(mem, nid, zid);
  209. total += MEM_CGROUP_ZSTAT(mz, idx);
  210. }
  211. return total;
  212. }
  213. static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
  214. {
  215. return container_of(cgroup_subsys_state(cont,
  216. mem_cgroup_subsys_id), struct mem_cgroup,
  217. css);
  218. }
  219. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  220. {
  221. return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
  222. struct mem_cgroup, css);
  223. }
  224. static inline int page_cgroup_locked(struct page *page)
  225. {
  226. return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  227. }
  228. static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
  229. {
  230. VM_BUG_ON(!page_cgroup_locked(page));
  231. page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
  232. }
  233. struct page_cgroup *page_get_page_cgroup(struct page *page)
  234. {
  235. return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
  236. }
  237. static void lock_page_cgroup(struct page *page)
  238. {
  239. bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  240. }
  241. static int try_lock_page_cgroup(struct page *page)
  242. {
  243. return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  244. }
  245. static void unlock_page_cgroup(struct page *page)
  246. {
  247. bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
  248. }
  249. static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
  250. struct page_cgroup *pc)
  251. {
  252. int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
  253. if (from)
  254. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
  255. else
  256. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
  257. mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
  258. list_del(&pc->lru);
  259. }
  260. static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
  261. struct page_cgroup *pc)
  262. {
  263. int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
  264. if (!to) {
  265. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
  266. list_add(&pc->lru, &mz->inactive_list);
  267. } else {
  268. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
  269. list_add(&pc->lru, &mz->active_list);
  270. }
  271. mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
  272. }
  273. static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
  274. {
  275. int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
  276. struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
  277. if (from)
  278. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
  279. else
  280. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
  281. if (active) {
  282. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
  283. pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
  284. list_move(&pc->lru, &mz->active_list);
  285. } else {
  286. MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
  287. pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
  288. list_move(&pc->lru, &mz->inactive_list);
  289. }
  290. }
  291. int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
  292. {
  293. int ret;
  294. task_lock(task);
  295. ret = task->mm && mm_match_cgroup(task->mm, mem);
  296. task_unlock(task);
  297. return ret;
  298. }
  299. /*
  300. * This routine assumes that the appropriate zone's lru lock is already held
  301. */
  302. void mem_cgroup_move_lists(struct page *page, bool active)
  303. {
  304. struct page_cgroup *pc;
  305. struct mem_cgroup_per_zone *mz;
  306. unsigned long flags;
  307. /*
  308. * We cannot lock_page_cgroup while holding zone's lru_lock,
  309. * because other holders of lock_page_cgroup can be interrupted
  310. * with an attempt to rotate_reclaimable_page. But we cannot
  311. * safely get to page_cgroup without it, so just try_lock it:
  312. * mem_cgroup_isolate_pages allows for page left on wrong list.
  313. */
  314. if (!try_lock_page_cgroup(page))
  315. return;
  316. pc = page_get_page_cgroup(page);
  317. if (pc) {
  318. mz = page_cgroup_zoneinfo(pc);
  319. spin_lock_irqsave(&mz->lru_lock, flags);
  320. __mem_cgroup_move_lists(pc, active);
  321. spin_unlock_irqrestore(&mz->lru_lock, flags);
  322. }
  323. unlock_page_cgroup(page);
  324. }
  325. /*
  326. * Calculate mapped_ratio under memory controller. This will be used in
  327. * vmscan.c for deteremining we have to reclaim mapped pages.
  328. */
  329. int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
  330. {
  331. long total, rss;
  332. /*
  333. * usage is recorded in bytes. But, here, we assume the number of
  334. * physical pages can be represented by "long" on any arch.
  335. */
  336. total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
  337. rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
  338. return (int)((rss * 100L) / total);
  339. }
  340. /*
  341. * This function is called from vmscan.c. In page reclaiming loop. balance
  342. * between active and inactive list is calculated. For memory controller
  343. * page reclaiming, we should use using mem_cgroup's imbalance rather than
  344. * zone's global lru imbalance.
  345. */
  346. long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
  347. {
  348. unsigned long active, inactive;
  349. /* active and inactive are the number of pages. 'long' is ok.*/
  350. active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
  351. inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
  352. return (long) (active / (inactive + 1));
  353. }
  354. /*
  355. * prev_priority control...this will be used in memory reclaim path.
  356. */
  357. int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
  358. {
  359. return mem->prev_priority;
  360. }
  361. void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
  362. {
  363. if (priority < mem->prev_priority)
  364. mem->prev_priority = priority;
  365. }
  366. void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
  367. {
  368. mem->prev_priority = priority;
  369. }
  370. /*
  371. * Calculate # of pages to be scanned in this priority/zone.
  372. * See also vmscan.c
  373. *
  374. * priority starts from "DEF_PRIORITY" and decremented in each loop.
  375. * (see include/linux/mmzone.h)
  376. */
  377. long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
  378. struct zone *zone, int priority)
  379. {
  380. long nr_active;
  381. int nid = zone->zone_pgdat->node_id;
  382. int zid = zone_idx(zone);
  383. struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
  384. nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
  385. return (nr_active >> priority);
  386. }
  387. long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
  388. struct zone *zone, int priority)
  389. {
  390. long nr_inactive;
  391. int nid = zone->zone_pgdat->node_id;
  392. int zid = zone_idx(zone);
  393. struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
  394. nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
  395. return (nr_inactive >> priority);
  396. }
  397. unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
  398. struct list_head *dst,
  399. unsigned long *scanned, int order,
  400. int mode, struct zone *z,
  401. struct mem_cgroup *mem_cont,
  402. int active)
  403. {
  404. unsigned long nr_taken = 0;
  405. struct page *page;
  406. unsigned long scan;
  407. LIST_HEAD(pc_list);
  408. struct list_head *src;
  409. struct page_cgroup *pc, *tmp;
  410. int nid = z->zone_pgdat->node_id;
  411. int zid = zone_idx(z);
  412. struct mem_cgroup_per_zone *mz;
  413. BUG_ON(!mem_cont);
  414. mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
  415. if (active)
  416. src = &mz->active_list;
  417. else
  418. src = &mz->inactive_list;
  419. spin_lock(&mz->lru_lock);
  420. scan = 0;
  421. list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
  422. if (scan >= nr_to_scan)
  423. break;
  424. page = pc->page;
  425. if (unlikely(!PageLRU(page)))
  426. continue;
  427. if (PageActive(page) && !active) {
  428. __mem_cgroup_move_lists(pc, true);
  429. continue;
  430. }
  431. if (!PageActive(page) && active) {
  432. __mem_cgroup_move_lists(pc, false);
  433. continue;
  434. }
  435. scan++;
  436. list_move(&pc->lru, &pc_list);
  437. if (__isolate_lru_page(page, mode) == 0) {
  438. list_move(&page->lru, dst);
  439. nr_taken++;
  440. }
  441. }
  442. list_splice(&pc_list, src);
  443. spin_unlock(&mz->lru_lock);
  444. *scanned = scan;
  445. return nr_taken;
  446. }
  447. /*
  448. * Charge the memory controller for page usage.
  449. * Return
  450. * 0 if the charge was successful
  451. * < 0 if the cgroup is over its limit
  452. */
  453. static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
  454. gfp_t gfp_mask, enum charge_type ctype,
  455. struct mem_cgroup *memcg)
  456. {
  457. struct mem_cgroup *mem;
  458. struct page_cgroup *pc;
  459. unsigned long flags;
  460. unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  461. struct mem_cgroup_per_zone *mz;
  462. if (mem_cgroup_subsys.disabled)
  463. return 0;
  464. /*
  465. * Should page_cgroup's go to their own slab?
  466. * One could optimize the performance of the charging routine
  467. * by saving a bit in the page_flags and using it as a lock
  468. * to see if the cgroup page already has a page_cgroup associated
  469. * with it
  470. */
  471. retry:
  472. lock_page_cgroup(page);
  473. pc = page_get_page_cgroup(page);
  474. /*
  475. * The page_cgroup exists and
  476. * the page has already been accounted.
  477. */
  478. if (pc) {
  479. VM_BUG_ON(pc->page != page);
  480. VM_BUG_ON(pc->ref_cnt <= 0);
  481. pc->ref_cnt++;
  482. unlock_page_cgroup(page);
  483. goto done;
  484. }
  485. unlock_page_cgroup(page);
  486. pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
  487. if (pc == NULL)
  488. goto err;
  489. /*
  490. * We always charge the cgroup the mm_struct belongs to.
  491. * The mm_struct's mem_cgroup changes on task migration if the
  492. * thread group leader migrates. It's possible that mm is not
  493. * set, if so charge the init_mm (happens for pagecache usage).
  494. */
  495. if (!memcg) {
  496. if (!mm)
  497. mm = &init_mm;
  498. rcu_read_lock();
  499. mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
  500. /*
  501. * For every charge from the cgroup, increment reference count
  502. */
  503. css_get(&mem->css);
  504. rcu_read_unlock();
  505. } else {
  506. mem = memcg;
  507. css_get(&memcg->css);
  508. }
  509. while (res_counter_charge(&mem->res, PAGE_SIZE)) {
  510. if (!(gfp_mask & __GFP_WAIT))
  511. goto out;
  512. if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
  513. continue;
  514. /*
  515. * try_to_free_mem_cgroup_pages() might not give us a full
  516. * picture of reclaim. Some pages are reclaimed and might be
  517. * moved to swap cache or just unmapped from the cgroup.
  518. * Check the limit again to see if the reclaim reduced the
  519. * current usage of the cgroup before giving up
  520. */
  521. if (res_counter_check_under_limit(&mem->res))
  522. continue;
  523. if (!nr_retries--) {
  524. mem_cgroup_out_of_memory(mem, gfp_mask);
  525. goto out;
  526. }
  527. }
  528. pc->ref_cnt = 1;
  529. pc->mem_cgroup = mem;
  530. pc->page = page;
  531. /*
  532. * If a page is accounted as a page cache, insert to inactive list.
  533. * If anon, insert to active list.
  534. */
  535. if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
  536. pc->flags = PAGE_CGROUP_FLAG_CACHE;
  537. else
  538. pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
  539. lock_page_cgroup(page);
  540. if (page_get_page_cgroup(page)) {
  541. unlock_page_cgroup(page);
  542. /*
  543. * Another charge has been added to this page already.
  544. * We take lock_page_cgroup(page) again and read
  545. * page->cgroup, increment refcnt.... just retry is OK.
  546. */
  547. res_counter_uncharge(&mem->res, PAGE_SIZE);
  548. css_put(&mem->css);
  549. kmem_cache_free(page_cgroup_cache, pc);
  550. goto retry;
  551. }
  552. page_assign_page_cgroup(page, pc);
  553. mz = page_cgroup_zoneinfo(pc);
  554. spin_lock_irqsave(&mz->lru_lock, flags);
  555. __mem_cgroup_add_list(mz, pc);
  556. spin_unlock_irqrestore(&mz->lru_lock, flags);
  557. unlock_page_cgroup(page);
  558. done:
  559. return 0;
  560. out:
  561. css_put(&mem->css);
  562. kmem_cache_free(page_cgroup_cache, pc);
  563. err:
  564. return -ENOMEM;
  565. }
  566. int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
  567. {
  568. return mem_cgroup_charge_common(page, mm, gfp_mask,
  569. MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
  570. }
  571. int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
  572. gfp_t gfp_mask)
  573. {
  574. if (!mm)
  575. mm = &init_mm;
  576. return mem_cgroup_charge_common(page, mm, gfp_mask,
  577. MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
  578. }
  579. int mem_cgroup_getref(struct page *page)
  580. {
  581. struct page_cgroup *pc;
  582. if (mem_cgroup_subsys.disabled)
  583. return 0;
  584. lock_page_cgroup(page);
  585. pc = page_get_page_cgroup(page);
  586. VM_BUG_ON(!pc);
  587. pc->ref_cnt++;
  588. unlock_page_cgroup(page);
  589. return 0;
  590. }
  591. /*
  592. * Uncharging is always a welcome operation, we never complain, simply
  593. * uncharge.
  594. */
  595. void mem_cgroup_uncharge_page(struct page *page)
  596. {
  597. struct page_cgroup *pc;
  598. struct mem_cgroup *mem;
  599. struct mem_cgroup_per_zone *mz;
  600. unsigned long flags;
  601. if (mem_cgroup_subsys.disabled)
  602. return;
  603. /*
  604. * Check if our page_cgroup is valid
  605. */
  606. lock_page_cgroup(page);
  607. pc = page_get_page_cgroup(page);
  608. if (!pc)
  609. goto unlock;
  610. VM_BUG_ON(pc->page != page);
  611. VM_BUG_ON(pc->ref_cnt <= 0);
  612. if (--(pc->ref_cnt) == 0) {
  613. mz = page_cgroup_zoneinfo(pc);
  614. spin_lock_irqsave(&mz->lru_lock, flags);
  615. __mem_cgroup_remove_list(mz, pc);
  616. spin_unlock_irqrestore(&mz->lru_lock, flags);
  617. page_assign_page_cgroup(page, NULL);
  618. unlock_page_cgroup(page);
  619. mem = pc->mem_cgroup;
  620. res_counter_uncharge(&mem->res, PAGE_SIZE);
  621. css_put(&mem->css);
  622. kmem_cache_free(page_cgroup_cache, pc);
  623. return;
  624. }
  625. unlock:
  626. unlock_page_cgroup(page);
  627. }
  628. /*
  629. * Before starting migration, account against new page.
  630. */
  631. int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
  632. {
  633. struct page_cgroup *pc;
  634. struct mem_cgroup *mem = NULL;
  635. enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
  636. int ret = 0;
  637. if (mem_cgroup_subsys.disabled)
  638. return 0;
  639. lock_page_cgroup(page);
  640. pc = page_get_page_cgroup(page);
  641. if (pc) {
  642. mem = pc->mem_cgroup;
  643. css_get(&mem->css);
  644. if (pc->flags & PAGE_CGROUP_FLAG_CACHE)
  645. ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
  646. }
  647. unlock_page_cgroup(page);
  648. if (mem) {
  649. ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
  650. ctype, mem);
  651. css_put(&mem->css);
  652. }
  653. return ret;
  654. }
  655. /* remove redundant charge */
  656. void mem_cgroup_end_migration(struct page *newpage)
  657. {
  658. mem_cgroup_uncharge_page(newpage);
  659. }
  660. /*
  661. * This routine traverse page_cgroup in given list and drop them all.
  662. * This routine ignores page_cgroup->ref_cnt.
  663. * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
  664. */
  665. #define FORCE_UNCHARGE_BATCH (128)
  666. static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
  667. struct mem_cgroup_per_zone *mz,
  668. int active)
  669. {
  670. struct page_cgroup *pc;
  671. struct page *page;
  672. int count = FORCE_UNCHARGE_BATCH;
  673. unsigned long flags;
  674. struct list_head *list;
  675. if (active)
  676. list = &mz->active_list;
  677. else
  678. list = &mz->inactive_list;
  679. spin_lock_irqsave(&mz->lru_lock, flags);
  680. while (!list_empty(list)) {
  681. pc = list_entry(list->prev, struct page_cgroup, lru);
  682. page = pc->page;
  683. get_page(page);
  684. spin_unlock_irqrestore(&mz->lru_lock, flags);
  685. /*
  686. * Check if this page is on LRU. !LRU page can be found
  687. * if it's under page migration.
  688. */
  689. if (PageLRU(page)) {
  690. mem_cgroup_uncharge_page(page);
  691. put_page(page);
  692. if (--count <= 0) {
  693. count = FORCE_UNCHARGE_BATCH;
  694. cond_resched();
  695. }
  696. } else
  697. cond_resched();
  698. spin_lock_irqsave(&mz->lru_lock, flags);
  699. }
  700. spin_unlock_irqrestore(&mz->lru_lock, flags);
  701. }
  702. /*
  703. * make mem_cgroup's charge to be 0 if there is no task.
  704. * This enables deleting this mem_cgroup.
  705. */
  706. static int mem_cgroup_force_empty(struct mem_cgroup *mem)
  707. {
  708. int ret = -EBUSY;
  709. int node, zid;
  710. if (mem_cgroup_subsys.disabled)
  711. return 0;
  712. css_get(&mem->css);
  713. /*
  714. * page reclaim code (kswapd etc..) will move pages between
  715. * active_list <-> inactive_list while we don't take a lock.
  716. * So, we have to do loop here until all lists are empty.
  717. */
  718. while (mem->res.usage > 0) {
  719. if (atomic_read(&mem->css.cgroup->count) > 0)
  720. goto out;
  721. for_each_node_state(node, N_POSSIBLE)
  722. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  723. struct mem_cgroup_per_zone *mz;
  724. mz = mem_cgroup_zoneinfo(mem, node, zid);
  725. /* drop all page_cgroup in active_list */
  726. mem_cgroup_force_empty_list(mem, mz, 1);
  727. /* drop all page_cgroup in inactive_list */
  728. mem_cgroup_force_empty_list(mem, mz, 0);
  729. }
  730. }
  731. ret = 0;
  732. out:
  733. css_put(&mem->css);
  734. return ret;
  735. }
  736. static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
  737. {
  738. return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
  739. cft->private);
  740. }
  741. static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
  742. const char *buffer)
  743. {
  744. return res_counter_write(&mem_cgroup_from_cont(cont)->res,
  745. cft->private, buffer,
  746. res_counter_memparse_write_strategy);
  747. }
  748. static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
  749. {
  750. struct mem_cgroup *mem;
  751. mem = mem_cgroup_from_cont(cont);
  752. switch (event) {
  753. case RES_MAX_USAGE:
  754. res_counter_reset_max(&mem->res);
  755. break;
  756. case RES_FAILCNT:
  757. res_counter_reset_failcnt(&mem->res);
  758. break;
  759. }
  760. return 0;
  761. }
  762. static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
  763. {
  764. return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
  765. }
  766. static const struct mem_cgroup_stat_desc {
  767. const char *msg;
  768. u64 unit;
  769. } mem_cgroup_stat_desc[] = {
  770. [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
  771. [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
  772. [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
  773. [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
  774. };
  775. static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
  776. struct cgroup_map_cb *cb)
  777. {
  778. struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
  779. struct mem_cgroup_stat *stat = &mem_cont->stat;
  780. int i;
  781. for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
  782. s64 val;
  783. val = mem_cgroup_read_stat(stat, i);
  784. val *= mem_cgroup_stat_desc[i].unit;
  785. cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
  786. }
  787. /* showing # of active pages */
  788. {
  789. unsigned long active, inactive;
  790. inactive = mem_cgroup_get_all_zonestat(mem_cont,
  791. MEM_CGROUP_ZSTAT_INACTIVE);
  792. active = mem_cgroup_get_all_zonestat(mem_cont,
  793. MEM_CGROUP_ZSTAT_ACTIVE);
  794. cb->fill(cb, "active", (active) * PAGE_SIZE);
  795. cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
  796. }
  797. return 0;
  798. }
  799. static struct cftype mem_cgroup_files[] = {
  800. {
  801. .name = "usage_in_bytes",
  802. .private = RES_USAGE,
  803. .read_u64 = mem_cgroup_read,
  804. },
  805. {
  806. .name = "max_usage_in_bytes",
  807. .private = RES_MAX_USAGE,
  808. .trigger = mem_cgroup_reset,
  809. .read_u64 = mem_cgroup_read,
  810. },
  811. {
  812. .name = "limit_in_bytes",
  813. .private = RES_LIMIT,
  814. .write_string = mem_cgroup_write,
  815. .read_u64 = mem_cgroup_read,
  816. },
  817. {
  818. .name = "failcnt",
  819. .private = RES_FAILCNT,
  820. .trigger = mem_cgroup_reset,
  821. .read_u64 = mem_cgroup_read,
  822. },
  823. {
  824. .name = "force_empty",
  825. .trigger = mem_force_empty_write,
  826. },
  827. {
  828. .name = "stat",
  829. .read_map = mem_control_stat_show,
  830. },
  831. };
  832. static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
  833. {
  834. struct mem_cgroup_per_node *pn;
  835. struct mem_cgroup_per_zone *mz;
  836. int zone, tmp = node;
  837. /*
  838. * This routine is called against possible nodes.
  839. * But it's BUG to call kmalloc() against offline node.
  840. *
  841. * TODO: this routine can waste much memory for nodes which will
  842. * never be onlined. It's better to use memory hotplug callback
  843. * function.
  844. */
  845. if (!node_state(node, N_NORMAL_MEMORY))
  846. tmp = -1;
  847. pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  848. if (!pn)
  849. return 1;
  850. mem->info.nodeinfo[node] = pn;
  851. memset(pn, 0, sizeof(*pn));
  852. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  853. mz = &pn->zoneinfo[zone];
  854. INIT_LIST_HEAD(&mz->active_list);
  855. INIT_LIST_HEAD(&mz->inactive_list);
  856. spin_lock_init(&mz->lru_lock);
  857. }
  858. return 0;
  859. }
  860. static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
  861. {
  862. kfree(mem->info.nodeinfo[node]);
  863. }
  864. static struct mem_cgroup *mem_cgroup_alloc(void)
  865. {
  866. struct mem_cgroup *mem;
  867. if (sizeof(*mem) < PAGE_SIZE)
  868. mem = kmalloc(sizeof(*mem), GFP_KERNEL);
  869. else
  870. mem = vmalloc(sizeof(*mem));
  871. if (mem)
  872. memset(mem, 0, sizeof(*mem));
  873. return mem;
  874. }
  875. static void mem_cgroup_free(struct mem_cgroup *mem)
  876. {
  877. if (sizeof(*mem) < PAGE_SIZE)
  878. kfree(mem);
  879. else
  880. vfree(mem);
  881. }
  882. static struct cgroup_subsys_state *
  883. mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
  884. {
  885. struct mem_cgroup *mem;
  886. int node;
  887. if (unlikely((cont->parent) == NULL)) {
  888. mem = &init_mem_cgroup;
  889. page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
  890. } else {
  891. mem = mem_cgroup_alloc();
  892. if (!mem)
  893. return ERR_PTR(-ENOMEM);
  894. }
  895. res_counter_init(&mem->res);
  896. for_each_node_state(node, N_POSSIBLE)
  897. if (alloc_mem_cgroup_per_zone_info(mem, node))
  898. goto free_out;
  899. return &mem->css;
  900. free_out:
  901. for_each_node_state(node, N_POSSIBLE)
  902. free_mem_cgroup_per_zone_info(mem, node);
  903. if (cont->parent != NULL)
  904. mem_cgroup_free(mem);
  905. return ERR_PTR(-ENOMEM);
  906. }
  907. static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
  908. struct cgroup *cont)
  909. {
  910. struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
  911. mem_cgroup_force_empty(mem);
  912. }
  913. static void mem_cgroup_destroy(struct cgroup_subsys *ss,
  914. struct cgroup *cont)
  915. {
  916. int node;
  917. struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
  918. for_each_node_state(node, N_POSSIBLE)
  919. free_mem_cgroup_per_zone_info(mem, node);
  920. mem_cgroup_free(mem_cgroup_from_cont(cont));
  921. }
  922. static int mem_cgroup_populate(struct cgroup_subsys *ss,
  923. struct cgroup *cont)
  924. {
  925. if (mem_cgroup_subsys.disabled)
  926. return 0;
  927. return cgroup_add_files(cont, ss, mem_cgroup_files,
  928. ARRAY_SIZE(mem_cgroup_files));
  929. }
  930. static void mem_cgroup_move_task(struct cgroup_subsys *ss,
  931. struct cgroup *cont,
  932. struct cgroup *old_cont,
  933. struct task_struct *p)
  934. {
  935. struct mm_struct *mm;
  936. struct mem_cgroup *mem, *old_mem;
  937. if (mem_cgroup_subsys.disabled)
  938. return;
  939. mm = get_task_mm(p);
  940. if (mm == NULL)
  941. return;
  942. mem = mem_cgroup_from_cont(cont);
  943. old_mem = mem_cgroup_from_cont(old_cont);
  944. if (mem == old_mem)
  945. goto out;
  946. /*
  947. * Only thread group leaders are allowed to migrate, the mm_struct is
  948. * in effect owned by the leader
  949. */
  950. if (!thread_group_leader(p))
  951. goto out;
  952. out:
  953. mmput(mm);
  954. }
  955. struct cgroup_subsys mem_cgroup_subsys = {
  956. .name = "memory",
  957. .subsys_id = mem_cgroup_subsys_id,
  958. .create = mem_cgroup_create,
  959. .pre_destroy = mem_cgroup_pre_destroy,
  960. .destroy = mem_cgroup_destroy,
  961. .populate = mem_cgroup_populate,
  962. .attach = mem_cgroup_move_task,
  963. .early_init = 0,
  964. };