ar5008_phy.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "hw-ops.h"
  18. #include "../regd.h"
  19. #include "ar9002_phy.h"
  20. /* All code below is for AR5008, AR9001, AR9002 */
  21. static const int firstep_table[] =
  22. /* level: 0 1 2 3 4 5 6 7 8 */
  23. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  24. static const int cycpwrThr1_table[] =
  25. /* level: 0 1 2 3 4 5 6 7 8 */
  26. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  27. /*
  28. * register values to turn OFDM weak signal detection OFF
  29. */
  30. static const int m1ThreshLow_off = 127;
  31. static const int m2ThreshLow_off = 127;
  32. static const int m1Thresh_off = 127;
  33. static const int m2Thresh_off = 127;
  34. static const int m2CountThr_off = 31;
  35. static const int m2CountThrLow_off = 63;
  36. static const int m1ThreshLowExt_off = 127;
  37. static const int m2ThreshLowExt_off = 127;
  38. static const int m1ThreshExt_off = 127;
  39. static const int m2ThreshExt_off = 127;
  40. /**
  41. * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
  42. * @rfbuf:
  43. * @reg32:
  44. * @numBits:
  45. * @firstBit:
  46. * @column:
  47. *
  48. * Performs analog "swizzling" of parameters into their location.
  49. * Used on external AR2133/AR5133 radios.
  50. */
  51. static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
  52. u32 numBits, u32 firstBit,
  53. u32 column)
  54. {
  55. u32 tmp32, mask, arrayEntry, lastBit;
  56. int32_t bitPosition, bitsLeft;
  57. tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
  58. arrayEntry = (firstBit - 1) / 8;
  59. bitPosition = (firstBit - 1) % 8;
  60. bitsLeft = numBits;
  61. while (bitsLeft > 0) {
  62. lastBit = (bitPosition + bitsLeft > 8) ?
  63. 8 : bitPosition + bitsLeft;
  64. mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
  65. (column * 8);
  66. rfBuf[arrayEntry] &= ~mask;
  67. rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
  68. (column * 8)) & mask;
  69. bitsLeft -= 8 - bitPosition;
  70. tmp32 = tmp32 >> (8 - bitPosition);
  71. bitPosition = 0;
  72. arrayEntry++;
  73. }
  74. }
  75. /*
  76. * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
  77. * rf_pwd_icsyndiv.
  78. *
  79. * Theoretical Rules:
  80. * if 2 GHz band
  81. * if forceBiasAuto
  82. * if synth_freq < 2412
  83. * bias = 0
  84. * else if 2412 <= synth_freq <= 2422
  85. * bias = 1
  86. * else // synth_freq > 2422
  87. * bias = 2
  88. * else if forceBias > 0
  89. * bias = forceBias & 7
  90. * else
  91. * no change, use value from ini file
  92. * else
  93. * no change, invalid band
  94. *
  95. * 1st Mod:
  96. * 2422 also uses value of 2
  97. * <approved>
  98. *
  99. * 2nd Mod:
  100. * Less than 2412 uses value of 0, 2412 and above uses value of 2
  101. */
  102. static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
  103. {
  104. struct ath_common *common = ath9k_hw_common(ah);
  105. u32 tmp_reg;
  106. int reg_writes = 0;
  107. u32 new_bias = 0;
  108. if (!AR_SREV_5416(ah) || synth_freq >= 3000)
  109. return;
  110. BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
  111. if (synth_freq < 2412)
  112. new_bias = 0;
  113. else if (synth_freq < 2422)
  114. new_bias = 1;
  115. else
  116. new_bias = 2;
  117. /* pre-reverse this field */
  118. tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
  119. ath_dbg(common, ATH_DBG_CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
  120. new_bias, synth_freq);
  121. /* swizzle rf_pwd_icsyndiv */
  122. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
  123. /* write Bank 6 with new params */
  124. REG_WRITE_RF_ARRAY(&ah->iniBank6, ah->analogBank6Data, reg_writes);
  125. }
  126. /**
  127. * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
  128. * @ah: atheros hardware stucture
  129. * @chan:
  130. *
  131. * For the external AR2133/AR5133 radios, takes the MHz channel value and set
  132. * the channel value. Assumes writes enabled to analog bus and bank6 register
  133. * cache in ah->analogBank6Data.
  134. */
  135. static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  136. {
  137. struct ath_common *common = ath9k_hw_common(ah);
  138. u32 channelSel = 0;
  139. u32 bModeSynth = 0;
  140. u32 aModeRefSel = 0;
  141. u32 reg32 = 0;
  142. u16 freq;
  143. struct chan_centers centers;
  144. ath9k_hw_get_channel_centers(ah, chan, &centers);
  145. freq = centers.synth_center;
  146. if (freq < 4800) {
  147. u32 txctl;
  148. if (((freq - 2192) % 5) == 0) {
  149. channelSel = ((freq - 672) * 2 - 3040) / 10;
  150. bModeSynth = 0;
  151. } else if (((freq - 2224) % 5) == 0) {
  152. channelSel = ((freq - 704) * 2 - 3040) / 10;
  153. bModeSynth = 1;
  154. } else {
  155. ath_err(common, "Invalid channel %u MHz\n", freq);
  156. return -EINVAL;
  157. }
  158. channelSel = (channelSel << 2) & 0xff;
  159. channelSel = ath9k_hw_reverse_bits(channelSel, 8);
  160. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  161. if (freq == 2484) {
  162. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  163. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  164. } else {
  165. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  166. txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
  167. }
  168. } else if ((freq % 20) == 0 && freq >= 5120) {
  169. channelSel =
  170. ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
  171. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  172. } else if ((freq % 10) == 0) {
  173. channelSel =
  174. ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
  175. if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
  176. aModeRefSel = ath9k_hw_reverse_bits(2, 2);
  177. else
  178. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  179. } else if ((freq % 5) == 0) {
  180. channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
  181. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  182. } else {
  183. ath_err(common, "Invalid channel %u MHz\n", freq);
  184. return -EINVAL;
  185. }
  186. ar5008_hw_force_bias(ah, freq);
  187. reg32 =
  188. (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
  189. (1 << 5) | 0x1;
  190. REG_WRITE(ah, AR_PHY(0x37), reg32);
  191. ah->curchan = chan;
  192. ah->curchan_rad_index = -1;
  193. return 0;
  194. }
  195. /**
  196. * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
  197. * @ah: atheros hardware structure
  198. * @chan:
  199. *
  200. * For non single-chip solutions. Converts to baseband spur frequency given the
  201. * input channel frequency and compute register settings below.
  202. */
  203. static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
  204. struct ath9k_channel *chan)
  205. {
  206. int bb_spur = AR_NO_SPUR;
  207. int bin, cur_bin;
  208. int spur_freq_sd;
  209. int spur_delta_phase;
  210. int denominator;
  211. int upper, lower, cur_vit_mask;
  212. int tmp, new;
  213. int i;
  214. static int pilot_mask_reg[4] = {
  215. AR_PHY_TIMING7, AR_PHY_TIMING8,
  216. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  217. };
  218. static int chan_mask_reg[4] = {
  219. AR_PHY_TIMING9, AR_PHY_TIMING10,
  220. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  221. };
  222. static int inc[4] = { 0, 100, 0, 0 };
  223. int8_t mask_m[123];
  224. int8_t mask_p[123];
  225. int8_t mask_amt;
  226. int tmp_mask;
  227. int cur_bb_spur;
  228. bool is2GHz = IS_CHAN_2GHZ(chan);
  229. memset(&mask_m, 0, sizeof(int8_t) * 123);
  230. memset(&mask_p, 0, sizeof(int8_t) * 123);
  231. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  232. cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
  233. if (AR_NO_SPUR == cur_bb_spur)
  234. break;
  235. cur_bb_spur = cur_bb_spur - (chan->channel * 10);
  236. if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
  237. bb_spur = cur_bb_spur;
  238. break;
  239. }
  240. }
  241. if (AR_NO_SPUR == bb_spur)
  242. return;
  243. bin = bb_spur * 32;
  244. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  245. new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  246. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  247. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  248. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  249. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
  250. new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  251. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  252. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  253. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  254. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  255. REG_WRITE(ah, AR_PHY_SPUR_REG, new);
  256. spur_delta_phase = ((bb_spur * 524288) / 100) &
  257. AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  258. denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
  259. spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
  260. new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  261. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  262. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  263. REG_WRITE(ah, AR_PHY_TIMING11, new);
  264. cur_bin = -6000;
  265. upper = bin + 100;
  266. lower = bin - 100;
  267. for (i = 0; i < 4; i++) {
  268. int pilot_mask = 0;
  269. int chan_mask = 0;
  270. int bp = 0;
  271. for (bp = 0; bp < 30; bp++) {
  272. if ((cur_bin > lower) && (cur_bin < upper)) {
  273. pilot_mask = pilot_mask | 0x1 << bp;
  274. chan_mask = chan_mask | 0x1 << bp;
  275. }
  276. cur_bin += 100;
  277. }
  278. cur_bin += inc[i];
  279. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  280. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  281. }
  282. cur_vit_mask = 6100;
  283. upper = bin + 120;
  284. lower = bin - 120;
  285. for (i = 0; i < 123; i++) {
  286. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  287. /* workaround for gcc bug #37014 */
  288. volatile int tmp_v = abs(cur_vit_mask - bin);
  289. if (tmp_v < 75)
  290. mask_amt = 1;
  291. else
  292. mask_amt = 0;
  293. if (cur_vit_mask < 0)
  294. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  295. else
  296. mask_p[cur_vit_mask / 100] = mask_amt;
  297. }
  298. cur_vit_mask -= 100;
  299. }
  300. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  301. | (mask_m[48] << 26) | (mask_m[49] << 24)
  302. | (mask_m[50] << 22) | (mask_m[51] << 20)
  303. | (mask_m[52] << 18) | (mask_m[53] << 16)
  304. | (mask_m[54] << 14) | (mask_m[55] << 12)
  305. | (mask_m[56] << 10) | (mask_m[57] << 8)
  306. | (mask_m[58] << 6) | (mask_m[59] << 4)
  307. | (mask_m[60] << 2) | (mask_m[61] << 0);
  308. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  309. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  310. tmp_mask = (mask_m[31] << 28)
  311. | (mask_m[32] << 26) | (mask_m[33] << 24)
  312. | (mask_m[34] << 22) | (mask_m[35] << 20)
  313. | (mask_m[36] << 18) | (mask_m[37] << 16)
  314. | (mask_m[48] << 14) | (mask_m[39] << 12)
  315. | (mask_m[40] << 10) | (mask_m[41] << 8)
  316. | (mask_m[42] << 6) | (mask_m[43] << 4)
  317. | (mask_m[44] << 2) | (mask_m[45] << 0);
  318. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  319. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  320. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  321. | (mask_m[18] << 26) | (mask_m[18] << 24)
  322. | (mask_m[20] << 22) | (mask_m[20] << 20)
  323. | (mask_m[22] << 18) | (mask_m[22] << 16)
  324. | (mask_m[24] << 14) | (mask_m[24] << 12)
  325. | (mask_m[25] << 10) | (mask_m[26] << 8)
  326. | (mask_m[27] << 6) | (mask_m[28] << 4)
  327. | (mask_m[29] << 2) | (mask_m[30] << 0);
  328. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  329. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  330. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  331. | (mask_m[2] << 26) | (mask_m[3] << 24)
  332. | (mask_m[4] << 22) | (mask_m[5] << 20)
  333. | (mask_m[6] << 18) | (mask_m[7] << 16)
  334. | (mask_m[8] << 14) | (mask_m[9] << 12)
  335. | (mask_m[10] << 10) | (mask_m[11] << 8)
  336. | (mask_m[12] << 6) | (mask_m[13] << 4)
  337. | (mask_m[14] << 2) | (mask_m[15] << 0);
  338. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  339. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  340. tmp_mask = (mask_p[15] << 28)
  341. | (mask_p[14] << 26) | (mask_p[13] << 24)
  342. | (mask_p[12] << 22) | (mask_p[11] << 20)
  343. | (mask_p[10] << 18) | (mask_p[9] << 16)
  344. | (mask_p[8] << 14) | (mask_p[7] << 12)
  345. | (mask_p[6] << 10) | (mask_p[5] << 8)
  346. | (mask_p[4] << 6) | (mask_p[3] << 4)
  347. | (mask_p[2] << 2) | (mask_p[1] << 0);
  348. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  349. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  350. tmp_mask = (mask_p[30] << 28)
  351. | (mask_p[29] << 26) | (mask_p[28] << 24)
  352. | (mask_p[27] << 22) | (mask_p[26] << 20)
  353. | (mask_p[25] << 18) | (mask_p[24] << 16)
  354. | (mask_p[23] << 14) | (mask_p[22] << 12)
  355. | (mask_p[21] << 10) | (mask_p[20] << 8)
  356. | (mask_p[19] << 6) | (mask_p[18] << 4)
  357. | (mask_p[17] << 2) | (mask_p[16] << 0);
  358. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  359. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  360. tmp_mask = (mask_p[45] << 28)
  361. | (mask_p[44] << 26) | (mask_p[43] << 24)
  362. | (mask_p[42] << 22) | (mask_p[41] << 20)
  363. | (mask_p[40] << 18) | (mask_p[39] << 16)
  364. | (mask_p[38] << 14) | (mask_p[37] << 12)
  365. | (mask_p[36] << 10) | (mask_p[35] << 8)
  366. | (mask_p[34] << 6) | (mask_p[33] << 4)
  367. | (mask_p[32] << 2) | (mask_p[31] << 0);
  368. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  369. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  370. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  371. | (mask_p[59] << 26) | (mask_p[58] << 24)
  372. | (mask_p[57] << 22) | (mask_p[56] << 20)
  373. | (mask_p[55] << 18) | (mask_p[54] << 16)
  374. | (mask_p[53] << 14) | (mask_p[52] << 12)
  375. | (mask_p[51] << 10) | (mask_p[50] << 8)
  376. | (mask_p[49] << 6) | (mask_p[48] << 4)
  377. | (mask_p[47] << 2) | (mask_p[46] << 0);
  378. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  379. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  380. }
  381. /**
  382. * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
  383. * @ah: atheros hardware structure
  384. *
  385. * Only required for older devices with external AR2133/AR5133 radios.
  386. */
  387. static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
  388. {
  389. #define ATH_ALLOC_BANK(bank, size) do { \
  390. bank = kzalloc((sizeof(u32) * size), GFP_KERNEL); \
  391. if (!bank) { \
  392. ath_err(common, "Cannot allocate RF banks\n"); \
  393. return -ENOMEM; \
  394. } \
  395. } while (0);
  396. struct ath_common *common = ath9k_hw_common(ah);
  397. BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
  398. ATH_ALLOC_BANK(ah->analogBank0Data, ah->iniBank0.ia_rows);
  399. ATH_ALLOC_BANK(ah->analogBank1Data, ah->iniBank1.ia_rows);
  400. ATH_ALLOC_BANK(ah->analogBank2Data, ah->iniBank2.ia_rows);
  401. ATH_ALLOC_BANK(ah->analogBank3Data, ah->iniBank3.ia_rows);
  402. ATH_ALLOC_BANK(ah->analogBank6Data, ah->iniBank6.ia_rows);
  403. ATH_ALLOC_BANK(ah->analogBank6TPCData, ah->iniBank6TPC.ia_rows);
  404. ATH_ALLOC_BANK(ah->analogBank7Data, ah->iniBank7.ia_rows);
  405. ATH_ALLOC_BANK(ah->addac5416_21,
  406. ah->iniAddac.ia_rows * ah->iniAddac.ia_columns);
  407. ATH_ALLOC_BANK(ah->bank6Temp, ah->iniBank6.ia_rows);
  408. return 0;
  409. #undef ATH_ALLOC_BANK
  410. }
  411. /**
  412. * ar5008_hw_rf_free_ext_banks - Free memory for analog bank scratch buffers
  413. * @ah: atheros hardware struture
  414. * For the external AR2133/AR5133 radios banks.
  415. */
  416. static void ar5008_hw_rf_free_ext_banks(struct ath_hw *ah)
  417. {
  418. #define ATH_FREE_BANK(bank) do { \
  419. kfree(bank); \
  420. bank = NULL; \
  421. } while (0);
  422. BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
  423. ATH_FREE_BANK(ah->analogBank0Data);
  424. ATH_FREE_BANK(ah->analogBank1Data);
  425. ATH_FREE_BANK(ah->analogBank2Data);
  426. ATH_FREE_BANK(ah->analogBank3Data);
  427. ATH_FREE_BANK(ah->analogBank6Data);
  428. ATH_FREE_BANK(ah->analogBank6TPCData);
  429. ATH_FREE_BANK(ah->analogBank7Data);
  430. ATH_FREE_BANK(ah->addac5416_21);
  431. ATH_FREE_BANK(ah->bank6Temp);
  432. #undef ATH_FREE_BANK
  433. }
  434. /* *
  435. * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
  436. * @ah: atheros hardware structure
  437. * @chan:
  438. * @modesIndex:
  439. *
  440. * Used for the external AR2133/AR5133 radios.
  441. *
  442. * Reads the EEPROM header info from the device structure and programs
  443. * all rf registers. This routine requires access to the analog
  444. * rf device. This is not required for single-chip devices.
  445. */
  446. static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
  447. struct ath9k_channel *chan,
  448. u16 modesIndex)
  449. {
  450. u32 eepMinorRev;
  451. u32 ob5GHz = 0, db5GHz = 0;
  452. u32 ob2GHz = 0, db2GHz = 0;
  453. int regWrites = 0;
  454. /*
  455. * Software does not need to program bank data
  456. * for single chip devices, that is AR9280 or anything
  457. * after that.
  458. */
  459. if (AR_SREV_9280_20_OR_LATER(ah))
  460. return true;
  461. /* Setup rf parameters */
  462. eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
  463. /* Setup Bank 0 Write */
  464. RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
  465. /* Setup Bank 1 Write */
  466. RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
  467. /* Setup Bank 2 Write */
  468. RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
  469. /* Setup Bank 6 Write */
  470. RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
  471. modesIndex);
  472. {
  473. int i;
  474. for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
  475. ah->analogBank6Data[i] =
  476. INI_RA(&ah->iniBank6TPC, i, modesIndex);
  477. }
  478. }
  479. /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
  480. if (eepMinorRev >= 2) {
  481. if (IS_CHAN_2GHZ(chan)) {
  482. ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
  483. db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
  484. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  485. ob2GHz, 3, 197, 0);
  486. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  487. db2GHz, 3, 194, 0);
  488. } else {
  489. ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
  490. db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
  491. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  492. ob5GHz, 3, 203, 0);
  493. ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
  494. db5GHz, 3, 200, 0);
  495. }
  496. }
  497. /* Setup Bank 7 Setup */
  498. RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
  499. /* Write Analog registers */
  500. REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
  501. regWrites);
  502. REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
  503. regWrites);
  504. REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
  505. regWrites);
  506. REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
  507. regWrites);
  508. REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
  509. regWrites);
  510. REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
  511. regWrites);
  512. return true;
  513. }
  514. static void ar5008_hw_init_bb(struct ath_hw *ah,
  515. struct ath9k_channel *chan)
  516. {
  517. u32 synthDelay;
  518. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  519. if (IS_CHAN_B(chan))
  520. synthDelay = (4 * synthDelay) / 22;
  521. else
  522. synthDelay /= 10;
  523. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  524. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  525. }
  526. static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
  527. {
  528. int rx_chainmask, tx_chainmask;
  529. rx_chainmask = ah->rxchainmask;
  530. tx_chainmask = ah->txchainmask;
  531. switch (rx_chainmask) {
  532. case 0x5:
  533. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  534. AR_PHY_SWAP_ALT_CHAIN);
  535. case 0x3:
  536. if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
  537. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  538. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  539. break;
  540. }
  541. case 0x1:
  542. case 0x2:
  543. case 0x7:
  544. ENABLE_REGWRITE_BUFFER(ah);
  545. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  546. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  547. break;
  548. default:
  549. ENABLE_REGWRITE_BUFFER(ah);
  550. break;
  551. }
  552. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  553. REGWRITE_BUFFER_FLUSH(ah);
  554. if (tx_chainmask == 0x5) {
  555. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  556. AR_PHY_SWAP_ALT_CHAIN);
  557. }
  558. if (AR_SREV_9100(ah))
  559. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  560. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  561. }
  562. static void ar5008_hw_override_ini(struct ath_hw *ah,
  563. struct ath9k_channel *chan)
  564. {
  565. u32 val;
  566. /*
  567. * Set the RX_ABORT and RX_DIS and clear if off only after
  568. * RXE is set for MAC. This prevents frames with corrupted
  569. * descriptor status.
  570. */
  571. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  572. if (AR_SREV_9280_20_OR_LATER(ah)) {
  573. val = REG_READ(ah, AR_PCU_MISC_MODE2);
  574. if (!AR_SREV_9271(ah))
  575. val &= ~AR_PCU_MISC_MODE2_HWWAR1;
  576. if (AR_SREV_9287_11_OR_LATER(ah))
  577. val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
  578. REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
  579. }
  580. if (!AR_SREV_5416_20_OR_LATER(ah) ||
  581. AR_SREV_9280_20_OR_LATER(ah))
  582. return;
  583. /*
  584. * Disable BB clock gating
  585. * Necessary to avoid issues on AR5416 2.0
  586. */
  587. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  588. /*
  589. * Disable RIFS search on some chips to avoid baseband
  590. * hang issues.
  591. */
  592. if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
  593. val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
  594. val &= ~AR_PHY_RIFS_INIT_DELAY;
  595. REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
  596. }
  597. }
  598. static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
  599. struct ath9k_channel *chan)
  600. {
  601. u32 phymode;
  602. u32 enableDacFifo = 0;
  603. if (AR_SREV_9285_12_OR_LATER(ah))
  604. enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
  605. AR_PHY_FC_ENABLE_DAC_FIFO);
  606. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  607. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
  608. if (IS_CHAN_HT40(chan)) {
  609. phymode |= AR_PHY_FC_DYN2040_EN;
  610. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  611. (chan->chanmode == CHANNEL_G_HT40PLUS))
  612. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  613. }
  614. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  615. ath9k_hw_set11nmac2040(ah);
  616. ENABLE_REGWRITE_BUFFER(ah);
  617. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  618. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  619. REGWRITE_BUFFER_FLUSH(ah);
  620. }
  621. static int ar5008_hw_process_ini(struct ath_hw *ah,
  622. struct ath9k_channel *chan)
  623. {
  624. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  625. struct ath_common *common = ath9k_hw_common(ah);
  626. int i, regWrites = 0;
  627. struct ieee80211_channel *channel = chan->chan;
  628. u32 modesIndex, freqIndex;
  629. switch (chan->chanmode) {
  630. case CHANNEL_A:
  631. case CHANNEL_A_HT20:
  632. modesIndex = 1;
  633. freqIndex = 1;
  634. break;
  635. case CHANNEL_A_HT40PLUS:
  636. case CHANNEL_A_HT40MINUS:
  637. modesIndex = 2;
  638. freqIndex = 1;
  639. break;
  640. case CHANNEL_G:
  641. case CHANNEL_G_HT20:
  642. case CHANNEL_B:
  643. modesIndex = 4;
  644. freqIndex = 2;
  645. break;
  646. case CHANNEL_G_HT40PLUS:
  647. case CHANNEL_G_HT40MINUS:
  648. modesIndex = 3;
  649. freqIndex = 2;
  650. break;
  651. default:
  652. return -EINVAL;
  653. }
  654. /*
  655. * Set correct baseband to analog shift setting to
  656. * access analog chips.
  657. */
  658. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  659. /* Write ADDAC shifts */
  660. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  661. ah->eep_ops->set_addac(ah, chan);
  662. if (AR_SREV_5416_22_OR_LATER(ah)) {
  663. REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
  664. } else {
  665. struct ar5416IniArray temp;
  666. u32 addacSize =
  667. sizeof(u32) * ah->iniAddac.ia_rows *
  668. ah->iniAddac.ia_columns;
  669. /* For AR5416 2.0/2.1 */
  670. memcpy(ah->addac5416_21,
  671. ah->iniAddac.ia_array, addacSize);
  672. /* override CLKDRV value at [row, column] = [31, 1] */
  673. (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
  674. temp.ia_array = ah->addac5416_21;
  675. temp.ia_columns = ah->iniAddac.ia_columns;
  676. temp.ia_rows = ah->iniAddac.ia_rows;
  677. REG_WRITE_ARRAY(&temp, 1, regWrites);
  678. }
  679. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  680. ENABLE_REGWRITE_BUFFER(ah);
  681. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  682. u32 reg = INI_RA(&ah->iniModes, i, 0);
  683. u32 val = INI_RA(&ah->iniModes, i, modesIndex);
  684. if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
  685. val &= ~AR_AN_TOP2_PWDCLKIND;
  686. REG_WRITE(ah, reg, val);
  687. if (reg >= 0x7800 && reg < 0x78a0
  688. && ah->config.analog_shiftreg
  689. && (common->bus_ops->ath_bus_type != ATH_USB)) {
  690. udelay(100);
  691. }
  692. DO_DELAY(regWrites);
  693. }
  694. REGWRITE_BUFFER_FLUSH(ah);
  695. if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
  696. REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
  697. if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
  698. AR_SREV_9287_11_OR_LATER(ah))
  699. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  700. if (AR_SREV_9271_10(ah))
  701. REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
  702. modesIndex, regWrites);
  703. ENABLE_REGWRITE_BUFFER(ah);
  704. /* Write common array parameters */
  705. for (i = 0; i < ah->iniCommon.ia_rows; i++) {
  706. u32 reg = INI_RA(&ah->iniCommon, i, 0);
  707. u32 val = INI_RA(&ah->iniCommon, i, 1);
  708. REG_WRITE(ah, reg, val);
  709. if (reg >= 0x7800 && reg < 0x78a0
  710. && ah->config.analog_shiftreg
  711. && (common->bus_ops->ath_bus_type != ATH_USB)) {
  712. udelay(100);
  713. }
  714. DO_DELAY(regWrites);
  715. }
  716. REGWRITE_BUFFER_FLUSH(ah);
  717. if (AR_SREV_9271(ah)) {
  718. if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
  719. REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
  720. modesIndex, regWrites);
  721. else
  722. REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
  723. modesIndex, regWrites);
  724. }
  725. REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
  726. if (IS_CHAN_A_FAST_CLOCK(ah, chan)) {
  727. REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
  728. regWrites);
  729. }
  730. ar5008_hw_override_ini(ah, chan);
  731. ar5008_hw_set_channel_regs(ah, chan);
  732. ar5008_hw_init_chain_masks(ah);
  733. ath9k_olc_init(ah);
  734. /* Set TX power */
  735. ah->eep_ops->set_txpower(ah, chan,
  736. ath9k_regd_get_ctl(regulatory, chan),
  737. channel->max_antenna_gain * 2,
  738. channel->max_power * 2,
  739. min((u32) MAX_RATE_POWER,
  740. (u32) regulatory->power_limit), false);
  741. /* Write analog registers */
  742. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  743. ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
  744. return -EIO;
  745. }
  746. return 0;
  747. }
  748. static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
  749. {
  750. u32 rfMode = 0;
  751. if (chan == NULL)
  752. return;
  753. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  754. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  755. if (!AR_SREV_9280_20_OR_LATER(ah))
  756. rfMode |= (IS_CHAN_5GHZ(chan)) ?
  757. AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  758. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  759. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  760. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  761. }
  762. static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
  763. {
  764. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  765. }
  766. static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
  767. struct ath9k_channel *chan)
  768. {
  769. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  770. u32 clockMhzScaled = 0x64000000;
  771. struct chan_centers centers;
  772. if (IS_CHAN_HALF_RATE(chan))
  773. clockMhzScaled = clockMhzScaled >> 1;
  774. else if (IS_CHAN_QUARTER_RATE(chan))
  775. clockMhzScaled = clockMhzScaled >> 2;
  776. ath9k_hw_get_channel_centers(ah, chan, &centers);
  777. coef_scaled = clockMhzScaled / centers.synth_center;
  778. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  779. &ds_coef_exp);
  780. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  781. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  782. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  783. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  784. coef_scaled = (9 * coef_scaled) / 10;
  785. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  786. &ds_coef_exp);
  787. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  788. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  789. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  790. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  791. }
  792. static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
  793. {
  794. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  795. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  796. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  797. }
  798. static void ar5008_hw_rfbus_done(struct ath_hw *ah)
  799. {
  800. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  801. if (IS_CHAN_B(ah->curchan))
  802. synthDelay = (4 * synthDelay) / 22;
  803. else
  804. synthDelay /= 10;
  805. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  806. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  807. }
  808. static void ar5008_restore_chainmask(struct ath_hw *ah)
  809. {
  810. int rx_chainmask = ah->rxchainmask;
  811. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  812. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  813. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  814. }
  815. }
  816. static void ar5008_set_diversity(struct ath_hw *ah, bool value)
  817. {
  818. u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
  819. if (value)
  820. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  821. else
  822. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  823. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  824. }
  825. static u32 ar9100_hw_compute_pll_control(struct ath_hw *ah,
  826. struct ath9k_channel *chan)
  827. {
  828. if (chan && IS_CHAN_5GHZ(chan))
  829. return 0x1450;
  830. return 0x1458;
  831. }
  832. static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
  833. struct ath9k_channel *chan)
  834. {
  835. u32 pll;
  836. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  837. if (chan && IS_CHAN_HALF_RATE(chan))
  838. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  839. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  840. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  841. if (chan && IS_CHAN_5GHZ(chan))
  842. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  843. else
  844. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  845. return pll;
  846. }
  847. static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
  848. struct ath9k_channel *chan)
  849. {
  850. u32 pll;
  851. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  852. if (chan && IS_CHAN_HALF_RATE(chan))
  853. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  854. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  855. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  856. if (chan && IS_CHAN_5GHZ(chan))
  857. pll |= SM(0xa, AR_RTC_PLL_DIV);
  858. else
  859. pll |= SM(0xb, AR_RTC_PLL_DIV);
  860. return pll;
  861. }
  862. static bool ar5008_hw_ani_control_old(struct ath_hw *ah,
  863. enum ath9k_ani_cmd cmd,
  864. int param)
  865. {
  866. struct ar5416AniState *aniState = &ah->curchan->ani;
  867. struct ath_common *common = ath9k_hw_common(ah);
  868. switch (cmd & ah->ani_function) {
  869. case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{
  870. u32 level = param;
  871. if (level >= ARRAY_SIZE(ah->totalSizeDesired)) {
  872. ath_dbg(common, ATH_DBG_ANI,
  873. "level out of range (%u > %zu)\n",
  874. level, ARRAY_SIZE(ah->totalSizeDesired));
  875. return false;
  876. }
  877. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  878. AR_PHY_DESIRED_SZ_TOT_DES,
  879. ah->totalSizeDesired[level]);
  880. REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
  881. AR_PHY_AGC_CTL1_COARSE_LOW,
  882. ah->coarse_low[level]);
  883. REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
  884. AR_PHY_AGC_CTL1_COARSE_HIGH,
  885. ah->coarse_high[level]);
  886. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  887. AR_PHY_FIND_SIG_FIRPWR,
  888. ah->firpwr[level]);
  889. if (level > aniState->noiseImmunityLevel)
  890. ah->stats.ast_ani_niup++;
  891. else if (level < aniState->noiseImmunityLevel)
  892. ah->stats.ast_ani_nidown++;
  893. aniState->noiseImmunityLevel = level;
  894. break;
  895. }
  896. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  897. static const int m1ThreshLow[] = { 127, 50 };
  898. static const int m2ThreshLow[] = { 127, 40 };
  899. static const int m1Thresh[] = { 127, 0x4d };
  900. static const int m2Thresh[] = { 127, 0x40 };
  901. static const int m2CountThr[] = { 31, 16 };
  902. static const int m2CountThrLow[] = { 63, 48 };
  903. u32 on = param ? 1 : 0;
  904. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  905. AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
  906. m1ThreshLow[on]);
  907. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  908. AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
  909. m2ThreshLow[on]);
  910. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  911. AR_PHY_SFCORR_M1_THRESH,
  912. m1Thresh[on]);
  913. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  914. AR_PHY_SFCORR_M2_THRESH,
  915. m2Thresh[on]);
  916. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  917. AR_PHY_SFCORR_M2COUNT_THR,
  918. m2CountThr[on]);
  919. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  920. AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
  921. m2CountThrLow[on]);
  922. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  923. AR_PHY_SFCORR_EXT_M1_THRESH_LOW,
  924. m1ThreshLow[on]);
  925. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  926. AR_PHY_SFCORR_EXT_M2_THRESH_LOW,
  927. m2ThreshLow[on]);
  928. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  929. AR_PHY_SFCORR_EXT_M1_THRESH,
  930. m1Thresh[on]);
  931. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  932. AR_PHY_SFCORR_EXT_M2_THRESH,
  933. m2Thresh[on]);
  934. if (on)
  935. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  936. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  937. else
  938. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  939. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  940. if (!on != aniState->ofdmWeakSigDetectOff) {
  941. if (on)
  942. ah->stats.ast_ani_ofdmon++;
  943. else
  944. ah->stats.ast_ani_ofdmoff++;
  945. aniState->ofdmWeakSigDetectOff = !on;
  946. }
  947. break;
  948. }
  949. case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{
  950. static const int weakSigThrCck[] = { 8, 6 };
  951. u32 high = param ? 1 : 0;
  952. REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
  953. AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
  954. weakSigThrCck[high]);
  955. if (high != aniState->cckWeakSigThreshold) {
  956. if (high)
  957. ah->stats.ast_ani_cckhigh++;
  958. else
  959. ah->stats.ast_ani_ccklow++;
  960. aniState->cckWeakSigThreshold = high;
  961. }
  962. break;
  963. }
  964. case ATH9K_ANI_FIRSTEP_LEVEL:{
  965. static const int firstep[] = { 0, 4, 8 };
  966. u32 level = param;
  967. if (level >= ARRAY_SIZE(firstep)) {
  968. ath_dbg(common, ATH_DBG_ANI,
  969. "level out of range (%u > %zu)\n",
  970. level, ARRAY_SIZE(firstep));
  971. return false;
  972. }
  973. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  974. AR_PHY_FIND_SIG_FIRSTEP,
  975. firstep[level]);
  976. if (level > aniState->firstepLevel)
  977. ah->stats.ast_ani_stepup++;
  978. else if (level < aniState->firstepLevel)
  979. ah->stats.ast_ani_stepdown++;
  980. aniState->firstepLevel = level;
  981. break;
  982. }
  983. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  984. static const int cycpwrThr1[] = { 2, 4, 6, 8, 10, 12, 14, 16 };
  985. u32 level = param;
  986. if (level >= ARRAY_SIZE(cycpwrThr1)) {
  987. ath_dbg(common, ATH_DBG_ANI,
  988. "level out of range (%u > %zu)\n",
  989. level, ARRAY_SIZE(cycpwrThr1));
  990. return false;
  991. }
  992. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  993. AR_PHY_TIMING5_CYCPWR_THR1,
  994. cycpwrThr1[level]);
  995. if (level > aniState->spurImmunityLevel)
  996. ah->stats.ast_ani_spurup++;
  997. else if (level < aniState->spurImmunityLevel)
  998. ah->stats.ast_ani_spurdown++;
  999. aniState->spurImmunityLevel = level;
  1000. break;
  1001. }
  1002. case ATH9K_ANI_PRESENT:
  1003. break;
  1004. default:
  1005. ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
  1006. return false;
  1007. }
  1008. ath_dbg(common, ATH_DBG_ANI, "ANI parameters:\n");
  1009. ath_dbg(common, ATH_DBG_ANI,
  1010. "noiseImmunityLevel=%d, spurImmunityLevel=%d, ofdmWeakSigDetectOff=%d\n",
  1011. aniState->noiseImmunityLevel,
  1012. aniState->spurImmunityLevel,
  1013. !aniState->ofdmWeakSigDetectOff);
  1014. ath_dbg(common, ATH_DBG_ANI,
  1015. "cckWeakSigThreshold=%d, firstepLevel=%d, listenTime=%d\n",
  1016. aniState->cckWeakSigThreshold,
  1017. aniState->firstepLevel,
  1018. aniState->listenTime);
  1019. ath_dbg(common, ATH_DBG_ANI,
  1020. "ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
  1021. aniState->ofdmPhyErrCount,
  1022. aniState->cckPhyErrCount);
  1023. return true;
  1024. }
  1025. static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
  1026. enum ath9k_ani_cmd cmd,
  1027. int param)
  1028. {
  1029. struct ath_common *common = ath9k_hw_common(ah);
  1030. struct ath9k_channel *chan = ah->curchan;
  1031. struct ar5416AniState *aniState = &chan->ani;
  1032. s32 value, value2;
  1033. switch (cmd & ah->ani_function) {
  1034. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  1035. /*
  1036. * on == 1 means ofdm weak signal detection is ON
  1037. * on == 1 is the default, for less noise immunity
  1038. *
  1039. * on == 0 means ofdm weak signal detection is OFF
  1040. * on == 0 means more noise imm
  1041. */
  1042. u32 on = param ? 1 : 0;
  1043. /*
  1044. * make register setting for default
  1045. * (weak sig detect ON) come from INI file
  1046. */
  1047. int m1ThreshLow = on ?
  1048. aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
  1049. int m2ThreshLow = on ?
  1050. aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
  1051. int m1Thresh = on ?
  1052. aniState->iniDef.m1Thresh : m1Thresh_off;
  1053. int m2Thresh = on ?
  1054. aniState->iniDef.m2Thresh : m2Thresh_off;
  1055. int m2CountThr = on ?
  1056. aniState->iniDef.m2CountThr : m2CountThr_off;
  1057. int m2CountThrLow = on ?
  1058. aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
  1059. int m1ThreshLowExt = on ?
  1060. aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
  1061. int m2ThreshLowExt = on ?
  1062. aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
  1063. int m1ThreshExt = on ?
  1064. aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
  1065. int m2ThreshExt = on ?
  1066. aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
  1067. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  1068. AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
  1069. m1ThreshLow);
  1070. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  1071. AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
  1072. m2ThreshLow);
  1073. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  1074. AR_PHY_SFCORR_M1_THRESH, m1Thresh);
  1075. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  1076. AR_PHY_SFCORR_M2_THRESH, m2Thresh);
  1077. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  1078. AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
  1079. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  1080. AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
  1081. m2CountThrLow);
  1082. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  1083. AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
  1084. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  1085. AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
  1086. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  1087. AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
  1088. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  1089. AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
  1090. if (on)
  1091. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  1092. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  1093. else
  1094. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  1095. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  1096. if (!on != aniState->ofdmWeakSigDetectOff) {
  1097. ath_dbg(common, ATH_DBG_ANI,
  1098. "** ch %d: ofdm weak signal: %s=>%s\n",
  1099. chan->channel,
  1100. !aniState->ofdmWeakSigDetectOff ?
  1101. "on" : "off",
  1102. on ? "on" : "off");
  1103. if (on)
  1104. ah->stats.ast_ani_ofdmon++;
  1105. else
  1106. ah->stats.ast_ani_ofdmoff++;
  1107. aniState->ofdmWeakSigDetectOff = !on;
  1108. }
  1109. break;
  1110. }
  1111. case ATH9K_ANI_FIRSTEP_LEVEL:{
  1112. u32 level = param;
  1113. if (level >= ARRAY_SIZE(firstep_table)) {
  1114. ath_dbg(common, ATH_DBG_ANI,
  1115. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
  1116. level, ARRAY_SIZE(firstep_table));
  1117. return false;
  1118. }
  1119. /*
  1120. * make register setting relative to default
  1121. * from INI file & cap value
  1122. */
  1123. value = firstep_table[level] -
  1124. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  1125. aniState->iniDef.firstep;
  1126. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  1127. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  1128. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  1129. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  1130. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  1131. AR_PHY_FIND_SIG_FIRSTEP,
  1132. value);
  1133. /*
  1134. * we need to set first step low register too
  1135. * make register setting relative to default
  1136. * from INI file & cap value
  1137. */
  1138. value2 = firstep_table[level] -
  1139. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  1140. aniState->iniDef.firstepLow;
  1141. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  1142. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  1143. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  1144. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  1145. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  1146. AR_PHY_FIND_SIG_FIRSTEP_LOW, value2);
  1147. if (level != aniState->firstepLevel) {
  1148. ath_dbg(common, ATH_DBG_ANI,
  1149. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  1150. chan->channel,
  1151. aniState->firstepLevel,
  1152. level,
  1153. ATH9K_ANI_FIRSTEP_LVL_NEW,
  1154. value,
  1155. aniState->iniDef.firstep);
  1156. ath_dbg(common, ATH_DBG_ANI,
  1157. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  1158. chan->channel,
  1159. aniState->firstepLevel,
  1160. level,
  1161. ATH9K_ANI_FIRSTEP_LVL_NEW,
  1162. value2,
  1163. aniState->iniDef.firstepLow);
  1164. if (level > aniState->firstepLevel)
  1165. ah->stats.ast_ani_stepup++;
  1166. else if (level < aniState->firstepLevel)
  1167. ah->stats.ast_ani_stepdown++;
  1168. aniState->firstepLevel = level;
  1169. }
  1170. break;
  1171. }
  1172. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  1173. u32 level = param;
  1174. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  1175. ath_dbg(common, ATH_DBG_ANI,
  1176. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
  1177. level, ARRAY_SIZE(cycpwrThr1_table));
  1178. return false;
  1179. }
  1180. /*
  1181. * make register setting relative to default
  1182. * from INI file & cap value
  1183. */
  1184. value = cycpwrThr1_table[level] -
  1185. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  1186. aniState->iniDef.cycpwrThr1;
  1187. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  1188. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  1189. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  1190. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  1191. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  1192. AR_PHY_TIMING5_CYCPWR_THR1,
  1193. value);
  1194. /*
  1195. * set AR_PHY_EXT_CCA for extension channel
  1196. * make register setting relative to default
  1197. * from INI file & cap value
  1198. */
  1199. value2 = cycpwrThr1_table[level] -
  1200. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  1201. aniState->iniDef.cycpwrThr1Ext;
  1202. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  1203. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  1204. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  1205. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  1206. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  1207. AR_PHY_EXT_TIMING5_CYCPWR_THR1, value2);
  1208. if (level != aniState->spurImmunityLevel) {
  1209. ath_dbg(common, ATH_DBG_ANI,
  1210. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  1211. chan->channel,
  1212. aniState->spurImmunityLevel,
  1213. level,
  1214. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  1215. value,
  1216. aniState->iniDef.cycpwrThr1);
  1217. ath_dbg(common, ATH_DBG_ANI,
  1218. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  1219. chan->channel,
  1220. aniState->spurImmunityLevel,
  1221. level,
  1222. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  1223. value2,
  1224. aniState->iniDef.cycpwrThr1Ext);
  1225. if (level > aniState->spurImmunityLevel)
  1226. ah->stats.ast_ani_spurup++;
  1227. else if (level < aniState->spurImmunityLevel)
  1228. ah->stats.ast_ani_spurdown++;
  1229. aniState->spurImmunityLevel = level;
  1230. }
  1231. break;
  1232. }
  1233. case ATH9K_ANI_MRC_CCK:
  1234. /*
  1235. * You should not see this as AR5008, AR9001, AR9002
  1236. * does not have hardware support for MRC CCK.
  1237. */
  1238. WARN_ON(1);
  1239. break;
  1240. case ATH9K_ANI_PRESENT:
  1241. break;
  1242. default:
  1243. ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
  1244. return false;
  1245. }
  1246. ath_dbg(common, ATH_DBG_ANI,
  1247. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  1248. aniState->spurImmunityLevel,
  1249. !aniState->ofdmWeakSigDetectOff ? "on" : "off",
  1250. aniState->firstepLevel,
  1251. !aniState->mrcCCKOff ? "on" : "off",
  1252. aniState->listenTime,
  1253. aniState->ofdmPhyErrCount,
  1254. aniState->cckPhyErrCount);
  1255. return true;
  1256. }
  1257. static void ar5008_hw_do_getnf(struct ath_hw *ah,
  1258. int16_t nfarray[NUM_NF_READINGS])
  1259. {
  1260. int16_t nf;
  1261. nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
  1262. nfarray[0] = sign_extend32(nf, 8);
  1263. nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
  1264. nfarray[1] = sign_extend32(nf, 8);
  1265. nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
  1266. nfarray[2] = sign_extend32(nf, 8);
  1267. if (!IS_CHAN_HT40(ah->curchan))
  1268. return;
  1269. nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
  1270. nfarray[3] = sign_extend32(nf, 8);
  1271. nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
  1272. nfarray[4] = sign_extend32(nf, 8);
  1273. nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
  1274. nfarray[5] = sign_extend32(nf, 8);
  1275. }
  1276. /*
  1277. * Initialize the ANI register values with default (ini) values.
  1278. * This routine is called during a (full) hardware reset after
  1279. * all the registers are initialised from the INI.
  1280. */
  1281. static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
  1282. {
  1283. struct ath_common *common = ath9k_hw_common(ah);
  1284. struct ath9k_channel *chan = ah->curchan;
  1285. struct ar5416AniState *aniState = &chan->ani;
  1286. struct ath9k_ani_default *iniDef;
  1287. u32 val;
  1288. iniDef = &aniState->iniDef;
  1289. ath_dbg(common, ATH_DBG_ANI, "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
  1290. ah->hw_version.macVersion,
  1291. ah->hw_version.macRev,
  1292. ah->opmode,
  1293. chan->channel,
  1294. chan->channelFlags);
  1295. val = REG_READ(ah, AR_PHY_SFCORR);
  1296. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  1297. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  1298. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  1299. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  1300. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  1301. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  1302. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  1303. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  1304. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  1305. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  1306. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  1307. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  1308. iniDef->firstep = REG_READ_FIELD(ah,
  1309. AR_PHY_FIND_SIG,
  1310. AR_PHY_FIND_SIG_FIRSTEP);
  1311. iniDef->firstepLow = REG_READ_FIELD(ah,
  1312. AR_PHY_FIND_SIG_LOW,
  1313. AR_PHY_FIND_SIG_FIRSTEP_LOW);
  1314. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  1315. AR_PHY_TIMING5,
  1316. AR_PHY_TIMING5_CYCPWR_THR1);
  1317. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  1318. AR_PHY_EXT_CCA,
  1319. AR_PHY_EXT_TIMING5_CYCPWR_THR1);
  1320. /* these levels just got reset to defaults by the INI */
  1321. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
  1322. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
  1323. aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
  1324. aniState->mrcCCKOff = true; /* not available on pre AR9003 */
  1325. }
  1326. static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
  1327. {
  1328. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
  1329. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
  1330. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
  1331. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
  1332. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
  1333. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
  1334. }
  1335. static void ar5008_hw_set_radar_params(struct ath_hw *ah,
  1336. struct ath_hw_radar_conf *conf)
  1337. {
  1338. u32 radar_0 = 0, radar_1 = 0;
  1339. if (!conf) {
  1340. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  1341. return;
  1342. }
  1343. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  1344. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  1345. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  1346. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  1347. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  1348. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  1349. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  1350. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  1351. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  1352. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  1353. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  1354. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  1355. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  1356. if (conf->ext_channel)
  1357. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1358. else
  1359. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1360. }
  1361. static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
  1362. {
  1363. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1364. conf->fir_power = -33;
  1365. conf->radar_rssi = 20;
  1366. conf->pulse_height = 10;
  1367. conf->pulse_rssi = 24;
  1368. conf->pulse_inband = 15;
  1369. conf->pulse_maxlen = 255;
  1370. conf->pulse_inband_step = 12;
  1371. conf->radar_inband = 8;
  1372. }
  1373. void ar5008_hw_attach_phy_ops(struct ath_hw *ah)
  1374. {
  1375. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1376. static const u32 ar5416_cca_regs[6] = {
  1377. AR_PHY_CCA,
  1378. AR_PHY_CH1_CCA,
  1379. AR_PHY_CH2_CCA,
  1380. AR_PHY_EXT_CCA,
  1381. AR_PHY_CH1_EXT_CCA,
  1382. AR_PHY_CH2_EXT_CCA
  1383. };
  1384. priv_ops->rf_set_freq = ar5008_hw_set_channel;
  1385. priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
  1386. priv_ops->rf_alloc_ext_banks = ar5008_hw_rf_alloc_ext_banks;
  1387. priv_ops->rf_free_ext_banks = ar5008_hw_rf_free_ext_banks;
  1388. priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
  1389. priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
  1390. priv_ops->init_bb = ar5008_hw_init_bb;
  1391. priv_ops->process_ini = ar5008_hw_process_ini;
  1392. priv_ops->set_rfmode = ar5008_hw_set_rfmode;
  1393. priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
  1394. priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
  1395. priv_ops->rfbus_req = ar5008_hw_rfbus_req;
  1396. priv_ops->rfbus_done = ar5008_hw_rfbus_done;
  1397. priv_ops->restore_chainmask = ar5008_restore_chainmask;
  1398. priv_ops->set_diversity = ar5008_set_diversity;
  1399. priv_ops->do_getnf = ar5008_hw_do_getnf;
  1400. priv_ops->set_radar_params = ar5008_hw_set_radar_params;
  1401. if (modparam_force_new_ani) {
  1402. priv_ops->ani_control = ar5008_hw_ani_control_new;
  1403. priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
  1404. } else
  1405. priv_ops->ani_control = ar5008_hw_ani_control_old;
  1406. if (AR_SREV_9100(ah))
  1407. priv_ops->compute_pll_control = ar9100_hw_compute_pll_control;
  1408. else if (AR_SREV_9160_10_OR_LATER(ah))
  1409. priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
  1410. else
  1411. priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
  1412. ar5008_hw_set_nf_limits(ah);
  1413. ar5008_hw_set_radar_conf(ah);
  1414. memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
  1415. }