sched.c 169 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/security.h>
  33. #include <linux/notifier.h>
  34. #include <linux/profile.h>
  35. #include <linux/suspend.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/blkdev.h>
  38. #include <linux/delay.h>
  39. #include <linux/smp.h>
  40. #include <linux/threads.h>
  41. #include <linux/timer.h>
  42. #include <linux/rcupdate.h>
  43. #include <linux/cpu.h>
  44. #include <linux/cpuset.h>
  45. #include <linux/percpu.h>
  46. #include <linux/kthread.h>
  47. #include <linux/seq_file.h>
  48. #include <linux/syscalls.h>
  49. #include <linux/times.h>
  50. #include <linux/acct.h>
  51. #include <linux/kprobes.h>
  52. #include <asm/tlb.h>
  53. #include <asm/unistd.h>
  54. /*
  55. * Convert user-nice values [ -20 ... 0 ... 19 ]
  56. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  57. * and back.
  58. */
  59. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  60. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  61. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  62. /*
  63. * 'User priority' is the nice value converted to something we
  64. * can work with better when scaling various scheduler parameters,
  65. * it's a [ 0 ... 39 ] range.
  66. */
  67. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  68. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  69. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  70. /*
  71. * Some helpers for converting nanosecond timing to jiffy resolution
  72. */
  73. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  74. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  75. /*
  76. * These are the 'tuning knobs' of the scheduler:
  77. *
  78. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  79. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  80. * Timeslices get refilled after they expire.
  81. */
  82. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  83. #define DEF_TIMESLICE (100 * HZ / 1000)
  84. #define ON_RUNQUEUE_WEIGHT 30
  85. #define CHILD_PENALTY 95
  86. #define PARENT_PENALTY 100
  87. #define EXIT_WEIGHT 3
  88. #define PRIO_BONUS_RATIO 25
  89. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  90. #define INTERACTIVE_DELTA 2
  91. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  92. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  93. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  94. /*
  95. * If a task is 'interactive' then we reinsert it in the active
  96. * array after it has expired its current timeslice. (it will not
  97. * continue to run immediately, it will still roundrobin with
  98. * other interactive tasks.)
  99. *
  100. * This part scales the interactivity limit depending on niceness.
  101. *
  102. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  103. * Here are a few examples of different nice levels:
  104. *
  105. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  106. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  107. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  108. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  109. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  110. *
  111. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  112. * priority range a task can explore, a value of '1' means the
  113. * task is rated interactive.)
  114. *
  115. * Ie. nice +19 tasks can never get 'interactive' enough to be
  116. * reinserted into the active array. And only heavily CPU-hog nice -20
  117. * tasks will be expired. Default nice 0 tasks are somewhere between,
  118. * it takes some effort for them to get interactive, but it's not
  119. * too hard.
  120. */
  121. #define CURRENT_BONUS(p) \
  122. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  123. MAX_SLEEP_AVG)
  124. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  125. #ifdef CONFIG_SMP
  126. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  127. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  128. num_online_cpus())
  129. #else
  130. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  131. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  132. #endif
  133. #define SCALE(v1,v1_max,v2_max) \
  134. (v1) * (v2_max) / (v1_max)
  135. #define DELTA(p) \
  136. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  137. INTERACTIVE_DELTA)
  138. #define TASK_INTERACTIVE(p) \
  139. ((p)->prio <= (p)->static_prio - DELTA(p))
  140. #define INTERACTIVE_SLEEP(p) \
  141. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  142. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  143. #define TASK_PREEMPTS_CURR(p, rq) \
  144. ((p)->prio < (rq)->curr->prio)
  145. /*
  146. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  147. * to time slice values: [800ms ... 100ms ... 5ms]
  148. *
  149. * The higher a thread's priority, the bigger timeslices
  150. * it gets during one round of execution. But even the lowest
  151. * priority thread gets MIN_TIMESLICE worth of execution time.
  152. */
  153. #define SCALE_PRIO(x, prio) \
  154. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  155. static unsigned int static_prio_timeslice(int static_prio)
  156. {
  157. if (static_prio < NICE_TO_PRIO(0))
  158. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  159. else
  160. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  161. }
  162. static inline unsigned int task_timeslice(task_t *p)
  163. {
  164. return static_prio_timeslice(p->static_prio);
  165. }
  166. #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
  167. < (long long) (sd)->cache_hot_time)
  168. /*
  169. * These are the runqueue data structures:
  170. */
  171. typedef struct runqueue runqueue_t;
  172. struct prio_array {
  173. unsigned int nr_active;
  174. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  175. struct list_head queue[MAX_PRIO];
  176. };
  177. /*
  178. * This is the main, per-CPU runqueue data structure.
  179. *
  180. * Locking rule: those places that want to lock multiple runqueues
  181. * (such as the load balancing or the thread migration code), lock
  182. * acquire operations must be ordered by ascending &runqueue.
  183. */
  184. struct runqueue {
  185. spinlock_t lock;
  186. /*
  187. * nr_running and cpu_load should be in the same cacheline because
  188. * remote CPUs use both these fields when doing load calculation.
  189. */
  190. unsigned long nr_running;
  191. unsigned long raw_weighted_load;
  192. #ifdef CONFIG_SMP
  193. unsigned long cpu_load[3];
  194. #endif
  195. unsigned long long nr_switches;
  196. /*
  197. * This is part of a global counter where only the total sum
  198. * over all CPUs matters. A task can increase this counter on
  199. * one CPU and if it got migrated afterwards it may decrease
  200. * it on another CPU. Always updated under the runqueue lock:
  201. */
  202. unsigned long nr_uninterruptible;
  203. unsigned long expired_timestamp;
  204. unsigned long long timestamp_last_tick;
  205. task_t *curr, *idle;
  206. struct mm_struct *prev_mm;
  207. prio_array_t *active, *expired, arrays[2];
  208. int best_expired_prio;
  209. atomic_t nr_iowait;
  210. #ifdef CONFIG_SMP
  211. struct sched_domain *sd;
  212. /* For active balancing */
  213. int active_balance;
  214. int push_cpu;
  215. task_t *migration_thread;
  216. struct list_head migration_queue;
  217. #endif
  218. #ifdef CONFIG_SCHEDSTATS
  219. /* latency stats */
  220. struct sched_info rq_sched_info;
  221. /* sys_sched_yield() stats */
  222. unsigned long yld_exp_empty;
  223. unsigned long yld_act_empty;
  224. unsigned long yld_both_empty;
  225. unsigned long yld_cnt;
  226. /* schedule() stats */
  227. unsigned long sched_switch;
  228. unsigned long sched_cnt;
  229. unsigned long sched_goidle;
  230. /* try_to_wake_up() stats */
  231. unsigned long ttwu_cnt;
  232. unsigned long ttwu_local;
  233. #endif
  234. };
  235. static DEFINE_PER_CPU(struct runqueue, runqueues);
  236. /*
  237. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  238. * See detach_destroy_domains: synchronize_sched for details.
  239. *
  240. * The domain tree of any CPU may only be accessed from within
  241. * preempt-disabled sections.
  242. */
  243. #define for_each_domain(cpu, domain) \
  244. for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
  245. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  246. #define this_rq() (&__get_cpu_var(runqueues))
  247. #define task_rq(p) cpu_rq(task_cpu(p))
  248. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  249. #ifndef prepare_arch_switch
  250. # define prepare_arch_switch(next) do { } while (0)
  251. #endif
  252. #ifndef finish_arch_switch
  253. # define finish_arch_switch(prev) do { } while (0)
  254. #endif
  255. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  256. static inline int task_running(runqueue_t *rq, task_t *p)
  257. {
  258. return rq->curr == p;
  259. }
  260. static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
  261. {
  262. }
  263. static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
  264. {
  265. #ifdef CONFIG_DEBUG_SPINLOCK
  266. /* this is a valid case when another task releases the spinlock */
  267. rq->lock.owner = current;
  268. #endif
  269. spin_unlock_irq(&rq->lock);
  270. }
  271. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  272. static inline int task_running(runqueue_t *rq, task_t *p)
  273. {
  274. #ifdef CONFIG_SMP
  275. return p->oncpu;
  276. #else
  277. return rq->curr == p;
  278. #endif
  279. }
  280. static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
  281. {
  282. #ifdef CONFIG_SMP
  283. /*
  284. * We can optimise this out completely for !SMP, because the
  285. * SMP rebalancing from interrupt is the only thing that cares
  286. * here.
  287. */
  288. next->oncpu = 1;
  289. #endif
  290. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  291. spin_unlock_irq(&rq->lock);
  292. #else
  293. spin_unlock(&rq->lock);
  294. #endif
  295. }
  296. static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
  297. {
  298. #ifdef CONFIG_SMP
  299. /*
  300. * After ->oncpu is cleared, the task can be moved to a different CPU.
  301. * We must ensure this doesn't happen until the switch is completely
  302. * finished.
  303. */
  304. smp_wmb();
  305. prev->oncpu = 0;
  306. #endif
  307. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  308. local_irq_enable();
  309. #endif
  310. }
  311. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  312. /*
  313. * __task_rq_lock - lock the runqueue a given task resides on.
  314. * Must be called interrupts disabled.
  315. */
  316. static inline runqueue_t *__task_rq_lock(task_t *p)
  317. __acquires(rq->lock)
  318. {
  319. struct runqueue *rq;
  320. repeat_lock_task:
  321. rq = task_rq(p);
  322. spin_lock(&rq->lock);
  323. if (unlikely(rq != task_rq(p))) {
  324. spin_unlock(&rq->lock);
  325. goto repeat_lock_task;
  326. }
  327. return rq;
  328. }
  329. /*
  330. * task_rq_lock - lock the runqueue a given task resides on and disable
  331. * interrupts. Note the ordering: we can safely lookup the task_rq without
  332. * explicitly disabling preemption.
  333. */
  334. static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
  335. __acquires(rq->lock)
  336. {
  337. struct runqueue *rq;
  338. repeat_lock_task:
  339. local_irq_save(*flags);
  340. rq = task_rq(p);
  341. spin_lock(&rq->lock);
  342. if (unlikely(rq != task_rq(p))) {
  343. spin_unlock_irqrestore(&rq->lock, *flags);
  344. goto repeat_lock_task;
  345. }
  346. return rq;
  347. }
  348. static inline void __task_rq_unlock(runqueue_t *rq)
  349. __releases(rq->lock)
  350. {
  351. spin_unlock(&rq->lock);
  352. }
  353. static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
  354. __releases(rq->lock)
  355. {
  356. spin_unlock_irqrestore(&rq->lock, *flags);
  357. }
  358. #ifdef CONFIG_SCHEDSTATS
  359. /*
  360. * bump this up when changing the output format or the meaning of an existing
  361. * format, so that tools can adapt (or abort)
  362. */
  363. #define SCHEDSTAT_VERSION 12
  364. static int show_schedstat(struct seq_file *seq, void *v)
  365. {
  366. int cpu;
  367. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  368. seq_printf(seq, "timestamp %lu\n", jiffies);
  369. for_each_online_cpu(cpu) {
  370. runqueue_t *rq = cpu_rq(cpu);
  371. #ifdef CONFIG_SMP
  372. struct sched_domain *sd;
  373. int dcnt = 0;
  374. #endif
  375. /* runqueue-specific stats */
  376. seq_printf(seq,
  377. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  378. cpu, rq->yld_both_empty,
  379. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  380. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  381. rq->ttwu_cnt, rq->ttwu_local,
  382. rq->rq_sched_info.cpu_time,
  383. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  384. seq_printf(seq, "\n");
  385. #ifdef CONFIG_SMP
  386. /* domain-specific stats */
  387. preempt_disable();
  388. for_each_domain(cpu, sd) {
  389. enum idle_type itype;
  390. char mask_str[NR_CPUS];
  391. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  392. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  393. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  394. itype++) {
  395. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
  396. sd->lb_cnt[itype],
  397. sd->lb_balanced[itype],
  398. sd->lb_failed[itype],
  399. sd->lb_imbalance[itype],
  400. sd->lb_gained[itype],
  401. sd->lb_hot_gained[itype],
  402. sd->lb_nobusyq[itype],
  403. sd->lb_nobusyg[itype]);
  404. }
  405. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
  406. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  407. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  408. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  409. sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
  410. }
  411. preempt_enable();
  412. #endif
  413. }
  414. return 0;
  415. }
  416. static int schedstat_open(struct inode *inode, struct file *file)
  417. {
  418. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  419. char *buf = kmalloc(size, GFP_KERNEL);
  420. struct seq_file *m;
  421. int res;
  422. if (!buf)
  423. return -ENOMEM;
  424. res = single_open(file, show_schedstat, NULL);
  425. if (!res) {
  426. m = file->private_data;
  427. m->buf = buf;
  428. m->size = size;
  429. } else
  430. kfree(buf);
  431. return res;
  432. }
  433. struct file_operations proc_schedstat_operations = {
  434. .open = schedstat_open,
  435. .read = seq_read,
  436. .llseek = seq_lseek,
  437. .release = single_release,
  438. };
  439. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  440. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  441. #else /* !CONFIG_SCHEDSTATS */
  442. # define schedstat_inc(rq, field) do { } while (0)
  443. # define schedstat_add(rq, field, amt) do { } while (0)
  444. #endif
  445. /*
  446. * rq_lock - lock a given runqueue and disable interrupts.
  447. */
  448. static inline runqueue_t *this_rq_lock(void)
  449. __acquires(rq->lock)
  450. {
  451. runqueue_t *rq;
  452. local_irq_disable();
  453. rq = this_rq();
  454. spin_lock(&rq->lock);
  455. return rq;
  456. }
  457. #ifdef CONFIG_SCHEDSTATS
  458. /*
  459. * Called when a process is dequeued from the active array and given
  460. * the cpu. We should note that with the exception of interactive
  461. * tasks, the expired queue will become the active queue after the active
  462. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  463. * expired queue. (Interactive tasks may be requeued directly to the
  464. * active queue, thus delaying tasks in the expired queue from running;
  465. * see scheduler_tick()).
  466. *
  467. * This function is only called from sched_info_arrive(), rather than
  468. * dequeue_task(). Even though a task may be queued and dequeued multiple
  469. * times as it is shuffled about, we're really interested in knowing how
  470. * long it was from the *first* time it was queued to the time that it
  471. * finally hit a cpu.
  472. */
  473. static inline void sched_info_dequeued(task_t *t)
  474. {
  475. t->sched_info.last_queued = 0;
  476. }
  477. /*
  478. * Called when a task finally hits the cpu. We can now calculate how
  479. * long it was waiting to run. We also note when it began so that we
  480. * can keep stats on how long its timeslice is.
  481. */
  482. static void sched_info_arrive(task_t *t)
  483. {
  484. unsigned long now = jiffies, diff = 0;
  485. struct runqueue *rq = task_rq(t);
  486. if (t->sched_info.last_queued)
  487. diff = now - t->sched_info.last_queued;
  488. sched_info_dequeued(t);
  489. t->sched_info.run_delay += diff;
  490. t->sched_info.last_arrival = now;
  491. t->sched_info.pcnt++;
  492. if (!rq)
  493. return;
  494. rq->rq_sched_info.run_delay += diff;
  495. rq->rq_sched_info.pcnt++;
  496. }
  497. /*
  498. * Called when a process is queued into either the active or expired
  499. * array. The time is noted and later used to determine how long we
  500. * had to wait for us to reach the cpu. Since the expired queue will
  501. * become the active queue after active queue is empty, without dequeuing
  502. * and requeuing any tasks, we are interested in queuing to either. It
  503. * is unusual but not impossible for tasks to be dequeued and immediately
  504. * requeued in the same or another array: this can happen in sched_yield(),
  505. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  506. * to runqueue.
  507. *
  508. * This function is only called from enqueue_task(), but also only updates
  509. * the timestamp if it is already not set. It's assumed that
  510. * sched_info_dequeued() will clear that stamp when appropriate.
  511. */
  512. static inline void sched_info_queued(task_t *t)
  513. {
  514. if (!t->sched_info.last_queued)
  515. t->sched_info.last_queued = jiffies;
  516. }
  517. /*
  518. * Called when a process ceases being the active-running process, either
  519. * voluntarily or involuntarily. Now we can calculate how long we ran.
  520. */
  521. static inline void sched_info_depart(task_t *t)
  522. {
  523. struct runqueue *rq = task_rq(t);
  524. unsigned long diff = jiffies - t->sched_info.last_arrival;
  525. t->sched_info.cpu_time += diff;
  526. if (rq)
  527. rq->rq_sched_info.cpu_time += diff;
  528. }
  529. /*
  530. * Called when tasks are switched involuntarily due, typically, to expiring
  531. * their time slice. (This may also be called when switching to or from
  532. * the idle task.) We are only called when prev != next.
  533. */
  534. static inline void sched_info_switch(task_t *prev, task_t *next)
  535. {
  536. struct runqueue *rq = task_rq(prev);
  537. /*
  538. * prev now departs the cpu. It's not interesting to record
  539. * stats about how efficient we were at scheduling the idle
  540. * process, however.
  541. */
  542. if (prev != rq->idle)
  543. sched_info_depart(prev);
  544. if (next != rq->idle)
  545. sched_info_arrive(next);
  546. }
  547. #else
  548. #define sched_info_queued(t) do { } while (0)
  549. #define sched_info_switch(t, next) do { } while (0)
  550. #endif /* CONFIG_SCHEDSTATS */
  551. /*
  552. * Adding/removing a task to/from a priority array:
  553. */
  554. static void dequeue_task(struct task_struct *p, prio_array_t *array)
  555. {
  556. array->nr_active--;
  557. list_del(&p->run_list);
  558. if (list_empty(array->queue + p->prio))
  559. __clear_bit(p->prio, array->bitmap);
  560. }
  561. static void enqueue_task(struct task_struct *p, prio_array_t *array)
  562. {
  563. sched_info_queued(p);
  564. list_add_tail(&p->run_list, array->queue + p->prio);
  565. __set_bit(p->prio, array->bitmap);
  566. array->nr_active++;
  567. p->array = array;
  568. }
  569. /*
  570. * Put task to the end of the run list without the overhead of dequeue
  571. * followed by enqueue.
  572. */
  573. static void requeue_task(struct task_struct *p, prio_array_t *array)
  574. {
  575. list_move_tail(&p->run_list, array->queue + p->prio);
  576. }
  577. static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
  578. {
  579. list_add(&p->run_list, array->queue + p->prio);
  580. __set_bit(p->prio, array->bitmap);
  581. array->nr_active++;
  582. p->array = array;
  583. }
  584. /*
  585. * __normal_prio - return the priority that is based on the static
  586. * priority but is modified by bonuses/penalties.
  587. *
  588. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  589. * into the -5 ... 0 ... +5 bonus/penalty range.
  590. *
  591. * We use 25% of the full 0...39 priority range so that:
  592. *
  593. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  594. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  595. *
  596. * Both properties are important to certain workloads.
  597. */
  598. static inline int __normal_prio(task_t *p)
  599. {
  600. int bonus, prio;
  601. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  602. prio = p->static_prio - bonus;
  603. if (prio < MAX_RT_PRIO)
  604. prio = MAX_RT_PRIO;
  605. if (prio > MAX_PRIO-1)
  606. prio = MAX_PRIO-1;
  607. return prio;
  608. }
  609. /*
  610. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  611. * of tasks with abnormal "nice" values across CPUs the contribution that
  612. * each task makes to its run queue's load is weighted according to its
  613. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  614. * scaled version of the new time slice allocation that they receive on time
  615. * slice expiry etc.
  616. */
  617. /*
  618. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  619. * If static_prio_timeslice() is ever changed to break this assumption then
  620. * this code will need modification
  621. */
  622. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  623. #define LOAD_WEIGHT(lp) \
  624. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  625. #define PRIO_TO_LOAD_WEIGHT(prio) \
  626. LOAD_WEIGHT(static_prio_timeslice(prio))
  627. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  628. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  629. static void set_load_weight(task_t *p)
  630. {
  631. if (has_rt_policy(p)) {
  632. #ifdef CONFIG_SMP
  633. if (p == task_rq(p)->migration_thread)
  634. /*
  635. * The migration thread does the actual balancing.
  636. * Giving its load any weight will skew balancing
  637. * adversely.
  638. */
  639. p->load_weight = 0;
  640. else
  641. #endif
  642. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  643. } else
  644. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  645. }
  646. static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
  647. {
  648. rq->raw_weighted_load += p->load_weight;
  649. }
  650. static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
  651. {
  652. rq->raw_weighted_load -= p->load_weight;
  653. }
  654. static inline void inc_nr_running(task_t *p, runqueue_t *rq)
  655. {
  656. rq->nr_running++;
  657. inc_raw_weighted_load(rq, p);
  658. }
  659. static inline void dec_nr_running(task_t *p, runqueue_t *rq)
  660. {
  661. rq->nr_running--;
  662. dec_raw_weighted_load(rq, p);
  663. }
  664. /*
  665. * Calculate the expected normal priority: i.e. priority
  666. * without taking RT-inheritance into account. Might be
  667. * boosted by interactivity modifiers. Changes upon fork,
  668. * setprio syscalls, and whenever the interactivity
  669. * estimator recalculates.
  670. */
  671. static inline int normal_prio(task_t *p)
  672. {
  673. int prio;
  674. if (has_rt_policy(p))
  675. prio = MAX_RT_PRIO-1 - p->rt_priority;
  676. else
  677. prio = __normal_prio(p);
  678. return prio;
  679. }
  680. /*
  681. * Calculate the current priority, i.e. the priority
  682. * taken into account by the scheduler. This value might
  683. * be boosted by RT tasks, or might be boosted by
  684. * interactivity modifiers. Will be RT if the task got
  685. * RT-boosted. If not then it returns p->normal_prio.
  686. */
  687. static int effective_prio(task_t *p)
  688. {
  689. p->normal_prio = normal_prio(p);
  690. /*
  691. * If we are RT tasks or we were boosted to RT priority,
  692. * keep the priority unchanged. Otherwise, update priority
  693. * to the normal priority:
  694. */
  695. if (!rt_prio(p->prio))
  696. return p->normal_prio;
  697. return p->prio;
  698. }
  699. /*
  700. * __activate_task - move a task to the runqueue.
  701. */
  702. static void __activate_task(task_t *p, runqueue_t *rq)
  703. {
  704. prio_array_t *target = rq->active;
  705. if (batch_task(p))
  706. target = rq->expired;
  707. enqueue_task(p, target);
  708. inc_nr_running(p, rq);
  709. }
  710. /*
  711. * __activate_idle_task - move idle task to the _front_ of runqueue.
  712. */
  713. static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
  714. {
  715. enqueue_task_head(p, rq->active);
  716. inc_nr_running(p, rq);
  717. }
  718. /*
  719. * Recalculate p->normal_prio and p->prio after having slept,
  720. * updating the sleep-average too:
  721. */
  722. static int recalc_task_prio(task_t *p, unsigned long long now)
  723. {
  724. /* Caller must always ensure 'now >= p->timestamp' */
  725. unsigned long sleep_time = now - p->timestamp;
  726. if (batch_task(p))
  727. sleep_time = 0;
  728. if (likely(sleep_time > 0)) {
  729. /*
  730. * This ceiling is set to the lowest priority that would allow
  731. * a task to be reinserted into the active array on timeslice
  732. * completion.
  733. */
  734. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  735. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  736. /*
  737. * Prevents user tasks from achieving best priority
  738. * with one single large enough sleep.
  739. */
  740. p->sleep_avg = ceiling;
  741. /*
  742. * Using INTERACTIVE_SLEEP() as a ceiling places a
  743. * nice(0) task 1ms sleep away from promotion, and
  744. * gives it 700ms to round-robin with no chance of
  745. * being demoted. This is more than generous, so
  746. * mark this sleep as non-interactive to prevent the
  747. * on-runqueue bonus logic from intervening should
  748. * this task not receive cpu immediately.
  749. */
  750. p->sleep_type = SLEEP_NONINTERACTIVE;
  751. } else {
  752. /*
  753. * Tasks waking from uninterruptible sleep are
  754. * limited in their sleep_avg rise as they
  755. * are likely to be waiting on I/O
  756. */
  757. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  758. if (p->sleep_avg >= ceiling)
  759. sleep_time = 0;
  760. else if (p->sleep_avg + sleep_time >=
  761. ceiling) {
  762. p->sleep_avg = ceiling;
  763. sleep_time = 0;
  764. }
  765. }
  766. /*
  767. * This code gives a bonus to interactive tasks.
  768. *
  769. * The boost works by updating the 'average sleep time'
  770. * value here, based on ->timestamp. The more time a
  771. * task spends sleeping, the higher the average gets -
  772. * and the higher the priority boost gets as well.
  773. */
  774. p->sleep_avg += sleep_time;
  775. }
  776. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  777. p->sleep_avg = NS_MAX_SLEEP_AVG;
  778. }
  779. return effective_prio(p);
  780. }
  781. /*
  782. * activate_task - move a task to the runqueue and do priority recalculation
  783. *
  784. * Update all the scheduling statistics stuff. (sleep average
  785. * calculation, priority modifiers, etc.)
  786. */
  787. static void activate_task(task_t *p, runqueue_t *rq, int local)
  788. {
  789. unsigned long long now;
  790. now = sched_clock();
  791. #ifdef CONFIG_SMP
  792. if (!local) {
  793. /* Compensate for drifting sched_clock */
  794. runqueue_t *this_rq = this_rq();
  795. now = (now - this_rq->timestamp_last_tick)
  796. + rq->timestamp_last_tick;
  797. }
  798. #endif
  799. if (!rt_task(p))
  800. p->prio = recalc_task_prio(p, now);
  801. /*
  802. * This checks to make sure it's not an uninterruptible task
  803. * that is now waking up.
  804. */
  805. if (p->sleep_type == SLEEP_NORMAL) {
  806. /*
  807. * Tasks which were woken up by interrupts (ie. hw events)
  808. * are most likely of interactive nature. So we give them
  809. * the credit of extending their sleep time to the period
  810. * of time they spend on the runqueue, waiting for execution
  811. * on a CPU, first time around:
  812. */
  813. if (in_interrupt())
  814. p->sleep_type = SLEEP_INTERRUPTED;
  815. else {
  816. /*
  817. * Normal first-time wakeups get a credit too for
  818. * on-runqueue time, but it will be weighted down:
  819. */
  820. p->sleep_type = SLEEP_INTERACTIVE;
  821. }
  822. }
  823. p->timestamp = now;
  824. __activate_task(p, rq);
  825. }
  826. /*
  827. * deactivate_task - remove a task from the runqueue.
  828. */
  829. static void deactivate_task(struct task_struct *p, runqueue_t *rq)
  830. {
  831. dec_nr_running(p, rq);
  832. dequeue_task(p, p->array);
  833. p->array = NULL;
  834. }
  835. /*
  836. * resched_task - mark a task 'to be rescheduled now'.
  837. *
  838. * On UP this means the setting of the need_resched flag, on SMP it
  839. * might also involve a cross-CPU call to trigger the scheduler on
  840. * the target CPU.
  841. */
  842. #ifdef CONFIG_SMP
  843. #ifndef tsk_is_polling
  844. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  845. #endif
  846. static void resched_task(task_t *p)
  847. {
  848. int cpu;
  849. assert_spin_locked(&task_rq(p)->lock);
  850. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  851. return;
  852. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  853. cpu = task_cpu(p);
  854. if (cpu == smp_processor_id())
  855. return;
  856. /* NEED_RESCHED must be visible before we test polling */
  857. smp_mb();
  858. if (!tsk_is_polling(p))
  859. smp_send_reschedule(cpu);
  860. }
  861. #else
  862. static inline void resched_task(task_t *p)
  863. {
  864. assert_spin_locked(&task_rq(p)->lock);
  865. set_tsk_need_resched(p);
  866. }
  867. #endif
  868. /**
  869. * task_curr - is this task currently executing on a CPU?
  870. * @p: the task in question.
  871. */
  872. inline int task_curr(const task_t *p)
  873. {
  874. return cpu_curr(task_cpu(p)) == p;
  875. }
  876. /* Used instead of source_load when we know the type == 0 */
  877. unsigned long weighted_cpuload(const int cpu)
  878. {
  879. return cpu_rq(cpu)->raw_weighted_load;
  880. }
  881. #ifdef CONFIG_SMP
  882. typedef struct {
  883. struct list_head list;
  884. task_t *task;
  885. int dest_cpu;
  886. struct completion done;
  887. } migration_req_t;
  888. /*
  889. * The task's runqueue lock must be held.
  890. * Returns true if you have to wait for migration thread.
  891. */
  892. static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
  893. {
  894. runqueue_t *rq = task_rq(p);
  895. /*
  896. * If the task is not on a runqueue (and not running), then
  897. * it is sufficient to simply update the task's cpu field.
  898. */
  899. if (!p->array && !task_running(rq, p)) {
  900. set_task_cpu(p, dest_cpu);
  901. return 0;
  902. }
  903. init_completion(&req->done);
  904. req->task = p;
  905. req->dest_cpu = dest_cpu;
  906. list_add(&req->list, &rq->migration_queue);
  907. return 1;
  908. }
  909. /*
  910. * wait_task_inactive - wait for a thread to unschedule.
  911. *
  912. * The caller must ensure that the task *will* unschedule sometime soon,
  913. * else this function might spin for a *long* time. This function can't
  914. * be called with interrupts off, or it may introduce deadlock with
  915. * smp_call_function() if an IPI is sent by the same process we are
  916. * waiting to become inactive.
  917. */
  918. void wait_task_inactive(task_t *p)
  919. {
  920. unsigned long flags;
  921. runqueue_t *rq;
  922. int preempted;
  923. repeat:
  924. rq = task_rq_lock(p, &flags);
  925. /* Must be off runqueue entirely, not preempted. */
  926. if (unlikely(p->array || task_running(rq, p))) {
  927. /* If it's preempted, we yield. It could be a while. */
  928. preempted = !task_running(rq, p);
  929. task_rq_unlock(rq, &flags);
  930. cpu_relax();
  931. if (preempted)
  932. yield();
  933. goto repeat;
  934. }
  935. task_rq_unlock(rq, &flags);
  936. }
  937. /***
  938. * kick_process - kick a running thread to enter/exit the kernel
  939. * @p: the to-be-kicked thread
  940. *
  941. * Cause a process which is running on another CPU to enter
  942. * kernel-mode, without any delay. (to get signals handled.)
  943. *
  944. * NOTE: this function doesnt have to take the runqueue lock,
  945. * because all it wants to ensure is that the remote task enters
  946. * the kernel. If the IPI races and the task has been migrated
  947. * to another CPU then no harm is done and the purpose has been
  948. * achieved as well.
  949. */
  950. void kick_process(task_t *p)
  951. {
  952. int cpu;
  953. preempt_disable();
  954. cpu = task_cpu(p);
  955. if ((cpu != smp_processor_id()) && task_curr(p))
  956. smp_send_reschedule(cpu);
  957. preempt_enable();
  958. }
  959. /*
  960. * Return a low guess at the load of a migration-source cpu weighted
  961. * according to the scheduling class and "nice" value.
  962. *
  963. * We want to under-estimate the load of migration sources, to
  964. * balance conservatively.
  965. */
  966. static inline unsigned long source_load(int cpu, int type)
  967. {
  968. runqueue_t *rq = cpu_rq(cpu);
  969. if (type == 0)
  970. return rq->raw_weighted_load;
  971. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  972. }
  973. /*
  974. * Return a high guess at the load of a migration-target cpu weighted
  975. * according to the scheduling class and "nice" value.
  976. */
  977. static inline unsigned long target_load(int cpu, int type)
  978. {
  979. runqueue_t *rq = cpu_rq(cpu);
  980. if (type == 0)
  981. return rq->raw_weighted_load;
  982. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  983. }
  984. /*
  985. * Return the average load per task on the cpu's run queue
  986. */
  987. static inline unsigned long cpu_avg_load_per_task(int cpu)
  988. {
  989. runqueue_t *rq = cpu_rq(cpu);
  990. unsigned long n = rq->nr_running;
  991. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  992. }
  993. /*
  994. * find_idlest_group finds and returns the least busy CPU group within the
  995. * domain.
  996. */
  997. static struct sched_group *
  998. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  999. {
  1000. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1001. unsigned long min_load = ULONG_MAX, this_load = 0;
  1002. int load_idx = sd->forkexec_idx;
  1003. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1004. do {
  1005. unsigned long load, avg_load;
  1006. int local_group;
  1007. int i;
  1008. /* Skip over this group if it has no CPUs allowed */
  1009. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1010. goto nextgroup;
  1011. local_group = cpu_isset(this_cpu, group->cpumask);
  1012. /* Tally up the load of all CPUs in the group */
  1013. avg_load = 0;
  1014. for_each_cpu_mask(i, group->cpumask) {
  1015. /* Bias balancing toward cpus of our domain */
  1016. if (local_group)
  1017. load = source_load(i, load_idx);
  1018. else
  1019. load = target_load(i, load_idx);
  1020. avg_load += load;
  1021. }
  1022. /* Adjust by relative CPU power of the group */
  1023. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1024. if (local_group) {
  1025. this_load = avg_load;
  1026. this = group;
  1027. } else if (avg_load < min_load) {
  1028. min_load = avg_load;
  1029. idlest = group;
  1030. }
  1031. nextgroup:
  1032. group = group->next;
  1033. } while (group != sd->groups);
  1034. if (!idlest || 100*this_load < imbalance*min_load)
  1035. return NULL;
  1036. return idlest;
  1037. }
  1038. /*
  1039. * find_idlest_queue - find the idlest runqueue among the cpus in group.
  1040. */
  1041. static int
  1042. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1043. {
  1044. cpumask_t tmp;
  1045. unsigned long load, min_load = ULONG_MAX;
  1046. int idlest = -1;
  1047. int i;
  1048. /* Traverse only the allowed CPUs */
  1049. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1050. for_each_cpu_mask(i, tmp) {
  1051. load = weighted_cpuload(i);
  1052. if (load < min_load || (load == min_load && i == this_cpu)) {
  1053. min_load = load;
  1054. idlest = i;
  1055. }
  1056. }
  1057. return idlest;
  1058. }
  1059. /*
  1060. * sched_balance_self: balance the current task (running on cpu) in domains
  1061. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1062. * SD_BALANCE_EXEC.
  1063. *
  1064. * Balance, ie. select the least loaded group.
  1065. *
  1066. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1067. *
  1068. * preempt must be disabled.
  1069. */
  1070. static int sched_balance_self(int cpu, int flag)
  1071. {
  1072. struct task_struct *t = current;
  1073. struct sched_domain *tmp, *sd = NULL;
  1074. for_each_domain(cpu, tmp) {
  1075. /*
  1076. * If power savings logic is enabled for a domain, stop there.
  1077. */
  1078. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1079. break;
  1080. if (tmp->flags & flag)
  1081. sd = tmp;
  1082. }
  1083. while (sd) {
  1084. cpumask_t span;
  1085. struct sched_group *group;
  1086. int new_cpu;
  1087. int weight;
  1088. span = sd->span;
  1089. group = find_idlest_group(sd, t, cpu);
  1090. if (!group)
  1091. goto nextlevel;
  1092. new_cpu = find_idlest_cpu(group, t, cpu);
  1093. if (new_cpu == -1 || new_cpu == cpu)
  1094. goto nextlevel;
  1095. /* Now try balancing at a lower domain level */
  1096. cpu = new_cpu;
  1097. nextlevel:
  1098. sd = NULL;
  1099. weight = cpus_weight(span);
  1100. for_each_domain(cpu, tmp) {
  1101. if (weight <= cpus_weight(tmp->span))
  1102. break;
  1103. if (tmp->flags & flag)
  1104. sd = tmp;
  1105. }
  1106. /* while loop will break here if sd == NULL */
  1107. }
  1108. return cpu;
  1109. }
  1110. #endif /* CONFIG_SMP */
  1111. /*
  1112. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1113. * not idle and an idle cpu is available. The span of cpus to
  1114. * search starts with cpus closest then further out as needed,
  1115. * so we always favor a closer, idle cpu.
  1116. *
  1117. * Returns the CPU we should wake onto.
  1118. */
  1119. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1120. static int wake_idle(int cpu, task_t *p)
  1121. {
  1122. cpumask_t tmp;
  1123. struct sched_domain *sd;
  1124. int i;
  1125. if (idle_cpu(cpu))
  1126. return cpu;
  1127. for_each_domain(cpu, sd) {
  1128. if (sd->flags & SD_WAKE_IDLE) {
  1129. cpus_and(tmp, sd->span, p->cpus_allowed);
  1130. for_each_cpu_mask(i, tmp) {
  1131. if (idle_cpu(i))
  1132. return i;
  1133. }
  1134. }
  1135. else
  1136. break;
  1137. }
  1138. return cpu;
  1139. }
  1140. #else
  1141. static inline int wake_idle(int cpu, task_t *p)
  1142. {
  1143. return cpu;
  1144. }
  1145. #endif
  1146. /***
  1147. * try_to_wake_up - wake up a thread
  1148. * @p: the to-be-woken-up thread
  1149. * @state: the mask of task states that can be woken
  1150. * @sync: do a synchronous wakeup?
  1151. *
  1152. * Put it on the run-queue if it's not already there. The "current"
  1153. * thread is always on the run-queue (except when the actual
  1154. * re-schedule is in progress), and as such you're allowed to do
  1155. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1156. * runnable without the overhead of this.
  1157. *
  1158. * returns failure only if the task is already active.
  1159. */
  1160. static int try_to_wake_up(task_t *p, unsigned int state, int sync)
  1161. {
  1162. int cpu, this_cpu, success = 0;
  1163. unsigned long flags;
  1164. long old_state;
  1165. runqueue_t *rq;
  1166. #ifdef CONFIG_SMP
  1167. unsigned long load, this_load;
  1168. struct sched_domain *sd, *this_sd = NULL;
  1169. int new_cpu;
  1170. #endif
  1171. rq = task_rq_lock(p, &flags);
  1172. old_state = p->state;
  1173. if (!(old_state & state))
  1174. goto out;
  1175. if (p->array)
  1176. goto out_running;
  1177. cpu = task_cpu(p);
  1178. this_cpu = smp_processor_id();
  1179. #ifdef CONFIG_SMP
  1180. if (unlikely(task_running(rq, p)))
  1181. goto out_activate;
  1182. new_cpu = cpu;
  1183. schedstat_inc(rq, ttwu_cnt);
  1184. if (cpu == this_cpu) {
  1185. schedstat_inc(rq, ttwu_local);
  1186. goto out_set_cpu;
  1187. }
  1188. for_each_domain(this_cpu, sd) {
  1189. if (cpu_isset(cpu, sd->span)) {
  1190. schedstat_inc(sd, ttwu_wake_remote);
  1191. this_sd = sd;
  1192. break;
  1193. }
  1194. }
  1195. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1196. goto out_set_cpu;
  1197. /*
  1198. * Check for affine wakeup and passive balancing possibilities.
  1199. */
  1200. if (this_sd) {
  1201. int idx = this_sd->wake_idx;
  1202. unsigned int imbalance;
  1203. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1204. load = source_load(cpu, idx);
  1205. this_load = target_load(this_cpu, idx);
  1206. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1207. if (this_sd->flags & SD_WAKE_AFFINE) {
  1208. unsigned long tl = this_load;
  1209. unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
  1210. /*
  1211. * If sync wakeup then subtract the (maximum possible)
  1212. * effect of the currently running task from the load
  1213. * of the current CPU:
  1214. */
  1215. if (sync)
  1216. tl -= current->load_weight;
  1217. if ((tl <= load &&
  1218. tl + target_load(cpu, idx) <= tl_per_task) ||
  1219. 100*(tl + p->load_weight) <= imbalance*load) {
  1220. /*
  1221. * This domain has SD_WAKE_AFFINE and
  1222. * p is cache cold in this domain, and
  1223. * there is no bad imbalance.
  1224. */
  1225. schedstat_inc(this_sd, ttwu_move_affine);
  1226. goto out_set_cpu;
  1227. }
  1228. }
  1229. /*
  1230. * Start passive balancing when half the imbalance_pct
  1231. * limit is reached.
  1232. */
  1233. if (this_sd->flags & SD_WAKE_BALANCE) {
  1234. if (imbalance*this_load <= 100*load) {
  1235. schedstat_inc(this_sd, ttwu_move_balance);
  1236. goto out_set_cpu;
  1237. }
  1238. }
  1239. }
  1240. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1241. out_set_cpu:
  1242. new_cpu = wake_idle(new_cpu, p);
  1243. if (new_cpu != cpu) {
  1244. set_task_cpu(p, new_cpu);
  1245. task_rq_unlock(rq, &flags);
  1246. /* might preempt at this point */
  1247. rq = task_rq_lock(p, &flags);
  1248. old_state = p->state;
  1249. if (!(old_state & state))
  1250. goto out;
  1251. if (p->array)
  1252. goto out_running;
  1253. this_cpu = smp_processor_id();
  1254. cpu = task_cpu(p);
  1255. }
  1256. out_activate:
  1257. #endif /* CONFIG_SMP */
  1258. if (old_state == TASK_UNINTERRUPTIBLE) {
  1259. rq->nr_uninterruptible--;
  1260. /*
  1261. * Tasks on involuntary sleep don't earn
  1262. * sleep_avg beyond just interactive state.
  1263. */
  1264. p->sleep_type = SLEEP_NONINTERACTIVE;
  1265. } else
  1266. /*
  1267. * Tasks that have marked their sleep as noninteractive get
  1268. * woken up with their sleep average not weighted in an
  1269. * interactive way.
  1270. */
  1271. if (old_state & TASK_NONINTERACTIVE)
  1272. p->sleep_type = SLEEP_NONINTERACTIVE;
  1273. activate_task(p, rq, cpu == this_cpu);
  1274. /*
  1275. * Sync wakeups (i.e. those types of wakeups where the waker
  1276. * has indicated that it will leave the CPU in short order)
  1277. * don't trigger a preemption, if the woken up task will run on
  1278. * this cpu. (in this case the 'I will reschedule' promise of
  1279. * the waker guarantees that the freshly woken up task is going
  1280. * to be considered on this CPU.)
  1281. */
  1282. if (!sync || cpu != this_cpu) {
  1283. if (TASK_PREEMPTS_CURR(p, rq))
  1284. resched_task(rq->curr);
  1285. }
  1286. success = 1;
  1287. out_running:
  1288. p->state = TASK_RUNNING;
  1289. out:
  1290. task_rq_unlock(rq, &flags);
  1291. return success;
  1292. }
  1293. int fastcall wake_up_process(task_t *p)
  1294. {
  1295. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1296. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1297. }
  1298. EXPORT_SYMBOL(wake_up_process);
  1299. int fastcall wake_up_state(task_t *p, unsigned int state)
  1300. {
  1301. return try_to_wake_up(p, state, 0);
  1302. }
  1303. /*
  1304. * Perform scheduler related setup for a newly forked process p.
  1305. * p is forked by current.
  1306. */
  1307. void fastcall sched_fork(task_t *p, int clone_flags)
  1308. {
  1309. int cpu = get_cpu();
  1310. #ifdef CONFIG_SMP
  1311. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1312. #endif
  1313. set_task_cpu(p, cpu);
  1314. /*
  1315. * We mark the process as running here, but have not actually
  1316. * inserted it onto the runqueue yet. This guarantees that
  1317. * nobody will actually run it, and a signal or other external
  1318. * event cannot wake it up and insert it on the runqueue either.
  1319. */
  1320. p->state = TASK_RUNNING;
  1321. /*
  1322. * Make sure we do not leak PI boosting priority to the child:
  1323. */
  1324. p->prio = current->normal_prio;
  1325. INIT_LIST_HEAD(&p->run_list);
  1326. p->array = NULL;
  1327. #ifdef CONFIG_SCHEDSTATS
  1328. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1329. #endif
  1330. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1331. p->oncpu = 0;
  1332. #endif
  1333. #ifdef CONFIG_PREEMPT
  1334. /* Want to start with kernel preemption disabled. */
  1335. task_thread_info(p)->preempt_count = 1;
  1336. #endif
  1337. /*
  1338. * Share the timeslice between parent and child, thus the
  1339. * total amount of pending timeslices in the system doesn't change,
  1340. * resulting in more scheduling fairness.
  1341. */
  1342. local_irq_disable();
  1343. p->time_slice = (current->time_slice + 1) >> 1;
  1344. /*
  1345. * The remainder of the first timeslice might be recovered by
  1346. * the parent if the child exits early enough.
  1347. */
  1348. p->first_time_slice = 1;
  1349. current->time_slice >>= 1;
  1350. p->timestamp = sched_clock();
  1351. if (unlikely(!current->time_slice)) {
  1352. /*
  1353. * This case is rare, it happens when the parent has only
  1354. * a single jiffy left from its timeslice. Taking the
  1355. * runqueue lock is not a problem.
  1356. */
  1357. current->time_slice = 1;
  1358. scheduler_tick();
  1359. }
  1360. local_irq_enable();
  1361. put_cpu();
  1362. }
  1363. /*
  1364. * wake_up_new_task - wake up a newly created task for the first time.
  1365. *
  1366. * This function will do some initial scheduler statistics housekeeping
  1367. * that must be done for every newly created context, then puts the task
  1368. * on the runqueue and wakes it.
  1369. */
  1370. void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
  1371. {
  1372. unsigned long flags;
  1373. int this_cpu, cpu;
  1374. runqueue_t *rq, *this_rq;
  1375. rq = task_rq_lock(p, &flags);
  1376. BUG_ON(p->state != TASK_RUNNING);
  1377. this_cpu = smp_processor_id();
  1378. cpu = task_cpu(p);
  1379. /*
  1380. * We decrease the sleep average of forking parents
  1381. * and children as well, to keep max-interactive tasks
  1382. * from forking tasks that are max-interactive. The parent
  1383. * (current) is done further down, under its lock.
  1384. */
  1385. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1386. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1387. p->prio = effective_prio(p);
  1388. if (likely(cpu == this_cpu)) {
  1389. if (!(clone_flags & CLONE_VM)) {
  1390. /*
  1391. * The VM isn't cloned, so we're in a good position to
  1392. * do child-runs-first in anticipation of an exec. This
  1393. * usually avoids a lot of COW overhead.
  1394. */
  1395. if (unlikely(!current->array))
  1396. __activate_task(p, rq);
  1397. else {
  1398. p->prio = current->prio;
  1399. p->normal_prio = current->normal_prio;
  1400. list_add_tail(&p->run_list, &current->run_list);
  1401. p->array = current->array;
  1402. p->array->nr_active++;
  1403. inc_nr_running(p, rq);
  1404. }
  1405. set_need_resched();
  1406. } else
  1407. /* Run child last */
  1408. __activate_task(p, rq);
  1409. /*
  1410. * We skip the following code due to cpu == this_cpu
  1411. *
  1412. * task_rq_unlock(rq, &flags);
  1413. * this_rq = task_rq_lock(current, &flags);
  1414. */
  1415. this_rq = rq;
  1416. } else {
  1417. this_rq = cpu_rq(this_cpu);
  1418. /*
  1419. * Not the local CPU - must adjust timestamp. This should
  1420. * get optimised away in the !CONFIG_SMP case.
  1421. */
  1422. p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
  1423. + rq->timestamp_last_tick;
  1424. __activate_task(p, rq);
  1425. if (TASK_PREEMPTS_CURR(p, rq))
  1426. resched_task(rq->curr);
  1427. /*
  1428. * Parent and child are on different CPUs, now get the
  1429. * parent runqueue to update the parent's ->sleep_avg:
  1430. */
  1431. task_rq_unlock(rq, &flags);
  1432. this_rq = task_rq_lock(current, &flags);
  1433. }
  1434. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1435. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1436. task_rq_unlock(this_rq, &flags);
  1437. }
  1438. /*
  1439. * Potentially available exiting-child timeslices are
  1440. * retrieved here - this way the parent does not get
  1441. * penalized for creating too many threads.
  1442. *
  1443. * (this cannot be used to 'generate' timeslices
  1444. * artificially, because any timeslice recovered here
  1445. * was given away by the parent in the first place.)
  1446. */
  1447. void fastcall sched_exit(task_t *p)
  1448. {
  1449. unsigned long flags;
  1450. runqueue_t *rq;
  1451. /*
  1452. * If the child was a (relative-) CPU hog then decrease
  1453. * the sleep_avg of the parent as well.
  1454. */
  1455. rq = task_rq_lock(p->parent, &flags);
  1456. if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
  1457. p->parent->time_slice += p->time_slice;
  1458. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1459. p->parent->time_slice = task_timeslice(p);
  1460. }
  1461. if (p->sleep_avg < p->parent->sleep_avg)
  1462. p->parent->sleep_avg = p->parent->sleep_avg /
  1463. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1464. (EXIT_WEIGHT + 1);
  1465. task_rq_unlock(rq, &flags);
  1466. }
  1467. /**
  1468. * prepare_task_switch - prepare to switch tasks
  1469. * @rq: the runqueue preparing to switch
  1470. * @next: the task we are going to switch to.
  1471. *
  1472. * This is called with the rq lock held and interrupts off. It must
  1473. * be paired with a subsequent finish_task_switch after the context
  1474. * switch.
  1475. *
  1476. * prepare_task_switch sets up locking and calls architecture specific
  1477. * hooks.
  1478. */
  1479. static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
  1480. {
  1481. prepare_lock_switch(rq, next);
  1482. prepare_arch_switch(next);
  1483. }
  1484. /**
  1485. * finish_task_switch - clean up after a task-switch
  1486. * @rq: runqueue associated with task-switch
  1487. * @prev: the thread we just switched away from.
  1488. *
  1489. * finish_task_switch must be called after the context switch, paired
  1490. * with a prepare_task_switch call before the context switch.
  1491. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1492. * and do any other architecture-specific cleanup actions.
  1493. *
  1494. * Note that we may have delayed dropping an mm in context_switch(). If
  1495. * so, we finish that here outside of the runqueue lock. (Doing it
  1496. * with the lock held can cause deadlocks; see schedule() for
  1497. * details.)
  1498. */
  1499. static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
  1500. __releases(rq->lock)
  1501. {
  1502. struct mm_struct *mm = rq->prev_mm;
  1503. unsigned long prev_task_flags;
  1504. rq->prev_mm = NULL;
  1505. /*
  1506. * A task struct has one reference for the use as "current".
  1507. * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
  1508. * calls schedule one last time. The schedule call will never return,
  1509. * and the scheduled task must drop that reference.
  1510. * The test for EXIT_ZOMBIE must occur while the runqueue locks are
  1511. * still held, otherwise prev could be scheduled on another cpu, die
  1512. * there before we look at prev->state, and then the reference would
  1513. * be dropped twice.
  1514. * Manfred Spraul <manfred@colorfullife.com>
  1515. */
  1516. prev_task_flags = prev->flags;
  1517. finish_arch_switch(prev);
  1518. finish_lock_switch(rq, prev);
  1519. if (mm)
  1520. mmdrop(mm);
  1521. if (unlikely(prev_task_flags & PF_DEAD)) {
  1522. /*
  1523. * Remove function-return probe instances associated with this
  1524. * task and put them back on the free list.
  1525. */
  1526. kprobe_flush_task(prev);
  1527. put_task_struct(prev);
  1528. }
  1529. }
  1530. /**
  1531. * schedule_tail - first thing a freshly forked thread must call.
  1532. * @prev: the thread we just switched away from.
  1533. */
  1534. asmlinkage void schedule_tail(task_t *prev)
  1535. __releases(rq->lock)
  1536. {
  1537. runqueue_t *rq = this_rq();
  1538. finish_task_switch(rq, prev);
  1539. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1540. /* In this case, finish_task_switch does not reenable preemption */
  1541. preempt_enable();
  1542. #endif
  1543. if (current->set_child_tid)
  1544. put_user(current->pid, current->set_child_tid);
  1545. }
  1546. /*
  1547. * context_switch - switch to the new MM and the new
  1548. * thread's register state.
  1549. */
  1550. static inline
  1551. task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
  1552. {
  1553. struct mm_struct *mm = next->mm;
  1554. struct mm_struct *oldmm = prev->active_mm;
  1555. if (unlikely(!mm)) {
  1556. next->active_mm = oldmm;
  1557. atomic_inc(&oldmm->mm_count);
  1558. enter_lazy_tlb(oldmm, next);
  1559. } else
  1560. switch_mm(oldmm, mm, next);
  1561. if (unlikely(!prev->mm)) {
  1562. prev->active_mm = NULL;
  1563. WARN_ON(rq->prev_mm);
  1564. rq->prev_mm = oldmm;
  1565. }
  1566. /* Here we just switch the register state and the stack. */
  1567. switch_to(prev, next, prev);
  1568. return prev;
  1569. }
  1570. /*
  1571. * nr_running, nr_uninterruptible and nr_context_switches:
  1572. *
  1573. * externally visible scheduler statistics: current number of runnable
  1574. * threads, current number of uninterruptible-sleeping threads, total
  1575. * number of context switches performed since bootup.
  1576. */
  1577. unsigned long nr_running(void)
  1578. {
  1579. unsigned long i, sum = 0;
  1580. for_each_online_cpu(i)
  1581. sum += cpu_rq(i)->nr_running;
  1582. return sum;
  1583. }
  1584. unsigned long nr_uninterruptible(void)
  1585. {
  1586. unsigned long i, sum = 0;
  1587. for_each_possible_cpu(i)
  1588. sum += cpu_rq(i)->nr_uninterruptible;
  1589. /*
  1590. * Since we read the counters lockless, it might be slightly
  1591. * inaccurate. Do not allow it to go below zero though:
  1592. */
  1593. if (unlikely((long)sum < 0))
  1594. sum = 0;
  1595. return sum;
  1596. }
  1597. unsigned long long nr_context_switches(void)
  1598. {
  1599. int i;
  1600. unsigned long long sum = 0;
  1601. for_each_possible_cpu(i)
  1602. sum += cpu_rq(i)->nr_switches;
  1603. return sum;
  1604. }
  1605. unsigned long nr_iowait(void)
  1606. {
  1607. unsigned long i, sum = 0;
  1608. for_each_possible_cpu(i)
  1609. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1610. return sum;
  1611. }
  1612. unsigned long nr_active(void)
  1613. {
  1614. unsigned long i, running = 0, uninterruptible = 0;
  1615. for_each_online_cpu(i) {
  1616. running += cpu_rq(i)->nr_running;
  1617. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1618. }
  1619. if (unlikely((long)uninterruptible < 0))
  1620. uninterruptible = 0;
  1621. return running + uninterruptible;
  1622. }
  1623. #ifdef CONFIG_SMP
  1624. /*
  1625. * double_rq_lock - safely lock two runqueues
  1626. *
  1627. * Note this does not disable interrupts like task_rq_lock,
  1628. * you need to do so manually before calling.
  1629. */
  1630. static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
  1631. __acquires(rq1->lock)
  1632. __acquires(rq2->lock)
  1633. {
  1634. if (rq1 == rq2) {
  1635. spin_lock(&rq1->lock);
  1636. __acquire(rq2->lock); /* Fake it out ;) */
  1637. } else {
  1638. if (rq1 < rq2) {
  1639. spin_lock(&rq1->lock);
  1640. spin_lock(&rq2->lock);
  1641. } else {
  1642. spin_lock(&rq2->lock);
  1643. spin_lock(&rq1->lock);
  1644. }
  1645. }
  1646. }
  1647. /*
  1648. * double_rq_unlock - safely unlock two runqueues
  1649. *
  1650. * Note this does not restore interrupts like task_rq_unlock,
  1651. * you need to do so manually after calling.
  1652. */
  1653. static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
  1654. __releases(rq1->lock)
  1655. __releases(rq2->lock)
  1656. {
  1657. spin_unlock(&rq1->lock);
  1658. if (rq1 != rq2)
  1659. spin_unlock(&rq2->lock);
  1660. else
  1661. __release(rq2->lock);
  1662. }
  1663. /*
  1664. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1665. */
  1666. static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
  1667. __releases(this_rq->lock)
  1668. __acquires(busiest->lock)
  1669. __acquires(this_rq->lock)
  1670. {
  1671. if (unlikely(!spin_trylock(&busiest->lock))) {
  1672. if (busiest < this_rq) {
  1673. spin_unlock(&this_rq->lock);
  1674. spin_lock(&busiest->lock);
  1675. spin_lock(&this_rq->lock);
  1676. } else
  1677. spin_lock(&busiest->lock);
  1678. }
  1679. }
  1680. /*
  1681. * If dest_cpu is allowed for this process, migrate the task to it.
  1682. * This is accomplished by forcing the cpu_allowed mask to only
  1683. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1684. * the cpu_allowed mask is restored.
  1685. */
  1686. static void sched_migrate_task(task_t *p, int dest_cpu)
  1687. {
  1688. migration_req_t req;
  1689. runqueue_t *rq;
  1690. unsigned long flags;
  1691. rq = task_rq_lock(p, &flags);
  1692. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1693. || unlikely(cpu_is_offline(dest_cpu)))
  1694. goto out;
  1695. /* force the process onto the specified CPU */
  1696. if (migrate_task(p, dest_cpu, &req)) {
  1697. /* Need to wait for migration thread (might exit: take ref). */
  1698. struct task_struct *mt = rq->migration_thread;
  1699. get_task_struct(mt);
  1700. task_rq_unlock(rq, &flags);
  1701. wake_up_process(mt);
  1702. put_task_struct(mt);
  1703. wait_for_completion(&req.done);
  1704. return;
  1705. }
  1706. out:
  1707. task_rq_unlock(rq, &flags);
  1708. }
  1709. /*
  1710. * sched_exec - execve() is a valuable balancing opportunity, because at
  1711. * this point the task has the smallest effective memory and cache footprint.
  1712. */
  1713. void sched_exec(void)
  1714. {
  1715. int new_cpu, this_cpu = get_cpu();
  1716. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1717. put_cpu();
  1718. if (new_cpu != this_cpu)
  1719. sched_migrate_task(current, new_cpu);
  1720. }
  1721. /*
  1722. * pull_task - move a task from a remote runqueue to the local runqueue.
  1723. * Both runqueues must be locked.
  1724. */
  1725. static
  1726. void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
  1727. runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
  1728. {
  1729. dequeue_task(p, src_array);
  1730. dec_nr_running(p, src_rq);
  1731. set_task_cpu(p, this_cpu);
  1732. inc_nr_running(p, this_rq);
  1733. enqueue_task(p, this_array);
  1734. p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
  1735. + this_rq->timestamp_last_tick;
  1736. /*
  1737. * Note that idle threads have a prio of MAX_PRIO, for this test
  1738. * to be always true for them.
  1739. */
  1740. if (TASK_PREEMPTS_CURR(p, this_rq))
  1741. resched_task(this_rq->curr);
  1742. }
  1743. /*
  1744. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1745. */
  1746. static
  1747. int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
  1748. struct sched_domain *sd, enum idle_type idle,
  1749. int *all_pinned)
  1750. {
  1751. /*
  1752. * We do not migrate tasks that are:
  1753. * 1) running (obviously), or
  1754. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1755. * 3) are cache-hot on their current CPU.
  1756. */
  1757. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1758. return 0;
  1759. *all_pinned = 0;
  1760. if (task_running(rq, p))
  1761. return 0;
  1762. /*
  1763. * Aggressive migration if:
  1764. * 1) task is cache cold, or
  1765. * 2) too many balance attempts have failed.
  1766. */
  1767. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1768. return 1;
  1769. if (task_hot(p, rq->timestamp_last_tick, sd))
  1770. return 0;
  1771. return 1;
  1772. }
  1773. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1774. /*
  1775. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1776. * load from busiest to this_rq, as part of a balancing operation within
  1777. * "domain". Returns the number of tasks moved.
  1778. *
  1779. * Called with both runqueues locked.
  1780. */
  1781. static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
  1782. unsigned long max_nr_move, unsigned long max_load_move,
  1783. struct sched_domain *sd, enum idle_type idle,
  1784. int *all_pinned)
  1785. {
  1786. prio_array_t *array, *dst_array;
  1787. struct list_head *head, *curr;
  1788. int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
  1789. int busiest_best_prio_seen;
  1790. int skip_for_load; /* skip the task based on weighted load issues */
  1791. long rem_load_move;
  1792. task_t *tmp;
  1793. if (max_nr_move == 0 || max_load_move == 0)
  1794. goto out;
  1795. rem_load_move = max_load_move;
  1796. pinned = 1;
  1797. this_best_prio = rq_best_prio(this_rq);
  1798. busiest_best_prio = rq_best_prio(busiest);
  1799. /*
  1800. * Enable handling of the case where there is more than one task
  1801. * with the best priority. If the current running task is one
  1802. * of those with prio==busiest_best_prio we know it won't be moved
  1803. * and therefore it's safe to override the skip (based on load) of
  1804. * any task we find with that prio.
  1805. */
  1806. busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;
  1807. /*
  1808. * We first consider expired tasks. Those will likely not be
  1809. * executed in the near future, and they are most likely to
  1810. * be cache-cold, thus switching CPUs has the least effect
  1811. * on them.
  1812. */
  1813. if (busiest->expired->nr_active) {
  1814. array = busiest->expired;
  1815. dst_array = this_rq->expired;
  1816. } else {
  1817. array = busiest->active;
  1818. dst_array = this_rq->active;
  1819. }
  1820. new_array:
  1821. /* Start searching at priority 0: */
  1822. idx = 0;
  1823. skip_bitmap:
  1824. if (!idx)
  1825. idx = sched_find_first_bit(array->bitmap);
  1826. else
  1827. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1828. if (idx >= MAX_PRIO) {
  1829. if (array == busiest->expired && busiest->active->nr_active) {
  1830. array = busiest->active;
  1831. dst_array = this_rq->active;
  1832. goto new_array;
  1833. }
  1834. goto out;
  1835. }
  1836. head = array->queue + idx;
  1837. curr = head->prev;
  1838. skip_queue:
  1839. tmp = list_entry(curr, task_t, run_list);
  1840. curr = curr->prev;
  1841. /*
  1842. * To help distribute high priority tasks accross CPUs we don't
  1843. * skip a task if it will be the highest priority task (i.e. smallest
  1844. * prio value) on its new queue regardless of its load weight
  1845. */
  1846. skip_for_load = tmp->load_weight > rem_load_move;
  1847. if (skip_for_load && idx < this_best_prio)
  1848. skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio;
  1849. if (skip_for_load ||
  1850. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1851. busiest_best_prio_seen |= idx == busiest_best_prio;
  1852. if (curr != head)
  1853. goto skip_queue;
  1854. idx++;
  1855. goto skip_bitmap;
  1856. }
  1857. #ifdef CONFIG_SCHEDSTATS
  1858. if (task_hot(tmp, busiest->timestamp_last_tick, sd))
  1859. schedstat_inc(sd, lb_hot_gained[idle]);
  1860. #endif
  1861. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1862. pulled++;
  1863. rem_load_move -= tmp->load_weight;
  1864. /*
  1865. * We only want to steal up to the prescribed number of tasks
  1866. * and the prescribed amount of weighted load.
  1867. */
  1868. if (pulled < max_nr_move && rem_load_move > 0) {
  1869. if (idx < this_best_prio)
  1870. this_best_prio = idx;
  1871. if (curr != head)
  1872. goto skip_queue;
  1873. idx++;
  1874. goto skip_bitmap;
  1875. }
  1876. out:
  1877. /*
  1878. * Right now, this is the only place pull_task() is called,
  1879. * so we can safely collect pull_task() stats here rather than
  1880. * inside pull_task().
  1881. */
  1882. schedstat_add(sd, lb_gained[idle], pulled);
  1883. if (all_pinned)
  1884. *all_pinned = pinned;
  1885. return pulled;
  1886. }
  1887. /*
  1888. * find_busiest_group finds and returns the busiest CPU group within the
  1889. * domain. It calculates and returns the amount of weighted load which should be
  1890. * moved to restore balance via the imbalance parameter.
  1891. */
  1892. static struct sched_group *
  1893. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1894. unsigned long *imbalance, enum idle_type idle, int *sd_idle)
  1895. {
  1896. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1897. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1898. unsigned long max_pull;
  1899. unsigned long busiest_load_per_task, busiest_nr_running;
  1900. unsigned long this_load_per_task, this_nr_running;
  1901. int load_idx;
  1902. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1903. int power_savings_balance = 1;
  1904. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1905. unsigned long min_nr_running = ULONG_MAX;
  1906. struct sched_group *group_min = NULL, *group_leader = NULL;
  1907. #endif
  1908. max_load = this_load = total_load = total_pwr = 0;
  1909. busiest_load_per_task = busiest_nr_running = 0;
  1910. this_load_per_task = this_nr_running = 0;
  1911. if (idle == NOT_IDLE)
  1912. load_idx = sd->busy_idx;
  1913. else if (idle == NEWLY_IDLE)
  1914. load_idx = sd->newidle_idx;
  1915. else
  1916. load_idx = sd->idle_idx;
  1917. do {
  1918. unsigned long load, group_capacity;
  1919. int local_group;
  1920. int i;
  1921. unsigned long sum_nr_running, sum_weighted_load;
  1922. local_group = cpu_isset(this_cpu, group->cpumask);
  1923. /* Tally up the load of all CPUs in the group */
  1924. sum_weighted_load = sum_nr_running = avg_load = 0;
  1925. for_each_cpu_mask(i, group->cpumask) {
  1926. runqueue_t *rq = cpu_rq(i);
  1927. if (*sd_idle && !idle_cpu(i))
  1928. *sd_idle = 0;
  1929. /* Bias balancing toward cpus of our domain */
  1930. if (local_group)
  1931. load = target_load(i, load_idx);
  1932. else
  1933. load = source_load(i, load_idx);
  1934. avg_load += load;
  1935. sum_nr_running += rq->nr_running;
  1936. sum_weighted_load += rq->raw_weighted_load;
  1937. }
  1938. total_load += avg_load;
  1939. total_pwr += group->cpu_power;
  1940. /* Adjust by relative CPU power of the group */
  1941. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1942. group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
  1943. if (local_group) {
  1944. this_load = avg_load;
  1945. this = group;
  1946. this_nr_running = sum_nr_running;
  1947. this_load_per_task = sum_weighted_load;
  1948. } else if (avg_load > max_load &&
  1949. sum_nr_running > group_capacity) {
  1950. max_load = avg_load;
  1951. busiest = group;
  1952. busiest_nr_running = sum_nr_running;
  1953. busiest_load_per_task = sum_weighted_load;
  1954. }
  1955. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1956. /*
  1957. * Busy processors will not participate in power savings
  1958. * balance.
  1959. */
  1960. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1961. goto group_next;
  1962. /*
  1963. * If the local group is idle or completely loaded
  1964. * no need to do power savings balance at this domain
  1965. */
  1966. if (local_group && (this_nr_running >= group_capacity ||
  1967. !this_nr_running))
  1968. power_savings_balance = 0;
  1969. /*
  1970. * If a group is already running at full capacity or idle,
  1971. * don't include that group in power savings calculations
  1972. */
  1973. if (!power_savings_balance || sum_nr_running >= group_capacity
  1974. || !sum_nr_running)
  1975. goto group_next;
  1976. /*
  1977. * Calculate the group which has the least non-idle load.
  1978. * This is the group from where we need to pick up the load
  1979. * for saving power
  1980. */
  1981. if ((sum_nr_running < min_nr_running) ||
  1982. (sum_nr_running == min_nr_running &&
  1983. first_cpu(group->cpumask) <
  1984. first_cpu(group_min->cpumask))) {
  1985. group_min = group;
  1986. min_nr_running = sum_nr_running;
  1987. min_load_per_task = sum_weighted_load /
  1988. sum_nr_running;
  1989. }
  1990. /*
  1991. * Calculate the group which is almost near its
  1992. * capacity but still has some space to pick up some load
  1993. * from other group and save more power
  1994. */
  1995. if (sum_nr_running <= group_capacity - 1)
  1996. if (sum_nr_running > leader_nr_running ||
  1997. (sum_nr_running == leader_nr_running &&
  1998. first_cpu(group->cpumask) >
  1999. first_cpu(group_leader->cpumask))) {
  2000. group_leader = group;
  2001. leader_nr_running = sum_nr_running;
  2002. }
  2003. group_next:
  2004. #endif
  2005. group = group->next;
  2006. } while (group != sd->groups);
  2007. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2008. goto out_balanced;
  2009. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2010. if (this_load >= avg_load ||
  2011. 100*max_load <= sd->imbalance_pct*this_load)
  2012. goto out_balanced;
  2013. busiest_load_per_task /= busiest_nr_running;
  2014. /*
  2015. * We're trying to get all the cpus to the average_load, so we don't
  2016. * want to push ourselves above the average load, nor do we wish to
  2017. * reduce the max loaded cpu below the average load, as either of these
  2018. * actions would just result in more rebalancing later, and ping-pong
  2019. * tasks around. Thus we look for the minimum possible imbalance.
  2020. * Negative imbalances (*we* are more loaded than anyone else) will
  2021. * be counted as no imbalance for these purposes -- we can't fix that
  2022. * by pulling tasks to us. Be careful of negative numbers as they'll
  2023. * appear as very large values with unsigned longs.
  2024. */
  2025. if (max_load <= busiest_load_per_task)
  2026. goto out_balanced;
  2027. /*
  2028. * In the presence of smp nice balancing, certain scenarios can have
  2029. * max load less than avg load(as we skip the groups at or below
  2030. * its cpu_power, while calculating max_load..)
  2031. */
  2032. if (max_load < avg_load) {
  2033. *imbalance = 0;
  2034. goto small_imbalance;
  2035. }
  2036. /* Don't want to pull so many tasks that a group would go idle */
  2037. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2038. /* How much load to actually move to equalise the imbalance */
  2039. *imbalance = min(max_pull * busiest->cpu_power,
  2040. (avg_load - this_load) * this->cpu_power)
  2041. / SCHED_LOAD_SCALE;
  2042. /*
  2043. * if *imbalance is less than the average load per runnable task
  2044. * there is no gaurantee that any tasks will be moved so we'll have
  2045. * a think about bumping its value to force at least one task to be
  2046. * moved
  2047. */
  2048. if (*imbalance < busiest_load_per_task) {
  2049. unsigned long pwr_now, pwr_move;
  2050. unsigned long tmp;
  2051. unsigned int imbn;
  2052. small_imbalance:
  2053. pwr_move = pwr_now = 0;
  2054. imbn = 2;
  2055. if (this_nr_running) {
  2056. this_load_per_task /= this_nr_running;
  2057. if (busiest_load_per_task > this_load_per_task)
  2058. imbn = 1;
  2059. } else
  2060. this_load_per_task = SCHED_LOAD_SCALE;
  2061. if (max_load - this_load >= busiest_load_per_task * imbn) {
  2062. *imbalance = busiest_load_per_task;
  2063. return busiest;
  2064. }
  2065. /*
  2066. * OK, we don't have enough imbalance to justify moving tasks,
  2067. * however we may be able to increase total CPU power used by
  2068. * moving them.
  2069. */
  2070. pwr_now += busiest->cpu_power *
  2071. min(busiest_load_per_task, max_load);
  2072. pwr_now += this->cpu_power *
  2073. min(this_load_per_task, this_load);
  2074. pwr_now /= SCHED_LOAD_SCALE;
  2075. /* Amount of load we'd subtract */
  2076. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
  2077. if (max_load > tmp)
  2078. pwr_move += busiest->cpu_power *
  2079. min(busiest_load_per_task, max_load - tmp);
  2080. /* Amount of load we'd add */
  2081. if (max_load*busiest->cpu_power <
  2082. busiest_load_per_task*SCHED_LOAD_SCALE)
  2083. tmp = max_load*busiest->cpu_power/this->cpu_power;
  2084. else
  2085. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
  2086. pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
  2087. pwr_move /= SCHED_LOAD_SCALE;
  2088. /* Move if we gain throughput */
  2089. if (pwr_move <= pwr_now)
  2090. goto out_balanced;
  2091. *imbalance = busiest_load_per_task;
  2092. }
  2093. return busiest;
  2094. out_balanced:
  2095. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2096. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2097. goto ret;
  2098. if (this == group_leader && group_leader != group_min) {
  2099. *imbalance = min_load_per_task;
  2100. return group_min;
  2101. }
  2102. ret:
  2103. #endif
  2104. *imbalance = 0;
  2105. return NULL;
  2106. }
  2107. /*
  2108. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2109. */
  2110. static runqueue_t *find_busiest_queue(struct sched_group *group,
  2111. enum idle_type idle, unsigned long imbalance)
  2112. {
  2113. unsigned long max_load = 0;
  2114. runqueue_t *busiest = NULL, *rqi;
  2115. int i;
  2116. for_each_cpu_mask(i, group->cpumask) {
  2117. rqi = cpu_rq(i);
  2118. if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
  2119. continue;
  2120. if (rqi->raw_weighted_load > max_load) {
  2121. max_load = rqi->raw_weighted_load;
  2122. busiest = rqi;
  2123. }
  2124. }
  2125. return busiest;
  2126. }
  2127. /*
  2128. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2129. * so long as it is large enough.
  2130. */
  2131. #define MAX_PINNED_INTERVAL 512
  2132. #define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
  2133. /*
  2134. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2135. * tasks if there is an imbalance.
  2136. *
  2137. * Called with this_rq unlocked.
  2138. */
  2139. static int load_balance(int this_cpu, runqueue_t *this_rq,
  2140. struct sched_domain *sd, enum idle_type idle)
  2141. {
  2142. struct sched_group *group;
  2143. runqueue_t *busiest;
  2144. unsigned long imbalance;
  2145. int nr_moved, all_pinned = 0;
  2146. int active_balance = 0;
  2147. int sd_idle = 0;
  2148. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2149. !sched_smt_power_savings)
  2150. sd_idle = 1;
  2151. schedstat_inc(sd, lb_cnt[idle]);
  2152. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
  2153. if (!group) {
  2154. schedstat_inc(sd, lb_nobusyg[idle]);
  2155. goto out_balanced;
  2156. }
  2157. busiest = find_busiest_queue(group, idle, imbalance);
  2158. if (!busiest) {
  2159. schedstat_inc(sd, lb_nobusyq[idle]);
  2160. goto out_balanced;
  2161. }
  2162. BUG_ON(busiest == this_rq);
  2163. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2164. nr_moved = 0;
  2165. if (busiest->nr_running > 1) {
  2166. /*
  2167. * Attempt to move tasks. If find_busiest_group has found
  2168. * an imbalance but busiest->nr_running <= 1, the group is
  2169. * still unbalanced. nr_moved simply stays zero, so it is
  2170. * correctly treated as an imbalance.
  2171. */
  2172. double_rq_lock(this_rq, busiest);
  2173. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2174. minus_1_or_zero(busiest->nr_running),
  2175. imbalance, sd, idle, &all_pinned);
  2176. double_rq_unlock(this_rq, busiest);
  2177. /* All tasks on this runqueue were pinned by CPU affinity */
  2178. if (unlikely(all_pinned))
  2179. goto out_balanced;
  2180. }
  2181. if (!nr_moved) {
  2182. schedstat_inc(sd, lb_failed[idle]);
  2183. sd->nr_balance_failed++;
  2184. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2185. spin_lock(&busiest->lock);
  2186. /* don't kick the migration_thread, if the curr
  2187. * task on busiest cpu can't be moved to this_cpu
  2188. */
  2189. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2190. spin_unlock(&busiest->lock);
  2191. all_pinned = 1;
  2192. goto out_one_pinned;
  2193. }
  2194. if (!busiest->active_balance) {
  2195. busiest->active_balance = 1;
  2196. busiest->push_cpu = this_cpu;
  2197. active_balance = 1;
  2198. }
  2199. spin_unlock(&busiest->lock);
  2200. if (active_balance)
  2201. wake_up_process(busiest->migration_thread);
  2202. /*
  2203. * We've kicked active balancing, reset the failure
  2204. * counter.
  2205. */
  2206. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2207. }
  2208. } else
  2209. sd->nr_balance_failed = 0;
  2210. if (likely(!active_balance)) {
  2211. /* We were unbalanced, so reset the balancing interval */
  2212. sd->balance_interval = sd->min_interval;
  2213. } else {
  2214. /*
  2215. * If we've begun active balancing, start to back off. This
  2216. * case may not be covered by the all_pinned logic if there
  2217. * is only 1 task on the busy runqueue (because we don't call
  2218. * move_tasks).
  2219. */
  2220. if (sd->balance_interval < sd->max_interval)
  2221. sd->balance_interval *= 2;
  2222. }
  2223. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2224. !sched_smt_power_savings)
  2225. return -1;
  2226. return nr_moved;
  2227. out_balanced:
  2228. schedstat_inc(sd, lb_balanced[idle]);
  2229. sd->nr_balance_failed = 0;
  2230. out_one_pinned:
  2231. /* tune up the balancing interval */
  2232. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2233. (sd->balance_interval < sd->max_interval))
  2234. sd->balance_interval *= 2;
  2235. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
  2236. return -1;
  2237. return 0;
  2238. }
  2239. /*
  2240. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2241. * tasks if there is an imbalance.
  2242. *
  2243. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  2244. * this_rq is locked.
  2245. */
  2246. static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
  2247. struct sched_domain *sd)
  2248. {
  2249. struct sched_group *group;
  2250. runqueue_t *busiest = NULL;
  2251. unsigned long imbalance;
  2252. int nr_moved = 0;
  2253. int sd_idle = 0;
  2254. if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
  2255. sd_idle = 1;
  2256. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  2257. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
  2258. if (!group) {
  2259. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  2260. goto out_balanced;
  2261. }
  2262. busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
  2263. if (!busiest) {
  2264. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  2265. goto out_balanced;
  2266. }
  2267. BUG_ON(busiest == this_rq);
  2268. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  2269. nr_moved = 0;
  2270. if (busiest->nr_running > 1) {
  2271. /* Attempt to move tasks */
  2272. double_lock_balance(this_rq, busiest);
  2273. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2274. minus_1_or_zero(busiest->nr_running),
  2275. imbalance, sd, NEWLY_IDLE, NULL);
  2276. spin_unlock(&busiest->lock);
  2277. }
  2278. if (!nr_moved) {
  2279. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  2280. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  2281. return -1;
  2282. } else
  2283. sd->nr_balance_failed = 0;
  2284. return nr_moved;
  2285. out_balanced:
  2286. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  2287. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
  2288. return -1;
  2289. sd->nr_balance_failed = 0;
  2290. return 0;
  2291. }
  2292. /*
  2293. * idle_balance is called by schedule() if this_cpu is about to become
  2294. * idle. Attempts to pull tasks from other CPUs.
  2295. */
  2296. static void idle_balance(int this_cpu, runqueue_t *this_rq)
  2297. {
  2298. struct sched_domain *sd;
  2299. for_each_domain(this_cpu, sd) {
  2300. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2301. if (load_balance_newidle(this_cpu, this_rq, sd)) {
  2302. /* We've pulled tasks over so stop searching */
  2303. break;
  2304. }
  2305. }
  2306. }
  2307. }
  2308. /*
  2309. * active_load_balance is run by migration threads. It pushes running tasks
  2310. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2311. * running on each physical CPU where possible, and avoids physical /
  2312. * logical imbalances.
  2313. *
  2314. * Called with busiest_rq locked.
  2315. */
  2316. static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
  2317. {
  2318. struct sched_domain *sd;
  2319. runqueue_t *target_rq;
  2320. int target_cpu = busiest_rq->push_cpu;
  2321. if (busiest_rq->nr_running <= 1)
  2322. /* no task to move */
  2323. return;
  2324. target_rq = cpu_rq(target_cpu);
  2325. /*
  2326. * This condition is "impossible", if it occurs
  2327. * we need to fix it. Originally reported by
  2328. * Bjorn Helgaas on a 128-cpu setup.
  2329. */
  2330. BUG_ON(busiest_rq == target_rq);
  2331. /* move a task from busiest_rq to target_rq */
  2332. double_lock_balance(busiest_rq, target_rq);
  2333. /* Search for an sd spanning us and the target CPU. */
  2334. for_each_domain(target_cpu, sd) {
  2335. if ((sd->flags & SD_LOAD_BALANCE) &&
  2336. cpu_isset(busiest_cpu, sd->span))
  2337. break;
  2338. }
  2339. if (unlikely(sd == NULL))
  2340. goto out;
  2341. schedstat_inc(sd, alb_cnt);
  2342. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2343. RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
  2344. schedstat_inc(sd, alb_pushed);
  2345. else
  2346. schedstat_inc(sd, alb_failed);
  2347. out:
  2348. spin_unlock(&target_rq->lock);
  2349. }
  2350. /*
  2351. * rebalance_tick will get called every timer tick, on every CPU.
  2352. *
  2353. * It checks each scheduling domain to see if it is due to be balanced,
  2354. * and initiates a balancing operation if so.
  2355. *
  2356. * Balancing parameters are set up in arch_init_sched_domains.
  2357. */
  2358. /* Don't have all balancing operations going off at once */
  2359. #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
  2360. static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
  2361. enum idle_type idle)
  2362. {
  2363. unsigned long old_load, this_load;
  2364. unsigned long j = jiffies + CPU_OFFSET(this_cpu);
  2365. struct sched_domain *sd;
  2366. int i;
  2367. this_load = this_rq->raw_weighted_load;
  2368. /* Update our load */
  2369. for (i = 0; i < 3; i++) {
  2370. unsigned long new_load = this_load;
  2371. int scale = 1 << i;
  2372. old_load = this_rq->cpu_load[i];
  2373. /*
  2374. * Round up the averaging division if load is increasing. This
  2375. * prevents us from getting stuck on 9 if the load is 10, for
  2376. * example.
  2377. */
  2378. if (new_load > old_load)
  2379. new_load += scale-1;
  2380. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
  2381. }
  2382. for_each_domain(this_cpu, sd) {
  2383. unsigned long interval;
  2384. if (!(sd->flags & SD_LOAD_BALANCE))
  2385. continue;
  2386. interval = sd->balance_interval;
  2387. if (idle != SCHED_IDLE)
  2388. interval *= sd->busy_factor;
  2389. /* scale ms to jiffies */
  2390. interval = msecs_to_jiffies(interval);
  2391. if (unlikely(!interval))
  2392. interval = 1;
  2393. if (j - sd->last_balance >= interval) {
  2394. if (load_balance(this_cpu, this_rq, sd, idle)) {
  2395. /*
  2396. * We've pulled tasks over so either we're no
  2397. * longer idle, or one of our SMT siblings is
  2398. * not idle.
  2399. */
  2400. idle = NOT_IDLE;
  2401. }
  2402. sd->last_balance += interval;
  2403. }
  2404. }
  2405. }
  2406. #else
  2407. /*
  2408. * on UP we do not need to balance between CPUs:
  2409. */
  2410. static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
  2411. {
  2412. }
  2413. static inline void idle_balance(int cpu, runqueue_t *rq)
  2414. {
  2415. }
  2416. #endif
  2417. static inline int wake_priority_sleeper(runqueue_t *rq)
  2418. {
  2419. int ret = 0;
  2420. #ifdef CONFIG_SCHED_SMT
  2421. spin_lock(&rq->lock);
  2422. /*
  2423. * If an SMT sibling task has been put to sleep for priority
  2424. * reasons reschedule the idle task to see if it can now run.
  2425. */
  2426. if (rq->nr_running) {
  2427. resched_task(rq->idle);
  2428. ret = 1;
  2429. }
  2430. spin_unlock(&rq->lock);
  2431. #endif
  2432. return ret;
  2433. }
  2434. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2435. EXPORT_PER_CPU_SYMBOL(kstat);
  2436. /*
  2437. * This is called on clock ticks and on context switches.
  2438. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2439. */
  2440. static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
  2441. unsigned long long now)
  2442. {
  2443. unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
  2444. p->sched_time += now - last;
  2445. }
  2446. /*
  2447. * Return current->sched_time plus any more ns on the sched_clock
  2448. * that have not yet been banked.
  2449. */
  2450. unsigned long long current_sched_time(const task_t *tsk)
  2451. {
  2452. unsigned long long ns;
  2453. unsigned long flags;
  2454. local_irq_save(flags);
  2455. ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
  2456. ns = tsk->sched_time + (sched_clock() - ns);
  2457. local_irq_restore(flags);
  2458. return ns;
  2459. }
  2460. /*
  2461. * We place interactive tasks back into the active array, if possible.
  2462. *
  2463. * To guarantee that this does not starve expired tasks we ignore the
  2464. * interactivity of a task if the first expired task had to wait more
  2465. * than a 'reasonable' amount of time. This deadline timeout is
  2466. * load-dependent, as the frequency of array switched decreases with
  2467. * increasing number of running tasks. We also ignore the interactivity
  2468. * if a better static_prio task has expired:
  2469. */
  2470. #define EXPIRED_STARVING(rq) \
  2471. ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
  2472. (jiffies - (rq)->expired_timestamp >= \
  2473. STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
  2474. ((rq)->curr->static_prio > (rq)->best_expired_prio))
  2475. /*
  2476. * Account user cpu time to a process.
  2477. * @p: the process that the cpu time gets accounted to
  2478. * @hardirq_offset: the offset to subtract from hardirq_count()
  2479. * @cputime: the cpu time spent in user space since the last update
  2480. */
  2481. void account_user_time(struct task_struct *p, cputime_t cputime)
  2482. {
  2483. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2484. cputime64_t tmp;
  2485. p->utime = cputime_add(p->utime, cputime);
  2486. /* Add user time to cpustat. */
  2487. tmp = cputime_to_cputime64(cputime);
  2488. if (TASK_NICE(p) > 0)
  2489. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2490. else
  2491. cpustat->user = cputime64_add(cpustat->user, tmp);
  2492. }
  2493. /*
  2494. * Account system cpu time to a process.
  2495. * @p: the process that the cpu time gets accounted to
  2496. * @hardirq_offset: the offset to subtract from hardirq_count()
  2497. * @cputime: the cpu time spent in kernel space since the last update
  2498. */
  2499. void account_system_time(struct task_struct *p, int hardirq_offset,
  2500. cputime_t cputime)
  2501. {
  2502. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2503. runqueue_t *rq = this_rq();
  2504. cputime64_t tmp;
  2505. p->stime = cputime_add(p->stime, cputime);
  2506. /* Add system time to cpustat. */
  2507. tmp = cputime_to_cputime64(cputime);
  2508. if (hardirq_count() - hardirq_offset)
  2509. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2510. else if (softirq_count())
  2511. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2512. else if (p != rq->idle)
  2513. cpustat->system = cputime64_add(cpustat->system, tmp);
  2514. else if (atomic_read(&rq->nr_iowait) > 0)
  2515. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2516. else
  2517. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2518. /* Account for system time used */
  2519. acct_update_integrals(p);
  2520. }
  2521. /*
  2522. * Account for involuntary wait time.
  2523. * @p: the process from which the cpu time has been stolen
  2524. * @steal: the cpu time spent in involuntary wait
  2525. */
  2526. void account_steal_time(struct task_struct *p, cputime_t steal)
  2527. {
  2528. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2529. cputime64_t tmp = cputime_to_cputime64(steal);
  2530. runqueue_t *rq = this_rq();
  2531. if (p == rq->idle) {
  2532. p->stime = cputime_add(p->stime, steal);
  2533. if (atomic_read(&rq->nr_iowait) > 0)
  2534. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2535. else
  2536. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2537. } else
  2538. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2539. }
  2540. /*
  2541. * This function gets called by the timer code, with HZ frequency.
  2542. * We call it with interrupts disabled.
  2543. *
  2544. * It also gets called by the fork code, when changing the parent's
  2545. * timeslices.
  2546. */
  2547. void scheduler_tick(void)
  2548. {
  2549. int cpu = smp_processor_id();
  2550. runqueue_t *rq = this_rq();
  2551. task_t *p = current;
  2552. unsigned long long now = sched_clock();
  2553. update_cpu_clock(p, rq, now);
  2554. rq->timestamp_last_tick = now;
  2555. if (p == rq->idle) {
  2556. if (wake_priority_sleeper(rq))
  2557. goto out;
  2558. rebalance_tick(cpu, rq, SCHED_IDLE);
  2559. return;
  2560. }
  2561. /* Task might have expired already, but not scheduled off yet */
  2562. if (p->array != rq->active) {
  2563. set_tsk_need_resched(p);
  2564. goto out;
  2565. }
  2566. spin_lock(&rq->lock);
  2567. /*
  2568. * The task was running during this tick - update the
  2569. * time slice counter. Note: we do not update a thread's
  2570. * priority until it either goes to sleep or uses up its
  2571. * timeslice. This makes it possible for interactive tasks
  2572. * to use up their timeslices at their highest priority levels.
  2573. */
  2574. if (rt_task(p)) {
  2575. /*
  2576. * RR tasks need a special form of timeslice management.
  2577. * FIFO tasks have no timeslices.
  2578. */
  2579. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2580. p->time_slice = task_timeslice(p);
  2581. p->first_time_slice = 0;
  2582. set_tsk_need_resched(p);
  2583. /* put it at the end of the queue: */
  2584. requeue_task(p, rq->active);
  2585. }
  2586. goto out_unlock;
  2587. }
  2588. if (!--p->time_slice) {
  2589. dequeue_task(p, rq->active);
  2590. set_tsk_need_resched(p);
  2591. p->prio = effective_prio(p);
  2592. p->time_slice = task_timeslice(p);
  2593. p->first_time_slice = 0;
  2594. if (!rq->expired_timestamp)
  2595. rq->expired_timestamp = jiffies;
  2596. if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
  2597. enqueue_task(p, rq->expired);
  2598. if (p->static_prio < rq->best_expired_prio)
  2599. rq->best_expired_prio = p->static_prio;
  2600. } else
  2601. enqueue_task(p, rq->active);
  2602. } else {
  2603. /*
  2604. * Prevent a too long timeslice allowing a task to monopolize
  2605. * the CPU. We do this by splitting up the timeslice into
  2606. * smaller pieces.
  2607. *
  2608. * Note: this does not mean the task's timeslices expire or
  2609. * get lost in any way, they just might be preempted by
  2610. * another task of equal priority. (one with higher
  2611. * priority would have preempted this task already.) We
  2612. * requeue this task to the end of the list on this priority
  2613. * level, which is in essence a round-robin of tasks with
  2614. * equal priority.
  2615. *
  2616. * This only applies to tasks in the interactive
  2617. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2618. */
  2619. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2620. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2621. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2622. (p->array == rq->active)) {
  2623. requeue_task(p, rq->active);
  2624. set_tsk_need_resched(p);
  2625. }
  2626. }
  2627. out_unlock:
  2628. spin_unlock(&rq->lock);
  2629. out:
  2630. rebalance_tick(cpu, rq, NOT_IDLE);
  2631. }
  2632. #ifdef CONFIG_SCHED_SMT
  2633. static inline void wakeup_busy_runqueue(runqueue_t *rq)
  2634. {
  2635. /* If an SMT runqueue is sleeping due to priority reasons wake it up */
  2636. if (rq->curr == rq->idle && rq->nr_running)
  2637. resched_task(rq->idle);
  2638. }
  2639. /*
  2640. * Called with interrupt disabled and this_rq's runqueue locked.
  2641. */
  2642. static void wake_sleeping_dependent(int this_cpu)
  2643. {
  2644. struct sched_domain *tmp, *sd = NULL;
  2645. int i;
  2646. for_each_domain(this_cpu, tmp) {
  2647. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2648. sd = tmp;
  2649. break;
  2650. }
  2651. }
  2652. if (!sd)
  2653. return;
  2654. for_each_cpu_mask(i, sd->span) {
  2655. runqueue_t *smt_rq = cpu_rq(i);
  2656. if (i == this_cpu)
  2657. continue;
  2658. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2659. continue;
  2660. wakeup_busy_runqueue(smt_rq);
  2661. spin_unlock(&smt_rq->lock);
  2662. }
  2663. }
  2664. /*
  2665. * number of 'lost' timeslices this task wont be able to fully
  2666. * utilize, if another task runs on a sibling. This models the
  2667. * slowdown effect of other tasks running on siblings:
  2668. */
  2669. static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
  2670. {
  2671. return p->time_slice * (100 - sd->per_cpu_gain) / 100;
  2672. }
  2673. /*
  2674. * To minimise lock contention and not have to drop this_rq's runlock we only
  2675. * trylock the sibling runqueues and bypass those runqueues if we fail to
  2676. * acquire their lock. As we only trylock the normal locking order does not
  2677. * need to be obeyed.
  2678. */
  2679. static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
  2680. {
  2681. struct sched_domain *tmp, *sd = NULL;
  2682. int ret = 0, i;
  2683. /* kernel/rt threads do not participate in dependent sleeping */
  2684. if (!p->mm || rt_task(p))
  2685. return 0;
  2686. for_each_domain(this_cpu, tmp) {
  2687. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2688. sd = tmp;
  2689. break;
  2690. }
  2691. }
  2692. if (!sd)
  2693. return 0;
  2694. for_each_cpu_mask(i, sd->span) {
  2695. runqueue_t *smt_rq;
  2696. task_t *smt_curr;
  2697. if (i == this_cpu)
  2698. continue;
  2699. smt_rq = cpu_rq(i);
  2700. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2701. continue;
  2702. smt_curr = smt_rq->curr;
  2703. if (!smt_curr->mm)
  2704. goto unlock;
  2705. /*
  2706. * If a user task with lower static priority than the
  2707. * running task on the SMT sibling is trying to schedule,
  2708. * delay it till there is proportionately less timeslice
  2709. * left of the sibling task to prevent a lower priority
  2710. * task from using an unfair proportion of the
  2711. * physical cpu's resources. -ck
  2712. */
  2713. if (rt_task(smt_curr)) {
  2714. /*
  2715. * With real time tasks we run non-rt tasks only
  2716. * per_cpu_gain% of the time.
  2717. */
  2718. if ((jiffies % DEF_TIMESLICE) >
  2719. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2720. ret = 1;
  2721. } else {
  2722. if (smt_curr->static_prio < p->static_prio &&
  2723. !TASK_PREEMPTS_CURR(p, smt_rq) &&
  2724. smt_slice(smt_curr, sd) > task_timeslice(p))
  2725. ret = 1;
  2726. }
  2727. unlock:
  2728. spin_unlock(&smt_rq->lock);
  2729. }
  2730. return ret;
  2731. }
  2732. #else
  2733. static inline void wake_sleeping_dependent(int this_cpu)
  2734. {
  2735. }
  2736. static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
  2737. task_t *p)
  2738. {
  2739. return 0;
  2740. }
  2741. #endif
  2742. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2743. void fastcall add_preempt_count(int val)
  2744. {
  2745. /*
  2746. * Underflow?
  2747. */
  2748. BUG_ON((preempt_count() < 0));
  2749. preempt_count() += val;
  2750. /*
  2751. * Spinlock count overflowing soon?
  2752. */
  2753. BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
  2754. }
  2755. EXPORT_SYMBOL(add_preempt_count);
  2756. void fastcall sub_preempt_count(int val)
  2757. {
  2758. /*
  2759. * Underflow?
  2760. */
  2761. BUG_ON(val > preempt_count());
  2762. /*
  2763. * Is the spinlock portion underflowing?
  2764. */
  2765. BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
  2766. preempt_count() -= val;
  2767. }
  2768. EXPORT_SYMBOL(sub_preempt_count);
  2769. #endif
  2770. static inline int interactive_sleep(enum sleep_type sleep_type)
  2771. {
  2772. return (sleep_type == SLEEP_INTERACTIVE ||
  2773. sleep_type == SLEEP_INTERRUPTED);
  2774. }
  2775. /*
  2776. * schedule() is the main scheduler function.
  2777. */
  2778. asmlinkage void __sched schedule(void)
  2779. {
  2780. long *switch_count;
  2781. task_t *prev, *next;
  2782. runqueue_t *rq;
  2783. prio_array_t *array;
  2784. struct list_head *queue;
  2785. unsigned long long now;
  2786. unsigned long run_time;
  2787. int cpu, idx, new_prio;
  2788. /*
  2789. * Test if we are atomic. Since do_exit() needs to call into
  2790. * schedule() atomically, we ignore that path for now.
  2791. * Otherwise, whine if we are scheduling when we should not be.
  2792. */
  2793. if (unlikely(in_atomic() && !current->exit_state)) {
  2794. printk(KERN_ERR "BUG: scheduling while atomic: "
  2795. "%s/0x%08x/%d\n",
  2796. current->comm, preempt_count(), current->pid);
  2797. dump_stack();
  2798. }
  2799. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2800. need_resched:
  2801. preempt_disable();
  2802. prev = current;
  2803. release_kernel_lock(prev);
  2804. need_resched_nonpreemptible:
  2805. rq = this_rq();
  2806. /*
  2807. * The idle thread is not allowed to schedule!
  2808. * Remove this check after it has been exercised a bit.
  2809. */
  2810. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  2811. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  2812. dump_stack();
  2813. }
  2814. schedstat_inc(rq, sched_cnt);
  2815. now = sched_clock();
  2816. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  2817. run_time = now - prev->timestamp;
  2818. if (unlikely((long long)(now - prev->timestamp) < 0))
  2819. run_time = 0;
  2820. } else
  2821. run_time = NS_MAX_SLEEP_AVG;
  2822. /*
  2823. * Tasks charged proportionately less run_time at high sleep_avg to
  2824. * delay them losing their interactive status
  2825. */
  2826. run_time /= (CURRENT_BONUS(prev) ? : 1);
  2827. spin_lock_irq(&rq->lock);
  2828. if (unlikely(prev->flags & PF_DEAD))
  2829. prev->state = EXIT_DEAD;
  2830. switch_count = &prev->nivcsw;
  2831. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2832. switch_count = &prev->nvcsw;
  2833. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2834. unlikely(signal_pending(prev))))
  2835. prev->state = TASK_RUNNING;
  2836. else {
  2837. if (prev->state == TASK_UNINTERRUPTIBLE)
  2838. rq->nr_uninterruptible++;
  2839. deactivate_task(prev, rq);
  2840. }
  2841. }
  2842. cpu = smp_processor_id();
  2843. if (unlikely(!rq->nr_running)) {
  2844. idle_balance(cpu, rq);
  2845. if (!rq->nr_running) {
  2846. next = rq->idle;
  2847. rq->expired_timestamp = 0;
  2848. wake_sleeping_dependent(cpu);
  2849. goto switch_tasks;
  2850. }
  2851. }
  2852. array = rq->active;
  2853. if (unlikely(!array->nr_active)) {
  2854. /*
  2855. * Switch the active and expired arrays.
  2856. */
  2857. schedstat_inc(rq, sched_switch);
  2858. rq->active = rq->expired;
  2859. rq->expired = array;
  2860. array = rq->active;
  2861. rq->expired_timestamp = 0;
  2862. rq->best_expired_prio = MAX_PRIO;
  2863. }
  2864. idx = sched_find_first_bit(array->bitmap);
  2865. queue = array->queue + idx;
  2866. next = list_entry(queue->next, task_t, run_list);
  2867. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  2868. unsigned long long delta = now - next->timestamp;
  2869. if (unlikely((long long)(now - next->timestamp) < 0))
  2870. delta = 0;
  2871. if (next->sleep_type == SLEEP_INTERACTIVE)
  2872. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  2873. array = next->array;
  2874. new_prio = recalc_task_prio(next, next->timestamp + delta);
  2875. if (unlikely(next->prio != new_prio)) {
  2876. dequeue_task(next, array);
  2877. next->prio = new_prio;
  2878. enqueue_task(next, array);
  2879. }
  2880. }
  2881. next->sleep_type = SLEEP_NORMAL;
  2882. if (dependent_sleeper(cpu, rq, next))
  2883. next = rq->idle;
  2884. switch_tasks:
  2885. if (next == rq->idle)
  2886. schedstat_inc(rq, sched_goidle);
  2887. prefetch(next);
  2888. prefetch_stack(next);
  2889. clear_tsk_need_resched(prev);
  2890. rcu_qsctr_inc(task_cpu(prev));
  2891. update_cpu_clock(prev, rq, now);
  2892. prev->sleep_avg -= run_time;
  2893. if ((long)prev->sleep_avg <= 0)
  2894. prev->sleep_avg = 0;
  2895. prev->timestamp = prev->last_ran = now;
  2896. sched_info_switch(prev, next);
  2897. if (likely(prev != next)) {
  2898. next->timestamp = now;
  2899. rq->nr_switches++;
  2900. rq->curr = next;
  2901. ++*switch_count;
  2902. prepare_task_switch(rq, next);
  2903. prev = context_switch(rq, prev, next);
  2904. barrier();
  2905. /*
  2906. * this_rq must be evaluated again because prev may have moved
  2907. * CPUs since it called schedule(), thus the 'rq' on its stack
  2908. * frame will be invalid.
  2909. */
  2910. finish_task_switch(this_rq(), prev);
  2911. } else
  2912. spin_unlock_irq(&rq->lock);
  2913. prev = current;
  2914. if (unlikely(reacquire_kernel_lock(prev) < 0))
  2915. goto need_resched_nonpreemptible;
  2916. preempt_enable_no_resched();
  2917. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2918. goto need_resched;
  2919. }
  2920. EXPORT_SYMBOL(schedule);
  2921. #ifdef CONFIG_PREEMPT
  2922. /*
  2923. * this is is the entry point to schedule() from in-kernel preemption
  2924. * off of preempt_enable. Kernel preemptions off return from interrupt
  2925. * occur there and call schedule directly.
  2926. */
  2927. asmlinkage void __sched preempt_schedule(void)
  2928. {
  2929. struct thread_info *ti = current_thread_info();
  2930. #ifdef CONFIG_PREEMPT_BKL
  2931. struct task_struct *task = current;
  2932. int saved_lock_depth;
  2933. #endif
  2934. /*
  2935. * If there is a non-zero preempt_count or interrupts are disabled,
  2936. * we do not want to preempt the current task. Just return..
  2937. */
  2938. if (unlikely(ti->preempt_count || irqs_disabled()))
  2939. return;
  2940. need_resched:
  2941. add_preempt_count(PREEMPT_ACTIVE);
  2942. /*
  2943. * We keep the big kernel semaphore locked, but we
  2944. * clear ->lock_depth so that schedule() doesnt
  2945. * auto-release the semaphore:
  2946. */
  2947. #ifdef CONFIG_PREEMPT_BKL
  2948. saved_lock_depth = task->lock_depth;
  2949. task->lock_depth = -1;
  2950. #endif
  2951. schedule();
  2952. #ifdef CONFIG_PREEMPT_BKL
  2953. task->lock_depth = saved_lock_depth;
  2954. #endif
  2955. sub_preempt_count(PREEMPT_ACTIVE);
  2956. /* we could miss a preemption opportunity between schedule and now */
  2957. barrier();
  2958. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2959. goto need_resched;
  2960. }
  2961. EXPORT_SYMBOL(preempt_schedule);
  2962. /*
  2963. * this is is the entry point to schedule() from kernel preemption
  2964. * off of irq context.
  2965. * Note, that this is called and return with irqs disabled. This will
  2966. * protect us against recursive calling from irq.
  2967. */
  2968. asmlinkage void __sched preempt_schedule_irq(void)
  2969. {
  2970. struct thread_info *ti = current_thread_info();
  2971. #ifdef CONFIG_PREEMPT_BKL
  2972. struct task_struct *task = current;
  2973. int saved_lock_depth;
  2974. #endif
  2975. /* Catch callers which need to be fixed*/
  2976. BUG_ON(ti->preempt_count || !irqs_disabled());
  2977. need_resched:
  2978. add_preempt_count(PREEMPT_ACTIVE);
  2979. /*
  2980. * We keep the big kernel semaphore locked, but we
  2981. * clear ->lock_depth so that schedule() doesnt
  2982. * auto-release the semaphore:
  2983. */
  2984. #ifdef CONFIG_PREEMPT_BKL
  2985. saved_lock_depth = task->lock_depth;
  2986. task->lock_depth = -1;
  2987. #endif
  2988. local_irq_enable();
  2989. schedule();
  2990. local_irq_disable();
  2991. #ifdef CONFIG_PREEMPT_BKL
  2992. task->lock_depth = saved_lock_depth;
  2993. #endif
  2994. sub_preempt_count(PREEMPT_ACTIVE);
  2995. /* we could miss a preemption opportunity between schedule and now */
  2996. barrier();
  2997. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2998. goto need_resched;
  2999. }
  3000. #endif /* CONFIG_PREEMPT */
  3001. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3002. void *key)
  3003. {
  3004. task_t *p = curr->private;
  3005. return try_to_wake_up(p, mode, sync);
  3006. }
  3007. EXPORT_SYMBOL(default_wake_function);
  3008. /*
  3009. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3010. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3011. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3012. *
  3013. * There are circumstances in which we can try to wake a task which has already
  3014. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3015. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3016. */
  3017. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3018. int nr_exclusive, int sync, void *key)
  3019. {
  3020. struct list_head *tmp, *next;
  3021. list_for_each_safe(tmp, next, &q->task_list) {
  3022. wait_queue_t *curr;
  3023. unsigned flags;
  3024. curr = list_entry(tmp, wait_queue_t, task_list);
  3025. flags = curr->flags;
  3026. if (curr->func(curr, mode, sync, key) &&
  3027. (flags & WQ_FLAG_EXCLUSIVE) &&
  3028. !--nr_exclusive)
  3029. break;
  3030. }
  3031. }
  3032. /**
  3033. * __wake_up - wake up threads blocked on a waitqueue.
  3034. * @q: the waitqueue
  3035. * @mode: which threads
  3036. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3037. * @key: is directly passed to the wakeup function
  3038. */
  3039. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3040. int nr_exclusive, void *key)
  3041. {
  3042. unsigned long flags;
  3043. spin_lock_irqsave(&q->lock, flags);
  3044. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3045. spin_unlock_irqrestore(&q->lock, flags);
  3046. }
  3047. EXPORT_SYMBOL(__wake_up);
  3048. /*
  3049. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3050. */
  3051. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3052. {
  3053. __wake_up_common(q, mode, 1, 0, NULL);
  3054. }
  3055. /**
  3056. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3057. * @q: the waitqueue
  3058. * @mode: which threads
  3059. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3060. *
  3061. * The sync wakeup differs that the waker knows that it will schedule
  3062. * away soon, so while the target thread will be woken up, it will not
  3063. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3064. * with each other. This can prevent needless bouncing between CPUs.
  3065. *
  3066. * On UP it can prevent extra preemption.
  3067. */
  3068. void fastcall
  3069. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3070. {
  3071. unsigned long flags;
  3072. int sync = 1;
  3073. if (unlikely(!q))
  3074. return;
  3075. if (unlikely(!nr_exclusive))
  3076. sync = 0;
  3077. spin_lock_irqsave(&q->lock, flags);
  3078. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3079. spin_unlock_irqrestore(&q->lock, flags);
  3080. }
  3081. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3082. void fastcall complete(struct completion *x)
  3083. {
  3084. unsigned long flags;
  3085. spin_lock_irqsave(&x->wait.lock, flags);
  3086. x->done++;
  3087. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3088. 1, 0, NULL);
  3089. spin_unlock_irqrestore(&x->wait.lock, flags);
  3090. }
  3091. EXPORT_SYMBOL(complete);
  3092. void fastcall complete_all(struct completion *x)
  3093. {
  3094. unsigned long flags;
  3095. spin_lock_irqsave(&x->wait.lock, flags);
  3096. x->done += UINT_MAX/2;
  3097. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3098. 0, 0, NULL);
  3099. spin_unlock_irqrestore(&x->wait.lock, flags);
  3100. }
  3101. EXPORT_SYMBOL(complete_all);
  3102. void fastcall __sched wait_for_completion(struct completion *x)
  3103. {
  3104. might_sleep();
  3105. spin_lock_irq(&x->wait.lock);
  3106. if (!x->done) {
  3107. DECLARE_WAITQUEUE(wait, current);
  3108. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3109. __add_wait_queue_tail(&x->wait, &wait);
  3110. do {
  3111. __set_current_state(TASK_UNINTERRUPTIBLE);
  3112. spin_unlock_irq(&x->wait.lock);
  3113. schedule();
  3114. spin_lock_irq(&x->wait.lock);
  3115. } while (!x->done);
  3116. __remove_wait_queue(&x->wait, &wait);
  3117. }
  3118. x->done--;
  3119. spin_unlock_irq(&x->wait.lock);
  3120. }
  3121. EXPORT_SYMBOL(wait_for_completion);
  3122. unsigned long fastcall __sched
  3123. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3124. {
  3125. might_sleep();
  3126. spin_lock_irq(&x->wait.lock);
  3127. if (!x->done) {
  3128. DECLARE_WAITQUEUE(wait, current);
  3129. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3130. __add_wait_queue_tail(&x->wait, &wait);
  3131. do {
  3132. __set_current_state(TASK_UNINTERRUPTIBLE);
  3133. spin_unlock_irq(&x->wait.lock);
  3134. timeout = schedule_timeout(timeout);
  3135. spin_lock_irq(&x->wait.lock);
  3136. if (!timeout) {
  3137. __remove_wait_queue(&x->wait, &wait);
  3138. goto out;
  3139. }
  3140. } while (!x->done);
  3141. __remove_wait_queue(&x->wait, &wait);
  3142. }
  3143. x->done--;
  3144. out:
  3145. spin_unlock_irq(&x->wait.lock);
  3146. return timeout;
  3147. }
  3148. EXPORT_SYMBOL(wait_for_completion_timeout);
  3149. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3150. {
  3151. int ret = 0;
  3152. might_sleep();
  3153. spin_lock_irq(&x->wait.lock);
  3154. if (!x->done) {
  3155. DECLARE_WAITQUEUE(wait, current);
  3156. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3157. __add_wait_queue_tail(&x->wait, &wait);
  3158. do {
  3159. if (signal_pending(current)) {
  3160. ret = -ERESTARTSYS;
  3161. __remove_wait_queue(&x->wait, &wait);
  3162. goto out;
  3163. }
  3164. __set_current_state(TASK_INTERRUPTIBLE);
  3165. spin_unlock_irq(&x->wait.lock);
  3166. schedule();
  3167. spin_lock_irq(&x->wait.lock);
  3168. } while (!x->done);
  3169. __remove_wait_queue(&x->wait, &wait);
  3170. }
  3171. x->done--;
  3172. out:
  3173. spin_unlock_irq(&x->wait.lock);
  3174. return ret;
  3175. }
  3176. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3177. unsigned long fastcall __sched
  3178. wait_for_completion_interruptible_timeout(struct completion *x,
  3179. unsigned long timeout)
  3180. {
  3181. might_sleep();
  3182. spin_lock_irq(&x->wait.lock);
  3183. if (!x->done) {
  3184. DECLARE_WAITQUEUE(wait, current);
  3185. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3186. __add_wait_queue_tail(&x->wait, &wait);
  3187. do {
  3188. if (signal_pending(current)) {
  3189. timeout = -ERESTARTSYS;
  3190. __remove_wait_queue(&x->wait, &wait);
  3191. goto out;
  3192. }
  3193. __set_current_state(TASK_INTERRUPTIBLE);
  3194. spin_unlock_irq(&x->wait.lock);
  3195. timeout = schedule_timeout(timeout);
  3196. spin_lock_irq(&x->wait.lock);
  3197. if (!timeout) {
  3198. __remove_wait_queue(&x->wait, &wait);
  3199. goto out;
  3200. }
  3201. } while (!x->done);
  3202. __remove_wait_queue(&x->wait, &wait);
  3203. }
  3204. x->done--;
  3205. out:
  3206. spin_unlock_irq(&x->wait.lock);
  3207. return timeout;
  3208. }
  3209. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3210. #define SLEEP_ON_VAR \
  3211. unsigned long flags; \
  3212. wait_queue_t wait; \
  3213. init_waitqueue_entry(&wait, current);
  3214. #define SLEEP_ON_HEAD \
  3215. spin_lock_irqsave(&q->lock,flags); \
  3216. __add_wait_queue(q, &wait); \
  3217. spin_unlock(&q->lock);
  3218. #define SLEEP_ON_TAIL \
  3219. spin_lock_irq(&q->lock); \
  3220. __remove_wait_queue(q, &wait); \
  3221. spin_unlock_irqrestore(&q->lock, flags);
  3222. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3223. {
  3224. SLEEP_ON_VAR
  3225. current->state = TASK_INTERRUPTIBLE;
  3226. SLEEP_ON_HEAD
  3227. schedule();
  3228. SLEEP_ON_TAIL
  3229. }
  3230. EXPORT_SYMBOL(interruptible_sleep_on);
  3231. long fastcall __sched
  3232. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3233. {
  3234. SLEEP_ON_VAR
  3235. current->state = TASK_INTERRUPTIBLE;
  3236. SLEEP_ON_HEAD
  3237. timeout = schedule_timeout(timeout);
  3238. SLEEP_ON_TAIL
  3239. return timeout;
  3240. }
  3241. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3242. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3243. {
  3244. SLEEP_ON_VAR
  3245. current->state = TASK_UNINTERRUPTIBLE;
  3246. SLEEP_ON_HEAD
  3247. schedule();
  3248. SLEEP_ON_TAIL
  3249. }
  3250. EXPORT_SYMBOL(sleep_on);
  3251. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3252. {
  3253. SLEEP_ON_VAR
  3254. current->state = TASK_UNINTERRUPTIBLE;
  3255. SLEEP_ON_HEAD
  3256. timeout = schedule_timeout(timeout);
  3257. SLEEP_ON_TAIL
  3258. return timeout;
  3259. }
  3260. EXPORT_SYMBOL(sleep_on_timeout);
  3261. #ifdef CONFIG_RT_MUTEXES
  3262. /*
  3263. * rt_mutex_setprio - set the current priority of a task
  3264. * @p: task
  3265. * @prio: prio value (kernel-internal form)
  3266. *
  3267. * This function changes the 'effective' priority of a task. It does
  3268. * not touch ->normal_prio like __setscheduler().
  3269. *
  3270. * Used by the rt_mutex code to implement priority inheritance logic.
  3271. */
  3272. void rt_mutex_setprio(task_t *p, int prio)
  3273. {
  3274. unsigned long flags;
  3275. prio_array_t *array;
  3276. runqueue_t *rq;
  3277. int oldprio;
  3278. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3279. rq = task_rq_lock(p, &flags);
  3280. oldprio = p->prio;
  3281. array = p->array;
  3282. if (array)
  3283. dequeue_task(p, array);
  3284. p->prio = prio;
  3285. if (array) {
  3286. /*
  3287. * If changing to an RT priority then queue it
  3288. * in the active array!
  3289. */
  3290. if (rt_task(p))
  3291. array = rq->active;
  3292. enqueue_task(p, array);
  3293. /*
  3294. * Reschedule if we are currently running on this runqueue and
  3295. * our priority decreased, or if we are not currently running on
  3296. * this runqueue and our priority is higher than the current's
  3297. */
  3298. if (task_running(rq, p)) {
  3299. if (p->prio > oldprio)
  3300. resched_task(rq->curr);
  3301. } else if (TASK_PREEMPTS_CURR(p, rq))
  3302. resched_task(rq->curr);
  3303. }
  3304. task_rq_unlock(rq, &flags);
  3305. }
  3306. #endif
  3307. void set_user_nice(task_t *p, long nice)
  3308. {
  3309. unsigned long flags;
  3310. prio_array_t *array;
  3311. runqueue_t *rq;
  3312. int old_prio, delta;
  3313. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3314. return;
  3315. /*
  3316. * We have to be careful, if called from sys_setpriority(),
  3317. * the task might be in the middle of scheduling on another CPU.
  3318. */
  3319. rq = task_rq_lock(p, &flags);
  3320. /*
  3321. * The RT priorities are set via sched_setscheduler(), but we still
  3322. * allow the 'normal' nice value to be set - but as expected
  3323. * it wont have any effect on scheduling until the task is
  3324. * not SCHED_NORMAL/SCHED_BATCH:
  3325. */
  3326. if (has_rt_policy(p)) {
  3327. p->static_prio = NICE_TO_PRIO(nice);
  3328. goto out_unlock;
  3329. }
  3330. array = p->array;
  3331. if (array) {
  3332. dequeue_task(p, array);
  3333. dec_raw_weighted_load(rq, p);
  3334. }
  3335. p->static_prio = NICE_TO_PRIO(nice);
  3336. set_load_weight(p);
  3337. old_prio = p->prio;
  3338. p->prio = effective_prio(p);
  3339. delta = p->prio - old_prio;
  3340. if (array) {
  3341. enqueue_task(p, array);
  3342. inc_raw_weighted_load(rq, p);
  3343. /*
  3344. * If the task increased its priority or is running and
  3345. * lowered its priority, then reschedule its CPU:
  3346. */
  3347. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3348. resched_task(rq->curr);
  3349. }
  3350. out_unlock:
  3351. task_rq_unlock(rq, &flags);
  3352. }
  3353. EXPORT_SYMBOL(set_user_nice);
  3354. /*
  3355. * can_nice - check if a task can reduce its nice value
  3356. * @p: task
  3357. * @nice: nice value
  3358. */
  3359. int can_nice(const task_t *p, const int nice)
  3360. {
  3361. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3362. int nice_rlim = 20 - nice;
  3363. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3364. capable(CAP_SYS_NICE));
  3365. }
  3366. #ifdef __ARCH_WANT_SYS_NICE
  3367. /*
  3368. * sys_nice - change the priority of the current process.
  3369. * @increment: priority increment
  3370. *
  3371. * sys_setpriority is a more generic, but much slower function that
  3372. * does similar things.
  3373. */
  3374. asmlinkage long sys_nice(int increment)
  3375. {
  3376. int retval;
  3377. long nice;
  3378. /*
  3379. * Setpriority might change our priority at the same moment.
  3380. * We don't have to worry. Conceptually one call occurs first
  3381. * and we have a single winner.
  3382. */
  3383. if (increment < -40)
  3384. increment = -40;
  3385. if (increment > 40)
  3386. increment = 40;
  3387. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3388. if (nice < -20)
  3389. nice = -20;
  3390. if (nice > 19)
  3391. nice = 19;
  3392. if (increment < 0 && !can_nice(current, nice))
  3393. return -EPERM;
  3394. retval = security_task_setnice(current, nice);
  3395. if (retval)
  3396. return retval;
  3397. set_user_nice(current, nice);
  3398. return 0;
  3399. }
  3400. #endif
  3401. /**
  3402. * task_prio - return the priority value of a given task.
  3403. * @p: the task in question.
  3404. *
  3405. * This is the priority value as seen by users in /proc.
  3406. * RT tasks are offset by -200. Normal tasks are centered
  3407. * around 0, value goes from -16 to +15.
  3408. */
  3409. int task_prio(const task_t *p)
  3410. {
  3411. return p->prio - MAX_RT_PRIO;
  3412. }
  3413. /**
  3414. * task_nice - return the nice value of a given task.
  3415. * @p: the task in question.
  3416. */
  3417. int task_nice(const task_t *p)
  3418. {
  3419. return TASK_NICE(p);
  3420. }
  3421. EXPORT_SYMBOL_GPL(task_nice);
  3422. /**
  3423. * idle_cpu - is a given cpu idle currently?
  3424. * @cpu: the processor in question.
  3425. */
  3426. int idle_cpu(int cpu)
  3427. {
  3428. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3429. }
  3430. /**
  3431. * idle_task - return the idle task for a given cpu.
  3432. * @cpu: the processor in question.
  3433. */
  3434. task_t *idle_task(int cpu)
  3435. {
  3436. return cpu_rq(cpu)->idle;
  3437. }
  3438. /**
  3439. * find_process_by_pid - find a process with a matching PID value.
  3440. * @pid: the pid in question.
  3441. */
  3442. static inline task_t *find_process_by_pid(pid_t pid)
  3443. {
  3444. return pid ? find_task_by_pid(pid) : current;
  3445. }
  3446. /* Actually do priority change: must hold rq lock. */
  3447. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3448. {
  3449. BUG_ON(p->array);
  3450. p->policy = policy;
  3451. p->rt_priority = prio;
  3452. p->normal_prio = normal_prio(p);
  3453. /* we are holding p->pi_lock already */
  3454. p->prio = rt_mutex_getprio(p);
  3455. /*
  3456. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3457. */
  3458. if (policy == SCHED_BATCH)
  3459. p->sleep_avg = 0;
  3460. set_load_weight(p);
  3461. }
  3462. /**
  3463. * sched_setscheduler - change the scheduling policy and/or RT priority of
  3464. * a thread.
  3465. * @p: the task in question.
  3466. * @policy: new policy.
  3467. * @param: structure containing the new RT priority.
  3468. */
  3469. int sched_setscheduler(struct task_struct *p, int policy,
  3470. struct sched_param *param)
  3471. {
  3472. int retval;
  3473. int oldprio, oldpolicy = -1;
  3474. prio_array_t *array;
  3475. unsigned long flags;
  3476. runqueue_t *rq;
  3477. /* may grab non-irq protected spin_locks */
  3478. BUG_ON(in_interrupt());
  3479. recheck:
  3480. /* double check policy once rq lock held */
  3481. if (policy < 0)
  3482. policy = oldpolicy = p->policy;
  3483. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3484. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3485. return -EINVAL;
  3486. /*
  3487. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3488. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3489. * SCHED_BATCH is 0.
  3490. */
  3491. if (param->sched_priority < 0 ||
  3492. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3493. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3494. return -EINVAL;
  3495. if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
  3496. != (param->sched_priority == 0))
  3497. return -EINVAL;
  3498. /*
  3499. * Allow unprivileged RT tasks to decrease priority:
  3500. */
  3501. if (!capable(CAP_SYS_NICE)) {
  3502. /*
  3503. * can't change policy, except between SCHED_NORMAL
  3504. * and SCHED_BATCH:
  3505. */
  3506. if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
  3507. (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
  3508. !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3509. return -EPERM;
  3510. /* can't increase priority */
  3511. if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
  3512. param->sched_priority > p->rt_priority &&
  3513. param->sched_priority >
  3514. p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3515. return -EPERM;
  3516. /* can't change other user's priorities */
  3517. if ((current->euid != p->euid) &&
  3518. (current->euid != p->uid))
  3519. return -EPERM;
  3520. }
  3521. retval = security_task_setscheduler(p, policy, param);
  3522. if (retval)
  3523. return retval;
  3524. /*
  3525. * make sure no PI-waiters arrive (or leave) while we are
  3526. * changing the priority of the task:
  3527. */
  3528. spin_lock_irqsave(&p->pi_lock, flags);
  3529. /*
  3530. * To be able to change p->policy safely, the apropriate
  3531. * runqueue lock must be held.
  3532. */
  3533. rq = __task_rq_lock(p);
  3534. /* recheck policy now with rq lock held */
  3535. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3536. policy = oldpolicy = -1;
  3537. __task_rq_unlock(rq);
  3538. spin_unlock_irqrestore(&p->pi_lock, flags);
  3539. goto recheck;
  3540. }
  3541. array = p->array;
  3542. if (array)
  3543. deactivate_task(p, rq);
  3544. oldprio = p->prio;
  3545. __setscheduler(p, policy, param->sched_priority);
  3546. if (array) {
  3547. __activate_task(p, rq);
  3548. /*
  3549. * Reschedule if we are currently running on this runqueue and
  3550. * our priority decreased, or if we are not currently running on
  3551. * this runqueue and our priority is higher than the current's
  3552. */
  3553. if (task_running(rq, p)) {
  3554. if (p->prio > oldprio)
  3555. resched_task(rq->curr);
  3556. } else if (TASK_PREEMPTS_CURR(p, rq))
  3557. resched_task(rq->curr);
  3558. }
  3559. __task_rq_unlock(rq);
  3560. spin_unlock_irqrestore(&p->pi_lock, flags);
  3561. return 0;
  3562. }
  3563. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3564. static int
  3565. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3566. {
  3567. int retval;
  3568. struct sched_param lparam;
  3569. struct task_struct *p;
  3570. if (!param || pid < 0)
  3571. return -EINVAL;
  3572. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3573. return -EFAULT;
  3574. read_lock_irq(&tasklist_lock);
  3575. p = find_process_by_pid(pid);
  3576. if (!p) {
  3577. read_unlock_irq(&tasklist_lock);
  3578. return -ESRCH;
  3579. }
  3580. retval = sched_setscheduler(p, policy, &lparam);
  3581. read_unlock_irq(&tasklist_lock);
  3582. return retval;
  3583. }
  3584. /**
  3585. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3586. * @pid: the pid in question.
  3587. * @policy: new policy.
  3588. * @param: structure containing the new RT priority.
  3589. */
  3590. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3591. struct sched_param __user *param)
  3592. {
  3593. /* negative values for policy are not valid */
  3594. if (policy < 0)
  3595. return -EINVAL;
  3596. return do_sched_setscheduler(pid, policy, param);
  3597. }
  3598. /**
  3599. * sys_sched_setparam - set/change the RT priority of a thread
  3600. * @pid: the pid in question.
  3601. * @param: structure containing the new RT priority.
  3602. */
  3603. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3604. {
  3605. return do_sched_setscheduler(pid, -1, param);
  3606. }
  3607. /**
  3608. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3609. * @pid: the pid in question.
  3610. */
  3611. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3612. {
  3613. int retval = -EINVAL;
  3614. task_t *p;
  3615. if (pid < 0)
  3616. goto out_nounlock;
  3617. retval = -ESRCH;
  3618. read_lock(&tasklist_lock);
  3619. p = find_process_by_pid(pid);
  3620. if (p) {
  3621. retval = security_task_getscheduler(p);
  3622. if (!retval)
  3623. retval = p->policy;
  3624. }
  3625. read_unlock(&tasklist_lock);
  3626. out_nounlock:
  3627. return retval;
  3628. }
  3629. /**
  3630. * sys_sched_getscheduler - get the RT priority of a thread
  3631. * @pid: the pid in question.
  3632. * @param: structure containing the RT priority.
  3633. */
  3634. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3635. {
  3636. struct sched_param lp;
  3637. int retval = -EINVAL;
  3638. task_t *p;
  3639. if (!param || pid < 0)
  3640. goto out_nounlock;
  3641. read_lock(&tasklist_lock);
  3642. p = find_process_by_pid(pid);
  3643. retval = -ESRCH;
  3644. if (!p)
  3645. goto out_unlock;
  3646. retval = security_task_getscheduler(p);
  3647. if (retval)
  3648. goto out_unlock;
  3649. lp.sched_priority = p->rt_priority;
  3650. read_unlock(&tasklist_lock);
  3651. /*
  3652. * This one might sleep, we cannot do it with a spinlock held ...
  3653. */
  3654. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3655. out_nounlock:
  3656. return retval;
  3657. out_unlock:
  3658. read_unlock(&tasklist_lock);
  3659. return retval;
  3660. }
  3661. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3662. {
  3663. task_t *p;
  3664. int retval;
  3665. cpumask_t cpus_allowed;
  3666. lock_cpu_hotplug();
  3667. read_lock(&tasklist_lock);
  3668. p = find_process_by_pid(pid);
  3669. if (!p) {
  3670. read_unlock(&tasklist_lock);
  3671. unlock_cpu_hotplug();
  3672. return -ESRCH;
  3673. }
  3674. /*
  3675. * It is not safe to call set_cpus_allowed with the
  3676. * tasklist_lock held. We will bump the task_struct's
  3677. * usage count and then drop tasklist_lock.
  3678. */
  3679. get_task_struct(p);
  3680. read_unlock(&tasklist_lock);
  3681. retval = -EPERM;
  3682. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3683. !capable(CAP_SYS_NICE))
  3684. goto out_unlock;
  3685. retval = security_task_setscheduler(p, 0, NULL);
  3686. if (retval)
  3687. goto out_unlock;
  3688. cpus_allowed = cpuset_cpus_allowed(p);
  3689. cpus_and(new_mask, new_mask, cpus_allowed);
  3690. retval = set_cpus_allowed(p, new_mask);
  3691. out_unlock:
  3692. put_task_struct(p);
  3693. unlock_cpu_hotplug();
  3694. return retval;
  3695. }
  3696. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3697. cpumask_t *new_mask)
  3698. {
  3699. if (len < sizeof(cpumask_t)) {
  3700. memset(new_mask, 0, sizeof(cpumask_t));
  3701. } else if (len > sizeof(cpumask_t)) {
  3702. len = sizeof(cpumask_t);
  3703. }
  3704. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3705. }
  3706. /**
  3707. * sys_sched_setaffinity - set the cpu affinity of a process
  3708. * @pid: pid of the process
  3709. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3710. * @user_mask_ptr: user-space pointer to the new cpu mask
  3711. */
  3712. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3713. unsigned long __user *user_mask_ptr)
  3714. {
  3715. cpumask_t new_mask;
  3716. int retval;
  3717. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3718. if (retval)
  3719. return retval;
  3720. return sched_setaffinity(pid, new_mask);
  3721. }
  3722. /*
  3723. * Represents all cpu's present in the system
  3724. * In systems capable of hotplug, this map could dynamically grow
  3725. * as new cpu's are detected in the system via any platform specific
  3726. * method, such as ACPI for e.g.
  3727. */
  3728. cpumask_t cpu_present_map __read_mostly;
  3729. EXPORT_SYMBOL(cpu_present_map);
  3730. #ifndef CONFIG_SMP
  3731. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3732. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3733. #endif
  3734. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3735. {
  3736. int retval;
  3737. task_t *p;
  3738. lock_cpu_hotplug();
  3739. read_lock(&tasklist_lock);
  3740. retval = -ESRCH;
  3741. p = find_process_by_pid(pid);
  3742. if (!p)
  3743. goto out_unlock;
  3744. retval = security_task_getscheduler(p);
  3745. if (retval)
  3746. goto out_unlock;
  3747. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3748. out_unlock:
  3749. read_unlock(&tasklist_lock);
  3750. unlock_cpu_hotplug();
  3751. if (retval)
  3752. return retval;
  3753. return 0;
  3754. }
  3755. /**
  3756. * sys_sched_getaffinity - get the cpu affinity of a process
  3757. * @pid: pid of the process
  3758. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3759. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3760. */
  3761. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3762. unsigned long __user *user_mask_ptr)
  3763. {
  3764. int ret;
  3765. cpumask_t mask;
  3766. if (len < sizeof(cpumask_t))
  3767. return -EINVAL;
  3768. ret = sched_getaffinity(pid, &mask);
  3769. if (ret < 0)
  3770. return ret;
  3771. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3772. return -EFAULT;
  3773. return sizeof(cpumask_t);
  3774. }
  3775. /**
  3776. * sys_sched_yield - yield the current processor to other threads.
  3777. *
  3778. * this function yields the current CPU by moving the calling thread
  3779. * to the expired array. If there are no other threads running on this
  3780. * CPU then this function will return.
  3781. */
  3782. asmlinkage long sys_sched_yield(void)
  3783. {
  3784. runqueue_t *rq = this_rq_lock();
  3785. prio_array_t *array = current->array;
  3786. prio_array_t *target = rq->expired;
  3787. schedstat_inc(rq, yld_cnt);
  3788. /*
  3789. * We implement yielding by moving the task into the expired
  3790. * queue.
  3791. *
  3792. * (special rule: RT tasks will just roundrobin in the active
  3793. * array.)
  3794. */
  3795. if (rt_task(current))
  3796. target = rq->active;
  3797. if (array->nr_active == 1) {
  3798. schedstat_inc(rq, yld_act_empty);
  3799. if (!rq->expired->nr_active)
  3800. schedstat_inc(rq, yld_both_empty);
  3801. } else if (!rq->expired->nr_active)
  3802. schedstat_inc(rq, yld_exp_empty);
  3803. if (array != target) {
  3804. dequeue_task(current, array);
  3805. enqueue_task(current, target);
  3806. } else
  3807. /*
  3808. * requeue_task is cheaper so perform that if possible.
  3809. */
  3810. requeue_task(current, array);
  3811. /*
  3812. * Since we are going to call schedule() anyway, there's
  3813. * no need to preempt or enable interrupts:
  3814. */
  3815. __release(rq->lock);
  3816. _raw_spin_unlock(&rq->lock);
  3817. preempt_enable_no_resched();
  3818. schedule();
  3819. return 0;
  3820. }
  3821. static inline void __cond_resched(void)
  3822. {
  3823. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3824. __might_sleep(__FILE__, __LINE__);
  3825. #endif
  3826. /*
  3827. * The BKS might be reacquired before we have dropped
  3828. * PREEMPT_ACTIVE, which could trigger a second
  3829. * cond_resched() call.
  3830. */
  3831. if (unlikely(preempt_count()))
  3832. return;
  3833. if (unlikely(system_state != SYSTEM_RUNNING))
  3834. return;
  3835. do {
  3836. add_preempt_count(PREEMPT_ACTIVE);
  3837. schedule();
  3838. sub_preempt_count(PREEMPT_ACTIVE);
  3839. } while (need_resched());
  3840. }
  3841. int __sched cond_resched(void)
  3842. {
  3843. if (need_resched()) {
  3844. __cond_resched();
  3845. return 1;
  3846. }
  3847. return 0;
  3848. }
  3849. EXPORT_SYMBOL(cond_resched);
  3850. /*
  3851. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3852. * call schedule, and on return reacquire the lock.
  3853. *
  3854. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3855. * operations here to prevent schedule() from being called twice (once via
  3856. * spin_unlock(), once by hand).
  3857. */
  3858. int cond_resched_lock(spinlock_t *lock)
  3859. {
  3860. int ret = 0;
  3861. if (need_lockbreak(lock)) {
  3862. spin_unlock(lock);
  3863. cpu_relax();
  3864. ret = 1;
  3865. spin_lock(lock);
  3866. }
  3867. if (need_resched()) {
  3868. _raw_spin_unlock(lock);
  3869. preempt_enable_no_resched();
  3870. __cond_resched();
  3871. ret = 1;
  3872. spin_lock(lock);
  3873. }
  3874. return ret;
  3875. }
  3876. EXPORT_SYMBOL(cond_resched_lock);
  3877. int __sched cond_resched_softirq(void)
  3878. {
  3879. BUG_ON(!in_softirq());
  3880. if (need_resched()) {
  3881. __local_bh_enable();
  3882. __cond_resched();
  3883. local_bh_disable();
  3884. return 1;
  3885. }
  3886. return 0;
  3887. }
  3888. EXPORT_SYMBOL(cond_resched_softirq);
  3889. /**
  3890. * yield - yield the current processor to other threads.
  3891. *
  3892. * this is a shortcut for kernel-space yielding - it marks the
  3893. * thread runnable and calls sys_sched_yield().
  3894. */
  3895. void __sched yield(void)
  3896. {
  3897. set_current_state(TASK_RUNNING);
  3898. sys_sched_yield();
  3899. }
  3900. EXPORT_SYMBOL(yield);
  3901. /*
  3902. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3903. * that process accounting knows that this is a task in IO wait state.
  3904. *
  3905. * But don't do that if it is a deliberate, throttling IO wait (this task
  3906. * has set its backing_dev_info: the queue against which it should throttle)
  3907. */
  3908. void __sched io_schedule(void)
  3909. {
  3910. struct runqueue *rq = &__raw_get_cpu_var(runqueues);
  3911. atomic_inc(&rq->nr_iowait);
  3912. schedule();
  3913. atomic_dec(&rq->nr_iowait);
  3914. }
  3915. EXPORT_SYMBOL(io_schedule);
  3916. long __sched io_schedule_timeout(long timeout)
  3917. {
  3918. struct runqueue *rq = &__raw_get_cpu_var(runqueues);
  3919. long ret;
  3920. atomic_inc(&rq->nr_iowait);
  3921. ret = schedule_timeout(timeout);
  3922. atomic_dec(&rq->nr_iowait);
  3923. return ret;
  3924. }
  3925. /**
  3926. * sys_sched_get_priority_max - return maximum RT priority.
  3927. * @policy: scheduling class.
  3928. *
  3929. * this syscall returns the maximum rt_priority that can be used
  3930. * by a given scheduling class.
  3931. */
  3932. asmlinkage long sys_sched_get_priority_max(int policy)
  3933. {
  3934. int ret = -EINVAL;
  3935. switch (policy) {
  3936. case SCHED_FIFO:
  3937. case SCHED_RR:
  3938. ret = MAX_USER_RT_PRIO-1;
  3939. break;
  3940. case SCHED_NORMAL:
  3941. case SCHED_BATCH:
  3942. ret = 0;
  3943. break;
  3944. }
  3945. return ret;
  3946. }
  3947. /**
  3948. * sys_sched_get_priority_min - return minimum RT priority.
  3949. * @policy: scheduling class.
  3950. *
  3951. * this syscall returns the minimum rt_priority that can be used
  3952. * by a given scheduling class.
  3953. */
  3954. asmlinkage long sys_sched_get_priority_min(int policy)
  3955. {
  3956. int ret = -EINVAL;
  3957. switch (policy) {
  3958. case SCHED_FIFO:
  3959. case SCHED_RR:
  3960. ret = 1;
  3961. break;
  3962. case SCHED_NORMAL:
  3963. case SCHED_BATCH:
  3964. ret = 0;
  3965. }
  3966. return ret;
  3967. }
  3968. /**
  3969. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3970. * @pid: pid of the process.
  3971. * @interval: userspace pointer to the timeslice value.
  3972. *
  3973. * this syscall writes the default timeslice value of a given process
  3974. * into the user-space timespec buffer. A value of '0' means infinity.
  3975. */
  3976. asmlinkage
  3977. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  3978. {
  3979. int retval = -EINVAL;
  3980. struct timespec t;
  3981. task_t *p;
  3982. if (pid < 0)
  3983. goto out_nounlock;
  3984. retval = -ESRCH;
  3985. read_lock(&tasklist_lock);
  3986. p = find_process_by_pid(pid);
  3987. if (!p)
  3988. goto out_unlock;
  3989. retval = security_task_getscheduler(p);
  3990. if (retval)
  3991. goto out_unlock;
  3992. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  3993. 0 : task_timeslice(p), &t);
  3994. read_unlock(&tasklist_lock);
  3995. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3996. out_nounlock:
  3997. return retval;
  3998. out_unlock:
  3999. read_unlock(&tasklist_lock);
  4000. return retval;
  4001. }
  4002. static inline struct task_struct *eldest_child(struct task_struct *p)
  4003. {
  4004. if (list_empty(&p->children)) return NULL;
  4005. return list_entry(p->children.next,struct task_struct,sibling);
  4006. }
  4007. static inline struct task_struct *older_sibling(struct task_struct *p)
  4008. {
  4009. if (p->sibling.prev==&p->parent->children) return NULL;
  4010. return list_entry(p->sibling.prev,struct task_struct,sibling);
  4011. }
  4012. static inline struct task_struct *younger_sibling(struct task_struct *p)
  4013. {
  4014. if (p->sibling.next==&p->parent->children) return NULL;
  4015. return list_entry(p->sibling.next,struct task_struct,sibling);
  4016. }
  4017. static void show_task(task_t *p)
  4018. {
  4019. task_t *relative;
  4020. unsigned state;
  4021. unsigned long free = 0;
  4022. static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
  4023. printk("%-13.13s ", p->comm);
  4024. state = p->state ? __ffs(p->state) + 1 : 0;
  4025. if (state < ARRAY_SIZE(stat_nam))
  4026. printk(stat_nam[state]);
  4027. else
  4028. printk("?");
  4029. #if (BITS_PER_LONG == 32)
  4030. if (state == TASK_RUNNING)
  4031. printk(" running ");
  4032. else
  4033. printk(" %08lX ", thread_saved_pc(p));
  4034. #else
  4035. if (state == TASK_RUNNING)
  4036. printk(" running task ");
  4037. else
  4038. printk(" %016lx ", thread_saved_pc(p));
  4039. #endif
  4040. #ifdef CONFIG_DEBUG_STACK_USAGE
  4041. {
  4042. unsigned long *n = end_of_stack(p);
  4043. while (!*n)
  4044. n++;
  4045. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4046. }
  4047. #endif
  4048. printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
  4049. if ((relative = eldest_child(p)))
  4050. printk("%5d ", relative->pid);
  4051. else
  4052. printk(" ");
  4053. if ((relative = younger_sibling(p)))
  4054. printk("%7d", relative->pid);
  4055. else
  4056. printk(" ");
  4057. if ((relative = older_sibling(p)))
  4058. printk(" %5d", relative->pid);
  4059. else
  4060. printk(" ");
  4061. if (!p->mm)
  4062. printk(" (L-TLB)\n");
  4063. else
  4064. printk(" (NOTLB)\n");
  4065. if (state != TASK_RUNNING)
  4066. show_stack(p, NULL);
  4067. }
  4068. void show_state(void)
  4069. {
  4070. task_t *g, *p;
  4071. #if (BITS_PER_LONG == 32)
  4072. printk("\n"
  4073. " sibling\n");
  4074. printk(" task PC pid father child younger older\n");
  4075. #else
  4076. printk("\n"
  4077. " sibling\n");
  4078. printk(" task PC pid father child younger older\n");
  4079. #endif
  4080. read_lock(&tasklist_lock);
  4081. do_each_thread(g, p) {
  4082. /*
  4083. * reset the NMI-timeout, listing all files on a slow
  4084. * console might take alot of time:
  4085. */
  4086. touch_nmi_watchdog();
  4087. show_task(p);
  4088. } while_each_thread(g, p);
  4089. read_unlock(&tasklist_lock);
  4090. mutex_debug_show_all_locks();
  4091. }
  4092. /**
  4093. * init_idle - set up an idle thread for a given CPU
  4094. * @idle: task in question
  4095. * @cpu: cpu the idle task belongs to
  4096. *
  4097. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4098. * flag, to make booting more robust.
  4099. */
  4100. void __devinit init_idle(task_t *idle, int cpu)
  4101. {
  4102. runqueue_t *rq = cpu_rq(cpu);
  4103. unsigned long flags;
  4104. idle->timestamp = sched_clock();
  4105. idle->sleep_avg = 0;
  4106. idle->array = NULL;
  4107. idle->prio = idle->normal_prio = MAX_PRIO;
  4108. idle->state = TASK_RUNNING;
  4109. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4110. set_task_cpu(idle, cpu);
  4111. spin_lock_irqsave(&rq->lock, flags);
  4112. rq->curr = rq->idle = idle;
  4113. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4114. idle->oncpu = 1;
  4115. #endif
  4116. spin_unlock_irqrestore(&rq->lock, flags);
  4117. /* Set the preempt count _outside_ the spinlocks! */
  4118. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4119. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4120. #else
  4121. task_thread_info(idle)->preempt_count = 0;
  4122. #endif
  4123. }
  4124. /*
  4125. * In a system that switches off the HZ timer nohz_cpu_mask
  4126. * indicates which cpus entered this state. This is used
  4127. * in the rcu update to wait only for active cpus. For system
  4128. * which do not switch off the HZ timer nohz_cpu_mask should
  4129. * always be CPU_MASK_NONE.
  4130. */
  4131. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4132. #ifdef CONFIG_SMP
  4133. /*
  4134. * This is how migration works:
  4135. *
  4136. * 1) we queue a migration_req_t structure in the source CPU's
  4137. * runqueue and wake up that CPU's migration thread.
  4138. * 2) we down() the locked semaphore => thread blocks.
  4139. * 3) migration thread wakes up (implicitly it forces the migrated
  4140. * thread off the CPU)
  4141. * 4) it gets the migration request and checks whether the migrated
  4142. * task is still in the wrong runqueue.
  4143. * 5) if it's in the wrong runqueue then the migration thread removes
  4144. * it and puts it into the right queue.
  4145. * 6) migration thread up()s the semaphore.
  4146. * 7) we wake up and the migration is done.
  4147. */
  4148. /*
  4149. * Change a given task's CPU affinity. Migrate the thread to a
  4150. * proper CPU and schedule it away if the CPU it's executing on
  4151. * is removed from the allowed bitmask.
  4152. *
  4153. * NOTE: the caller must have a valid reference to the task, the
  4154. * task must not exit() & deallocate itself prematurely. The
  4155. * call is not atomic; no spinlocks may be held.
  4156. */
  4157. int set_cpus_allowed(task_t *p, cpumask_t new_mask)
  4158. {
  4159. unsigned long flags;
  4160. int ret = 0;
  4161. migration_req_t req;
  4162. runqueue_t *rq;
  4163. rq = task_rq_lock(p, &flags);
  4164. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4165. ret = -EINVAL;
  4166. goto out;
  4167. }
  4168. p->cpus_allowed = new_mask;
  4169. /* Can the task run on the task's current CPU? If so, we're done */
  4170. if (cpu_isset(task_cpu(p), new_mask))
  4171. goto out;
  4172. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4173. /* Need help from migration thread: drop lock and wait. */
  4174. task_rq_unlock(rq, &flags);
  4175. wake_up_process(rq->migration_thread);
  4176. wait_for_completion(&req.done);
  4177. tlb_migrate_finish(p->mm);
  4178. return 0;
  4179. }
  4180. out:
  4181. task_rq_unlock(rq, &flags);
  4182. return ret;
  4183. }
  4184. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4185. /*
  4186. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4187. * this because either it can't run here any more (set_cpus_allowed()
  4188. * away from this CPU, or CPU going down), or because we're
  4189. * attempting to rebalance this task on exec (sched_exec).
  4190. *
  4191. * So we race with normal scheduler movements, but that's OK, as long
  4192. * as the task is no longer on this CPU.
  4193. *
  4194. * Returns non-zero if task was successfully migrated.
  4195. */
  4196. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4197. {
  4198. runqueue_t *rq_dest, *rq_src;
  4199. int ret = 0;
  4200. if (unlikely(cpu_is_offline(dest_cpu)))
  4201. return ret;
  4202. rq_src = cpu_rq(src_cpu);
  4203. rq_dest = cpu_rq(dest_cpu);
  4204. double_rq_lock(rq_src, rq_dest);
  4205. /* Already moved. */
  4206. if (task_cpu(p) != src_cpu)
  4207. goto out;
  4208. /* Affinity changed (again). */
  4209. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4210. goto out;
  4211. set_task_cpu(p, dest_cpu);
  4212. if (p->array) {
  4213. /*
  4214. * Sync timestamp with rq_dest's before activating.
  4215. * The same thing could be achieved by doing this step
  4216. * afterwards, and pretending it was a local activate.
  4217. * This way is cleaner and logically correct.
  4218. */
  4219. p->timestamp = p->timestamp - rq_src->timestamp_last_tick
  4220. + rq_dest->timestamp_last_tick;
  4221. deactivate_task(p, rq_src);
  4222. activate_task(p, rq_dest, 0);
  4223. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4224. resched_task(rq_dest->curr);
  4225. }
  4226. ret = 1;
  4227. out:
  4228. double_rq_unlock(rq_src, rq_dest);
  4229. return ret;
  4230. }
  4231. /*
  4232. * migration_thread - this is a highprio system thread that performs
  4233. * thread migration by bumping thread off CPU then 'pushing' onto
  4234. * another runqueue.
  4235. */
  4236. static int migration_thread(void *data)
  4237. {
  4238. runqueue_t *rq;
  4239. int cpu = (long)data;
  4240. rq = cpu_rq(cpu);
  4241. BUG_ON(rq->migration_thread != current);
  4242. set_current_state(TASK_INTERRUPTIBLE);
  4243. while (!kthread_should_stop()) {
  4244. struct list_head *head;
  4245. migration_req_t *req;
  4246. try_to_freeze();
  4247. spin_lock_irq(&rq->lock);
  4248. if (cpu_is_offline(cpu)) {
  4249. spin_unlock_irq(&rq->lock);
  4250. goto wait_to_die;
  4251. }
  4252. if (rq->active_balance) {
  4253. active_load_balance(rq, cpu);
  4254. rq->active_balance = 0;
  4255. }
  4256. head = &rq->migration_queue;
  4257. if (list_empty(head)) {
  4258. spin_unlock_irq(&rq->lock);
  4259. schedule();
  4260. set_current_state(TASK_INTERRUPTIBLE);
  4261. continue;
  4262. }
  4263. req = list_entry(head->next, migration_req_t, list);
  4264. list_del_init(head->next);
  4265. spin_unlock(&rq->lock);
  4266. __migrate_task(req->task, cpu, req->dest_cpu);
  4267. local_irq_enable();
  4268. complete(&req->done);
  4269. }
  4270. __set_current_state(TASK_RUNNING);
  4271. return 0;
  4272. wait_to_die:
  4273. /* Wait for kthread_stop */
  4274. set_current_state(TASK_INTERRUPTIBLE);
  4275. while (!kthread_should_stop()) {
  4276. schedule();
  4277. set_current_state(TASK_INTERRUPTIBLE);
  4278. }
  4279. __set_current_state(TASK_RUNNING);
  4280. return 0;
  4281. }
  4282. #ifdef CONFIG_HOTPLUG_CPU
  4283. /* Figure out where task on dead CPU should go, use force if neccessary. */
  4284. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
  4285. {
  4286. runqueue_t *rq;
  4287. unsigned long flags;
  4288. int dest_cpu;
  4289. cpumask_t mask;
  4290. restart:
  4291. /* On same node? */
  4292. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4293. cpus_and(mask, mask, tsk->cpus_allowed);
  4294. dest_cpu = any_online_cpu(mask);
  4295. /* On any allowed CPU? */
  4296. if (dest_cpu == NR_CPUS)
  4297. dest_cpu = any_online_cpu(tsk->cpus_allowed);
  4298. /* No more Mr. Nice Guy. */
  4299. if (dest_cpu == NR_CPUS) {
  4300. rq = task_rq_lock(tsk, &flags);
  4301. cpus_setall(tsk->cpus_allowed);
  4302. dest_cpu = any_online_cpu(tsk->cpus_allowed);
  4303. task_rq_unlock(rq, &flags);
  4304. /*
  4305. * Don't tell them about moving exiting tasks or
  4306. * kernel threads (both mm NULL), since they never
  4307. * leave kernel.
  4308. */
  4309. if (tsk->mm && printk_ratelimit())
  4310. printk(KERN_INFO "process %d (%s) no "
  4311. "longer affine to cpu%d\n",
  4312. tsk->pid, tsk->comm, dead_cpu);
  4313. }
  4314. if (!__migrate_task(tsk, dead_cpu, dest_cpu))
  4315. goto restart;
  4316. }
  4317. /*
  4318. * While a dead CPU has no uninterruptible tasks queued at this point,
  4319. * it might still have a nonzero ->nr_uninterruptible counter, because
  4320. * for performance reasons the counter is not stricly tracking tasks to
  4321. * their home CPUs. So we just add the counter to another CPU's counter,
  4322. * to keep the global sum constant after CPU-down:
  4323. */
  4324. static void migrate_nr_uninterruptible(runqueue_t *rq_src)
  4325. {
  4326. runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4327. unsigned long flags;
  4328. local_irq_save(flags);
  4329. double_rq_lock(rq_src, rq_dest);
  4330. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4331. rq_src->nr_uninterruptible = 0;
  4332. double_rq_unlock(rq_src, rq_dest);
  4333. local_irq_restore(flags);
  4334. }
  4335. /* Run through task list and migrate tasks from the dead cpu. */
  4336. static void migrate_live_tasks(int src_cpu)
  4337. {
  4338. struct task_struct *tsk, *t;
  4339. write_lock_irq(&tasklist_lock);
  4340. do_each_thread(t, tsk) {
  4341. if (tsk == current)
  4342. continue;
  4343. if (task_cpu(tsk) == src_cpu)
  4344. move_task_off_dead_cpu(src_cpu, tsk);
  4345. } while_each_thread(t, tsk);
  4346. write_unlock_irq(&tasklist_lock);
  4347. }
  4348. /* Schedules idle task to be the next runnable task on current CPU.
  4349. * It does so by boosting its priority to highest possible and adding it to
  4350. * the _front_ of runqueue. Used by CPU offline code.
  4351. */
  4352. void sched_idle_next(void)
  4353. {
  4354. int cpu = smp_processor_id();
  4355. runqueue_t *rq = this_rq();
  4356. struct task_struct *p = rq->idle;
  4357. unsigned long flags;
  4358. /* cpu has to be offline */
  4359. BUG_ON(cpu_online(cpu));
  4360. /* Strictly not necessary since rest of the CPUs are stopped by now
  4361. * and interrupts disabled on current cpu.
  4362. */
  4363. spin_lock_irqsave(&rq->lock, flags);
  4364. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4365. /* Add idle task to _front_ of it's priority queue */
  4366. __activate_idle_task(p, rq);
  4367. spin_unlock_irqrestore(&rq->lock, flags);
  4368. }
  4369. /* Ensures that the idle task is using init_mm right before its cpu goes
  4370. * offline.
  4371. */
  4372. void idle_task_exit(void)
  4373. {
  4374. struct mm_struct *mm = current->active_mm;
  4375. BUG_ON(cpu_online(smp_processor_id()));
  4376. if (mm != &init_mm)
  4377. switch_mm(mm, &init_mm, current);
  4378. mmdrop(mm);
  4379. }
  4380. static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
  4381. {
  4382. struct runqueue *rq = cpu_rq(dead_cpu);
  4383. /* Must be exiting, otherwise would be on tasklist. */
  4384. BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
  4385. /* Cannot have done final schedule yet: would have vanished. */
  4386. BUG_ON(tsk->flags & PF_DEAD);
  4387. get_task_struct(tsk);
  4388. /*
  4389. * Drop lock around migration; if someone else moves it,
  4390. * that's OK. No task can be added to this CPU, so iteration is
  4391. * fine.
  4392. */
  4393. spin_unlock_irq(&rq->lock);
  4394. move_task_off_dead_cpu(dead_cpu, tsk);
  4395. spin_lock_irq(&rq->lock);
  4396. put_task_struct(tsk);
  4397. }
  4398. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4399. static void migrate_dead_tasks(unsigned int dead_cpu)
  4400. {
  4401. unsigned arr, i;
  4402. struct runqueue *rq = cpu_rq(dead_cpu);
  4403. for (arr = 0; arr < 2; arr++) {
  4404. for (i = 0; i < MAX_PRIO; i++) {
  4405. struct list_head *list = &rq->arrays[arr].queue[i];
  4406. while (!list_empty(list))
  4407. migrate_dead(dead_cpu,
  4408. list_entry(list->next, task_t,
  4409. run_list));
  4410. }
  4411. }
  4412. }
  4413. #endif /* CONFIG_HOTPLUG_CPU */
  4414. /*
  4415. * migration_call - callback that gets triggered when a CPU is added.
  4416. * Here we can start up the necessary migration thread for the new CPU.
  4417. */
  4418. static int __cpuinit migration_call(struct notifier_block *nfb,
  4419. unsigned long action,
  4420. void *hcpu)
  4421. {
  4422. int cpu = (long)hcpu;
  4423. struct task_struct *p;
  4424. struct runqueue *rq;
  4425. unsigned long flags;
  4426. switch (action) {
  4427. case CPU_UP_PREPARE:
  4428. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4429. if (IS_ERR(p))
  4430. return NOTIFY_BAD;
  4431. p->flags |= PF_NOFREEZE;
  4432. kthread_bind(p, cpu);
  4433. /* Must be high prio: stop_machine expects to yield to it. */
  4434. rq = task_rq_lock(p, &flags);
  4435. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4436. task_rq_unlock(rq, &flags);
  4437. cpu_rq(cpu)->migration_thread = p;
  4438. break;
  4439. case CPU_ONLINE:
  4440. /* Strictly unneccessary, as first user will wake it. */
  4441. wake_up_process(cpu_rq(cpu)->migration_thread);
  4442. break;
  4443. #ifdef CONFIG_HOTPLUG_CPU
  4444. case CPU_UP_CANCELED:
  4445. if (!cpu_rq(cpu)->migration_thread)
  4446. break;
  4447. /* Unbind it from offline cpu so it can run. Fall thru. */
  4448. kthread_bind(cpu_rq(cpu)->migration_thread,
  4449. any_online_cpu(cpu_online_map));
  4450. kthread_stop(cpu_rq(cpu)->migration_thread);
  4451. cpu_rq(cpu)->migration_thread = NULL;
  4452. break;
  4453. case CPU_DEAD:
  4454. migrate_live_tasks(cpu);
  4455. rq = cpu_rq(cpu);
  4456. kthread_stop(rq->migration_thread);
  4457. rq->migration_thread = NULL;
  4458. /* Idle task back to normal (off runqueue, low prio) */
  4459. rq = task_rq_lock(rq->idle, &flags);
  4460. deactivate_task(rq->idle, rq);
  4461. rq->idle->static_prio = MAX_PRIO;
  4462. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4463. migrate_dead_tasks(cpu);
  4464. task_rq_unlock(rq, &flags);
  4465. migrate_nr_uninterruptible(rq);
  4466. BUG_ON(rq->nr_running != 0);
  4467. /* No need to migrate the tasks: it was best-effort if
  4468. * they didn't do lock_cpu_hotplug(). Just wake up
  4469. * the requestors. */
  4470. spin_lock_irq(&rq->lock);
  4471. while (!list_empty(&rq->migration_queue)) {
  4472. migration_req_t *req;
  4473. req = list_entry(rq->migration_queue.next,
  4474. migration_req_t, list);
  4475. list_del_init(&req->list);
  4476. complete(&req->done);
  4477. }
  4478. spin_unlock_irq(&rq->lock);
  4479. break;
  4480. #endif
  4481. }
  4482. return NOTIFY_OK;
  4483. }
  4484. /* Register at highest priority so that task migration (migrate_all_tasks)
  4485. * happens before everything else.
  4486. */
  4487. static struct notifier_block __cpuinitdata migration_notifier = {
  4488. .notifier_call = migration_call,
  4489. .priority = 10
  4490. };
  4491. int __init migration_init(void)
  4492. {
  4493. void *cpu = (void *)(long)smp_processor_id();
  4494. /* Start one for boot CPU. */
  4495. migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4496. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4497. register_cpu_notifier(&migration_notifier);
  4498. return 0;
  4499. }
  4500. #endif
  4501. #ifdef CONFIG_SMP
  4502. #undef SCHED_DOMAIN_DEBUG
  4503. #ifdef SCHED_DOMAIN_DEBUG
  4504. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4505. {
  4506. int level = 0;
  4507. if (!sd) {
  4508. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4509. return;
  4510. }
  4511. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4512. do {
  4513. int i;
  4514. char str[NR_CPUS];
  4515. struct sched_group *group = sd->groups;
  4516. cpumask_t groupmask;
  4517. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4518. cpus_clear(groupmask);
  4519. printk(KERN_DEBUG);
  4520. for (i = 0; i < level + 1; i++)
  4521. printk(" ");
  4522. printk("domain %d: ", level);
  4523. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4524. printk("does not load-balance\n");
  4525. if (sd->parent)
  4526. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  4527. break;
  4528. }
  4529. printk("span %s\n", str);
  4530. if (!cpu_isset(cpu, sd->span))
  4531. printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  4532. if (!cpu_isset(cpu, group->cpumask))
  4533. printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  4534. printk(KERN_DEBUG);
  4535. for (i = 0; i < level + 2; i++)
  4536. printk(" ");
  4537. printk("groups:");
  4538. do {
  4539. if (!group) {
  4540. printk("\n");
  4541. printk(KERN_ERR "ERROR: group is NULL\n");
  4542. break;
  4543. }
  4544. if (!group->cpu_power) {
  4545. printk("\n");
  4546. printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
  4547. }
  4548. if (!cpus_weight(group->cpumask)) {
  4549. printk("\n");
  4550. printk(KERN_ERR "ERROR: empty group\n");
  4551. }
  4552. if (cpus_intersects(groupmask, group->cpumask)) {
  4553. printk("\n");
  4554. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4555. }
  4556. cpus_or(groupmask, groupmask, group->cpumask);
  4557. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4558. printk(" %s", str);
  4559. group = group->next;
  4560. } while (group != sd->groups);
  4561. printk("\n");
  4562. if (!cpus_equal(sd->span, groupmask))
  4563. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4564. level++;
  4565. sd = sd->parent;
  4566. if (sd) {
  4567. if (!cpus_subset(groupmask, sd->span))
  4568. printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
  4569. }
  4570. } while (sd);
  4571. }
  4572. #else
  4573. #define sched_domain_debug(sd, cpu) {}
  4574. #endif
  4575. static int sd_degenerate(struct sched_domain *sd)
  4576. {
  4577. if (cpus_weight(sd->span) == 1)
  4578. return 1;
  4579. /* Following flags need at least 2 groups */
  4580. if (sd->flags & (SD_LOAD_BALANCE |
  4581. SD_BALANCE_NEWIDLE |
  4582. SD_BALANCE_FORK |
  4583. SD_BALANCE_EXEC)) {
  4584. if (sd->groups != sd->groups->next)
  4585. return 0;
  4586. }
  4587. /* Following flags don't use groups */
  4588. if (sd->flags & (SD_WAKE_IDLE |
  4589. SD_WAKE_AFFINE |
  4590. SD_WAKE_BALANCE))
  4591. return 0;
  4592. return 1;
  4593. }
  4594. static int sd_parent_degenerate(struct sched_domain *sd,
  4595. struct sched_domain *parent)
  4596. {
  4597. unsigned long cflags = sd->flags, pflags = parent->flags;
  4598. if (sd_degenerate(parent))
  4599. return 1;
  4600. if (!cpus_equal(sd->span, parent->span))
  4601. return 0;
  4602. /* Does parent contain flags not in child? */
  4603. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4604. if (cflags & SD_WAKE_AFFINE)
  4605. pflags &= ~SD_WAKE_BALANCE;
  4606. /* Flags needing groups don't count if only 1 group in parent */
  4607. if (parent->groups == parent->groups->next) {
  4608. pflags &= ~(SD_LOAD_BALANCE |
  4609. SD_BALANCE_NEWIDLE |
  4610. SD_BALANCE_FORK |
  4611. SD_BALANCE_EXEC);
  4612. }
  4613. if (~cflags & pflags)
  4614. return 0;
  4615. return 1;
  4616. }
  4617. /*
  4618. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4619. * hold the hotplug lock.
  4620. */
  4621. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4622. {
  4623. runqueue_t *rq = cpu_rq(cpu);
  4624. struct sched_domain *tmp;
  4625. /* Remove the sched domains which do not contribute to scheduling. */
  4626. for (tmp = sd; tmp; tmp = tmp->parent) {
  4627. struct sched_domain *parent = tmp->parent;
  4628. if (!parent)
  4629. break;
  4630. if (sd_parent_degenerate(tmp, parent))
  4631. tmp->parent = parent->parent;
  4632. }
  4633. if (sd && sd_degenerate(sd))
  4634. sd = sd->parent;
  4635. sched_domain_debug(sd, cpu);
  4636. rcu_assign_pointer(rq->sd, sd);
  4637. }
  4638. /* cpus with isolated domains */
  4639. static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
  4640. /* Setup the mask of cpus configured for isolated domains */
  4641. static int __init isolated_cpu_setup(char *str)
  4642. {
  4643. int ints[NR_CPUS], i;
  4644. str = get_options(str, ARRAY_SIZE(ints), ints);
  4645. cpus_clear(cpu_isolated_map);
  4646. for (i = 1; i <= ints[0]; i++)
  4647. if (ints[i] < NR_CPUS)
  4648. cpu_set(ints[i], cpu_isolated_map);
  4649. return 1;
  4650. }
  4651. __setup ("isolcpus=", isolated_cpu_setup);
  4652. /*
  4653. * init_sched_build_groups takes an array of groups, the cpumask we wish
  4654. * to span, and a pointer to a function which identifies what group a CPU
  4655. * belongs to. The return value of group_fn must be a valid index into the
  4656. * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
  4657. * keep track of groups covered with a cpumask_t).
  4658. *
  4659. * init_sched_build_groups will build a circular linked list of the groups
  4660. * covered by the given span, and will set each group's ->cpumask correctly,
  4661. * and ->cpu_power to 0.
  4662. */
  4663. static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
  4664. int (*group_fn)(int cpu))
  4665. {
  4666. struct sched_group *first = NULL, *last = NULL;
  4667. cpumask_t covered = CPU_MASK_NONE;
  4668. int i;
  4669. for_each_cpu_mask(i, span) {
  4670. int group = group_fn(i);
  4671. struct sched_group *sg = &groups[group];
  4672. int j;
  4673. if (cpu_isset(i, covered))
  4674. continue;
  4675. sg->cpumask = CPU_MASK_NONE;
  4676. sg->cpu_power = 0;
  4677. for_each_cpu_mask(j, span) {
  4678. if (group_fn(j) != group)
  4679. continue;
  4680. cpu_set(j, covered);
  4681. cpu_set(j, sg->cpumask);
  4682. }
  4683. if (!first)
  4684. first = sg;
  4685. if (last)
  4686. last->next = sg;
  4687. last = sg;
  4688. }
  4689. last->next = first;
  4690. }
  4691. #define SD_NODES_PER_DOMAIN 16
  4692. /*
  4693. * Self-tuning task migration cost measurement between source and target CPUs.
  4694. *
  4695. * This is done by measuring the cost of manipulating buffers of varying
  4696. * sizes. For a given buffer-size here are the steps that are taken:
  4697. *
  4698. * 1) the source CPU reads+dirties a shared buffer
  4699. * 2) the target CPU reads+dirties the same shared buffer
  4700. *
  4701. * We measure how long they take, in the following 4 scenarios:
  4702. *
  4703. * - source: CPU1, target: CPU2 | cost1
  4704. * - source: CPU2, target: CPU1 | cost2
  4705. * - source: CPU1, target: CPU1 | cost3
  4706. * - source: CPU2, target: CPU2 | cost4
  4707. *
  4708. * We then calculate the cost3+cost4-cost1-cost2 difference - this is
  4709. * the cost of migration.
  4710. *
  4711. * We then start off from a small buffer-size and iterate up to larger
  4712. * buffer sizes, in 5% steps - measuring each buffer-size separately, and
  4713. * doing a maximum search for the cost. (The maximum cost for a migration
  4714. * normally occurs when the working set size is around the effective cache
  4715. * size.)
  4716. */
  4717. #define SEARCH_SCOPE 2
  4718. #define MIN_CACHE_SIZE (64*1024U)
  4719. #define DEFAULT_CACHE_SIZE (5*1024*1024U)
  4720. #define ITERATIONS 1
  4721. #define SIZE_THRESH 130
  4722. #define COST_THRESH 130
  4723. /*
  4724. * The migration cost is a function of 'domain distance'. Domain
  4725. * distance is the number of steps a CPU has to iterate down its
  4726. * domain tree to share a domain with the other CPU. The farther
  4727. * two CPUs are from each other, the larger the distance gets.
  4728. *
  4729. * Note that we use the distance only to cache measurement results,
  4730. * the distance value is not used numerically otherwise. When two
  4731. * CPUs have the same distance it is assumed that the migration
  4732. * cost is the same. (this is a simplification but quite practical)
  4733. */
  4734. #define MAX_DOMAIN_DISTANCE 32
  4735. static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
  4736. { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
  4737. /*
  4738. * Architectures may override the migration cost and thus avoid
  4739. * boot-time calibration. Unit is nanoseconds. Mostly useful for
  4740. * virtualized hardware:
  4741. */
  4742. #ifdef CONFIG_DEFAULT_MIGRATION_COST
  4743. CONFIG_DEFAULT_MIGRATION_COST
  4744. #else
  4745. -1LL
  4746. #endif
  4747. };
  4748. /*
  4749. * Allow override of migration cost - in units of microseconds.
  4750. * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
  4751. * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
  4752. */
  4753. static int __init migration_cost_setup(char *str)
  4754. {
  4755. int ints[MAX_DOMAIN_DISTANCE+1], i;
  4756. str = get_options(str, ARRAY_SIZE(ints), ints);
  4757. printk("#ints: %d\n", ints[0]);
  4758. for (i = 1; i <= ints[0]; i++) {
  4759. migration_cost[i-1] = (unsigned long long)ints[i]*1000;
  4760. printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
  4761. }
  4762. return 1;
  4763. }
  4764. __setup ("migration_cost=", migration_cost_setup);
  4765. /*
  4766. * Global multiplier (divisor) for migration-cutoff values,
  4767. * in percentiles. E.g. use a value of 150 to get 1.5 times
  4768. * longer cache-hot cutoff times.
  4769. *
  4770. * (We scale it from 100 to 128 to long long handling easier.)
  4771. */
  4772. #define MIGRATION_FACTOR_SCALE 128
  4773. static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
  4774. static int __init setup_migration_factor(char *str)
  4775. {
  4776. get_option(&str, &migration_factor);
  4777. migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
  4778. return 1;
  4779. }
  4780. __setup("migration_factor=", setup_migration_factor);
  4781. /*
  4782. * Estimated distance of two CPUs, measured via the number of domains
  4783. * we have to pass for the two CPUs to be in the same span:
  4784. */
  4785. static unsigned long domain_distance(int cpu1, int cpu2)
  4786. {
  4787. unsigned long distance = 0;
  4788. struct sched_domain *sd;
  4789. for_each_domain(cpu1, sd) {
  4790. WARN_ON(!cpu_isset(cpu1, sd->span));
  4791. if (cpu_isset(cpu2, sd->span))
  4792. return distance;
  4793. distance++;
  4794. }
  4795. if (distance >= MAX_DOMAIN_DISTANCE) {
  4796. WARN_ON(1);
  4797. distance = MAX_DOMAIN_DISTANCE-1;
  4798. }
  4799. return distance;
  4800. }
  4801. static unsigned int migration_debug;
  4802. static int __init setup_migration_debug(char *str)
  4803. {
  4804. get_option(&str, &migration_debug);
  4805. return 1;
  4806. }
  4807. __setup("migration_debug=", setup_migration_debug);
  4808. /*
  4809. * Maximum cache-size that the scheduler should try to measure.
  4810. * Architectures with larger caches should tune this up during
  4811. * bootup. Gets used in the domain-setup code (i.e. during SMP
  4812. * bootup).
  4813. */
  4814. unsigned int max_cache_size;
  4815. static int __init setup_max_cache_size(char *str)
  4816. {
  4817. get_option(&str, &max_cache_size);
  4818. return 1;
  4819. }
  4820. __setup("max_cache_size=", setup_max_cache_size);
  4821. /*
  4822. * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
  4823. * is the operation that is timed, so we try to generate unpredictable
  4824. * cachemisses that still end up filling the L2 cache:
  4825. */
  4826. static void touch_cache(void *__cache, unsigned long __size)
  4827. {
  4828. unsigned long size = __size/sizeof(long), chunk1 = size/3,
  4829. chunk2 = 2*size/3;
  4830. unsigned long *cache = __cache;
  4831. int i;
  4832. for (i = 0; i < size/6; i += 8) {
  4833. switch (i % 6) {
  4834. case 0: cache[i]++;
  4835. case 1: cache[size-1-i]++;
  4836. case 2: cache[chunk1-i]++;
  4837. case 3: cache[chunk1+i]++;
  4838. case 4: cache[chunk2-i]++;
  4839. case 5: cache[chunk2+i]++;
  4840. }
  4841. }
  4842. }
  4843. /*
  4844. * Measure the cache-cost of one task migration. Returns in units of nsec.
  4845. */
  4846. static unsigned long long measure_one(void *cache, unsigned long size,
  4847. int source, int target)
  4848. {
  4849. cpumask_t mask, saved_mask;
  4850. unsigned long long t0, t1, t2, t3, cost;
  4851. saved_mask = current->cpus_allowed;
  4852. /*
  4853. * Flush source caches to RAM and invalidate them:
  4854. */
  4855. sched_cacheflush();
  4856. /*
  4857. * Migrate to the source CPU:
  4858. */
  4859. mask = cpumask_of_cpu(source);
  4860. set_cpus_allowed(current, mask);
  4861. WARN_ON(smp_processor_id() != source);
  4862. /*
  4863. * Dirty the working set:
  4864. */
  4865. t0 = sched_clock();
  4866. touch_cache(cache, size);
  4867. t1 = sched_clock();
  4868. /*
  4869. * Migrate to the target CPU, dirty the L2 cache and access
  4870. * the shared buffer. (which represents the working set
  4871. * of a migrated task.)
  4872. */
  4873. mask = cpumask_of_cpu(target);
  4874. set_cpus_allowed(current, mask);
  4875. WARN_ON(smp_processor_id() != target);
  4876. t2 = sched_clock();
  4877. touch_cache(cache, size);
  4878. t3 = sched_clock();
  4879. cost = t1-t0 + t3-t2;
  4880. if (migration_debug >= 2)
  4881. printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
  4882. source, target, t1-t0, t1-t0, t3-t2, cost);
  4883. /*
  4884. * Flush target caches to RAM and invalidate them:
  4885. */
  4886. sched_cacheflush();
  4887. set_cpus_allowed(current, saved_mask);
  4888. return cost;
  4889. }
  4890. /*
  4891. * Measure a series of task migrations and return the average
  4892. * result. Since this code runs early during bootup the system
  4893. * is 'undisturbed' and the average latency makes sense.
  4894. *
  4895. * The algorithm in essence auto-detects the relevant cache-size,
  4896. * so it will properly detect different cachesizes for different
  4897. * cache-hierarchies, depending on how the CPUs are connected.
  4898. *
  4899. * Architectures can prime the upper limit of the search range via
  4900. * max_cache_size, otherwise the search range defaults to 20MB...64K.
  4901. */
  4902. static unsigned long long
  4903. measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
  4904. {
  4905. unsigned long long cost1, cost2;
  4906. int i;
  4907. /*
  4908. * Measure the migration cost of 'size' bytes, over an
  4909. * average of 10 runs:
  4910. *
  4911. * (We perturb the cache size by a small (0..4k)
  4912. * value to compensate size/alignment related artifacts.
  4913. * We also subtract the cost of the operation done on
  4914. * the same CPU.)
  4915. */
  4916. cost1 = 0;
  4917. /*
  4918. * dry run, to make sure we start off cache-cold on cpu1,
  4919. * and to get any vmalloc pagefaults in advance:
  4920. */
  4921. measure_one(cache, size, cpu1, cpu2);
  4922. for (i = 0; i < ITERATIONS; i++)
  4923. cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
  4924. measure_one(cache, size, cpu2, cpu1);
  4925. for (i = 0; i < ITERATIONS; i++)
  4926. cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
  4927. /*
  4928. * (We measure the non-migrating [cached] cost on both
  4929. * cpu1 and cpu2, to handle CPUs with different speeds)
  4930. */
  4931. cost2 = 0;
  4932. measure_one(cache, size, cpu1, cpu1);
  4933. for (i = 0; i < ITERATIONS; i++)
  4934. cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
  4935. measure_one(cache, size, cpu2, cpu2);
  4936. for (i = 0; i < ITERATIONS; i++)
  4937. cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
  4938. /*
  4939. * Get the per-iteration migration cost:
  4940. */
  4941. do_div(cost1, 2*ITERATIONS);
  4942. do_div(cost2, 2*ITERATIONS);
  4943. return cost1 - cost2;
  4944. }
  4945. static unsigned long long measure_migration_cost(int cpu1, int cpu2)
  4946. {
  4947. unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
  4948. unsigned int max_size, size, size_found = 0;
  4949. long long cost = 0, prev_cost;
  4950. void *cache;
  4951. /*
  4952. * Search from max_cache_size*5 down to 64K - the real relevant
  4953. * cachesize has to lie somewhere inbetween.
  4954. */
  4955. if (max_cache_size) {
  4956. max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
  4957. size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
  4958. } else {
  4959. /*
  4960. * Since we have no estimation about the relevant
  4961. * search range
  4962. */
  4963. max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
  4964. size = MIN_CACHE_SIZE;
  4965. }
  4966. if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
  4967. printk("cpu %d and %d not both online!\n", cpu1, cpu2);
  4968. return 0;
  4969. }
  4970. /*
  4971. * Allocate the working set:
  4972. */
  4973. cache = vmalloc(max_size);
  4974. if (!cache) {
  4975. printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
  4976. return 1000000; // return 1 msec on very small boxen
  4977. }
  4978. while (size <= max_size) {
  4979. prev_cost = cost;
  4980. cost = measure_cost(cpu1, cpu2, cache, size);
  4981. /*
  4982. * Update the max:
  4983. */
  4984. if (cost > 0) {
  4985. if (max_cost < cost) {
  4986. max_cost = cost;
  4987. size_found = size;
  4988. }
  4989. }
  4990. /*
  4991. * Calculate average fluctuation, we use this to prevent
  4992. * noise from triggering an early break out of the loop:
  4993. */
  4994. fluct = abs(cost - prev_cost);
  4995. avg_fluct = (avg_fluct + fluct)/2;
  4996. if (migration_debug)
  4997. printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
  4998. cpu1, cpu2, size,
  4999. (long)cost / 1000000,
  5000. ((long)cost / 100000) % 10,
  5001. (long)max_cost / 1000000,
  5002. ((long)max_cost / 100000) % 10,
  5003. domain_distance(cpu1, cpu2),
  5004. cost, avg_fluct);
  5005. /*
  5006. * If we iterated at least 20% past the previous maximum,
  5007. * and the cost has dropped by more than 20% already,
  5008. * (taking fluctuations into account) then we assume to
  5009. * have found the maximum and break out of the loop early:
  5010. */
  5011. if (size_found && (size*100 > size_found*SIZE_THRESH))
  5012. if (cost+avg_fluct <= 0 ||
  5013. max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
  5014. if (migration_debug)
  5015. printk("-> found max.\n");
  5016. break;
  5017. }
  5018. /*
  5019. * Increase the cachesize in 10% steps:
  5020. */
  5021. size = size * 10 / 9;
  5022. }
  5023. if (migration_debug)
  5024. printk("[%d][%d] working set size found: %d, cost: %Ld\n",
  5025. cpu1, cpu2, size_found, max_cost);
  5026. vfree(cache);
  5027. /*
  5028. * A task is considered 'cache cold' if at least 2 times
  5029. * the worst-case cost of migration has passed.
  5030. *
  5031. * (this limit is only listened to if the load-balancing
  5032. * situation is 'nice' - if there is a large imbalance we
  5033. * ignore it for the sake of CPU utilization and
  5034. * processing fairness.)
  5035. */
  5036. return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
  5037. }
  5038. static void calibrate_migration_costs(const cpumask_t *cpu_map)
  5039. {
  5040. int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
  5041. unsigned long j0, j1, distance, max_distance = 0;
  5042. struct sched_domain *sd;
  5043. j0 = jiffies;
  5044. /*
  5045. * First pass - calculate the cacheflush times:
  5046. */
  5047. for_each_cpu_mask(cpu1, *cpu_map) {
  5048. for_each_cpu_mask(cpu2, *cpu_map) {
  5049. if (cpu1 == cpu2)
  5050. continue;
  5051. distance = domain_distance(cpu1, cpu2);
  5052. max_distance = max(max_distance, distance);
  5053. /*
  5054. * No result cached yet?
  5055. */
  5056. if (migration_cost[distance] == -1LL)
  5057. migration_cost[distance] =
  5058. measure_migration_cost(cpu1, cpu2);
  5059. }
  5060. }
  5061. /*
  5062. * Second pass - update the sched domain hierarchy with
  5063. * the new cache-hot-time estimations:
  5064. */
  5065. for_each_cpu_mask(cpu, *cpu_map) {
  5066. distance = 0;
  5067. for_each_domain(cpu, sd) {
  5068. sd->cache_hot_time = migration_cost[distance];
  5069. distance++;
  5070. }
  5071. }
  5072. /*
  5073. * Print the matrix:
  5074. */
  5075. if (migration_debug)
  5076. printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
  5077. max_cache_size,
  5078. #ifdef CONFIG_X86
  5079. cpu_khz/1000
  5080. #else
  5081. -1
  5082. #endif
  5083. );
  5084. if (system_state == SYSTEM_BOOTING) {
  5085. printk("migration_cost=");
  5086. for (distance = 0; distance <= max_distance; distance++) {
  5087. if (distance)
  5088. printk(",");
  5089. printk("%ld", (long)migration_cost[distance] / 1000);
  5090. }
  5091. printk("\n");
  5092. }
  5093. j1 = jiffies;
  5094. if (migration_debug)
  5095. printk("migration: %ld seconds\n", (j1-j0)/HZ);
  5096. /*
  5097. * Move back to the original CPU. NUMA-Q gets confused
  5098. * if we migrate to another quad during bootup.
  5099. */
  5100. if (raw_smp_processor_id() != orig_cpu) {
  5101. cpumask_t mask = cpumask_of_cpu(orig_cpu),
  5102. saved_mask = current->cpus_allowed;
  5103. set_cpus_allowed(current, mask);
  5104. set_cpus_allowed(current, saved_mask);
  5105. }
  5106. }
  5107. #ifdef CONFIG_NUMA
  5108. /**
  5109. * find_next_best_node - find the next node to include in a sched_domain
  5110. * @node: node whose sched_domain we're building
  5111. * @used_nodes: nodes already in the sched_domain
  5112. *
  5113. * Find the next node to include in a given scheduling domain. Simply
  5114. * finds the closest node not already in the @used_nodes map.
  5115. *
  5116. * Should use nodemask_t.
  5117. */
  5118. static int find_next_best_node(int node, unsigned long *used_nodes)
  5119. {
  5120. int i, n, val, min_val, best_node = 0;
  5121. min_val = INT_MAX;
  5122. for (i = 0; i < MAX_NUMNODES; i++) {
  5123. /* Start at @node */
  5124. n = (node + i) % MAX_NUMNODES;
  5125. if (!nr_cpus_node(n))
  5126. continue;
  5127. /* Skip already used nodes */
  5128. if (test_bit(n, used_nodes))
  5129. continue;
  5130. /* Simple min distance search */
  5131. val = node_distance(node, n);
  5132. if (val < min_val) {
  5133. min_val = val;
  5134. best_node = n;
  5135. }
  5136. }
  5137. set_bit(best_node, used_nodes);
  5138. return best_node;
  5139. }
  5140. /**
  5141. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5142. * @node: node whose cpumask we're constructing
  5143. * @size: number of nodes to include in this span
  5144. *
  5145. * Given a node, construct a good cpumask for its sched_domain to span. It
  5146. * should be one that prevents unnecessary balancing, but also spreads tasks
  5147. * out optimally.
  5148. */
  5149. static cpumask_t sched_domain_node_span(int node)
  5150. {
  5151. int i;
  5152. cpumask_t span, nodemask;
  5153. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5154. cpus_clear(span);
  5155. bitmap_zero(used_nodes, MAX_NUMNODES);
  5156. nodemask = node_to_cpumask(node);
  5157. cpus_or(span, span, nodemask);
  5158. set_bit(node, used_nodes);
  5159. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5160. int next_node = find_next_best_node(node, used_nodes);
  5161. nodemask = node_to_cpumask(next_node);
  5162. cpus_or(span, span, nodemask);
  5163. }
  5164. return span;
  5165. }
  5166. #endif
  5167. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5168. /*
  5169. * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
  5170. * can switch it on easily if needed.
  5171. */
  5172. #ifdef CONFIG_SCHED_SMT
  5173. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5174. static struct sched_group sched_group_cpus[NR_CPUS];
  5175. static int cpu_to_cpu_group(int cpu)
  5176. {
  5177. return cpu;
  5178. }
  5179. #endif
  5180. #ifdef CONFIG_SCHED_MC
  5181. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5182. static struct sched_group *sched_group_core_bycpu[NR_CPUS];
  5183. #endif
  5184. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5185. static int cpu_to_core_group(int cpu)
  5186. {
  5187. return first_cpu(cpu_sibling_map[cpu]);
  5188. }
  5189. #elif defined(CONFIG_SCHED_MC)
  5190. static int cpu_to_core_group(int cpu)
  5191. {
  5192. return cpu;
  5193. }
  5194. #endif
  5195. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5196. static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
  5197. static int cpu_to_phys_group(int cpu)
  5198. {
  5199. #if defined(CONFIG_SCHED_MC)
  5200. cpumask_t mask = cpu_coregroup_map(cpu);
  5201. return first_cpu(mask);
  5202. #elif defined(CONFIG_SCHED_SMT)
  5203. return first_cpu(cpu_sibling_map[cpu]);
  5204. #else
  5205. return cpu;
  5206. #endif
  5207. }
  5208. #ifdef CONFIG_NUMA
  5209. /*
  5210. * The init_sched_build_groups can't handle what we want to do with node
  5211. * groups, so roll our own. Now each node has its own list of groups which
  5212. * gets dynamically allocated.
  5213. */
  5214. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5215. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5216. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5217. static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
  5218. static int cpu_to_allnodes_group(int cpu)
  5219. {
  5220. return cpu_to_node(cpu);
  5221. }
  5222. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5223. {
  5224. struct sched_group *sg = group_head;
  5225. int j;
  5226. if (!sg)
  5227. return;
  5228. next_sg:
  5229. for_each_cpu_mask(j, sg->cpumask) {
  5230. struct sched_domain *sd;
  5231. sd = &per_cpu(phys_domains, j);
  5232. if (j != first_cpu(sd->groups->cpumask)) {
  5233. /*
  5234. * Only add "power" once for each
  5235. * physical package.
  5236. */
  5237. continue;
  5238. }
  5239. sg->cpu_power += sd->groups->cpu_power;
  5240. }
  5241. sg = sg->next;
  5242. if (sg != group_head)
  5243. goto next_sg;
  5244. }
  5245. #endif
  5246. /* Free memory allocated for various sched_group structures */
  5247. static void free_sched_groups(const cpumask_t *cpu_map)
  5248. {
  5249. int cpu;
  5250. #ifdef CONFIG_NUMA
  5251. int i;
  5252. for_each_cpu_mask(cpu, *cpu_map) {
  5253. struct sched_group *sched_group_allnodes
  5254. = sched_group_allnodes_bycpu[cpu];
  5255. struct sched_group **sched_group_nodes
  5256. = sched_group_nodes_bycpu[cpu];
  5257. if (sched_group_allnodes) {
  5258. kfree(sched_group_allnodes);
  5259. sched_group_allnodes_bycpu[cpu] = NULL;
  5260. }
  5261. if (!sched_group_nodes)
  5262. continue;
  5263. for (i = 0; i < MAX_NUMNODES; i++) {
  5264. cpumask_t nodemask = node_to_cpumask(i);
  5265. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5266. cpus_and(nodemask, nodemask, *cpu_map);
  5267. if (cpus_empty(nodemask))
  5268. continue;
  5269. if (sg == NULL)
  5270. continue;
  5271. sg = sg->next;
  5272. next_sg:
  5273. oldsg = sg;
  5274. sg = sg->next;
  5275. kfree(oldsg);
  5276. if (oldsg != sched_group_nodes[i])
  5277. goto next_sg;
  5278. }
  5279. kfree(sched_group_nodes);
  5280. sched_group_nodes_bycpu[cpu] = NULL;
  5281. }
  5282. #endif
  5283. for_each_cpu_mask(cpu, *cpu_map) {
  5284. if (sched_group_phys_bycpu[cpu]) {
  5285. kfree(sched_group_phys_bycpu[cpu]);
  5286. sched_group_phys_bycpu[cpu] = NULL;
  5287. }
  5288. #ifdef CONFIG_SCHED_MC
  5289. if (sched_group_core_bycpu[cpu]) {
  5290. kfree(sched_group_core_bycpu[cpu]);
  5291. sched_group_core_bycpu[cpu] = NULL;
  5292. }
  5293. #endif
  5294. }
  5295. }
  5296. /*
  5297. * Build sched domains for a given set of cpus and attach the sched domains
  5298. * to the individual cpus
  5299. */
  5300. static int build_sched_domains(const cpumask_t *cpu_map)
  5301. {
  5302. int i;
  5303. struct sched_group *sched_group_phys = NULL;
  5304. #ifdef CONFIG_SCHED_MC
  5305. struct sched_group *sched_group_core = NULL;
  5306. #endif
  5307. #ifdef CONFIG_NUMA
  5308. struct sched_group **sched_group_nodes = NULL;
  5309. struct sched_group *sched_group_allnodes = NULL;
  5310. /*
  5311. * Allocate the per-node list of sched groups
  5312. */
  5313. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5314. GFP_KERNEL);
  5315. if (!sched_group_nodes) {
  5316. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5317. return -ENOMEM;
  5318. }
  5319. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5320. #endif
  5321. /*
  5322. * Set up domains for cpus specified by the cpu_map.
  5323. */
  5324. for_each_cpu_mask(i, *cpu_map) {
  5325. int group;
  5326. struct sched_domain *sd = NULL, *p;
  5327. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5328. cpus_and(nodemask, nodemask, *cpu_map);
  5329. #ifdef CONFIG_NUMA
  5330. if (cpus_weight(*cpu_map)
  5331. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5332. if (!sched_group_allnodes) {
  5333. sched_group_allnodes
  5334. = kmalloc(sizeof(struct sched_group)
  5335. * MAX_NUMNODES,
  5336. GFP_KERNEL);
  5337. if (!sched_group_allnodes) {
  5338. printk(KERN_WARNING
  5339. "Can not alloc allnodes sched group\n");
  5340. goto error;
  5341. }
  5342. sched_group_allnodes_bycpu[i]
  5343. = sched_group_allnodes;
  5344. }
  5345. sd = &per_cpu(allnodes_domains, i);
  5346. *sd = SD_ALLNODES_INIT;
  5347. sd->span = *cpu_map;
  5348. group = cpu_to_allnodes_group(i);
  5349. sd->groups = &sched_group_allnodes[group];
  5350. p = sd;
  5351. } else
  5352. p = NULL;
  5353. sd = &per_cpu(node_domains, i);
  5354. *sd = SD_NODE_INIT;
  5355. sd->span = sched_domain_node_span(cpu_to_node(i));
  5356. sd->parent = p;
  5357. cpus_and(sd->span, sd->span, *cpu_map);
  5358. #endif
  5359. if (!sched_group_phys) {
  5360. sched_group_phys
  5361. = kmalloc(sizeof(struct sched_group) * NR_CPUS,
  5362. GFP_KERNEL);
  5363. if (!sched_group_phys) {
  5364. printk (KERN_WARNING "Can not alloc phys sched"
  5365. "group\n");
  5366. goto error;
  5367. }
  5368. sched_group_phys_bycpu[i] = sched_group_phys;
  5369. }
  5370. p = sd;
  5371. sd = &per_cpu(phys_domains, i);
  5372. group = cpu_to_phys_group(i);
  5373. *sd = SD_CPU_INIT;
  5374. sd->span = nodemask;
  5375. sd->parent = p;
  5376. sd->groups = &sched_group_phys[group];
  5377. #ifdef CONFIG_SCHED_MC
  5378. if (!sched_group_core) {
  5379. sched_group_core
  5380. = kmalloc(sizeof(struct sched_group) * NR_CPUS,
  5381. GFP_KERNEL);
  5382. if (!sched_group_core) {
  5383. printk (KERN_WARNING "Can not alloc core sched"
  5384. "group\n");
  5385. goto error;
  5386. }
  5387. sched_group_core_bycpu[i] = sched_group_core;
  5388. }
  5389. p = sd;
  5390. sd = &per_cpu(core_domains, i);
  5391. group = cpu_to_core_group(i);
  5392. *sd = SD_MC_INIT;
  5393. sd->span = cpu_coregroup_map(i);
  5394. cpus_and(sd->span, sd->span, *cpu_map);
  5395. sd->parent = p;
  5396. sd->groups = &sched_group_core[group];
  5397. #endif
  5398. #ifdef CONFIG_SCHED_SMT
  5399. p = sd;
  5400. sd = &per_cpu(cpu_domains, i);
  5401. group = cpu_to_cpu_group(i);
  5402. *sd = SD_SIBLING_INIT;
  5403. sd->span = cpu_sibling_map[i];
  5404. cpus_and(sd->span, sd->span, *cpu_map);
  5405. sd->parent = p;
  5406. sd->groups = &sched_group_cpus[group];
  5407. #endif
  5408. }
  5409. #ifdef CONFIG_SCHED_SMT
  5410. /* Set up CPU (sibling) groups */
  5411. for_each_cpu_mask(i, *cpu_map) {
  5412. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5413. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5414. if (i != first_cpu(this_sibling_map))
  5415. continue;
  5416. init_sched_build_groups(sched_group_cpus, this_sibling_map,
  5417. &cpu_to_cpu_group);
  5418. }
  5419. #endif
  5420. #ifdef CONFIG_SCHED_MC
  5421. /* Set up multi-core groups */
  5422. for_each_cpu_mask(i, *cpu_map) {
  5423. cpumask_t this_core_map = cpu_coregroup_map(i);
  5424. cpus_and(this_core_map, this_core_map, *cpu_map);
  5425. if (i != first_cpu(this_core_map))
  5426. continue;
  5427. init_sched_build_groups(sched_group_core, this_core_map,
  5428. &cpu_to_core_group);
  5429. }
  5430. #endif
  5431. /* Set up physical groups */
  5432. for (i = 0; i < MAX_NUMNODES; i++) {
  5433. cpumask_t nodemask = node_to_cpumask(i);
  5434. cpus_and(nodemask, nodemask, *cpu_map);
  5435. if (cpus_empty(nodemask))
  5436. continue;
  5437. init_sched_build_groups(sched_group_phys, nodemask,
  5438. &cpu_to_phys_group);
  5439. }
  5440. #ifdef CONFIG_NUMA
  5441. /* Set up node groups */
  5442. if (sched_group_allnodes)
  5443. init_sched_build_groups(sched_group_allnodes, *cpu_map,
  5444. &cpu_to_allnodes_group);
  5445. for (i = 0; i < MAX_NUMNODES; i++) {
  5446. /* Set up node groups */
  5447. struct sched_group *sg, *prev;
  5448. cpumask_t nodemask = node_to_cpumask(i);
  5449. cpumask_t domainspan;
  5450. cpumask_t covered = CPU_MASK_NONE;
  5451. int j;
  5452. cpus_and(nodemask, nodemask, *cpu_map);
  5453. if (cpus_empty(nodemask)) {
  5454. sched_group_nodes[i] = NULL;
  5455. continue;
  5456. }
  5457. domainspan = sched_domain_node_span(i);
  5458. cpus_and(domainspan, domainspan, *cpu_map);
  5459. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5460. if (!sg) {
  5461. printk(KERN_WARNING "Can not alloc domain group for "
  5462. "node %d\n", i);
  5463. goto error;
  5464. }
  5465. sched_group_nodes[i] = sg;
  5466. for_each_cpu_mask(j, nodemask) {
  5467. struct sched_domain *sd;
  5468. sd = &per_cpu(node_domains, j);
  5469. sd->groups = sg;
  5470. }
  5471. sg->cpu_power = 0;
  5472. sg->cpumask = nodemask;
  5473. sg->next = sg;
  5474. cpus_or(covered, covered, nodemask);
  5475. prev = sg;
  5476. for (j = 0; j < MAX_NUMNODES; j++) {
  5477. cpumask_t tmp, notcovered;
  5478. int n = (i + j) % MAX_NUMNODES;
  5479. cpus_complement(notcovered, covered);
  5480. cpus_and(tmp, notcovered, *cpu_map);
  5481. cpus_and(tmp, tmp, domainspan);
  5482. if (cpus_empty(tmp))
  5483. break;
  5484. nodemask = node_to_cpumask(n);
  5485. cpus_and(tmp, tmp, nodemask);
  5486. if (cpus_empty(tmp))
  5487. continue;
  5488. sg = kmalloc_node(sizeof(struct sched_group),
  5489. GFP_KERNEL, i);
  5490. if (!sg) {
  5491. printk(KERN_WARNING
  5492. "Can not alloc domain group for node %d\n", j);
  5493. goto error;
  5494. }
  5495. sg->cpu_power = 0;
  5496. sg->cpumask = tmp;
  5497. sg->next = prev->next;
  5498. cpus_or(covered, covered, tmp);
  5499. prev->next = sg;
  5500. prev = sg;
  5501. }
  5502. }
  5503. #endif
  5504. /* Calculate CPU power for physical packages and nodes */
  5505. #ifdef CONFIG_SCHED_SMT
  5506. for_each_cpu_mask(i, *cpu_map) {
  5507. struct sched_domain *sd;
  5508. sd = &per_cpu(cpu_domains, i);
  5509. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5510. }
  5511. #endif
  5512. #ifdef CONFIG_SCHED_MC
  5513. for_each_cpu_mask(i, *cpu_map) {
  5514. int power;
  5515. struct sched_domain *sd;
  5516. sd = &per_cpu(core_domains, i);
  5517. if (sched_smt_power_savings)
  5518. power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
  5519. else
  5520. power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
  5521. * SCHED_LOAD_SCALE / 10;
  5522. sd->groups->cpu_power = power;
  5523. }
  5524. #endif
  5525. for_each_cpu_mask(i, *cpu_map) {
  5526. struct sched_domain *sd;
  5527. #ifdef CONFIG_SCHED_MC
  5528. sd = &per_cpu(phys_domains, i);
  5529. if (i != first_cpu(sd->groups->cpumask))
  5530. continue;
  5531. sd->groups->cpu_power = 0;
  5532. if (sched_mc_power_savings || sched_smt_power_savings) {
  5533. int j;
  5534. for_each_cpu_mask(j, sd->groups->cpumask) {
  5535. struct sched_domain *sd1;
  5536. sd1 = &per_cpu(core_domains, j);
  5537. /*
  5538. * for each core we will add once
  5539. * to the group in physical domain
  5540. */
  5541. if (j != first_cpu(sd1->groups->cpumask))
  5542. continue;
  5543. if (sched_smt_power_savings)
  5544. sd->groups->cpu_power += sd1->groups->cpu_power;
  5545. else
  5546. sd->groups->cpu_power += SCHED_LOAD_SCALE;
  5547. }
  5548. } else
  5549. /*
  5550. * This has to be < 2 * SCHED_LOAD_SCALE
  5551. * Lets keep it SCHED_LOAD_SCALE, so that
  5552. * while calculating NUMA group's cpu_power
  5553. * we can simply do
  5554. * numa_group->cpu_power += phys_group->cpu_power;
  5555. *
  5556. * See "only add power once for each physical pkg"
  5557. * comment below
  5558. */
  5559. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5560. #else
  5561. int power;
  5562. sd = &per_cpu(phys_domains, i);
  5563. if (sched_smt_power_savings)
  5564. power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
  5565. else
  5566. power = SCHED_LOAD_SCALE;
  5567. sd->groups->cpu_power = power;
  5568. #endif
  5569. }
  5570. #ifdef CONFIG_NUMA
  5571. for (i = 0; i < MAX_NUMNODES; i++)
  5572. init_numa_sched_groups_power(sched_group_nodes[i]);
  5573. init_numa_sched_groups_power(sched_group_allnodes);
  5574. #endif
  5575. /* Attach the domains */
  5576. for_each_cpu_mask(i, *cpu_map) {
  5577. struct sched_domain *sd;
  5578. #ifdef CONFIG_SCHED_SMT
  5579. sd = &per_cpu(cpu_domains, i);
  5580. #elif defined(CONFIG_SCHED_MC)
  5581. sd = &per_cpu(core_domains, i);
  5582. #else
  5583. sd = &per_cpu(phys_domains, i);
  5584. #endif
  5585. cpu_attach_domain(sd, i);
  5586. }
  5587. /*
  5588. * Tune cache-hot values:
  5589. */
  5590. calibrate_migration_costs(cpu_map);
  5591. return 0;
  5592. error:
  5593. free_sched_groups(cpu_map);
  5594. return -ENOMEM;
  5595. }
  5596. /*
  5597. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5598. */
  5599. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5600. {
  5601. cpumask_t cpu_default_map;
  5602. int err;
  5603. /*
  5604. * Setup mask for cpus without special case scheduling requirements.
  5605. * For now this just excludes isolated cpus, but could be used to
  5606. * exclude other special cases in the future.
  5607. */
  5608. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5609. err = build_sched_domains(&cpu_default_map);
  5610. return err;
  5611. }
  5612. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5613. {
  5614. free_sched_groups(cpu_map);
  5615. }
  5616. /*
  5617. * Detach sched domains from a group of cpus specified in cpu_map
  5618. * These cpus will now be attached to the NULL domain
  5619. */
  5620. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5621. {
  5622. int i;
  5623. for_each_cpu_mask(i, *cpu_map)
  5624. cpu_attach_domain(NULL, i);
  5625. synchronize_sched();
  5626. arch_destroy_sched_domains(cpu_map);
  5627. }
  5628. /*
  5629. * Partition sched domains as specified by the cpumasks below.
  5630. * This attaches all cpus from the cpumasks to the NULL domain,
  5631. * waits for a RCU quiescent period, recalculates sched
  5632. * domain information and then attaches them back to the
  5633. * correct sched domains
  5634. * Call with hotplug lock held
  5635. */
  5636. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5637. {
  5638. cpumask_t change_map;
  5639. int err = 0;
  5640. cpus_and(*partition1, *partition1, cpu_online_map);
  5641. cpus_and(*partition2, *partition2, cpu_online_map);
  5642. cpus_or(change_map, *partition1, *partition2);
  5643. /* Detach sched domains from all of the affected cpus */
  5644. detach_destroy_domains(&change_map);
  5645. if (!cpus_empty(*partition1))
  5646. err = build_sched_domains(partition1);
  5647. if (!err && !cpus_empty(*partition2))
  5648. err = build_sched_domains(partition2);
  5649. return err;
  5650. }
  5651. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5652. int arch_reinit_sched_domains(void)
  5653. {
  5654. int err;
  5655. lock_cpu_hotplug();
  5656. detach_destroy_domains(&cpu_online_map);
  5657. err = arch_init_sched_domains(&cpu_online_map);
  5658. unlock_cpu_hotplug();
  5659. return err;
  5660. }
  5661. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5662. {
  5663. int ret;
  5664. if (buf[0] != '0' && buf[0] != '1')
  5665. return -EINVAL;
  5666. if (smt)
  5667. sched_smt_power_savings = (buf[0] == '1');
  5668. else
  5669. sched_mc_power_savings = (buf[0] == '1');
  5670. ret = arch_reinit_sched_domains();
  5671. return ret ? ret : count;
  5672. }
  5673. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5674. {
  5675. int err = 0;
  5676. #ifdef CONFIG_SCHED_SMT
  5677. if (smt_capable())
  5678. err = sysfs_create_file(&cls->kset.kobj,
  5679. &attr_sched_smt_power_savings.attr);
  5680. #endif
  5681. #ifdef CONFIG_SCHED_MC
  5682. if (!err && mc_capable())
  5683. err = sysfs_create_file(&cls->kset.kobj,
  5684. &attr_sched_mc_power_savings.attr);
  5685. #endif
  5686. return err;
  5687. }
  5688. #endif
  5689. #ifdef CONFIG_SCHED_MC
  5690. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5691. {
  5692. return sprintf(page, "%u\n", sched_mc_power_savings);
  5693. }
  5694. static ssize_t sched_mc_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
  5695. {
  5696. return sched_power_savings_store(buf, count, 0);
  5697. }
  5698. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5699. sched_mc_power_savings_store);
  5700. #endif
  5701. #ifdef CONFIG_SCHED_SMT
  5702. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5703. {
  5704. return sprintf(page, "%u\n", sched_smt_power_savings);
  5705. }
  5706. static ssize_t sched_smt_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
  5707. {
  5708. return sched_power_savings_store(buf, count, 1);
  5709. }
  5710. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5711. sched_smt_power_savings_store);
  5712. #endif
  5713. #ifdef CONFIG_HOTPLUG_CPU
  5714. /*
  5715. * Force a reinitialization of the sched domains hierarchy. The domains
  5716. * and groups cannot be updated in place without racing with the balancing
  5717. * code, so we temporarily attach all running cpus to the NULL domain
  5718. * which will prevent rebalancing while the sched domains are recalculated.
  5719. */
  5720. static int update_sched_domains(struct notifier_block *nfb,
  5721. unsigned long action, void *hcpu)
  5722. {
  5723. switch (action) {
  5724. case CPU_UP_PREPARE:
  5725. case CPU_DOWN_PREPARE:
  5726. detach_destroy_domains(&cpu_online_map);
  5727. return NOTIFY_OK;
  5728. case CPU_UP_CANCELED:
  5729. case CPU_DOWN_FAILED:
  5730. case CPU_ONLINE:
  5731. case CPU_DEAD:
  5732. /*
  5733. * Fall through and re-initialise the domains.
  5734. */
  5735. break;
  5736. default:
  5737. return NOTIFY_DONE;
  5738. }
  5739. /* The hotplug lock is already held by cpu_up/cpu_down */
  5740. arch_init_sched_domains(&cpu_online_map);
  5741. return NOTIFY_OK;
  5742. }
  5743. #endif
  5744. void __init sched_init_smp(void)
  5745. {
  5746. lock_cpu_hotplug();
  5747. arch_init_sched_domains(&cpu_online_map);
  5748. unlock_cpu_hotplug();
  5749. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5750. hotcpu_notifier(update_sched_domains, 0);
  5751. }
  5752. #else
  5753. void __init sched_init_smp(void)
  5754. {
  5755. }
  5756. #endif /* CONFIG_SMP */
  5757. int in_sched_functions(unsigned long addr)
  5758. {
  5759. /* Linker adds these: start and end of __sched functions */
  5760. extern char __sched_text_start[], __sched_text_end[];
  5761. return in_lock_functions(addr) ||
  5762. (addr >= (unsigned long)__sched_text_start
  5763. && addr < (unsigned long)__sched_text_end);
  5764. }
  5765. void __init sched_init(void)
  5766. {
  5767. runqueue_t *rq;
  5768. int i, j, k;
  5769. for_each_possible_cpu(i) {
  5770. prio_array_t *array;
  5771. rq = cpu_rq(i);
  5772. spin_lock_init(&rq->lock);
  5773. rq->nr_running = 0;
  5774. rq->active = rq->arrays;
  5775. rq->expired = rq->arrays + 1;
  5776. rq->best_expired_prio = MAX_PRIO;
  5777. #ifdef CONFIG_SMP
  5778. rq->sd = NULL;
  5779. for (j = 1; j < 3; j++)
  5780. rq->cpu_load[j] = 0;
  5781. rq->active_balance = 0;
  5782. rq->push_cpu = 0;
  5783. rq->migration_thread = NULL;
  5784. INIT_LIST_HEAD(&rq->migration_queue);
  5785. #endif
  5786. atomic_set(&rq->nr_iowait, 0);
  5787. for (j = 0; j < 2; j++) {
  5788. array = rq->arrays + j;
  5789. for (k = 0; k < MAX_PRIO; k++) {
  5790. INIT_LIST_HEAD(array->queue + k);
  5791. __clear_bit(k, array->bitmap);
  5792. }
  5793. // delimiter for bitsearch
  5794. __set_bit(MAX_PRIO, array->bitmap);
  5795. }
  5796. }
  5797. set_load_weight(&init_task);
  5798. /*
  5799. * The boot idle thread does lazy MMU switching as well:
  5800. */
  5801. atomic_inc(&init_mm.mm_count);
  5802. enter_lazy_tlb(&init_mm, current);
  5803. /*
  5804. * Make us the idle thread. Technically, schedule() should not be
  5805. * called from this thread, however somewhere below it might be,
  5806. * but because we are the idle thread, we just pick up running again
  5807. * when this runqueue becomes "idle".
  5808. */
  5809. init_idle(current, smp_processor_id());
  5810. }
  5811. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5812. void __might_sleep(char *file, int line)
  5813. {
  5814. #if defined(in_atomic)
  5815. static unsigned long prev_jiffy; /* ratelimiting */
  5816. if ((in_atomic() || irqs_disabled()) &&
  5817. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5818. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5819. return;
  5820. prev_jiffy = jiffies;
  5821. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5822. " context at %s:%d\n", file, line);
  5823. printk("in_atomic():%d, irqs_disabled():%d\n",
  5824. in_atomic(), irqs_disabled());
  5825. dump_stack();
  5826. }
  5827. #endif
  5828. }
  5829. EXPORT_SYMBOL(__might_sleep);
  5830. #endif
  5831. #ifdef CONFIG_MAGIC_SYSRQ
  5832. void normalize_rt_tasks(void)
  5833. {
  5834. struct task_struct *p;
  5835. prio_array_t *array;
  5836. unsigned long flags;
  5837. runqueue_t *rq;
  5838. read_lock_irq(&tasklist_lock);
  5839. for_each_process(p) {
  5840. if (!rt_task(p))
  5841. continue;
  5842. spin_lock_irqsave(&p->pi_lock, flags);
  5843. rq = __task_rq_lock(p);
  5844. array = p->array;
  5845. if (array)
  5846. deactivate_task(p, task_rq(p));
  5847. __setscheduler(p, SCHED_NORMAL, 0);
  5848. if (array) {
  5849. __activate_task(p, task_rq(p));
  5850. resched_task(rq->curr);
  5851. }
  5852. __task_rq_unlock(rq);
  5853. spin_unlock_irqrestore(&p->pi_lock, flags);
  5854. }
  5855. read_unlock_irq(&tasklist_lock);
  5856. }
  5857. #endif /* CONFIG_MAGIC_SYSRQ */
  5858. #ifdef CONFIG_IA64
  5859. /*
  5860. * These functions are only useful for the IA64 MCA handling.
  5861. *
  5862. * They can only be called when the whole system has been
  5863. * stopped - every CPU needs to be quiescent, and no scheduling
  5864. * activity can take place. Using them for anything else would
  5865. * be a serious bug, and as a result, they aren't even visible
  5866. * under any other configuration.
  5867. */
  5868. /**
  5869. * curr_task - return the current task for a given cpu.
  5870. * @cpu: the processor in question.
  5871. *
  5872. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5873. */
  5874. task_t *curr_task(int cpu)
  5875. {
  5876. return cpu_curr(cpu);
  5877. }
  5878. /**
  5879. * set_curr_task - set the current task for a given cpu.
  5880. * @cpu: the processor in question.
  5881. * @p: the task pointer to set.
  5882. *
  5883. * Description: This function must only be used when non-maskable interrupts
  5884. * are serviced on a separate stack. It allows the architecture to switch the
  5885. * notion of the current task on a cpu in a non-blocking manner. This function
  5886. * must be called with all CPU's synchronized, and interrupts disabled, the
  5887. * and caller must save the original value of the current task (see
  5888. * curr_task() above) and restore that value before reenabling interrupts and
  5889. * re-starting the system.
  5890. *
  5891. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5892. */
  5893. void set_curr_task(int cpu, task_t *p)
  5894. {
  5895. cpu_curr(cpu) = p;
  5896. }
  5897. #endif