i915_gem.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  44. struct drm_i915_fence_reg *reg);
  45. static int i915_gem_phys_pwrite(struct drm_device *dev,
  46. struct drm_i915_gem_object *obj,
  47. struct drm_i915_gem_pwrite *args,
  48. struct drm_file *file);
  49. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  50. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  51. struct shrink_control *sc);
  52. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  53. /* some bookkeeping */
  54. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  55. size_t size)
  56. {
  57. dev_priv->mm.object_count++;
  58. dev_priv->mm.object_memory += size;
  59. }
  60. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  61. size_t size)
  62. {
  63. dev_priv->mm.object_count--;
  64. dev_priv->mm.object_memory -= size;
  65. }
  66. static int
  67. i915_gem_wait_for_error(struct drm_device *dev)
  68. {
  69. struct drm_i915_private *dev_priv = dev->dev_private;
  70. struct completion *x = &dev_priv->error_completion;
  71. unsigned long flags;
  72. int ret;
  73. if (!atomic_read(&dev_priv->mm.wedged))
  74. return 0;
  75. ret = wait_for_completion_interruptible(x);
  76. if (ret)
  77. return ret;
  78. if (atomic_read(&dev_priv->mm.wedged)) {
  79. /* GPU is hung, bump the completion count to account for
  80. * the token we just consumed so that we never hit zero and
  81. * end up waiting upon a subsequent completion event that
  82. * will never happen.
  83. */
  84. spin_lock_irqsave(&x->wait.lock, flags);
  85. x->done++;
  86. spin_unlock_irqrestore(&x->wait.lock, flags);
  87. }
  88. return 0;
  89. }
  90. int i915_mutex_lock_interruptible(struct drm_device *dev)
  91. {
  92. int ret;
  93. ret = i915_gem_wait_for_error(dev);
  94. if (ret)
  95. return ret;
  96. ret = mutex_lock_interruptible(&dev->struct_mutex);
  97. if (ret)
  98. return ret;
  99. WARN_ON(i915_verify_lists(dev));
  100. return 0;
  101. }
  102. static inline bool
  103. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  106. }
  107. int
  108. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  109. struct drm_file *file)
  110. {
  111. struct drm_i915_gem_init *args = data;
  112. if (args->gtt_start >= args->gtt_end ||
  113. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  114. return -EINVAL;
  115. mutex_lock(&dev->struct_mutex);
  116. i915_gem_init_global_gtt(dev, args->gtt_start,
  117. args->gtt_end, args->gtt_end);
  118. mutex_unlock(&dev->struct_mutex);
  119. return 0;
  120. }
  121. int
  122. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  123. struct drm_file *file)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. struct drm_i915_gem_get_aperture *args = data;
  127. struct drm_i915_gem_object *obj;
  128. size_t pinned;
  129. if (!(dev->driver->driver_features & DRIVER_GEM))
  130. return -ENODEV;
  131. pinned = 0;
  132. mutex_lock(&dev->struct_mutex);
  133. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  134. pinned += obj->gtt_space->size;
  135. mutex_unlock(&dev->struct_mutex);
  136. args->aper_size = dev_priv->mm.gtt_total;
  137. args->aper_available_size = args->aper_size - pinned;
  138. return 0;
  139. }
  140. static int
  141. i915_gem_create(struct drm_file *file,
  142. struct drm_device *dev,
  143. uint64_t size,
  144. uint32_t *handle_p)
  145. {
  146. struct drm_i915_gem_object *obj;
  147. int ret;
  148. u32 handle;
  149. size = roundup(size, PAGE_SIZE);
  150. if (size == 0)
  151. return -EINVAL;
  152. /* Allocate the new object */
  153. obj = i915_gem_alloc_object(dev, size);
  154. if (obj == NULL)
  155. return -ENOMEM;
  156. ret = drm_gem_handle_create(file, &obj->base, &handle);
  157. if (ret) {
  158. drm_gem_object_release(&obj->base);
  159. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  160. kfree(obj);
  161. return ret;
  162. }
  163. /* drop reference from allocate - handle holds it now */
  164. drm_gem_object_unreference(&obj->base);
  165. trace_i915_gem_object_create(obj);
  166. *handle_p = handle;
  167. return 0;
  168. }
  169. int
  170. i915_gem_dumb_create(struct drm_file *file,
  171. struct drm_device *dev,
  172. struct drm_mode_create_dumb *args)
  173. {
  174. /* have to work out size/pitch and return them */
  175. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  176. args->size = args->pitch * args->height;
  177. return i915_gem_create(file, dev,
  178. args->size, &args->handle);
  179. }
  180. int i915_gem_dumb_destroy(struct drm_file *file,
  181. struct drm_device *dev,
  182. uint32_t handle)
  183. {
  184. return drm_gem_handle_delete(file, handle);
  185. }
  186. /**
  187. * Creates a new mm object and returns a handle to it.
  188. */
  189. int
  190. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  191. struct drm_file *file)
  192. {
  193. struct drm_i915_gem_create *args = data;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  198. {
  199. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  200. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  201. obj->tiling_mode != I915_TILING_NONE;
  202. }
  203. static inline int
  204. __copy_to_user_swizzled(char __user *cpu_vaddr,
  205. const char *gpu_vaddr, int gpu_offset,
  206. int length)
  207. {
  208. int ret, cpu_offset = 0;
  209. while (length > 0) {
  210. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  211. int this_length = min(cacheline_end - gpu_offset, length);
  212. int swizzled_gpu_offset = gpu_offset ^ 64;
  213. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  214. gpu_vaddr + swizzled_gpu_offset,
  215. this_length);
  216. if (ret)
  217. return ret + length;
  218. cpu_offset += this_length;
  219. gpu_offset += this_length;
  220. length -= this_length;
  221. }
  222. return 0;
  223. }
  224. static inline int
  225. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  226. const char *cpu_vaddr,
  227. int length)
  228. {
  229. int ret, cpu_offset = 0;
  230. while (length > 0) {
  231. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  232. int this_length = min(cacheline_end - gpu_offset, length);
  233. int swizzled_gpu_offset = gpu_offset ^ 64;
  234. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  235. cpu_vaddr + cpu_offset,
  236. this_length);
  237. if (ret)
  238. return ret + length;
  239. cpu_offset += this_length;
  240. gpu_offset += this_length;
  241. length -= this_length;
  242. }
  243. return 0;
  244. }
  245. /* Per-page copy function for the shmem pread fastpath.
  246. * Flushes invalid cachelines before reading the target if
  247. * needs_clflush is set. */
  248. static int
  249. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  250. char __user *user_data,
  251. bool page_do_bit17_swizzling, bool needs_clflush)
  252. {
  253. char *vaddr;
  254. int ret;
  255. if (unlikely(page_do_bit17_swizzling))
  256. return -EINVAL;
  257. vaddr = kmap_atomic(page);
  258. if (needs_clflush)
  259. drm_clflush_virt_range(vaddr + shmem_page_offset,
  260. page_length);
  261. ret = __copy_to_user_inatomic(user_data,
  262. vaddr + shmem_page_offset,
  263. page_length);
  264. kunmap_atomic(vaddr);
  265. return ret;
  266. }
  267. static void
  268. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  269. bool swizzled)
  270. {
  271. if (unlikely(swizzled)) {
  272. unsigned long start = (unsigned long) addr;
  273. unsigned long end = (unsigned long) addr + length;
  274. /* For swizzling simply ensure that we always flush both
  275. * channels. Lame, but simple and it works. Swizzled
  276. * pwrite/pread is far from a hotpath - current userspace
  277. * doesn't use it at all. */
  278. start = round_down(start, 128);
  279. end = round_up(end, 128);
  280. drm_clflush_virt_range((void *)start, end - start);
  281. } else {
  282. drm_clflush_virt_range(addr, length);
  283. }
  284. }
  285. /* Only difference to the fast-path function is that this can handle bit17
  286. * and uses non-atomic copy and kmap functions. */
  287. static int
  288. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  289. char __user *user_data,
  290. bool page_do_bit17_swizzling, bool needs_clflush)
  291. {
  292. char *vaddr;
  293. int ret;
  294. vaddr = kmap(page);
  295. if (needs_clflush)
  296. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  297. page_length,
  298. page_do_bit17_swizzling);
  299. if (page_do_bit17_swizzling)
  300. ret = __copy_to_user_swizzled(user_data,
  301. vaddr, shmem_page_offset,
  302. page_length);
  303. else
  304. ret = __copy_to_user(user_data,
  305. vaddr + shmem_page_offset,
  306. page_length);
  307. kunmap(page);
  308. return ret;
  309. }
  310. static int
  311. i915_gem_shmem_pread(struct drm_device *dev,
  312. struct drm_i915_gem_object *obj,
  313. struct drm_i915_gem_pread *args,
  314. struct drm_file *file)
  315. {
  316. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  317. char __user *user_data;
  318. ssize_t remain;
  319. loff_t offset;
  320. int shmem_page_offset, page_length, ret = 0;
  321. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  322. int hit_slowpath = 0;
  323. int prefaulted = 0;
  324. int needs_clflush = 0;
  325. int release_page;
  326. user_data = (char __user *) (uintptr_t) args->data_ptr;
  327. remain = args->size;
  328. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  329. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  330. /* If we're not in the cpu read domain, set ourself into the gtt
  331. * read domain and manually flush cachelines (if required). This
  332. * optimizes for the case when the gpu will dirty the data
  333. * anyway again before the next pread happens. */
  334. if (obj->cache_level == I915_CACHE_NONE)
  335. needs_clflush = 1;
  336. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  337. if (ret)
  338. return ret;
  339. }
  340. offset = args->offset;
  341. while (remain > 0) {
  342. struct page *page;
  343. /* Operation in this page
  344. *
  345. * shmem_page_offset = offset within page in shmem file
  346. * page_length = bytes to copy for this page
  347. */
  348. shmem_page_offset = offset_in_page(offset);
  349. page_length = remain;
  350. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  351. page_length = PAGE_SIZE - shmem_page_offset;
  352. if (obj->pages) {
  353. page = obj->pages[offset >> PAGE_SHIFT];
  354. release_page = 0;
  355. } else {
  356. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  357. if (IS_ERR(page)) {
  358. ret = PTR_ERR(page);
  359. goto out;
  360. }
  361. release_page = 1;
  362. }
  363. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  364. (page_to_phys(page) & (1 << 17)) != 0;
  365. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  366. user_data, page_do_bit17_swizzling,
  367. needs_clflush);
  368. if (ret == 0)
  369. goto next_page;
  370. hit_slowpath = 1;
  371. page_cache_get(page);
  372. mutex_unlock(&dev->struct_mutex);
  373. if (!prefaulted) {
  374. ret = fault_in_multipages_writeable(user_data, remain);
  375. /* Userspace is tricking us, but we've already clobbered
  376. * its pages with the prefault and promised to write the
  377. * data up to the first fault. Hence ignore any errors
  378. * and just continue. */
  379. (void)ret;
  380. prefaulted = 1;
  381. }
  382. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  383. user_data, page_do_bit17_swizzling,
  384. needs_clflush);
  385. mutex_lock(&dev->struct_mutex);
  386. page_cache_release(page);
  387. next_page:
  388. mark_page_accessed(page);
  389. if (release_page)
  390. page_cache_release(page);
  391. if (ret) {
  392. ret = -EFAULT;
  393. goto out;
  394. }
  395. remain -= page_length;
  396. user_data += page_length;
  397. offset += page_length;
  398. }
  399. out:
  400. if (hit_slowpath) {
  401. /* Fixup: Kill any reinstated backing storage pages */
  402. if (obj->madv == __I915_MADV_PURGED)
  403. i915_gem_object_truncate(obj);
  404. }
  405. return ret;
  406. }
  407. /**
  408. * Reads data from the object referenced by handle.
  409. *
  410. * On error, the contents of *data are undefined.
  411. */
  412. int
  413. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  414. struct drm_file *file)
  415. {
  416. struct drm_i915_gem_pread *args = data;
  417. struct drm_i915_gem_object *obj;
  418. int ret = 0;
  419. if (args->size == 0)
  420. return 0;
  421. if (!access_ok(VERIFY_WRITE,
  422. (char __user *)(uintptr_t)args->data_ptr,
  423. args->size))
  424. return -EFAULT;
  425. ret = i915_mutex_lock_interruptible(dev);
  426. if (ret)
  427. return ret;
  428. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  429. if (&obj->base == NULL) {
  430. ret = -ENOENT;
  431. goto unlock;
  432. }
  433. /* Bounds check source. */
  434. if (args->offset > obj->base.size ||
  435. args->size > obj->base.size - args->offset) {
  436. ret = -EINVAL;
  437. goto out;
  438. }
  439. trace_i915_gem_object_pread(obj, args->offset, args->size);
  440. ret = i915_gem_shmem_pread(dev, obj, args, file);
  441. out:
  442. drm_gem_object_unreference(&obj->base);
  443. unlock:
  444. mutex_unlock(&dev->struct_mutex);
  445. return ret;
  446. }
  447. /* This is the fast write path which cannot handle
  448. * page faults in the source data
  449. */
  450. static inline int
  451. fast_user_write(struct io_mapping *mapping,
  452. loff_t page_base, int page_offset,
  453. char __user *user_data,
  454. int length)
  455. {
  456. char *vaddr_atomic;
  457. unsigned long unwritten;
  458. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  459. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  460. user_data, length);
  461. io_mapping_unmap_atomic(vaddr_atomic);
  462. return unwritten;
  463. }
  464. /**
  465. * This is the fast pwrite path, where we copy the data directly from the
  466. * user into the GTT, uncached.
  467. */
  468. static int
  469. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  470. struct drm_i915_gem_object *obj,
  471. struct drm_i915_gem_pwrite *args,
  472. struct drm_file *file)
  473. {
  474. drm_i915_private_t *dev_priv = dev->dev_private;
  475. ssize_t remain;
  476. loff_t offset, page_base;
  477. char __user *user_data;
  478. int page_offset, page_length, ret;
  479. ret = i915_gem_object_pin(obj, 0, true);
  480. if (ret)
  481. goto out;
  482. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  483. if (ret)
  484. goto out_unpin;
  485. ret = i915_gem_object_put_fence(obj);
  486. if (ret)
  487. goto out_unpin;
  488. user_data = (char __user *) (uintptr_t) args->data_ptr;
  489. remain = args->size;
  490. offset = obj->gtt_offset + args->offset;
  491. while (remain > 0) {
  492. /* Operation in this page
  493. *
  494. * page_base = page offset within aperture
  495. * page_offset = offset within page
  496. * page_length = bytes to copy for this page
  497. */
  498. page_base = offset & PAGE_MASK;
  499. page_offset = offset_in_page(offset);
  500. page_length = remain;
  501. if ((page_offset + remain) > PAGE_SIZE)
  502. page_length = PAGE_SIZE - page_offset;
  503. /* If we get a fault while copying data, then (presumably) our
  504. * source page isn't available. Return the error and we'll
  505. * retry in the slow path.
  506. */
  507. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  508. page_offset, user_data, page_length)) {
  509. ret = -EFAULT;
  510. goto out_unpin;
  511. }
  512. remain -= page_length;
  513. user_data += page_length;
  514. offset += page_length;
  515. }
  516. out_unpin:
  517. i915_gem_object_unpin(obj);
  518. out:
  519. return ret;
  520. }
  521. /* Per-page copy function for the shmem pwrite fastpath.
  522. * Flushes invalid cachelines before writing to the target if
  523. * needs_clflush_before is set and flushes out any written cachelines after
  524. * writing if needs_clflush is set. */
  525. static int
  526. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  527. char __user *user_data,
  528. bool page_do_bit17_swizzling,
  529. bool needs_clflush_before,
  530. bool needs_clflush_after)
  531. {
  532. char *vaddr;
  533. int ret;
  534. if (unlikely(page_do_bit17_swizzling))
  535. return -EINVAL;
  536. vaddr = kmap_atomic(page);
  537. if (needs_clflush_before)
  538. drm_clflush_virt_range(vaddr + shmem_page_offset,
  539. page_length);
  540. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  541. user_data,
  542. page_length);
  543. if (needs_clflush_after)
  544. drm_clflush_virt_range(vaddr + shmem_page_offset,
  545. page_length);
  546. kunmap_atomic(vaddr);
  547. return ret;
  548. }
  549. /* Only difference to the fast-path function is that this can handle bit17
  550. * and uses non-atomic copy and kmap functions. */
  551. static int
  552. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  553. char __user *user_data,
  554. bool page_do_bit17_swizzling,
  555. bool needs_clflush_before,
  556. bool needs_clflush_after)
  557. {
  558. char *vaddr;
  559. int ret;
  560. vaddr = kmap(page);
  561. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  562. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  563. page_length,
  564. page_do_bit17_swizzling);
  565. if (page_do_bit17_swizzling)
  566. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  567. user_data,
  568. page_length);
  569. else
  570. ret = __copy_from_user(vaddr + shmem_page_offset,
  571. user_data,
  572. page_length);
  573. if (needs_clflush_after)
  574. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  575. page_length,
  576. page_do_bit17_swizzling);
  577. kunmap(page);
  578. return ret;
  579. }
  580. static int
  581. i915_gem_shmem_pwrite(struct drm_device *dev,
  582. struct drm_i915_gem_object *obj,
  583. struct drm_i915_gem_pwrite *args,
  584. struct drm_file *file)
  585. {
  586. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  587. ssize_t remain;
  588. loff_t offset;
  589. char __user *user_data;
  590. int shmem_page_offset, page_length, ret = 0;
  591. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  592. int hit_slowpath = 0;
  593. int needs_clflush_after = 0;
  594. int needs_clflush_before = 0;
  595. int release_page;
  596. user_data = (char __user *) (uintptr_t) args->data_ptr;
  597. remain = args->size;
  598. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  599. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  600. /* If we're not in the cpu write domain, set ourself into the gtt
  601. * write domain and manually flush cachelines (if required). This
  602. * optimizes for the case when the gpu will use the data
  603. * right away and we therefore have to clflush anyway. */
  604. if (obj->cache_level == I915_CACHE_NONE)
  605. needs_clflush_after = 1;
  606. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  607. if (ret)
  608. return ret;
  609. }
  610. /* Same trick applies for invalidate partially written cachelines before
  611. * writing. */
  612. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  613. && obj->cache_level == I915_CACHE_NONE)
  614. needs_clflush_before = 1;
  615. offset = args->offset;
  616. obj->dirty = 1;
  617. while (remain > 0) {
  618. struct page *page;
  619. int partial_cacheline_write;
  620. /* Operation in this page
  621. *
  622. * shmem_page_offset = offset within page in shmem file
  623. * page_length = bytes to copy for this page
  624. */
  625. shmem_page_offset = offset_in_page(offset);
  626. page_length = remain;
  627. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  628. page_length = PAGE_SIZE - shmem_page_offset;
  629. /* If we don't overwrite a cacheline completely we need to be
  630. * careful to have up-to-date data by first clflushing. Don't
  631. * overcomplicate things and flush the entire patch. */
  632. partial_cacheline_write = needs_clflush_before &&
  633. ((shmem_page_offset | page_length)
  634. & (boot_cpu_data.x86_clflush_size - 1));
  635. if (obj->pages) {
  636. page = obj->pages[offset >> PAGE_SHIFT];
  637. release_page = 0;
  638. } else {
  639. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  640. if (IS_ERR(page)) {
  641. ret = PTR_ERR(page);
  642. goto out;
  643. }
  644. release_page = 1;
  645. }
  646. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  647. (page_to_phys(page) & (1 << 17)) != 0;
  648. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  649. user_data, page_do_bit17_swizzling,
  650. partial_cacheline_write,
  651. needs_clflush_after);
  652. if (ret == 0)
  653. goto next_page;
  654. hit_slowpath = 1;
  655. page_cache_get(page);
  656. mutex_unlock(&dev->struct_mutex);
  657. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  658. user_data, page_do_bit17_swizzling,
  659. partial_cacheline_write,
  660. needs_clflush_after);
  661. mutex_lock(&dev->struct_mutex);
  662. page_cache_release(page);
  663. next_page:
  664. set_page_dirty(page);
  665. mark_page_accessed(page);
  666. if (release_page)
  667. page_cache_release(page);
  668. if (ret) {
  669. ret = -EFAULT;
  670. goto out;
  671. }
  672. remain -= page_length;
  673. user_data += page_length;
  674. offset += page_length;
  675. }
  676. out:
  677. if (hit_slowpath) {
  678. /* Fixup: Kill any reinstated backing storage pages */
  679. if (obj->madv == __I915_MADV_PURGED)
  680. i915_gem_object_truncate(obj);
  681. /* and flush dirty cachelines in case the object isn't in the cpu write
  682. * domain anymore. */
  683. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  684. i915_gem_clflush_object(obj);
  685. intel_gtt_chipset_flush();
  686. }
  687. }
  688. if (needs_clflush_after)
  689. intel_gtt_chipset_flush();
  690. return ret;
  691. }
  692. /**
  693. * Writes data to the object referenced by handle.
  694. *
  695. * On error, the contents of the buffer that were to be modified are undefined.
  696. */
  697. int
  698. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  699. struct drm_file *file)
  700. {
  701. struct drm_i915_gem_pwrite *args = data;
  702. struct drm_i915_gem_object *obj;
  703. int ret;
  704. if (args->size == 0)
  705. return 0;
  706. if (!access_ok(VERIFY_READ,
  707. (char __user *)(uintptr_t)args->data_ptr,
  708. args->size))
  709. return -EFAULT;
  710. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  711. args->size);
  712. if (ret)
  713. return -EFAULT;
  714. ret = i915_mutex_lock_interruptible(dev);
  715. if (ret)
  716. return ret;
  717. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  718. if (&obj->base == NULL) {
  719. ret = -ENOENT;
  720. goto unlock;
  721. }
  722. /* Bounds check destination. */
  723. if (args->offset > obj->base.size ||
  724. args->size > obj->base.size - args->offset) {
  725. ret = -EINVAL;
  726. goto out;
  727. }
  728. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  729. ret = -EFAULT;
  730. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  731. * it would end up going through the fenced access, and we'll get
  732. * different detiling behavior between reading and writing.
  733. * pread/pwrite currently are reading and writing from the CPU
  734. * perspective, requiring manual detiling by the client.
  735. */
  736. if (obj->phys_obj) {
  737. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  738. goto out;
  739. }
  740. if (obj->gtt_space &&
  741. obj->cache_level == I915_CACHE_NONE &&
  742. obj->map_and_fenceable &&
  743. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  744. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  745. /* Note that the gtt paths might fail with non-page-backed user
  746. * pointers (e.g. gtt mappings when moving data between
  747. * textures). Fallback to the shmem path in that case. */
  748. }
  749. if (ret == -EFAULT)
  750. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  751. out:
  752. drm_gem_object_unreference(&obj->base);
  753. unlock:
  754. mutex_unlock(&dev->struct_mutex);
  755. return ret;
  756. }
  757. /**
  758. * Called when user space prepares to use an object with the CPU, either
  759. * through the mmap ioctl's mapping or a GTT mapping.
  760. */
  761. int
  762. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  763. struct drm_file *file)
  764. {
  765. struct drm_i915_gem_set_domain *args = data;
  766. struct drm_i915_gem_object *obj;
  767. uint32_t read_domains = args->read_domains;
  768. uint32_t write_domain = args->write_domain;
  769. int ret;
  770. if (!(dev->driver->driver_features & DRIVER_GEM))
  771. return -ENODEV;
  772. /* Only handle setting domains to types used by the CPU. */
  773. if (write_domain & I915_GEM_GPU_DOMAINS)
  774. return -EINVAL;
  775. if (read_domains & I915_GEM_GPU_DOMAINS)
  776. return -EINVAL;
  777. /* Having something in the write domain implies it's in the read
  778. * domain, and only that read domain. Enforce that in the request.
  779. */
  780. if (write_domain != 0 && read_domains != write_domain)
  781. return -EINVAL;
  782. ret = i915_mutex_lock_interruptible(dev);
  783. if (ret)
  784. return ret;
  785. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  786. if (&obj->base == NULL) {
  787. ret = -ENOENT;
  788. goto unlock;
  789. }
  790. if (read_domains & I915_GEM_DOMAIN_GTT) {
  791. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  792. /* Silently promote "you're not bound, there was nothing to do"
  793. * to success, since the client was just asking us to
  794. * make sure everything was done.
  795. */
  796. if (ret == -EINVAL)
  797. ret = 0;
  798. } else {
  799. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  800. }
  801. drm_gem_object_unreference(&obj->base);
  802. unlock:
  803. mutex_unlock(&dev->struct_mutex);
  804. return ret;
  805. }
  806. /**
  807. * Called when user space has done writes to this buffer
  808. */
  809. int
  810. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  811. struct drm_file *file)
  812. {
  813. struct drm_i915_gem_sw_finish *args = data;
  814. struct drm_i915_gem_object *obj;
  815. int ret = 0;
  816. if (!(dev->driver->driver_features & DRIVER_GEM))
  817. return -ENODEV;
  818. ret = i915_mutex_lock_interruptible(dev);
  819. if (ret)
  820. return ret;
  821. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  822. if (&obj->base == NULL) {
  823. ret = -ENOENT;
  824. goto unlock;
  825. }
  826. /* Pinned buffers may be scanout, so flush the cache */
  827. if (obj->pin_count)
  828. i915_gem_object_flush_cpu_write_domain(obj);
  829. drm_gem_object_unreference(&obj->base);
  830. unlock:
  831. mutex_unlock(&dev->struct_mutex);
  832. return ret;
  833. }
  834. /**
  835. * Maps the contents of an object, returning the address it is mapped
  836. * into.
  837. *
  838. * While the mapping holds a reference on the contents of the object, it doesn't
  839. * imply a ref on the object itself.
  840. */
  841. int
  842. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  843. struct drm_file *file)
  844. {
  845. struct drm_i915_gem_mmap *args = data;
  846. struct drm_gem_object *obj;
  847. unsigned long addr;
  848. if (!(dev->driver->driver_features & DRIVER_GEM))
  849. return -ENODEV;
  850. obj = drm_gem_object_lookup(dev, file, args->handle);
  851. if (obj == NULL)
  852. return -ENOENT;
  853. down_write(&current->mm->mmap_sem);
  854. addr = do_mmap(obj->filp, 0, args->size,
  855. PROT_READ | PROT_WRITE, MAP_SHARED,
  856. args->offset);
  857. up_write(&current->mm->mmap_sem);
  858. drm_gem_object_unreference_unlocked(obj);
  859. if (IS_ERR((void *)addr))
  860. return addr;
  861. args->addr_ptr = (uint64_t) addr;
  862. return 0;
  863. }
  864. /**
  865. * i915_gem_fault - fault a page into the GTT
  866. * vma: VMA in question
  867. * vmf: fault info
  868. *
  869. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  870. * from userspace. The fault handler takes care of binding the object to
  871. * the GTT (if needed), allocating and programming a fence register (again,
  872. * only if needed based on whether the old reg is still valid or the object
  873. * is tiled) and inserting a new PTE into the faulting process.
  874. *
  875. * Note that the faulting process may involve evicting existing objects
  876. * from the GTT and/or fence registers to make room. So performance may
  877. * suffer if the GTT working set is large or there are few fence registers
  878. * left.
  879. */
  880. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  881. {
  882. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  883. struct drm_device *dev = obj->base.dev;
  884. drm_i915_private_t *dev_priv = dev->dev_private;
  885. pgoff_t page_offset;
  886. unsigned long pfn;
  887. int ret = 0;
  888. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  889. /* We don't use vmf->pgoff since that has the fake offset */
  890. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  891. PAGE_SHIFT;
  892. ret = i915_mutex_lock_interruptible(dev);
  893. if (ret)
  894. goto out;
  895. trace_i915_gem_object_fault(obj, page_offset, true, write);
  896. /* Now bind it into the GTT if needed */
  897. if (!obj->map_and_fenceable) {
  898. ret = i915_gem_object_unbind(obj);
  899. if (ret)
  900. goto unlock;
  901. }
  902. if (!obj->gtt_space) {
  903. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  904. if (ret)
  905. goto unlock;
  906. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  907. if (ret)
  908. goto unlock;
  909. }
  910. if (!obj->has_global_gtt_mapping)
  911. i915_gem_gtt_bind_object(obj, obj->cache_level);
  912. if (obj->tiling_mode == I915_TILING_NONE)
  913. ret = i915_gem_object_put_fence(obj);
  914. else
  915. ret = i915_gem_object_get_fence(obj, NULL);
  916. if (ret)
  917. goto unlock;
  918. if (i915_gem_object_is_inactive(obj))
  919. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  920. obj->fault_mappable = true;
  921. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  922. page_offset;
  923. /* Finally, remap it using the new GTT offset */
  924. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  925. unlock:
  926. mutex_unlock(&dev->struct_mutex);
  927. out:
  928. switch (ret) {
  929. case -EIO:
  930. case -EAGAIN:
  931. /* Give the error handler a chance to run and move the
  932. * objects off the GPU active list. Next time we service the
  933. * fault, we should be able to transition the page into the
  934. * GTT without touching the GPU (and so avoid further
  935. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  936. * with coherency, just lost writes.
  937. */
  938. set_need_resched();
  939. case 0:
  940. case -ERESTARTSYS:
  941. case -EINTR:
  942. return VM_FAULT_NOPAGE;
  943. case -ENOMEM:
  944. return VM_FAULT_OOM;
  945. default:
  946. return VM_FAULT_SIGBUS;
  947. }
  948. }
  949. /**
  950. * i915_gem_release_mmap - remove physical page mappings
  951. * @obj: obj in question
  952. *
  953. * Preserve the reservation of the mmapping with the DRM core code, but
  954. * relinquish ownership of the pages back to the system.
  955. *
  956. * It is vital that we remove the page mapping if we have mapped a tiled
  957. * object through the GTT and then lose the fence register due to
  958. * resource pressure. Similarly if the object has been moved out of the
  959. * aperture, than pages mapped into userspace must be revoked. Removing the
  960. * mapping will then trigger a page fault on the next user access, allowing
  961. * fixup by i915_gem_fault().
  962. */
  963. void
  964. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  965. {
  966. if (!obj->fault_mappable)
  967. return;
  968. if (obj->base.dev->dev_mapping)
  969. unmap_mapping_range(obj->base.dev->dev_mapping,
  970. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  971. obj->base.size, 1);
  972. obj->fault_mappable = false;
  973. }
  974. static uint32_t
  975. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  976. {
  977. uint32_t gtt_size;
  978. if (INTEL_INFO(dev)->gen >= 4 ||
  979. tiling_mode == I915_TILING_NONE)
  980. return size;
  981. /* Previous chips need a power-of-two fence region when tiling */
  982. if (INTEL_INFO(dev)->gen == 3)
  983. gtt_size = 1024*1024;
  984. else
  985. gtt_size = 512*1024;
  986. while (gtt_size < size)
  987. gtt_size <<= 1;
  988. return gtt_size;
  989. }
  990. /**
  991. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  992. * @obj: object to check
  993. *
  994. * Return the required GTT alignment for an object, taking into account
  995. * potential fence register mapping.
  996. */
  997. static uint32_t
  998. i915_gem_get_gtt_alignment(struct drm_device *dev,
  999. uint32_t size,
  1000. int tiling_mode)
  1001. {
  1002. /*
  1003. * Minimum alignment is 4k (GTT page size), but might be greater
  1004. * if a fence register is needed for the object.
  1005. */
  1006. if (INTEL_INFO(dev)->gen >= 4 ||
  1007. tiling_mode == I915_TILING_NONE)
  1008. return 4096;
  1009. /*
  1010. * Previous chips need to be aligned to the size of the smallest
  1011. * fence register that can contain the object.
  1012. */
  1013. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1014. }
  1015. /**
  1016. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1017. * unfenced object
  1018. * @dev: the device
  1019. * @size: size of the object
  1020. * @tiling_mode: tiling mode of the object
  1021. *
  1022. * Return the required GTT alignment for an object, only taking into account
  1023. * unfenced tiled surface requirements.
  1024. */
  1025. uint32_t
  1026. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1027. uint32_t size,
  1028. int tiling_mode)
  1029. {
  1030. /*
  1031. * Minimum alignment is 4k (GTT page size) for sane hw.
  1032. */
  1033. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1034. tiling_mode == I915_TILING_NONE)
  1035. return 4096;
  1036. /* Previous hardware however needs to be aligned to a power-of-two
  1037. * tile height. The simplest method for determining this is to reuse
  1038. * the power-of-tile object size.
  1039. */
  1040. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1041. }
  1042. int
  1043. i915_gem_mmap_gtt(struct drm_file *file,
  1044. struct drm_device *dev,
  1045. uint32_t handle,
  1046. uint64_t *offset)
  1047. {
  1048. struct drm_i915_private *dev_priv = dev->dev_private;
  1049. struct drm_i915_gem_object *obj;
  1050. int ret;
  1051. if (!(dev->driver->driver_features & DRIVER_GEM))
  1052. return -ENODEV;
  1053. ret = i915_mutex_lock_interruptible(dev);
  1054. if (ret)
  1055. return ret;
  1056. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1057. if (&obj->base == NULL) {
  1058. ret = -ENOENT;
  1059. goto unlock;
  1060. }
  1061. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1062. ret = -E2BIG;
  1063. goto out;
  1064. }
  1065. if (obj->madv != I915_MADV_WILLNEED) {
  1066. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1067. ret = -EINVAL;
  1068. goto out;
  1069. }
  1070. if (!obj->base.map_list.map) {
  1071. ret = drm_gem_create_mmap_offset(&obj->base);
  1072. if (ret)
  1073. goto out;
  1074. }
  1075. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1076. out:
  1077. drm_gem_object_unreference(&obj->base);
  1078. unlock:
  1079. mutex_unlock(&dev->struct_mutex);
  1080. return ret;
  1081. }
  1082. /**
  1083. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1084. * @dev: DRM device
  1085. * @data: GTT mapping ioctl data
  1086. * @file: GEM object info
  1087. *
  1088. * Simply returns the fake offset to userspace so it can mmap it.
  1089. * The mmap call will end up in drm_gem_mmap(), which will set things
  1090. * up so we can get faults in the handler above.
  1091. *
  1092. * The fault handler will take care of binding the object into the GTT
  1093. * (since it may have been evicted to make room for something), allocating
  1094. * a fence register, and mapping the appropriate aperture address into
  1095. * userspace.
  1096. */
  1097. int
  1098. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1099. struct drm_file *file)
  1100. {
  1101. struct drm_i915_gem_mmap_gtt *args = data;
  1102. if (!(dev->driver->driver_features & DRIVER_GEM))
  1103. return -ENODEV;
  1104. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1105. }
  1106. static int
  1107. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1108. gfp_t gfpmask)
  1109. {
  1110. int page_count, i;
  1111. struct address_space *mapping;
  1112. struct inode *inode;
  1113. struct page *page;
  1114. /* Get the list of pages out of our struct file. They'll be pinned
  1115. * at this point until we release them.
  1116. */
  1117. page_count = obj->base.size / PAGE_SIZE;
  1118. BUG_ON(obj->pages != NULL);
  1119. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1120. if (obj->pages == NULL)
  1121. return -ENOMEM;
  1122. inode = obj->base.filp->f_path.dentry->d_inode;
  1123. mapping = inode->i_mapping;
  1124. gfpmask |= mapping_gfp_mask(mapping);
  1125. for (i = 0; i < page_count; i++) {
  1126. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1127. if (IS_ERR(page))
  1128. goto err_pages;
  1129. obj->pages[i] = page;
  1130. }
  1131. if (i915_gem_object_needs_bit17_swizzle(obj))
  1132. i915_gem_object_do_bit_17_swizzle(obj);
  1133. return 0;
  1134. err_pages:
  1135. while (i--)
  1136. page_cache_release(obj->pages[i]);
  1137. drm_free_large(obj->pages);
  1138. obj->pages = NULL;
  1139. return PTR_ERR(page);
  1140. }
  1141. static void
  1142. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1143. {
  1144. int page_count = obj->base.size / PAGE_SIZE;
  1145. int i;
  1146. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1147. if (i915_gem_object_needs_bit17_swizzle(obj))
  1148. i915_gem_object_save_bit_17_swizzle(obj);
  1149. if (obj->madv == I915_MADV_DONTNEED)
  1150. obj->dirty = 0;
  1151. for (i = 0; i < page_count; i++) {
  1152. if (obj->dirty)
  1153. set_page_dirty(obj->pages[i]);
  1154. if (obj->madv == I915_MADV_WILLNEED)
  1155. mark_page_accessed(obj->pages[i]);
  1156. page_cache_release(obj->pages[i]);
  1157. }
  1158. obj->dirty = 0;
  1159. drm_free_large(obj->pages);
  1160. obj->pages = NULL;
  1161. }
  1162. void
  1163. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1164. struct intel_ring_buffer *ring,
  1165. u32 seqno)
  1166. {
  1167. struct drm_device *dev = obj->base.dev;
  1168. struct drm_i915_private *dev_priv = dev->dev_private;
  1169. BUG_ON(ring == NULL);
  1170. obj->ring = ring;
  1171. /* Add a reference if we're newly entering the active list. */
  1172. if (!obj->active) {
  1173. drm_gem_object_reference(&obj->base);
  1174. obj->active = 1;
  1175. }
  1176. /* Move from whatever list we were on to the tail of execution. */
  1177. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1178. list_move_tail(&obj->ring_list, &ring->active_list);
  1179. obj->last_rendering_seqno = seqno;
  1180. if (obj->fenced_gpu_access) {
  1181. struct drm_i915_fence_reg *reg;
  1182. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1183. obj->last_fenced_seqno = seqno;
  1184. obj->last_fenced_ring = ring;
  1185. reg = &dev_priv->fence_regs[obj->fence_reg];
  1186. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1187. }
  1188. }
  1189. static void
  1190. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1191. {
  1192. list_del_init(&obj->ring_list);
  1193. obj->last_rendering_seqno = 0;
  1194. }
  1195. static void
  1196. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1197. {
  1198. struct drm_device *dev = obj->base.dev;
  1199. drm_i915_private_t *dev_priv = dev->dev_private;
  1200. BUG_ON(!obj->active);
  1201. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1202. i915_gem_object_move_off_active(obj);
  1203. }
  1204. static void
  1205. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1206. {
  1207. struct drm_device *dev = obj->base.dev;
  1208. struct drm_i915_private *dev_priv = dev->dev_private;
  1209. if (obj->pin_count != 0)
  1210. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1211. else
  1212. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1213. BUG_ON(!list_empty(&obj->gpu_write_list));
  1214. BUG_ON(!obj->active);
  1215. obj->ring = NULL;
  1216. i915_gem_object_move_off_active(obj);
  1217. obj->fenced_gpu_access = false;
  1218. obj->active = 0;
  1219. obj->pending_gpu_write = false;
  1220. drm_gem_object_unreference(&obj->base);
  1221. WARN_ON(i915_verify_lists(dev));
  1222. }
  1223. /* Immediately discard the backing storage */
  1224. static void
  1225. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1226. {
  1227. struct inode *inode;
  1228. /* Our goal here is to return as much of the memory as
  1229. * is possible back to the system as we are called from OOM.
  1230. * To do this we must instruct the shmfs to drop all of its
  1231. * backing pages, *now*.
  1232. */
  1233. inode = obj->base.filp->f_path.dentry->d_inode;
  1234. shmem_truncate_range(inode, 0, (loff_t)-1);
  1235. if (obj->base.map_list.map)
  1236. drm_gem_free_mmap_offset(&obj->base);
  1237. obj->madv = __I915_MADV_PURGED;
  1238. }
  1239. static inline int
  1240. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1241. {
  1242. return obj->madv == I915_MADV_DONTNEED;
  1243. }
  1244. static void
  1245. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1246. uint32_t flush_domains)
  1247. {
  1248. struct drm_i915_gem_object *obj, *next;
  1249. list_for_each_entry_safe(obj, next,
  1250. &ring->gpu_write_list,
  1251. gpu_write_list) {
  1252. if (obj->base.write_domain & flush_domains) {
  1253. uint32_t old_write_domain = obj->base.write_domain;
  1254. obj->base.write_domain = 0;
  1255. list_del_init(&obj->gpu_write_list);
  1256. i915_gem_object_move_to_active(obj, ring,
  1257. i915_gem_next_request_seqno(ring));
  1258. trace_i915_gem_object_change_domain(obj,
  1259. obj->base.read_domains,
  1260. old_write_domain);
  1261. }
  1262. }
  1263. }
  1264. static u32
  1265. i915_gem_get_seqno(struct drm_device *dev)
  1266. {
  1267. drm_i915_private_t *dev_priv = dev->dev_private;
  1268. u32 seqno = dev_priv->next_seqno;
  1269. /* reserve 0 for non-seqno */
  1270. if (++dev_priv->next_seqno == 0)
  1271. dev_priv->next_seqno = 1;
  1272. return seqno;
  1273. }
  1274. u32
  1275. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1276. {
  1277. if (ring->outstanding_lazy_request == 0)
  1278. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1279. return ring->outstanding_lazy_request;
  1280. }
  1281. int
  1282. i915_add_request(struct intel_ring_buffer *ring,
  1283. struct drm_file *file,
  1284. struct drm_i915_gem_request *request)
  1285. {
  1286. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1287. uint32_t seqno;
  1288. u32 request_ring_position;
  1289. int was_empty;
  1290. int ret;
  1291. BUG_ON(request == NULL);
  1292. seqno = i915_gem_next_request_seqno(ring);
  1293. /* Record the position of the start of the request so that
  1294. * should we detect the updated seqno part-way through the
  1295. * GPU processing the request, we never over-estimate the
  1296. * position of the head.
  1297. */
  1298. request_ring_position = intel_ring_get_tail(ring);
  1299. ret = ring->add_request(ring, &seqno);
  1300. if (ret)
  1301. return ret;
  1302. trace_i915_gem_request_add(ring, seqno);
  1303. request->seqno = seqno;
  1304. request->ring = ring;
  1305. request->tail = request_ring_position;
  1306. request->emitted_jiffies = jiffies;
  1307. was_empty = list_empty(&ring->request_list);
  1308. list_add_tail(&request->list, &ring->request_list);
  1309. if (file) {
  1310. struct drm_i915_file_private *file_priv = file->driver_priv;
  1311. spin_lock(&file_priv->mm.lock);
  1312. request->file_priv = file_priv;
  1313. list_add_tail(&request->client_list,
  1314. &file_priv->mm.request_list);
  1315. spin_unlock(&file_priv->mm.lock);
  1316. }
  1317. ring->outstanding_lazy_request = 0;
  1318. if (!dev_priv->mm.suspended) {
  1319. if (i915_enable_hangcheck) {
  1320. mod_timer(&dev_priv->hangcheck_timer,
  1321. jiffies +
  1322. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1323. }
  1324. if (was_empty)
  1325. queue_delayed_work(dev_priv->wq,
  1326. &dev_priv->mm.retire_work, HZ);
  1327. }
  1328. return 0;
  1329. }
  1330. static inline void
  1331. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1332. {
  1333. struct drm_i915_file_private *file_priv = request->file_priv;
  1334. if (!file_priv)
  1335. return;
  1336. spin_lock(&file_priv->mm.lock);
  1337. if (request->file_priv) {
  1338. list_del(&request->client_list);
  1339. request->file_priv = NULL;
  1340. }
  1341. spin_unlock(&file_priv->mm.lock);
  1342. }
  1343. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1344. struct intel_ring_buffer *ring)
  1345. {
  1346. while (!list_empty(&ring->request_list)) {
  1347. struct drm_i915_gem_request *request;
  1348. request = list_first_entry(&ring->request_list,
  1349. struct drm_i915_gem_request,
  1350. list);
  1351. list_del(&request->list);
  1352. i915_gem_request_remove_from_client(request);
  1353. kfree(request);
  1354. }
  1355. while (!list_empty(&ring->active_list)) {
  1356. struct drm_i915_gem_object *obj;
  1357. obj = list_first_entry(&ring->active_list,
  1358. struct drm_i915_gem_object,
  1359. ring_list);
  1360. obj->base.write_domain = 0;
  1361. list_del_init(&obj->gpu_write_list);
  1362. i915_gem_object_move_to_inactive(obj);
  1363. }
  1364. }
  1365. static void i915_gem_reset_fences(struct drm_device *dev)
  1366. {
  1367. struct drm_i915_private *dev_priv = dev->dev_private;
  1368. int i;
  1369. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1370. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1371. struct drm_i915_gem_object *obj = reg->obj;
  1372. if (!obj)
  1373. continue;
  1374. if (obj->tiling_mode)
  1375. i915_gem_release_mmap(obj);
  1376. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1377. reg->obj->fenced_gpu_access = false;
  1378. reg->obj->last_fenced_seqno = 0;
  1379. reg->obj->last_fenced_ring = NULL;
  1380. i915_gem_clear_fence_reg(dev, reg);
  1381. }
  1382. }
  1383. void i915_gem_reset(struct drm_device *dev)
  1384. {
  1385. struct drm_i915_private *dev_priv = dev->dev_private;
  1386. struct drm_i915_gem_object *obj;
  1387. int i;
  1388. for (i = 0; i < I915_NUM_RINGS; i++)
  1389. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1390. /* Remove anything from the flushing lists. The GPU cache is likely
  1391. * to be lost on reset along with the data, so simply move the
  1392. * lost bo to the inactive list.
  1393. */
  1394. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1395. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1396. struct drm_i915_gem_object,
  1397. mm_list);
  1398. obj->base.write_domain = 0;
  1399. list_del_init(&obj->gpu_write_list);
  1400. i915_gem_object_move_to_inactive(obj);
  1401. }
  1402. /* Move everything out of the GPU domains to ensure we do any
  1403. * necessary invalidation upon reuse.
  1404. */
  1405. list_for_each_entry(obj,
  1406. &dev_priv->mm.inactive_list,
  1407. mm_list)
  1408. {
  1409. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1410. }
  1411. /* The fence registers are invalidated so clear them out */
  1412. i915_gem_reset_fences(dev);
  1413. }
  1414. /**
  1415. * This function clears the request list as sequence numbers are passed.
  1416. */
  1417. void
  1418. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1419. {
  1420. uint32_t seqno;
  1421. int i;
  1422. if (list_empty(&ring->request_list))
  1423. return;
  1424. WARN_ON(i915_verify_lists(ring->dev));
  1425. seqno = ring->get_seqno(ring);
  1426. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1427. if (seqno >= ring->sync_seqno[i])
  1428. ring->sync_seqno[i] = 0;
  1429. while (!list_empty(&ring->request_list)) {
  1430. struct drm_i915_gem_request *request;
  1431. request = list_first_entry(&ring->request_list,
  1432. struct drm_i915_gem_request,
  1433. list);
  1434. if (!i915_seqno_passed(seqno, request->seqno))
  1435. break;
  1436. trace_i915_gem_request_retire(ring, request->seqno);
  1437. /* We know the GPU must have read the request to have
  1438. * sent us the seqno + interrupt, so use the position
  1439. * of tail of the request to update the last known position
  1440. * of the GPU head.
  1441. */
  1442. ring->last_retired_head = request->tail;
  1443. list_del(&request->list);
  1444. i915_gem_request_remove_from_client(request);
  1445. kfree(request);
  1446. }
  1447. /* Move any buffers on the active list that are no longer referenced
  1448. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1449. */
  1450. while (!list_empty(&ring->active_list)) {
  1451. struct drm_i915_gem_object *obj;
  1452. obj = list_first_entry(&ring->active_list,
  1453. struct drm_i915_gem_object,
  1454. ring_list);
  1455. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1456. break;
  1457. if (obj->base.write_domain != 0)
  1458. i915_gem_object_move_to_flushing(obj);
  1459. else
  1460. i915_gem_object_move_to_inactive(obj);
  1461. }
  1462. if (unlikely(ring->trace_irq_seqno &&
  1463. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1464. ring->irq_put(ring);
  1465. ring->trace_irq_seqno = 0;
  1466. }
  1467. WARN_ON(i915_verify_lists(ring->dev));
  1468. }
  1469. void
  1470. i915_gem_retire_requests(struct drm_device *dev)
  1471. {
  1472. drm_i915_private_t *dev_priv = dev->dev_private;
  1473. int i;
  1474. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1475. struct drm_i915_gem_object *obj, *next;
  1476. /* We must be careful that during unbind() we do not
  1477. * accidentally infinitely recurse into retire requests.
  1478. * Currently:
  1479. * retire -> free -> unbind -> wait -> retire_ring
  1480. */
  1481. list_for_each_entry_safe(obj, next,
  1482. &dev_priv->mm.deferred_free_list,
  1483. mm_list)
  1484. i915_gem_free_object_tail(obj);
  1485. }
  1486. for (i = 0; i < I915_NUM_RINGS; i++)
  1487. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1488. }
  1489. static void
  1490. i915_gem_retire_work_handler(struct work_struct *work)
  1491. {
  1492. drm_i915_private_t *dev_priv;
  1493. struct drm_device *dev;
  1494. bool idle;
  1495. int i;
  1496. dev_priv = container_of(work, drm_i915_private_t,
  1497. mm.retire_work.work);
  1498. dev = dev_priv->dev;
  1499. /* Come back later if the device is busy... */
  1500. if (!mutex_trylock(&dev->struct_mutex)) {
  1501. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1502. return;
  1503. }
  1504. i915_gem_retire_requests(dev);
  1505. /* Send a periodic flush down the ring so we don't hold onto GEM
  1506. * objects indefinitely.
  1507. */
  1508. idle = true;
  1509. for (i = 0; i < I915_NUM_RINGS; i++) {
  1510. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1511. if (!list_empty(&ring->gpu_write_list)) {
  1512. struct drm_i915_gem_request *request;
  1513. int ret;
  1514. ret = i915_gem_flush_ring(ring,
  1515. 0, I915_GEM_GPU_DOMAINS);
  1516. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1517. if (ret || request == NULL ||
  1518. i915_add_request(ring, NULL, request))
  1519. kfree(request);
  1520. }
  1521. idle &= list_empty(&ring->request_list);
  1522. }
  1523. if (!dev_priv->mm.suspended && !idle)
  1524. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1525. mutex_unlock(&dev->struct_mutex);
  1526. }
  1527. /**
  1528. * Waits for a sequence number to be signaled, and cleans up the
  1529. * request and object lists appropriately for that event.
  1530. */
  1531. int
  1532. i915_wait_request(struct intel_ring_buffer *ring,
  1533. uint32_t seqno,
  1534. bool do_retire)
  1535. {
  1536. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1537. u32 ier;
  1538. int ret = 0;
  1539. BUG_ON(seqno == 0);
  1540. if (atomic_read(&dev_priv->mm.wedged)) {
  1541. struct completion *x = &dev_priv->error_completion;
  1542. bool recovery_complete;
  1543. unsigned long flags;
  1544. /* Give the error handler a chance to run. */
  1545. spin_lock_irqsave(&x->wait.lock, flags);
  1546. recovery_complete = x->done > 0;
  1547. spin_unlock_irqrestore(&x->wait.lock, flags);
  1548. return recovery_complete ? -EIO : -EAGAIN;
  1549. }
  1550. if (seqno == ring->outstanding_lazy_request) {
  1551. struct drm_i915_gem_request *request;
  1552. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1553. if (request == NULL)
  1554. return -ENOMEM;
  1555. ret = i915_add_request(ring, NULL, request);
  1556. if (ret) {
  1557. kfree(request);
  1558. return ret;
  1559. }
  1560. seqno = request->seqno;
  1561. }
  1562. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1563. if (HAS_PCH_SPLIT(ring->dev))
  1564. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1565. else
  1566. ier = I915_READ(IER);
  1567. if (!ier) {
  1568. DRM_ERROR("something (likely vbetool) disabled "
  1569. "interrupts, re-enabling\n");
  1570. ring->dev->driver->irq_preinstall(ring->dev);
  1571. ring->dev->driver->irq_postinstall(ring->dev);
  1572. }
  1573. trace_i915_gem_request_wait_begin(ring, seqno);
  1574. ring->waiting_seqno = seqno;
  1575. if (ring->irq_get(ring)) {
  1576. if (dev_priv->mm.interruptible)
  1577. ret = wait_event_interruptible(ring->irq_queue,
  1578. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1579. || atomic_read(&dev_priv->mm.wedged));
  1580. else
  1581. wait_event(ring->irq_queue,
  1582. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1583. || atomic_read(&dev_priv->mm.wedged));
  1584. ring->irq_put(ring);
  1585. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1586. seqno) ||
  1587. atomic_read(&dev_priv->mm.wedged), 3000))
  1588. ret = -EBUSY;
  1589. ring->waiting_seqno = 0;
  1590. trace_i915_gem_request_wait_end(ring, seqno);
  1591. }
  1592. if (atomic_read(&dev_priv->mm.wedged))
  1593. ret = -EAGAIN;
  1594. /* Directly dispatch request retiring. While we have the work queue
  1595. * to handle this, the waiter on a request often wants an associated
  1596. * buffer to have made it to the inactive list, and we would need
  1597. * a separate wait queue to handle that.
  1598. */
  1599. if (ret == 0 && do_retire)
  1600. i915_gem_retire_requests_ring(ring);
  1601. return ret;
  1602. }
  1603. /**
  1604. * Ensures that all rendering to the object has completed and the object is
  1605. * safe to unbind from the GTT or access from the CPU.
  1606. */
  1607. int
  1608. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1609. {
  1610. int ret;
  1611. /* This function only exists to support waiting for existing rendering,
  1612. * not for emitting required flushes.
  1613. */
  1614. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1615. /* If there is rendering queued on the buffer being evicted, wait for
  1616. * it.
  1617. */
  1618. if (obj->active) {
  1619. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1620. true);
  1621. if (ret)
  1622. return ret;
  1623. }
  1624. return 0;
  1625. }
  1626. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1627. {
  1628. u32 old_write_domain, old_read_domains;
  1629. /* Act a barrier for all accesses through the GTT */
  1630. mb();
  1631. /* Force a pagefault for domain tracking on next user access */
  1632. i915_gem_release_mmap(obj);
  1633. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1634. return;
  1635. old_read_domains = obj->base.read_domains;
  1636. old_write_domain = obj->base.write_domain;
  1637. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1638. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1639. trace_i915_gem_object_change_domain(obj,
  1640. old_read_domains,
  1641. old_write_domain);
  1642. }
  1643. /**
  1644. * Unbinds an object from the GTT aperture.
  1645. */
  1646. int
  1647. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1648. {
  1649. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1650. int ret = 0;
  1651. if (obj->gtt_space == NULL)
  1652. return 0;
  1653. if (obj->pin_count != 0) {
  1654. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1655. return -EINVAL;
  1656. }
  1657. ret = i915_gem_object_finish_gpu(obj);
  1658. if (ret == -ERESTARTSYS)
  1659. return ret;
  1660. /* Continue on if we fail due to EIO, the GPU is hung so we
  1661. * should be safe and we need to cleanup or else we might
  1662. * cause memory corruption through use-after-free.
  1663. */
  1664. i915_gem_object_finish_gtt(obj);
  1665. /* Move the object to the CPU domain to ensure that
  1666. * any possible CPU writes while it's not in the GTT
  1667. * are flushed when we go to remap it.
  1668. */
  1669. if (ret == 0)
  1670. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1671. if (ret == -ERESTARTSYS)
  1672. return ret;
  1673. if (ret) {
  1674. /* In the event of a disaster, abandon all caches and
  1675. * hope for the best.
  1676. */
  1677. i915_gem_clflush_object(obj);
  1678. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1679. }
  1680. /* release the fence reg _after_ flushing */
  1681. ret = i915_gem_object_put_fence(obj);
  1682. if (ret == -ERESTARTSYS)
  1683. return ret;
  1684. trace_i915_gem_object_unbind(obj);
  1685. if (obj->has_global_gtt_mapping)
  1686. i915_gem_gtt_unbind_object(obj);
  1687. if (obj->has_aliasing_ppgtt_mapping) {
  1688. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1689. obj->has_aliasing_ppgtt_mapping = 0;
  1690. }
  1691. i915_gem_gtt_finish_object(obj);
  1692. i915_gem_object_put_pages_gtt(obj);
  1693. list_del_init(&obj->gtt_list);
  1694. list_del_init(&obj->mm_list);
  1695. /* Avoid an unnecessary call to unbind on rebind. */
  1696. obj->map_and_fenceable = true;
  1697. drm_mm_put_block(obj->gtt_space);
  1698. obj->gtt_space = NULL;
  1699. obj->gtt_offset = 0;
  1700. if (i915_gem_object_is_purgeable(obj))
  1701. i915_gem_object_truncate(obj);
  1702. return ret;
  1703. }
  1704. int
  1705. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1706. uint32_t invalidate_domains,
  1707. uint32_t flush_domains)
  1708. {
  1709. int ret;
  1710. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1711. return 0;
  1712. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1713. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1714. if (ret)
  1715. return ret;
  1716. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1717. i915_gem_process_flushing_list(ring, flush_domains);
  1718. return 0;
  1719. }
  1720. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1721. {
  1722. int ret;
  1723. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1724. return 0;
  1725. if (!list_empty(&ring->gpu_write_list)) {
  1726. ret = i915_gem_flush_ring(ring,
  1727. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1728. if (ret)
  1729. return ret;
  1730. }
  1731. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1732. do_retire);
  1733. }
  1734. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1735. {
  1736. drm_i915_private_t *dev_priv = dev->dev_private;
  1737. int ret, i;
  1738. /* Flush everything onto the inactive list. */
  1739. for (i = 0; i < I915_NUM_RINGS; i++) {
  1740. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1741. if (ret)
  1742. return ret;
  1743. }
  1744. return 0;
  1745. }
  1746. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1747. struct intel_ring_buffer *pipelined)
  1748. {
  1749. struct drm_device *dev = obj->base.dev;
  1750. drm_i915_private_t *dev_priv = dev->dev_private;
  1751. u32 size = obj->gtt_space->size;
  1752. int regnum = obj->fence_reg;
  1753. uint64_t val;
  1754. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1755. 0xfffff000) << 32;
  1756. val |= obj->gtt_offset & 0xfffff000;
  1757. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1758. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1759. if (obj->tiling_mode == I915_TILING_Y)
  1760. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1761. val |= I965_FENCE_REG_VALID;
  1762. if (pipelined) {
  1763. int ret = intel_ring_begin(pipelined, 6);
  1764. if (ret)
  1765. return ret;
  1766. intel_ring_emit(pipelined, MI_NOOP);
  1767. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1768. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1769. intel_ring_emit(pipelined, (u32)val);
  1770. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1771. intel_ring_emit(pipelined, (u32)(val >> 32));
  1772. intel_ring_advance(pipelined);
  1773. } else
  1774. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1775. return 0;
  1776. }
  1777. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1778. struct intel_ring_buffer *pipelined)
  1779. {
  1780. struct drm_device *dev = obj->base.dev;
  1781. drm_i915_private_t *dev_priv = dev->dev_private;
  1782. u32 size = obj->gtt_space->size;
  1783. int regnum = obj->fence_reg;
  1784. uint64_t val;
  1785. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1786. 0xfffff000) << 32;
  1787. val |= obj->gtt_offset & 0xfffff000;
  1788. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1789. if (obj->tiling_mode == I915_TILING_Y)
  1790. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1791. val |= I965_FENCE_REG_VALID;
  1792. if (pipelined) {
  1793. int ret = intel_ring_begin(pipelined, 6);
  1794. if (ret)
  1795. return ret;
  1796. intel_ring_emit(pipelined, MI_NOOP);
  1797. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1798. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1799. intel_ring_emit(pipelined, (u32)val);
  1800. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1801. intel_ring_emit(pipelined, (u32)(val >> 32));
  1802. intel_ring_advance(pipelined);
  1803. } else
  1804. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1805. return 0;
  1806. }
  1807. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1808. struct intel_ring_buffer *pipelined)
  1809. {
  1810. struct drm_device *dev = obj->base.dev;
  1811. drm_i915_private_t *dev_priv = dev->dev_private;
  1812. u32 size = obj->gtt_space->size;
  1813. u32 fence_reg, val, pitch_val;
  1814. int tile_width;
  1815. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1816. (size & -size) != size ||
  1817. (obj->gtt_offset & (size - 1)),
  1818. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1819. obj->gtt_offset, obj->map_and_fenceable, size))
  1820. return -EINVAL;
  1821. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1822. tile_width = 128;
  1823. else
  1824. tile_width = 512;
  1825. /* Note: pitch better be a power of two tile widths */
  1826. pitch_val = obj->stride / tile_width;
  1827. pitch_val = ffs(pitch_val) - 1;
  1828. val = obj->gtt_offset;
  1829. if (obj->tiling_mode == I915_TILING_Y)
  1830. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1831. val |= I915_FENCE_SIZE_BITS(size);
  1832. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1833. val |= I830_FENCE_REG_VALID;
  1834. fence_reg = obj->fence_reg;
  1835. if (fence_reg < 8)
  1836. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1837. else
  1838. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1839. if (pipelined) {
  1840. int ret = intel_ring_begin(pipelined, 4);
  1841. if (ret)
  1842. return ret;
  1843. intel_ring_emit(pipelined, MI_NOOP);
  1844. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1845. intel_ring_emit(pipelined, fence_reg);
  1846. intel_ring_emit(pipelined, val);
  1847. intel_ring_advance(pipelined);
  1848. } else
  1849. I915_WRITE(fence_reg, val);
  1850. return 0;
  1851. }
  1852. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1853. struct intel_ring_buffer *pipelined)
  1854. {
  1855. struct drm_device *dev = obj->base.dev;
  1856. drm_i915_private_t *dev_priv = dev->dev_private;
  1857. u32 size = obj->gtt_space->size;
  1858. int regnum = obj->fence_reg;
  1859. uint32_t val;
  1860. uint32_t pitch_val;
  1861. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1862. (size & -size) != size ||
  1863. (obj->gtt_offset & (size - 1)),
  1864. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1865. obj->gtt_offset, size))
  1866. return -EINVAL;
  1867. pitch_val = obj->stride / 128;
  1868. pitch_val = ffs(pitch_val) - 1;
  1869. val = obj->gtt_offset;
  1870. if (obj->tiling_mode == I915_TILING_Y)
  1871. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1872. val |= I830_FENCE_SIZE_BITS(size);
  1873. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1874. val |= I830_FENCE_REG_VALID;
  1875. if (pipelined) {
  1876. int ret = intel_ring_begin(pipelined, 4);
  1877. if (ret)
  1878. return ret;
  1879. intel_ring_emit(pipelined, MI_NOOP);
  1880. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1881. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1882. intel_ring_emit(pipelined, val);
  1883. intel_ring_advance(pipelined);
  1884. } else
  1885. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1886. return 0;
  1887. }
  1888. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1889. {
  1890. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1891. }
  1892. static int
  1893. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1894. struct intel_ring_buffer *pipelined)
  1895. {
  1896. int ret;
  1897. if (obj->fenced_gpu_access) {
  1898. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1899. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1900. 0, obj->base.write_domain);
  1901. if (ret)
  1902. return ret;
  1903. }
  1904. obj->fenced_gpu_access = false;
  1905. }
  1906. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1907. if (!ring_passed_seqno(obj->last_fenced_ring,
  1908. obj->last_fenced_seqno)) {
  1909. ret = i915_wait_request(obj->last_fenced_ring,
  1910. obj->last_fenced_seqno,
  1911. true);
  1912. if (ret)
  1913. return ret;
  1914. }
  1915. obj->last_fenced_seqno = 0;
  1916. obj->last_fenced_ring = NULL;
  1917. }
  1918. /* Ensure that all CPU reads are completed before installing a fence
  1919. * and all writes before removing the fence.
  1920. */
  1921. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1922. mb();
  1923. return 0;
  1924. }
  1925. int
  1926. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1927. {
  1928. int ret;
  1929. if (obj->tiling_mode)
  1930. i915_gem_release_mmap(obj);
  1931. ret = i915_gem_object_flush_fence(obj, NULL);
  1932. if (ret)
  1933. return ret;
  1934. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1935. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1936. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1937. i915_gem_clear_fence_reg(obj->base.dev,
  1938. &dev_priv->fence_regs[obj->fence_reg]);
  1939. obj->fence_reg = I915_FENCE_REG_NONE;
  1940. }
  1941. return 0;
  1942. }
  1943. static struct drm_i915_fence_reg *
  1944. i915_find_fence_reg(struct drm_device *dev,
  1945. struct intel_ring_buffer *pipelined)
  1946. {
  1947. struct drm_i915_private *dev_priv = dev->dev_private;
  1948. struct drm_i915_fence_reg *reg, *first, *avail;
  1949. int i;
  1950. /* First try to find a free reg */
  1951. avail = NULL;
  1952. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1953. reg = &dev_priv->fence_regs[i];
  1954. if (!reg->obj)
  1955. return reg;
  1956. if (!reg->pin_count)
  1957. avail = reg;
  1958. }
  1959. if (avail == NULL)
  1960. return NULL;
  1961. /* None available, try to steal one or wait for a user to finish */
  1962. avail = first = NULL;
  1963. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1964. if (reg->pin_count)
  1965. continue;
  1966. if (first == NULL)
  1967. first = reg;
  1968. if (!pipelined ||
  1969. !reg->obj->last_fenced_ring ||
  1970. reg->obj->last_fenced_ring == pipelined) {
  1971. avail = reg;
  1972. break;
  1973. }
  1974. }
  1975. if (avail == NULL)
  1976. avail = first;
  1977. return avail;
  1978. }
  1979. /**
  1980. * i915_gem_object_get_fence - set up a fence reg for an object
  1981. * @obj: object to map through a fence reg
  1982. * @pipelined: ring on which to queue the change, or NULL for CPU access
  1983. * @interruptible: must we wait uninterruptibly for the register to retire?
  1984. *
  1985. * When mapping objects through the GTT, userspace wants to be able to write
  1986. * to them without having to worry about swizzling if the object is tiled.
  1987. *
  1988. * This function walks the fence regs looking for a free one for @obj,
  1989. * stealing one if it can't find any.
  1990. *
  1991. * It then sets up the reg based on the object's properties: address, pitch
  1992. * and tiling format.
  1993. */
  1994. int
  1995. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  1996. struct intel_ring_buffer *pipelined)
  1997. {
  1998. struct drm_device *dev = obj->base.dev;
  1999. struct drm_i915_private *dev_priv = dev->dev_private;
  2000. struct drm_i915_fence_reg *reg;
  2001. int ret;
  2002. /* XXX disable pipelining. There are bugs. Shocking. */
  2003. pipelined = NULL;
  2004. /* Just update our place in the LRU if our fence is getting reused. */
  2005. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2006. reg = &dev_priv->fence_regs[obj->fence_reg];
  2007. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2008. if (obj->tiling_changed) {
  2009. ret = i915_gem_object_flush_fence(obj, pipelined);
  2010. if (ret)
  2011. return ret;
  2012. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2013. pipelined = NULL;
  2014. if (pipelined) {
  2015. reg->setup_seqno =
  2016. i915_gem_next_request_seqno(pipelined);
  2017. obj->last_fenced_seqno = reg->setup_seqno;
  2018. obj->last_fenced_ring = pipelined;
  2019. }
  2020. goto update;
  2021. }
  2022. if (!pipelined) {
  2023. if (reg->setup_seqno) {
  2024. if (!ring_passed_seqno(obj->last_fenced_ring,
  2025. reg->setup_seqno)) {
  2026. ret = i915_wait_request(obj->last_fenced_ring,
  2027. reg->setup_seqno,
  2028. true);
  2029. if (ret)
  2030. return ret;
  2031. }
  2032. reg->setup_seqno = 0;
  2033. }
  2034. } else if (obj->last_fenced_ring &&
  2035. obj->last_fenced_ring != pipelined) {
  2036. ret = i915_gem_object_flush_fence(obj, pipelined);
  2037. if (ret)
  2038. return ret;
  2039. }
  2040. return 0;
  2041. }
  2042. reg = i915_find_fence_reg(dev, pipelined);
  2043. if (reg == NULL)
  2044. return -EDEADLK;
  2045. ret = i915_gem_object_flush_fence(obj, pipelined);
  2046. if (ret)
  2047. return ret;
  2048. if (reg->obj) {
  2049. struct drm_i915_gem_object *old = reg->obj;
  2050. drm_gem_object_reference(&old->base);
  2051. if (old->tiling_mode)
  2052. i915_gem_release_mmap(old);
  2053. ret = i915_gem_object_flush_fence(old, pipelined);
  2054. if (ret) {
  2055. drm_gem_object_unreference(&old->base);
  2056. return ret;
  2057. }
  2058. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2059. pipelined = NULL;
  2060. old->fence_reg = I915_FENCE_REG_NONE;
  2061. old->last_fenced_ring = pipelined;
  2062. old->last_fenced_seqno =
  2063. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2064. drm_gem_object_unreference(&old->base);
  2065. } else if (obj->last_fenced_seqno == 0)
  2066. pipelined = NULL;
  2067. reg->obj = obj;
  2068. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2069. obj->fence_reg = reg - dev_priv->fence_regs;
  2070. obj->last_fenced_ring = pipelined;
  2071. reg->setup_seqno =
  2072. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2073. obj->last_fenced_seqno = reg->setup_seqno;
  2074. update:
  2075. obj->tiling_changed = false;
  2076. switch (INTEL_INFO(dev)->gen) {
  2077. case 7:
  2078. case 6:
  2079. ret = sandybridge_write_fence_reg(obj, pipelined);
  2080. break;
  2081. case 5:
  2082. case 4:
  2083. ret = i965_write_fence_reg(obj, pipelined);
  2084. break;
  2085. case 3:
  2086. ret = i915_write_fence_reg(obj, pipelined);
  2087. break;
  2088. case 2:
  2089. ret = i830_write_fence_reg(obj, pipelined);
  2090. break;
  2091. }
  2092. return ret;
  2093. }
  2094. /**
  2095. * i915_gem_clear_fence_reg - clear out fence register info
  2096. * @obj: object to clear
  2097. *
  2098. * Zeroes out the fence register itself and clears out the associated
  2099. * data structures in dev_priv and obj.
  2100. */
  2101. static void
  2102. i915_gem_clear_fence_reg(struct drm_device *dev,
  2103. struct drm_i915_fence_reg *reg)
  2104. {
  2105. drm_i915_private_t *dev_priv = dev->dev_private;
  2106. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2107. switch (INTEL_INFO(dev)->gen) {
  2108. case 7:
  2109. case 6:
  2110. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2111. break;
  2112. case 5:
  2113. case 4:
  2114. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2115. break;
  2116. case 3:
  2117. if (fence_reg >= 8)
  2118. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2119. else
  2120. case 2:
  2121. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2122. I915_WRITE(fence_reg, 0);
  2123. break;
  2124. }
  2125. list_del_init(&reg->lru_list);
  2126. reg->obj = NULL;
  2127. reg->setup_seqno = 0;
  2128. reg->pin_count = 0;
  2129. }
  2130. /**
  2131. * Finds free space in the GTT aperture and binds the object there.
  2132. */
  2133. static int
  2134. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2135. unsigned alignment,
  2136. bool map_and_fenceable)
  2137. {
  2138. struct drm_device *dev = obj->base.dev;
  2139. drm_i915_private_t *dev_priv = dev->dev_private;
  2140. struct drm_mm_node *free_space;
  2141. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2142. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2143. bool mappable, fenceable;
  2144. int ret;
  2145. if (obj->madv != I915_MADV_WILLNEED) {
  2146. DRM_ERROR("Attempting to bind a purgeable object\n");
  2147. return -EINVAL;
  2148. }
  2149. fence_size = i915_gem_get_gtt_size(dev,
  2150. obj->base.size,
  2151. obj->tiling_mode);
  2152. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2153. obj->base.size,
  2154. obj->tiling_mode);
  2155. unfenced_alignment =
  2156. i915_gem_get_unfenced_gtt_alignment(dev,
  2157. obj->base.size,
  2158. obj->tiling_mode);
  2159. if (alignment == 0)
  2160. alignment = map_and_fenceable ? fence_alignment :
  2161. unfenced_alignment;
  2162. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2163. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2164. return -EINVAL;
  2165. }
  2166. size = map_and_fenceable ? fence_size : obj->base.size;
  2167. /* If the object is bigger than the entire aperture, reject it early
  2168. * before evicting everything in a vain attempt to find space.
  2169. */
  2170. if (obj->base.size >
  2171. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2172. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2173. return -E2BIG;
  2174. }
  2175. search_free:
  2176. if (map_and_fenceable)
  2177. free_space =
  2178. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2179. size, alignment, 0,
  2180. dev_priv->mm.gtt_mappable_end,
  2181. 0);
  2182. else
  2183. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2184. size, alignment, 0);
  2185. if (free_space != NULL) {
  2186. if (map_and_fenceable)
  2187. obj->gtt_space =
  2188. drm_mm_get_block_range_generic(free_space,
  2189. size, alignment, 0,
  2190. dev_priv->mm.gtt_mappable_end,
  2191. 0);
  2192. else
  2193. obj->gtt_space =
  2194. drm_mm_get_block(free_space, size, alignment);
  2195. }
  2196. if (obj->gtt_space == NULL) {
  2197. /* If the gtt is empty and we're still having trouble
  2198. * fitting our object in, we're out of memory.
  2199. */
  2200. ret = i915_gem_evict_something(dev, size, alignment,
  2201. map_and_fenceable);
  2202. if (ret)
  2203. return ret;
  2204. goto search_free;
  2205. }
  2206. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2207. if (ret) {
  2208. drm_mm_put_block(obj->gtt_space);
  2209. obj->gtt_space = NULL;
  2210. if (ret == -ENOMEM) {
  2211. /* first try to reclaim some memory by clearing the GTT */
  2212. ret = i915_gem_evict_everything(dev, false);
  2213. if (ret) {
  2214. /* now try to shrink everyone else */
  2215. if (gfpmask) {
  2216. gfpmask = 0;
  2217. goto search_free;
  2218. }
  2219. return -ENOMEM;
  2220. }
  2221. goto search_free;
  2222. }
  2223. return ret;
  2224. }
  2225. ret = i915_gem_gtt_prepare_object(obj);
  2226. if (ret) {
  2227. i915_gem_object_put_pages_gtt(obj);
  2228. drm_mm_put_block(obj->gtt_space);
  2229. obj->gtt_space = NULL;
  2230. if (i915_gem_evict_everything(dev, false))
  2231. return ret;
  2232. goto search_free;
  2233. }
  2234. if (!dev_priv->mm.aliasing_ppgtt)
  2235. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2236. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2237. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2238. /* Assert that the object is not currently in any GPU domain. As it
  2239. * wasn't in the GTT, there shouldn't be any way it could have been in
  2240. * a GPU cache
  2241. */
  2242. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2243. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2244. obj->gtt_offset = obj->gtt_space->start;
  2245. fenceable =
  2246. obj->gtt_space->size == fence_size &&
  2247. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2248. mappable =
  2249. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2250. obj->map_and_fenceable = mappable && fenceable;
  2251. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2252. return 0;
  2253. }
  2254. void
  2255. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2256. {
  2257. /* If we don't have a page list set up, then we're not pinned
  2258. * to GPU, and we can ignore the cache flush because it'll happen
  2259. * again at bind time.
  2260. */
  2261. if (obj->pages == NULL)
  2262. return;
  2263. /* If the GPU is snooping the contents of the CPU cache,
  2264. * we do not need to manually clear the CPU cache lines. However,
  2265. * the caches are only snooped when the render cache is
  2266. * flushed/invalidated. As we always have to emit invalidations
  2267. * and flushes when moving into and out of the RENDER domain, correct
  2268. * snooping behaviour occurs naturally as the result of our domain
  2269. * tracking.
  2270. */
  2271. if (obj->cache_level != I915_CACHE_NONE)
  2272. return;
  2273. trace_i915_gem_object_clflush(obj);
  2274. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2275. }
  2276. /** Flushes any GPU write domain for the object if it's dirty. */
  2277. static int
  2278. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2279. {
  2280. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2281. return 0;
  2282. /* Queue the GPU write cache flushing we need. */
  2283. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2284. }
  2285. /** Flushes the GTT write domain for the object if it's dirty. */
  2286. static void
  2287. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2288. {
  2289. uint32_t old_write_domain;
  2290. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2291. return;
  2292. /* No actual flushing is required for the GTT write domain. Writes
  2293. * to it immediately go to main memory as far as we know, so there's
  2294. * no chipset flush. It also doesn't land in render cache.
  2295. *
  2296. * However, we do have to enforce the order so that all writes through
  2297. * the GTT land before any writes to the device, such as updates to
  2298. * the GATT itself.
  2299. */
  2300. wmb();
  2301. old_write_domain = obj->base.write_domain;
  2302. obj->base.write_domain = 0;
  2303. trace_i915_gem_object_change_domain(obj,
  2304. obj->base.read_domains,
  2305. old_write_domain);
  2306. }
  2307. /** Flushes the CPU write domain for the object if it's dirty. */
  2308. static void
  2309. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2310. {
  2311. uint32_t old_write_domain;
  2312. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2313. return;
  2314. i915_gem_clflush_object(obj);
  2315. intel_gtt_chipset_flush();
  2316. old_write_domain = obj->base.write_domain;
  2317. obj->base.write_domain = 0;
  2318. trace_i915_gem_object_change_domain(obj,
  2319. obj->base.read_domains,
  2320. old_write_domain);
  2321. }
  2322. /**
  2323. * Moves a single object to the GTT read, and possibly write domain.
  2324. *
  2325. * This function returns when the move is complete, including waiting on
  2326. * flushes to occur.
  2327. */
  2328. int
  2329. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2330. {
  2331. uint32_t old_write_domain, old_read_domains;
  2332. int ret;
  2333. /* Not valid to be called on unbound objects. */
  2334. if (obj->gtt_space == NULL)
  2335. return -EINVAL;
  2336. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2337. return 0;
  2338. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2339. if (ret)
  2340. return ret;
  2341. if (obj->pending_gpu_write || write) {
  2342. ret = i915_gem_object_wait_rendering(obj);
  2343. if (ret)
  2344. return ret;
  2345. }
  2346. i915_gem_object_flush_cpu_write_domain(obj);
  2347. old_write_domain = obj->base.write_domain;
  2348. old_read_domains = obj->base.read_domains;
  2349. /* It should now be out of any other write domains, and we can update
  2350. * the domain values for our changes.
  2351. */
  2352. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2353. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2354. if (write) {
  2355. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2356. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2357. obj->dirty = 1;
  2358. }
  2359. trace_i915_gem_object_change_domain(obj,
  2360. old_read_domains,
  2361. old_write_domain);
  2362. return 0;
  2363. }
  2364. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2365. enum i915_cache_level cache_level)
  2366. {
  2367. struct drm_device *dev = obj->base.dev;
  2368. drm_i915_private_t *dev_priv = dev->dev_private;
  2369. int ret;
  2370. if (obj->cache_level == cache_level)
  2371. return 0;
  2372. if (obj->pin_count) {
  2373. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2374. return -EBUSY;
  2375. }
  2376. if (obj->gtt_space) {
  2377. ret = i915_gem_object_finish_gpu(obj);
  2378. if (ret)
  2379. return ret;
  2380. i915_gem_object_finish_gtt(obj);
  2381. /* Before SandyBridge, you could not use tiling or fence
  2382. * registers with snooped memory, so relinquish any fences
  2383. * currently pointing to our region in the aperture.
  2384. */
  2385. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2386. ret = i915_gem_object_put_fence(obj);
  2387. if (ret)
  2388. return ret;
  2389. }
  2390. if (obj->has_global_gtt_mapping)
  2391. i915_gem_gtt_bind_object(obj, cache_level);
  2392. if (obj->has_aliasing_ppgtt_mapping)
  2393. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2394. obj, cache_level);
  2395. }
  2396. if (cache_level == I915_CACHE_NONE) {
  2397. u32 old_read_domains, old_write_domain;
  2398. /* If we're coming from LLC cached, then we haven't
  2399. * actually been tracking whether the data is in the
  2400. * CPU cache or not, since we only allow one bit set
  2401. * in obj->write_domain and have been skipping the clflushes.
  2402. * Just set it to the CPU cache for now.
  2403. */
  2404. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2405. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2406. old_read_domains = obj->base.read_domains;
  2407. old_write_domain = obj->base.write_domain;
  2408. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2409. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2410. trace_i915_gem_object_change_domain(obj,
  2411. old_read_domains,
  2412. old_write_domain);
  2413. }
  2414. obj->cache_level = cache_level;
  2415. return 0;
  2416. }
  2417. /*
  2418. * Prepare buffer for display plane (scanout, cursors, etc).
  2419. * Can be called from an uninterruptible phase (modesetting) and allows
  2420. * any flushes to be pipelined (for pageflips).
  2421. *
  2422. * For the display plane, we want to be in the GTT but out of any write
  2423. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2424. * ability to pipeline the waits, pinning and any additional subtleties
  2425. * that may differentiate the display plane from ordinary buffers.
  2426. */
  2427. int
  2428. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2429. u32 alignment,
  2430. struct intel_ring_buffer *pipelined)
  2431. {
  2432. u32 old_read_domains, old_write_domain;
  2433. int ret;
  2434. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2435. if (ret)
  2436. return ret;
  2437. if (pipelined != obj->ring) {
  2438. ret = i915_gem_object_wait_rendering(obj);
  2439. if (ret == -ERESTARTSYS)
  2440. return ret;
  2441. }
  2442. /* The display engine is not coherent with the LLC cache on gen6. As
  2443. * a result, we make sure that the pinning that is about to occur is
  2444. * done with uncached PTEs. This is lowest common denominator for all
  2445. * chipsets.
  2446. *
  2447. * However for gen6+, we could do better by using the GFDT bit instead
  2448. * of uncaching, which would allow us to flush all the LLC-cached data
  2449. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2450. */
  2451. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2452. if (ret)
  2453. return ret;
  2454. /* As the user may map the buffer once pinned in the display plane
  2455. * (e.g. libkms for the bootup splash), we have to ensure that we
  2456. * always use map_and_fenceable for all scanout buffers.
  2457. */
  2458. ret = i915_gem_object_pin(obj, alignment, true);
  2459. if (ret)
  2460. return ret;
  2461. i915_gem_object_flush_cpu_write_domain(obj);
  2462. old_write_domain = obj->base.write_domain;
  2463. old_read_domains = obj->base.read_domains;
  2464. /* It should now be out of any other write domains, and we can update
  2465. * the domain values for our changes.
  2466. */
  2467. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2468. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2469. trace_i915_gem_object_change_domain(obj,
  2470. old_read_domains,
  2471. old_write_domain);
  2472. return 0;
  2473. }
  2474. int
  2475. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2476. {
  2477. int ret;
  2478. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2479. return 0;
  2480. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2481. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2482. if (ret)
  2483. return ret;
  2484. }
  2485. ret = i915_gem_object_wait_rendering(obj);
  2486. if (ret)
  2487. return ret;
  2488. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2489. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2490. return 0;
  2491. }
  2492. /**
  2493. * Moves a single object to the CPU read, and possibly write domain.
  2494. *
  2495. * This function returns when the move is complete, including waiting on
  2496. * flushes to occur.
  2497. */
  2498. int
  2499. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2500. {
  2501. uint32_t old_write_domain, old_read_domains;
  2502. int ret;
  2503. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2504. return 0;
  2505. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2506. if (ret)
  2507. return ret;
  2508. ret = i915_gem_object_wait_rendering(obj);
  2509. if (ret)
  2510. return ret;
  2511. i915_gem_object_flush_gtt_write_domain(obj);
  2512. old_write_domain = obj->base.write_domain;
  2513. old_read_domains = obj->base.read_domains;
  2514. /* Flush the CPU cache if it's still invalid. */
  2515. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2516. i915_gem_clflush_object(obj);
  2517. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2518. }
  2519. /* It should now be out of any other write domains, and we can update
  2520. * the domain values for our changes.
  2521. */
  2522. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2523. /* If we're writing through the CPU, then the GPU read domains will
  2524. * need to be invalidated at next use.
  2525. */
  2526. if (write) {
  2527. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2528. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2529. }
  2530. trace_i915_gem_object_change_domain(obj,
  2531. old_read_domains,
  2532. old_write_domain);
  2533. return 0;
  2534. }
  2535. /* Throttle our rendering by waiting until the ring has completed our requests
  2536. * emitted over 20 msec ago.
  2537. *
  2538. * Note that if we were to use the current jiffies each time around the loop,
  2539. * we wouldn't escape the function with any frames outstanding if the time to
  2540. * render a frame was over 20ms.
  2541. *
  2542. * This should get us reasonable parallelism between CPU and GPU but also
  2543. * relatively low latency when blocking on a particular request to finish.
  2544. */
  2545. static int
  2546. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2547. {
  2548. struct drm_i915_private *dev_priv = dev->dev_private;
  2549. struct drm_i915_file_private *file_priv = file->driver_priv;
  2550. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2551. struct drm_i915_gem_request *request;
  2552. struct intel_ring_buffer *ring = NULL;
  2553. u32 seqno = 0;
  2554. int ret;
  2555. if (atomic_read(&dev_priv->mm.wedged))
  2556. return -EIO;
  2557. spin_lock(&file_priv->mm.lock);
  2558. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2559. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2560. break;
  2561. ring = request->ring;
  2562. seqno = request->seqno;
  2563. }
  2564. spin_unlock(&file_priv->mm.lock);
  2565. if (seqno == 0)
  2566. return 0;
  2567. ret = 0;
  2568. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2569. /* And wait for the seqno passing without holding any locks and
  2570. * causing extra latency for others. This is safe as the irq
  2571. * generation is designed to be run atomically and so is
  2572. * lockless.
  2573. */
  2574. if (ring->irq_get(ring)) {
  2575. ret = wait_event_interruptible(ring->irq_queue,
  2576. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2577. || atomic_read(&dev_priv->mm.wedged));
  2578. ring->irq_put(ring);
  2579. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2580. ret = -EIO;
  2581. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2582. seqno) ||
  2583. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2584. ret = -EBUSY;
  2585. }
  2586. }
  2587. if (ret == 0)
  2588. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2589. return ret;
  2590. }
  2591. int
  2592. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2593. uint32_t alignment,
  2594. bool map_and_fenceable)
  2595. {
  2596. struct drm_device *dev = obj->base.dev;
  2597. struct drm_i915_private *dev_priv = dev->dev_private;
  2598. int ret;
  2599. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2600. WARN_ON(i915_verify_lists(dev));
  2601. if (obj->gtt_space != NULL) {
  2602. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2603. (map_and_fenceable && !obj->map_and_fenceable)) {
  2604. WARN(obj->pin_count,
  2605. "bo is already pinned with incorrect alignment:"
  2606. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2607. " obj->map_and_fenceable=%d\n",
  2608. obj->gtt_offset, alignment,
  2609. map_and_fenceable,
  2610. obj->map_and_fenceable);
  2611. ret = i915_gem_object_unbind(obj);
  2612. if (ret)
  2613. return ret;
  2614. }
  2615. }
  2616. if (obj->gtt_space == NULL) {
  2617. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2618. map_and_fenceable);
  2619. if (ret)
  2620. return ret;
  2621. }
  2622. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2623. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2624. if (obj->pin_count++ == 0) {
  2625. if (!obj->active)
  2626. list_move_tail(&obj->mm_list,
  2627. &dev_priv->mm.pinned_list);
  2628. }
  2629. obj->pin_mappable |= map_and_fenceable;
  2630. WARN_ON(i915_verify_lists(dev));
  2631. return 0;
  2632. }
  2633. void
  2634. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2635. {
  2636. struct drm_device *dev = obj->base.dev;
  2637. drm_i915_private_t *dev_priv = dev->dev_private;
  2638. WARN_ON(i915_verify_lists(dev));
  2639. BUG_ON(obj->pin_count == 0);
  2640. BUG_ON(obj->gtt_space == NULL);
  2641. if (--obj->pin_count == 0) {
  2642. if (!obj->active)
  2643. list_move_tail(&obj->mm_list,
  2644. &dev_priv->mm.inactive_list);
  2645. obj->pin_mappable = false;
  2646. }
  2647. WARN_ON(i915_verify_lists(dev));
  2648. }
  2649. int
  2650. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2651. struct drm_file *file)
  2652. {
  2653. struct drm_i915_gem_pin *args = data;
  2654. struct drm_i915_gem_object *obj;
  2655. int ret;
  2656. ret = i915_mutex_lock_interruptible(dev);
  2657. if (ret)
  2658. return ret;
  2659. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2660. if (&obj->base == NULL) {
  2661. ret = -ENOENT;
  2662. goto unlock;
  2663. }
  2664. if (obj->madv != I915_MADV_WILLNEED) {
  2665. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2666. ret = -EINVAL;
  2667. goto out;
  2668. }
  2669. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2670. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2671. args->handle);
  2672. ret = -EINVAL;
  2673. goto out;
  2674. }
  2675. obj->user_pin_count++;
  2676. obj->pin_filp = file;
  2677. if (obj->user_pin_count == 1) {
  2678. ret = i915_gem_object_pin(obj, args->alignment, true);
  2679. if (ret)
  2680. goto out;
  2681. }
  2682. /* XXX - flush the CPU caches for pinned objects
  2683. * as the X server doesn't manage domains yet
  2684. */
  2685. i915_gem_object_flush_cpu_write_domain(obj);
  2686. args->offset = obj->gtt_offset;
  2687. out:
  2688. drm_gem_object_unreference(&obj->base);
  2689. unlock:
  2690. mutex_unlock(&dev->struct_mutex);
  2691. return ret;
  2692. }
  2693. int
  2694. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2695. struct drm_file *file)
  2696. {
  2697. struct drm_i915_gem_pin *args = data;
  2698. struct drm_i915_gem_object *obj;
  2699. int ret;
  2700. ret = i915_mutex_lock_interruptible(dev);
  2701. if (ret)
  2702. return ret;
  2703. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2704. if (&obj->base == NULL) {
  2705. ret = -ENOENT;
  2706. goto unlock;
  2707. }
  2708. if (obj->pin_filp != file) {
  2709. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2710. args->handle);
  2711. ret = -EINVAL;
  2712. goto out;
  2713. }
  2714. obj->user_pin_count--;
  2715. if (obj->user_pin_count == 0) {
  2716. obj->pin_filp = NULL;
  2717. i915_gem_object_unpin(obj);
  2718. }
  2719. out:
  2720. drm_gem_object_unreference(&obj->base);
  2721. unlock:
  2722. mutex_unlock(&dev->struct_mutex);
  2723. return ret;
  2724. }
  2725. int
  2726. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2727. struct drm_file *file)
  2728. {
  2729. struct drm_i915_gem_busy *args = data;
  2730. struct drm_i915_gem_object *obj;
  2731. int ret;
  2732. ret = i915_mutex_lock_interruptible(dev);
  2733. if (ret)
  2734. return ret;
  2735. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2736. if (&obj->base == NULL) {
  2737. ret = -ENOENT;
  2738. goto unlock;
  2739. }
  2740. /* Count all active objects as busy, even if they are currently not used
  2741. * by the gpu. Users of this interface expect objects to eventually
  2742. * become non-busy without any further actions, therefore emit any
  2743. * necessary flushes here.
  2744. */
  2745. args->busy = obj->active;
  2746. if (args->busy) {
  2747. /* Unconditionally flush objects, even when the gpu still uses this
  2748. * object. Userspace calling this function indicates that it wants to
  2749. * use this buffer rather sooner than later, so issuing the required
  2750. * flush earlier is beneficial.
  2751. */
  2752. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2753. ret = i915_gem_flush_ring(obj->ring,
  2754. 0, obj->base.write_domain);
  2755. } else if (obj->ring->outstanding_lazy_request ==
  2756. obj->last_rendering_seqno) {
  2757. struct drm_i915_gem_request *request;
  2758. /* This ring is not being cleared by active usage,
  2759. * so emit a request to do so.
  2760. */
  2761. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2762. if (request) {
  2763. ret = i915_add_request(obj->ring, NULL, request);
  2764. if (ret)
  2765. kfree(request);
  2766. } else
  2767. ret = -ENOMEM;
  2768. }
  2769. /* Update the active list for the hardware's current position.
  2770. * Otherwise this only updates on a delayed timer or when irqs
  2771. * are actually unmasked, and our working set ends up being
  2772. * larger than required.
  2773. */
  2774. i915_gem_retire_requests_ring(obj->ring);
  2775. args->busy = obj->active;
  2776. }
  2777. drm_gem_object_unreference(&obj->base);
  2778. unlock:
  2779. mutex_unlock(&dev->struct_mutex);
  2780. return ret;
  2781. }
  2782. int
  2783. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2784. struct drm_file *file_priv)
  2785. {
  2786. return i915_gem_ring_throttle(dev, file_priv);
  2787. }
  2788. int
  2789. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2790. struct drm_file *file_priv)
  2791. {
  2792. struct drm_i915_gem_madvise *args = data;
  2793. struct drm_i915_gem_object *obj;
  2794. int ret;
  2795. switch (args->madv) {
  2796. case I915_MADV_DONTNEED:
  2797. case I915_MADV_WILLNEED:
  2798. break;
  2799. default:
  2800. return -EINVAL;
  2801. }
  2802. ret = i915_mutex_lock_interruptible(dev);
  2803. if (ret)
  2804. return ret;
  2805. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2806. if (&obj->base == NULL) {
  2807. ret = -ENOENT;
  2808. goto unlock;
  2809. }
  2810. if (obj->pin_count) {
  2811. ret = -EINVAL;
  2812. goto out;
  2813. }
  2814. if (obj->madv != __I915_MADV_PURGED)
  2815. obj->madv = args->madv;
  2816. /* if the object is no longer bound, discard its backing storage */
  2817. if (i915_gem_object_is_purgeable(obj) &&
  2818. obj->gtt_space == NULL)
  2819. i915_gem_object_truncate(obj);
  2820. args->retained = obj->madv != __I915_MADV_PURGED;
  2821. out:
  2822. drm_gem_object_unreference(&obj->base);
  2823. unlock:
  2824. mutex_unlock(&dev->struct_mutex);
  2825. return ret;
  2826. }
  2827. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2828. size_t size)
  2829. {
  2830. struct drm_i915_private *dev_priv = dev->dev_private;
  2831. struct drm_i915_gem_object *obj;
  2832. struct address_space *mapping;
  2833. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2834. if (obj == NULL)
  2835. return NULL;
  2836. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2837. kfree(obj);
  2838. return NULL;
  2839. }
  2840. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2841. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2842. i915_gem_info_add_obj(dev_priv, size);
  2843. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2844. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2845. if (HAS_LLC(dev)) {
  2846. /* On some devices, we can have the GPU use the LLC (the CPU
  2847. * cache) for about a 10% performance improvement
  2848. * compared to uncached. Graphics requests other than
  2849. * display scanout are coherent with the CPU in
  2850. * accessing this cache. This means in this mode we
  2851. * don't need to clflush on the CPU side, and on the
  2852. * GPU side we only need to flush internal caches to
  2853. * get data visible to the CPU.
  2854. *
  2855. * However, we maintain the display planes as UC, and so
  2856. * need to rebind when first used as such.
  2857. */
  2858. obj->cache_level = I915_CACHE_LLC;
  2859. } else
  2860. obj->cache_level = I915_CACHE_NONE;
  2861. obj->base.driver_private = NULL;
  2862. obj->fence_reg = I915_FENCE_REG_NONE;
  2863. INIT_LIST_HEAD(&obj->mm_list);
  2864. INIT_LIST_HEAD(&obj->gtt_list);
  2865. INIT_LIST_HEAD(&obj->ring_list);
  2866. INIT_LIST_HEAD(&obj->exec_list);
  2867. INIT_LIST_HEAD(&obj->gpu_write_list);
  2868. obj->madv = I915_MADV_WILLNEED;
  2869. /* Avoid an unnecessary call to unbind on the first bind. */
  2870. obj->map_and_fenceable = true;
  2871. return obj;
  2872. }
  2873. int i915_gem_init_object(struct drm_gem_object *obj)
  2874. {
  2875. BUG();
  2876. return 0;
  2877. }
  2878. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2879. {
  2880. struct drm_device *dev = obj->base.dev;
  2881. drm_i915_private_t *dev_priv = dev->dev_private;
  2882. int ret;
  2883. ret = i915_gem_object_unbind(obj);
  2884. if (ret == -ERESTARTSYS) {
  2885. list_move(&obj->mm_list,
  2886. &dev_priv->mm.deferred_free_list);
  2887. return;
  2888. }
  2889. trace_i915_gem_object_destroy(obj);
  2890. if (obj->base.map_list.map)
  2891. drm_gem_free_mmap_offset(&obj->base);
  2892. drm_gem_object_release(&obj->base);
  2893. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2894. kfree(obj->bit_17);
  2895. kfree(obj);
  2896. }
  2897. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2898. {
  2899. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2900. struct drm_device *dev = obj->base.dev;
  2901. while (obj->pin_count > 0)
  2902. i915_gem_object_unpin(obj);
  2903. if (obj->phys_obj)
  2904. i915_gem_detach_phys_object(dev, obj);
  2905. i915_gem_free_object_tail(obj);
  2906. }
  2907. int
  2908. i915_gem_idle(struct drm_device *dev)
  2909. {
  2910. drm_i915_private_t *dev_priv = dev->dev_private;
  2911. int ret;
  2912. mutex_lock(&dev->struct_mutex);
  2913. if (dev_priv->mm.suspended) {
  2914. mutex_unlock(&dev->struct_mutex);
  2915. return 0;
  2916. }
  2917. ret = i915_gpu_idle(dev, true);
  2918. if (ret) {
  2919. mutex_unlock(&dev->struct_mutex);
  2920. return ret;
  2921. }
  2922. /* Under UMS, be paranoid and evict. */
  2923. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  2924. ret = i915_gem_evict_inactive(dev, false);
  2925. if (ret) {
  2926. mutex_unlock(&dev->struct_mutex);
  2927. return ret;
  2928. }
  2929. }
  2930. i915_gem_reset_fences(dev);
  2931. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2932. * We need to replace this with a semaphore, or something.
  2933. * And not confound mm.suspended!
  2934. */
  2935. dev_priv->mm.suspended = 1;
  2936. del_timer_sync(&dev_priv->hangcheck_timer);
  2937. i915_kernel_lost_context(dev);
  2938. i915_gem_cleanup_ringbuffer(dev);
  2939. mutex_unlock(&dev->struct_mutex);
  2940. /* Cancel the retire work handler, which should be idle now. */
  2941. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2942. return 0;
  2943. }
  2944. void i915_gem_init_swizzling(struct drm_device *dev)
  2945. {
  2946. drm_i915_private_t *dev_priv = dev->dev_private;
  2947. if (INTEL_INFO(dev)->gen < 5 ||
  2948. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2949. return;
  2950. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2951. DISP_TILE_SURFACE_SWIZZLING);
  2952. if (IS_GEN5(dev))
  2953. return;
  2954. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2955. if (IS_GEN6(dev))
  2956. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2957. else
  2958. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2959. }
  2960. void i915_gem_init_ppgtt(struct drm_device *dev)
  2961. {
  2962. drm_i915_private_t *dev_priv = dev->dev_private;
  2963. uint32_t pd_offset;
  2964. struct intel_ring_buffer *ring;
  2965. int i;
  2966. if (!dev_priv->mm.aliasing_ppgtt)
  2967. return;
  2968. pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
  2969. pd_offset /= 64; /* in cachelines, */
  2970. pd_offset <<= 16;
  2971. if (INTEL_INFO(dev)->gen == 6) {
  2972. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  2973. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2974. ECOCHK_PPGTT_CACHE64B);
  2975. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2976. } else if (INTEL_INFO(dev)->gen >= 7) {
  2977. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  2978. /* GFX_MODE is per-ring on gen7+ */
  2979. }
  2980. for (i = 0; i < I915_NUM_RINGS; i++) {
  2981. ring = &dev_priv->ring[i];
  2982. if (INTEL_INFO(dev)->gen >= 7)
  2983. I915_WRITE(RING_MODE_GEN7(ring),
  2984. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2985. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  2986. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  2987. }
  2988. }
  2989. int
  2990. i915_gem_init_hw(struct drm_device *dev)
  2991. {
  2992. drm_i915_private_t *dev_priv = dev->dev_private;
  2993. int ret;
  2994. i915_gem_init_swizzling(dev);
  2995. ret = intel_init_render_ring_buffer(dev);
  2996. if (ret)
  2997. return ret;
  2998. if (HAS_BSD(dev)) {
  2999. ret = intel_init_bsd_ring_buffer(dev);
  3000. if (ret)
  3001. goto cleanup_render_ring;
  3002. }
  3003. if (HAS_BLT(dev)) {
  3004. ret = intel_init_blt_ring_buffer(dev);
  3005. if (ret)
  3006. goto cleanup_bsd_ring;
  3007. }
  3008. dev_priv->next_seqno = 1;
  3009. i915_gem_init_ppgtt(dev);
  3010. return 0;
  3011. cleanup_bsd_ring:
  3012. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3013. cleanup_render_ring:
  3014. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3015. return ret;
  3016. }
  3017. void
  3018. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3019. {
  3020. drm_i915_private_t *dev_priv = dev->dev_private;
  3021. int i;
  3022. for (i = 0; i < I915_NUM_RINGS; i++)
  3023. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3024. }
  3025. int
  3026. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3027. struct drm_file *file_priv)
  3028. {
  3029. drm_i915_private_t *dev_priv = dev->dev_private;
  3030. int ret, i;
  3031. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3032. return 0;
  3033. if (atomic_read(&dev_priv->mm.wedged)) {
  3034. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3035. atomic_set(&dev_priv->mm.wedged, 0);
  3036. }
  3037. mutex_lock(&dev->struct_mutex);
  3038. dev_priv->mm.suspended = 0;
  3039. ret = i915_gem_init_hw(dev);
  3040. if (ret != 0) {
  3041. mutex_unlock(&dev->struct_mutex);
  3042. return ret;
  3043. }
  3044. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3045. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3046. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3047. for (i = 0; i < I915_NUM_RINGS; i++) {
  3048. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3049. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3050. }
  3051. mutex_unlock(&dev->struct_mutex);
  3052. ret = drm_irq_install(dev);
  3053. if (ret)
  3054. goto cleanup_ringbuffer;
  3055. return 0;
  3056. cleanup_ringbuffer:
  3057. mutex_lock(&dev->struct_mutex);
  3058. i915_gem_cleanup_ringbuffer(dev);
  3059. dev_priv->mm.suspended = 1;
  3060. mutex_unlock(&dev->struct_mutex);
  3061. return ret;
  3062. }
  3063. int
  3064. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3065. struct drm_file *file_priv)
  3066. {
  3067. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3068. return 0;
  3069. drm_irq_uninstall(dev);
  3070. return i915_gem_idle(dev);
  3071. }
  3072. void
  3073. i915_gem_lastclose(struct drm_device *dev)
  3074. {
  3075. int ret;
  3076. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3077. return;
  3078. ret = i915_gem_idle(dev);
  3079. if (ret)
  3080. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3081. }
  3082. static void
  3083. init_ring_lists(struct intel_ring_buffer *ring)
  3084. {
  3085. INIT_LIST_HEAD(&ring->active_list);
  3086. INIT_LIST_HEAD(&ring->request_list);
  3087. INIT_LIST_HEAD(&ring->gpu_write_list);
  3088. }
  3089. void
  3090. i915_gem_load(struct drm_device *dev)
  3091. {
  3092. int i;
  3093. drm_i915_private_t *dev_priv = dev->dev_private;
  3094. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3095. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3096. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3097. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3098. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3099. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3100. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3101. for (i = 0; i < I915_NUM_RINGS; i++)
  3102. init_ring_lists(&dev_priv->ring[i]);
  3103. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3104. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3105. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3106. i915_gem_retire_work_handler);
  3107. init_completion(&dev_priv->error_completion);
  3108. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3109. if (IS_GEN3(dev)) {
  3110. u32 tmp = I915_READ(MI_ARB_STATE);
  3111. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3112. /* arb state is a masked write, so set bit + bit in mask */
  3113. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3114. I915_WRITE(MI_ARB_STATE, tmp);
  3115. }
  3116. }
  3117. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3118. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3119. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3120. dev_priv->fence_reg_start = 3;
  3121. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3122. dev_priv->num_fence_regs = 16;
  3123. else
  3124. dev_priv->num_fence_regs = 8;
  3125. /* Initialize fence registers to zero */
  3126. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3127. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3128. }
  3129. i915_gem_detect_bit_6_swizzle(dev);
  3130. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3131. dev_priv->mm.interruptible = true;
  3132. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3133. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3134. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3135. }
  3136. /*
  3137. * Create a physically contiguous memory object for this object
  3138. * e.g. for cursor + overlay regs
  3139. */
  3140. static int i915_gem_init_phys_object(struct drm_device *dev,
  3141. int id, int size, int align)
  3142. {
  3143. drm_i915_private_t *dev_priv = dev->dev_private;
  3144. struct drm_i915_gem_phys_object *phys_obj;
  3145. int ret;
  3146. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3147. return 0;
  3148. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3149. if (!phys_obj)
  3150. return -ENOMEM;
  3151. phys_obj->id = id;
  3152. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3153. if (!phys_obj->handle) {
  3154. ret = -ENOMEM;
  3155. goto kfree_obj;
  3156. }
  3157. #ifdef CONFIG_X86
  3158. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3159. #endif
  3160. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3161. return 0;
  3162. kfree_obj:
  3163. kfree(phys_obj);
  3164. return ret;
  3165. }
  3166. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3167. {
  3168. drm_i915_private_t *dev_priv = dev->dev_private;
  3169. struct drm_i915_gem_phys_object *phys_obj;
  3170. if (!dev_priv->mm.phys_objs[id - 1])
  3171. return;
  3172. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3173. if (phys_obj->cur_obj) {
  3174. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3175. }
  3176. #ifdef CONFIG_X86
  3177. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3178. #endif
  3179. drm_pci_free(dev, phys_obj->handle);
  3180. kfree(phys_obj);
  3181. dev_priv->mm.phys_objs[id - 1] = NULL;
  3182. }
  3183. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3184. {
  3185. int i;
  3186. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3187. i915_gem_free_phys_object(dev, i);
  3188. }
  3189. void i915_gem_detach_phys_object(struct drm_device *dev,
  3190. struct drm_i915_gem_object *obj)
  3191. {
  3192. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3193. char *vaddr;
  3194. int i;
  3195. int page_count;
  3196. if (!obj->phys_obj)
  3197. return;
  3198. vaddr = obj->phys_obj->handle->vaddr;
  3199. page_count = obj->base.size / PAGE_SIZE;
  3200. for (i = 0; i < page_count; i++) {
  3201. struct page *page = shmem_read_mapping_page(mapping, i);
  3202. if (!IS_ERR(page)) {
  3203. char *dst = kmap_atomic(page);
  3204. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3205. kunmap_atomic(dst);
  3206. drm_clflush_pages(&page, 1);
  3207. set_page_dirty(page);
  3208. mark_page_accessed(page);
  3209. page_cache_release(page);
  3210. }
  3211. }
  3212. intel_gtt_chipset_flush();
  3213. obj->phys_obj->cur_obj = NULL;
  3214. obj->phys_obj = NULL;
  3215. }
  3216. int
  3217. i915_gem_attach_phys_object(struct drm_device *dev,
  3218. struct drm_i915_gem_object *obj,
  3219. int id,
  3220. int align)
  3221. {
  3222. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3223. drm_i915_private_t *dev_priv = dev->dev_private;
  3224. int ret = 0;
  3225. int page_count;
  3226. int i;
  3227. if (id > I915_MAX_PHYS_OBJECT)
  3228. return -EINVAL;
  3229. if (obj->phys_obj) {
  3230. if (obj->phys_obj->id == id)
  3231. return 0;
  3232. i915_gem_detach_phys_object(dev, obj);
  3233. }
  3234. /* create a new object */
  3235. if (!dev_priv->mm.phys_objs[id - 1]) {
  3236. ret = i915_gem_init_phys_object(dev, id,
  3237. obj->base.size, align);
  3238. if (ret) {
  3239. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3240. id, obj->base.size);
  3241. return ret;
  3242. }
  3243. }
  3244. /* bind to the object */
  3245. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3246. obj->phys_obj->cur_obj = obj;
  3247. page_count = obj->base.size / PAGE_SIZE;
  3248. for (i = 0; i < page_count; i++) {
  3249. struct page *page;
  3250. char *dst, *src;
  3251. page = shmem_read_mapping_page(mapping, i);
  3252. if (IS_ERR(page))
  3253. return PTR_ERR(page);
  3254. src = kmap_atomic(page);
  3255. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3256. memcpy(dst, src, PAGE_SIZE);
  3257. kunmap_atomic(src);
  3258. mark_page_accessed(page);
  3259. page_cache_release(page);
  3260. }
  3261. return 0;
  3262. }
  3263. static int
  3264. i915_gem_phys_pwrite(struct drm_device *dev,
  3265. struct drm_i915_gem_object *obj,
  3266. struct drm_i915_gem_pwrite *args,
  3267. struct drm_file *file_priv)
  3268. {
  3269. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3270. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3271. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3272. unsigned long unwritten;
  3273. /* The physical object once assigned is fixed for the lifetime
  3274. * of the obj, so we can safely drop the lock and continue
  3275. * to access vaddr.
  3276. */
  3277. mutex_unlock(&dev->struct_mutex);
  3278. unwritten = copy_from_user(vaddr, user_data, args->size);
  3279. mutex_lock(&dev->struct_mutex);
  3280. if (unwritten)
  3281. return -EFAULT;
  3282. }
  3283. intel_gtt_chipset_flush();
  3284. return 0;
  3285. }
  3286. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3287. {
  3288. struct drm_i915_file_private *file_priv = file->driver_priv;
  3289. /* Clean up our request list when the client is going away, so that
  3290. * later retire_requests won't dereference our soon-to-be-gone
  3291. * file_priv.
  3292. */
  3293. spin_lock(&file_priv->mm.lock);
  3294. while (!list_empty(&file_priv->mm.request_list)) {
  3295. struct drm_i915_gem_request *request;
  3296. request = list_first_entry(&file_priv->mm.request_list,
  3297. struct drm_i915_gem_request,
  3298. client_list);
  3299. list_del(&request->client_list);
  3300. request->file_priv = NULL;
  3301. }
  3302. spin_unlock(&file_priv->mm.lock);
  3303. }
  3304. static int
  3305. i915_gpu_is_active(struct drm_device *dev)
  3306. {
  3307. drm_i915_private_t *dev_priv = dev->dev_private;
  3308. int lists_empty;
  3309. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3310. list_empty(&dev_priv->mm.active_list);
  3311. return !lists_empty;
  3312. }
  3313. static int
  3314. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3315. {
  3316. struct drm_i915_private *dev_priv =
  3317. container_of(shrinker,
  3318. struct drm_i915_private,
  3319. mm.inactive_shrinker);
  3320. struct drm_device *dev = dev_priv->dev;
  3321. struct drm_i915_gem_object *obj, *next;
  3322. int nr_to_scan = sc->nr_to_scan;
  3323. int cnt;
  3324. if (!mutex_trylock(&dev->struct_mutex))
  3325. return 0;
  3326. /* "fast-path" to count number of available objects */
  3327. if (nr_to_scan == 0) {
  3328. cnt = 0;
  3329. list_for_each_entry(obj,
  3330. &dev_priv->mm.inactive_list,
  3331. mm_list)
  3332. cnt++;
  3333. mutex_unlock(&dev->struct_mutex);
  3334. return cnt / 100 * sysctl_vfs_cache_pressure;
  3335. }
  3336. rescan:
  3337. /* first scan for clean buffers */
  3338. i915_gem_retire_requests(dev);
  3339. list_for_each_entry_safe(obj, next,
  3340. &dev_priv->mm.inactive_list,
  3341. mm_list) {
  3342. if (i915_gem_object_is_purgeable(obj)) {
  3343. if (i915_gem_object_unbind(obj) == 0 &&
  3344. --nr_to_scan == 0)
  3345. break;
  3346. }
  3347. }
  3348. /* second pass, evict/count anything still on the inactive list */
  3349. cnt = 0;
  3350. list_for_each_entry_safe(obj, next,
  3351. &dev_priv->mm.inactive_list,
  3352. mm_list) {
  3353. if (nr_to_scan &&
  3354. i915_gem_object_unbind(obj) == 0)
  3355. nr_to_scan--;
  3356. else
  3357. cnt++;
  3358. }
  3359. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3360. /*
  3361. * We are desperate for pages, so as a last resort, wait
  3362. * for the GPU to finish and discard whatever we can.
  3363. * This has a dramatic impact to reduce the number of
  3364. * OOM-killer events whilst running the GPU aggressively.
  3365. */
  3366. if (i915_gpu_idle(dev, true) == 0)
  3367. goto rescan;
  3368. }
  3369. mutex_unlock(&dev->struct_mutex);
  3370. return cnt / 100 * sysctl_vfs_cache_pressure;
  3371. }