kvm_main.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. static __read_mostly struct preempt_ops kvm_preempt_ops;
  50. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  51. static struct kvm_stats_debugfs_item {
  52. const char *name;
  53. int offset;
  54. struct dentry *dentry;
  55. } debugfs_entries[] = {
  56. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  57. { "pf_guest", STAT_OFFSET(pf_guest) },
  58. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  59. { "invlpg", STAT_OFFSET(invlpg) },
  60. { "exits", STAT_OFFSET(exits) },
  61. { "io_exits", STAT_OFFSET(io_exits) },
  62. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  63. { "signal_exits", STAT_OFFSET(signal_exits) },
  64. { "irq_window", STAT_OFFSET(irq_window_exits) },
  65. { "halt_exits", STAT_OFFSET(halt_exits) },
  66. { "request_irq", STAT_OFFSET(request_irq_exits) },
  67. { "irq_exits", STAT_OFFSET(irq_exits) },
  68. { "light_exits", STAT_OFFSET(light_exits) },
  69. { "efer_reload", STAT_OFFSET(efer_reload) },
  70. { NULL }
  71. };
  72. static struct dentry *debugfs_dir;
  73. #define MAX_IO_MSRS 256
  74. #define CR0_RESERVED_BITS \
  75. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  76. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  77. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  78. #define CR4_RESERVED_BITS \
  79. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  80. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  81. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  82. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  83. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  84. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  85. #ifdef CONFIG_X86_64
  86. // LDT or TSS descriptor in the GDT. 16 bytes.
  87. struct segment_descriptor_64 {
  88. struct segment_descriptor s;
  89. u32 base_higher;
  90. u32 pad_zero;
  91. };
  92. #endif
  93. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  94. unsigned long arg);
  95. unsigned long segment_base(u16 selector)
  96. {
  97. struct descriptor_table gdt;
  98. struct segment_descriptor *d;
  99. unsigned long table_base;
  100. typedef unsigned long ul;
  101. unsigned long v;
  102. if (selector == 0)
  103. return 0;
  104. asm ("sgdt %0" : "=m"(gdt));
  105. table_base = gdt.base;
  106. if (selector & 4) { /* from ldt */
  107. u16 ldt_selector;
  108. asm ("sldt %0" : "=g"(ldt_selector));
  109. table_base = segment_base(ldt_selector);
  110. }
  111. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  112. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  113. #ifdef CONFIG_X86_64
  114. if (d->system == 0
  115. && (d->type == 2 || d->type == 9 || d->type == 11))
  116. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  117. #endif
  118. return v;
  119. }
  120. EXPORT_SYMBOL_GPL(segment_base);
  121. static inline int valid_vcpu(int n)
  122. {
  123. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  124. }
  125. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  126. {
  127. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  128. return;
  129. vcpu->guest_fpu_loaded = 1;
  130. fx_save(vcpu->host_fx_image);
  131. fx_restore(vcpu->guest_fx_image);
  132. }
  133. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  134. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  135. {
  136. if (!vcpu->guest_fpu_loaded)
  137. return;
  138. vcpu->guest_fpu_loaded = 0;
  139. fx_save(vcpu->guest_fx_image);
  140. fx_restore(vcpu->host_fx_image);
  141. }
  142. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  143. /*
  144. * Switches to specified vcpu, until a matching vcpu_put()
  145. */
  146. static void vcpu_load(struct kvm_vcpu *vcpu)
  147. {
  148. int cpu;
  149. mutex_lock(&vcpu->mutex);
  150. cpu = get_cpu();
  151. preempt_notifier_register(&vcpu->preempt_notifier);
  152. kvm_arch_ops->vcpu_load(vcpu, cpu);
  153. put_cpu();
  154. }
  155. static void vcpu_put(struct kvm_vcpu *vcpu)
  156. {
  157. preempt_disable();
  158. kvm_arch_ops->vcpu_put(vcpu);
  159. preempt_notifier_unregister(&vcpu->preempt_notifier);
  160. preempt_enable();
  161. mutex_unlock(&vcpu->mutex);
  162. }
  163. static void ack_flush(void *_completed)
  164. {
  165. atomic_t *completed = _completed;
  166. atomic_inc(completed);
  167. }
  168. void kvm_flush_remote_tlbs(struct kvm *kvm)
  169. {
  170. int i, cpu, needed;
  171. cpumask_t cpus;
  172. struct kvm_vcpu *vcpu;
  173. atomic_t completed;
  174. atomic_set(&completed, 0);
  175. cpus_clear(cpus);
  176. needed = 0;
  177. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  178. vcpu = kvm->vcpus[i];
  179. if (!vcpu)
  180. continue;
  181. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  182. continue;
  183. cpu = vcpu->cpu;
  184. if (cpu != -1 && cpu != raw_smp_processor_id())
  185. if (!cpu_isset(cpu, cpus)) {
  186. cpu_set(cpu, cpus);
  187. ++needed;
  188. }
  189. }
  190. /*
  191. * We really want smp_call_function_mask() here. But that's not
  192. * available, so ipi all cpus in parallel and wait for them
  193. * to complete.
  194. */
  195. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  196. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  197. while (atomic_read(&completed) != needed) {
  198. cpu_relax();
  199. barrier();
  200. }
  201. }
  202. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  203. {
  204. struct page *page;
  205. int r;
  206. mutex_init(&vcpu->mutex);
  207. vcpu->cpu = -1;
  208. vcpu->mmu.root_hpa = INVALID_PAGE;
  209. vcpu->kvm = kvm;
  210. vcpu->vcpu_id = id;
  211. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  212. if (!page) {
  213. r = -ENOMEM;
  214. goto fail;
  215. }
  216. vcpu->run = page_address(page);
  217. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  218. if (!page) {
  219. r = -ENOMEM;
  220. goto fail_free_run;
  221. }
  222. vcpu->pio_data = page_address(page);
  223. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  224. FX_IMAGE_ALIGN);
  225. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  226. r = kvm_mmu_create(vcpu);
  227. if (r < 0)
  228. goto fail_free_pio_data;
  229. return 0;
  230. fail_free_pio_data:
  231. free_page((unsigned long)vcpu->pio_data);
  232. fail_free_run:
  233. free_page((unsigned long)vcpu->run);
  234. fail:
  235. return -ENOMEM;
  236. }
  237. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  238. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  239. {
  240. kvm_mmu_destroy(vcpu);
  241. free_page((unsigned long)vcpu->pio_data);
  242. free_page((unsigned long)vcpu->run);
  243. }
  244. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  245. static struct kvm *kvm_create_vm(void)
  246. {
  247. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  248. if (!kvm)
  249. return ERR_PTR(-ENOMEM);
  250. kvm_io_bus_init(&kvm->pio_bus);
  251. mutex_init(&kvm->lock);
  252. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  253. kvm_io_bus_init(&kvm->mmio_bus);
  254. spin_lock(&kvm_lock);
  255. list_add(&kvm->vm_list, &vm_list);
  256. spin_unlock(&kvm_lock);
  257. return kvm;
  258. }
  259. static int kvm_dev_open(struct inode *inode, struct file *filp)
  260. {
  261. return 0;
  262. }
  263. /*
  264. * Free any memory in @free but not in @dont.
  265. */
  266. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  267. struct kvm_memory_slot *dont)
  268. {
  269. int i;
  270. if (!dont || free->phys_mem != dont->phys_mem)
  271. if (free->phys_mem) {
  272. for (i = 0; i < free->npages; ++i)
  273. if (free->phys_mem[i])
  274. __free_page(free->phys_mem[i]);
  275. vfree(free->phys_mem);
  276. }
  277. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  278. vfree(free->dirty_bitmap);
  279. free->phys_mem = NULL;
  280. free->npages = 0;
  281. free->dirty_bitmap = NULL;
  282. }
  283. static void kvm_free_physmem(struct kvm *kvm)
  284. {
  285. int i;
  286. for (i = 0; i < kvm->nmemslots; ++i)
  287. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  288. }
  289. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  290. {
  291. int i;
  292. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  293. if (vcpu->pio.guest_pages[i]) {
  294. __free_page(vcpu->pio.guest_pages[i]);
  295. vcpu->pio.guest_pages[i] = NULL;
  296. }
  297. }
  298. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  299. {
  300. vcpu_load(vcpu);
  301. kvm_mmu_unload(vcpu);
  302. vcpu_put(vcpu);
  303. }
  304. static void kvm_free_vcpus(struct kvm *kvm)
  305. {
  306. unsigned int i;
  307. /*
  308. * Unpin any mmu pages first.
  309. */
  310. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  311. if (kvm->vcpus[i])
  312. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  313. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  314. if (kvm->vcpus[i]) {
  315. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  316. kvm->vcpus[i] = NULL;
  317. }
  318. }
  319. }
  320. static int kvm_dev_release(struct inode *inode, struct file *filp)
  321. {
  322. return 0;
  323. }
  324. static void kvm_destroy_vm(struct kvm *kvm)
  325. {
  326. spin_lock(&kvm_lock);
  327. list_del(&kvm->vm_list);
  328. spin_unlock(&kvm_lock);
  329. kvm_io_bus_destroy(&kvm->pio_bus);
  330. kvm_io_bus_destroy(&kvm->mmio_bus);
  331. kvm_free_vcpus(kvm);
  332. kvm_free_physmem(kvm);
  333. kfree(kvm);
  334. }
  335. static int kvm_vm_release(struct inode *inode, struct file *filp)
  336. {
  337. struct kvm *kvm = filp->private_data;
  338. kvm_destroy_vm(kvm);
  339. return 0;
  340. }
  341. static void inject_gp(struct kvm_vcpu *vcpu)
  342. {
  343. kvm_arch_ops->inject_gp(vcpu, 0);
  344. }
  345. /*
  346. * Load the pae pdptrs. Return true is they are all valid.
  347. */
  348. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  349. {
  350. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  351. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  352. int i;
  353. u64 *pdpt;
  354. int ret;
  355. struct page *page;
  356. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  357. mutex_lock(&vcpu->kvm->lock);
  358. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  359. if (!page) {
  360. ret = 0;
  361. goto out;
  362. }
  363. pdpt = kmap_atomic(page, KM_USER0);
  364. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  365. kunmap_atomic(pdpt, KM_USER0);
  366. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  367. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  368. ret = 0;
  369. goto out;
  370. }
  371. }
  372. ret = 1;
  373. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  374. out:
  375. mutex_unlock(&vcpu->kvm->lock);
  376. return ret;
  377. }
  378. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  379. {
  380. if (cr0 & CR0_RESERVED_BITS) {
  381. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  382. cr0, vcpu->cr0);
  383. inject_gp(vcpu);
  384. return;
  385. }
  386. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  387. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  388. inject_gp(vcpu);
  389. return;
  390. }
  391. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  392. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  393. "and a clear PE flag\n");
  394. inject_gp(vcpu);
  395. return;
  396. }
  397. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  398. #ifdef CONFIG_X86_64
  399. if ((vcpu->shadow_efer & EFER_LME)) {
  400. int cs_db, cs_l;
  401. if (!is_pae(vcpu)) {
  402. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  403. "in long mode while PAE is disabled\n");
  404. inject_gp(vcpu);
  405. return;
  406. }
  407. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  408. if (cs_l) {
  409. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  410. "in long mode while CS.L == 1\n");
  411. inject_gp(vcpu);
  412. return;
  413. }
  414. } else
  415. #endif
  416. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  417. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  418. "reserved bits\n");
  419. inject_gp(vcpu);
  420. return;
  421. }
  422. }
  423. kvm_arch_ops->set_cr0(vcpu, cr0);
  424. vcpu->cr0 = cr0;
  425. mutex_lock(&vcpu->kvm->lock);
  426. kvm_mmu_reset_context(vcpu);
  427. mutex_unlock(&vcpu->kvm->lock);
  428. return;
  429. }
  430. EXPORT_SYMBOL_GPL(set_cr0);
  431. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  432. {
  433. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  434. }
  435. EXPORT_SYMBOL_GPL(lmsw);
  436. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  437. {
  438. if (cr4 & CR4_RESERVED_BITS) {
  439. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  440. inject_gp(vcpu);
  441. return;
  442. }
  443. if (is_long_mode(vcpu)) {
  444. if (!(cr4 & X86_CR4_PAE)) {
  445. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  446. "in long mode\n");
  447. inject_gp(vcpu);
  448. return;
  449. }
  450. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  451. && !load_pdptrs(vcpu, vcpu->cr3)) {
  452. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  453. inject_gp(vcpu);
  454. return;
  455. }
  456. if (cr4 & X86_CR4_VMXE) {
  457. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  458. inject_gp(vcpu);
  459. return;
  460. }
  461. kvm_arch_ops->set_cr4(vcpu, cr4);
  462. mutex_lock(&vcpu->kvm->lock);
  463. kvm_mmu_reset_context(vcpu);
  464. mutex_unlock(&vcpu->kvm->lock);
  465. }
  466. EXPORT_SYMBOL_GPL(set_cr4);
  467. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  468. {
  469. if (is_long_mode(vcpu)) {
  470. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  471. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  472. inject_gp(vcpu);
  473. return;
  474. }
  475. } else {
  476. if (is_pae(vcpu)) {
  477. if (cr3 & CR3_PAE_RESERVED_BITS) {
  478. printk(KERN_DEBUG
  479. "set_cr3: #GP, reserved bits\n");
  480. inject_gp(vcpu);
  481. return;
  482. }
  483. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  484. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  485. "reserved bits\n");
  486. inject_gp(vcpu);
  487. return;
  488. }
  489. } else {
  490. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  491. printk(KERN_DEBUG
  492. "set_cr3: #GP, reserved bits\n");
  493. inject_gp(vcpu);
  494. return;
  495. }
  496. }
  497. }
  498. vcpu->cr3 = cr3;
  499. mutex_lock(&vcpu->kvm->lock);
  500. /*
  501. * Does the new cr3 value map to physical memory? (Note, we
  502. * catch an invalid cr3 even in real-mode, because it would
  503. * cause trouble later on when we turn on paging anyway.)
  504. *
  505. * A real CPU would silently accept an invalid cr3 and would
  506. * attempt to use it - with largely undefined (and often hard
  507. * to debug) behavior on the guest side.
  508. */
  509. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  510. inject_gp(vcpu);
  511. else
  512. vcpu->mmu.new_cr3(vcpu);
  513. mutex_unlock(&vcpu->kvm->lock);
  514. }
  515. EXPORT_SYMBOL_GPL(set_cr3);
  516. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  517. {
  518. if (cr8 & CR8_RESERVED_BITS) {
  519. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  520. inject_gp(vcpu);
  521. return;
  522. }
  523. vcpu->cr8 = cr8;
  524. }
  525. EXPORT_SYMBOL_GPL(set_cr8);
  526. void fx_init(struct kvm_vcpu *vcpu)
  527. {
  528. struct __attribute__ ((__packed__)) fx_image_s {
  529. u16 control; //fcw
  530. u16 status; //fsw
  531. u16 tag; // ftw
  532. u16 opcode; //fop
  533. u64 ip; // fpu ip
  534. u64 operand;// fpu dp
  535. u32 mxcsr;
  536. u32 mxcsr_mask;
  537. } *fx_image;
  538. /* Initialize guest FPU by resetting ours and saving into guest's */
  539. preempt_disable();
  540. fx_save(vcpu->host_fx_image);
  541. fpu_init();
  542. fx_save(vcpu->guest_fx_image);
  543. fx_restore(vcpu->host_fx_image);
  544. preempt_enable();
  545. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  546. fx_image->mxcsr = 0x1f80;
  547. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  548. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  549. }
  550. EXPORT_SYMBOL_GPL(fx_init);
  551. /*
  552. * Allocate some memory and give it an address in the guest physical address
  553. * space.
  554. *
  555. * Discontiguous memory is allowed, mostly for framebuffers.
  556. */
  557. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  558. struct kvm_memory_region *mem)
  559. {
  560. int r;
  561. gfn_t base_gfn;
  562. unsigned long npages;
  563. unsigned long i;
  564. struct kvm_memory_slot *memslot;
  565. struct kvm_memory_slot old, new;
  566. int memory_config_version;
  567. r = -EINVAL;
  568. /* General sanity checks */
  569. if (mem->memory_size & (PAGE_SIZE - 1))
  570. goto out;
  571. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  572. goto out;
  573. if (mem->slot >= KVM_MEMORY_SLOTS)
  574. goto out;
  575. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  576. goto out;
  577. memslot = &kvm->memslots[mem->slot];
  578. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  579. npages = mem->memory_size >> PAGE_SHIFT;
  580. if (!npages)
  581. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  582. raced:
  583. mutex_lock(&kvm->lock);
  584. memory_config_version = kvm->memory_config_version;
  585. new = old = *memslot;
  586. new.base_gfn = base_gfn;
  587. new.npages = npages;
  588. new.flags = mem->flags;
  589. /* Disallow changing a memory slot's size. */
  590. r = -EINVAL;
  591. if (npages && old.npages && npages != old.npages)
  592. goto out_unlock;
  593. /* Check for overlaps */
  594. r = -EEXIST;
  595. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  596. struct kvm_memory_slot *s = &kvm->memslots[i];
  597. if (s == memslot)
  598. continue;
  599. if (!((base_gfn + npages <= s->base_gfn) ||
  600. (base_gfn >= s->base_gfn + s->npages)))
  601. goto out_unlock;
  602. }
  603. /*
  604. * Do memory allocations outside lock. memory_config_version will
  605. * detect any races.
  606. */
  607. mutex_unlock(&kvm->lock);
  608. /* Deallocate if slot is being removed */
  609. if (!npages)
  610. new.phys_mem = NULL;
  611. /* Free page dirty bitmap if unneeded */
  612. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  613. new.dirty_bitmap = NULL;
  614. r = -ENOMEM;
  615. /* Allocate if a slot is being created */
  616. if (npages && !new.phys_mem) {
  617. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  618. if (!new.phys_mem)
  619. goto out_free;
  620. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  621. for (i = 0; i < npages; ++i) {
  622. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  623. | __GFP_ZERO);
  624. if (!new.phys_mem[i])
  625. goto out_free;
  626. set_page_private(new.phys_mem[i],0);
  627. }
  628. }
  629. /* Allocate page dirty bitmap if needed */
  630. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  631. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  632. new.dirty_bitmap = vmalloc(dirty_bytes);
  633. if (!new.dirty_bitmap)
  634. goto out_free;
  635. memset(new.dirty_bitmap, 0, dirty_bytes);
  636. }
  637. mutex_lock(&kvm->lock);
  638. if (memory_config_version != kvm->memory_config_version) {
  639. mutex_unlock(&kvm->lock);
  640. kvm_free_physmem_slot(&new, &old);
  641. goto raced;
  642. }
  643. r = -EAGAIN;
  644. if (kvm->busy)
  645. goto out_unlock;
  646. if (mem->slot >= kvm->nmemslots)
  647. kvm->nmemslots = mem->slot + 1;
  648. *memslot = new;
  649. ++kvm->memory_config_version;
  650. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  651. kvm_flush_remote_tlbs(kvm);
  652. mutex_unlock(&kvm->lock);
  653. kvm_free_physmem_slot(&old, &new);
  654. return 0;
  655. out_unlock:
  656. mutex_unlock(&kvm->lock);
  657. out_free:
  658. kvm_free_physmem_slot(&new, &old);
  659. out:
  660. return r;
  661. }
  662. /*
  663. * Get (and clear) the dirty memory log for a memory slot.
  664. */
  665. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  666. struct kvm_dirty_log *log)
  667. {
  668. struct kvm_memory_slot *memslot;
  669. int r, i;
  670. int n;
  671. unsigned long any = 0;
  672. mutex_lock(&kvm->lock);
  673. /*
  674. * Prevent changes to guest memory configuration even while the lock
  675. * is not taken.
  676. */
  677. ++kvm->busy;
  678. mutex_unlock(&kvm->lock);
  679. r = -EINVAL;
  680. if (log->slot >= KVM_MEMORY_SLOTS)
  681. goto out;
  682. memslot = &kvm->memslots[log->slot];
  683. r = -ENOENT;
  684. if (!memslot->dirty_bitmap)
  685. goto out;
  686. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  687. for (i = 0; !any && i < n/sizeof(long); ++i)
  688. any = memslot->dirty_bitmap[i];
  689. r = -EFAULT;
  690. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  691. goto out;
  692. mutex_lock(&kvm->lock);
  693. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  694. kvm_flush_remote_tlbs(kvm);
  695. memset(memslot->dirty_bitmap, 0, n);
  696. mutex_unlock(&kvm->lock);
  697. r = 0;
  698. out:
  699. mutex_lock(&kvm->lock);
  700. --kvm->busy;
  701. mutex_unlock(&kvm->lock);
  702. return r;
  703. }
  704. /*
  705. * Set a new alias region. Aliases map a portion of physical memory into
  706. * another portion. This is useful for memory windows, for example the PC
  707. * VGA region.
  708. */
  709. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  710. struct kvm_memory_alias *alias)
  711. {
  712. int r, n;
  713. struct kvm_mem_alias *p;
  714. r = -EINVAL;
  715. /* General sanity checks */
  716. if (alias->memory_size & (PAGE_SIZE - 1))
  717. goto out;
  718. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  719. goto out;
  720. if (alias->slot >= KVM_ALIAS_SLOTS)
  721. goto out;
  722. if (alias->guest_phys_addr + alias->memory_size
  723. < alias->guest_phys_addr)
  724. goto out;
  725. if (alias->target_phys_addr + alias->memory_size
  726. < alias->target_phys_addr)
  727. goto out;
  728. mutex_lock(&kvm->lock);
  729. p = &kvm->aliases[alias->slot];
  730. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  731. p->npages = alias->memory_size >> PAGE_SHIFT;
  732. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  733. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  734. if (kvm->aliases[n - 1].npages)
  735. break;
  736. kvm->naliases = n;
  737. kvm_mmu_zap_all(kvm);
  738. mutex_unlock(&kvm->lock);
  739. return 0;
  740. out:
  741. return r;
  742. }
  743. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  744. {
  745. int i;
  746. struct kvm_mem_alias *alias;
  747. for (i = 0; i < kvm->naliases; ++i) {
  748. alias = &kvm->aliases[i];
  749. if (gfn >= alias->base_gfn
  750. && gfn < alias->base_gfn + alias->npages)
  751. return alias->target_gfn + gfn - alias->base_gfn;
  752. }
  753. return gfn;
  754. }
  755. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  756. {
  757. int i;
  758. for (i = 0; i < kvm->nmemslots; ++i) {
  759. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  760. if (gfn >= memslot->base_gfn
  761. && gfn < memslot->base_gfn + memslot->npages)
  762. return memslot;
  763. }
  764. return NULL;
  765. }
  766. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  767. {
  768. gfn = unalias_gfn(kvm, gfn);
  769. return __gfn_to_memslot(kvm, gfn);
  770. }
  771. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  772. {
  773. struct kvm_memory_slot *slot;
  774. gfn = unalias_gfn(kvm, gfn);
  775. slot = __gfn_to_memslot(kvm, gfn);
  776. if (!slot)
  777. return NULL;
  778. return slot->phys_mem[gfn - slot->base_gfn];
  779. }
  780. EXPORT_SYMBOL_GPL(gfn_to_page);
  781. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  782. {
  783. int i;
  784. struct kvm_memory_slot *memslot;
  785. unsigned long rel_gfn;
  786. for (i = 0; i < kvm->nmemslots; ++i) {
  787. memslot = &kvm->memslots[i];
  788. if (gfn >= memslot->base_gfn
  789. && gfn < memslot->base_gfn + memslot->npages) {
  790. if (!memslot->dirty_bitmap)
  791. return;
  792. rel_gfn = gfn - memslot->base_gfn;
  793. /* avoid RMW */
  794. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  795. set_bit(rel_gfn, memslot->dirty_bitmap);
  796. return;
  797. }
  798. }
  799. }
  800. int emulator_read_std(unsigned long addr,
  801. void *val,
  802. unsigned int bytes,
  803. struct kvm_vcpu *vcpu)
  804. {
  805. void *data = val;
  806. while (bytes) {
  807. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  808. unsigned offset = addr & (PAGE_SIZE-1);
  809. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  810. unsigned long pfn;
  811. struct page *page;
  812. void *page_virt;
  813. if (gpa == UNMAPPED_GVA)
  814. return X86EMUL_PROPAGATE_FAULT;
  815. pfn = gpa >> PAGE_SHIFT;
  816. page = gfn_to_page(vcpu->kvm, pfn);
  817. if (!page)
  818. return X86EMUL_UNHANDLEABLE;
  819. page_virt = kmap_atomic(page, KM_USER0);
  820. memcpy(data, page_virt + offset, tocopy);
  821. kunmap_atomic(page_virt, KM_USER0);
  822. bytes -= tocopy;
  823. data += tocopy;
  824. addr += tocopy;
  825. }
  826. return X86EMUL_CONTINUE;
  827. }
  828. EXPORT_SYMBOL_GPL(emulator_read_std);
  829. static int emulator_write_std(unsigned long addr,
  830. const void *val,
  831. unsigned int bytes,
  832. struct kvm_vcpu *vcpu)
  833. {
  834. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  835. addr, bytes);
  836. return X86EMUL_UNHANDLEABLE;
  837. }
  838. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  839. gpa_t addr)
  840. {
  841. /*
  842. * Note that its important to have this wrapper function because
  843. * in the very near future we will be checking for MMIOs against
  844. * the LAPIC as well as the general MMIO bus
  845. */
  846. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  847. }
  848. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  849. gpa_t addr)
  850. {
  851. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  852. }
  853. static int emulator_read_emulated(unsigned long addr,
  854. void *val,
  855. unsigned int bytes,
  856. struct kvm_vcpu *vcpu)
  857. {
  858. struct kvm_io_device *mmio_dev;
  859. gpa_t gpa;
  860. if (vcpu->mmio_read_completed) {
  861. memcpy(val, vcpu->mmio_data, bytes);
  862. vcpu->mmio_read_completed = 0;
  863. return X86EMUL_CONTINUE;
  864. } else if (emulator_read_std(addr, val, bytes, vcpu)
  865. == X86EMUL_CONTINUE)
  866. return X86EMUL_CONTINUE;
  867. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  868. if (gpa == UNMAPPED_GVA)
  869. return X86EMUL_PROPAGATE_FAULT;
  870. /*
  871. * Is this MMIO handled locally?
  872. */
  873. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  874. if (mmio_dev) {
  875. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  876. return X86EMUL_CONTINUE;
  877. }
  878. vcpu->mmio_needed = 1;
  879. vcpu->mmio_phys_addr = gpa;
  880. vcpu->mmio_size = bytes;
  881. vcpu->mmio_is_write = 0;
  882. return X86EMUL_UNHANDLEABLE;
  883. }
  884. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  885. const void *val, int bytes)
  886. {
  887. struct page *page;
  888. void *virt;
  889. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  890. return 0;
  891. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  892. if (!page)
  893. return 0;
  894. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  895. virt = kmap_atomic(page, KM_USER0);
  896. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  897. memcpy(virt + offset_in_page(gpa), val, bytes);
  898. kunmap_atomic(virt, KM_USER0);
  899. return 1;
  900. }
  901. static int emulator_write_emulated_onepage(unsigned long addr,
  902. const void *val,
  903. unsigned int bytes,
  904. struct kvm_vcpu *vcpu)
  905. {
  906. struct kvm_io_device *mmio_dev;
  907. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  908. if (gpa == UNMAPPED_GVA) {
  909. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  910. return X86EMUL_PROPAGATE_FAULT;
  911. }
  912. if (emulator_write_phys(vcpu, gpa, val, bytes))
  913. return X86EMUL_CONTINUE;
  914. /*
  915. * Is this MMIO handled locally?
  916. */
  917. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  918. if (mmio_dev) {
  919. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  920. return X86EMUL_CONTINUE;
  921. }
  922. vcpu->mmio_needed = 1;
  923. vcpu->mmio_phys_addr = gpa;
  924. vcpu->mmio_size = bytes;
  925. vcpu->mmio_is_write = 1;
  926. memcpy(vcpu->mmio_data, val, bytes);
  927. return X86EMUL_CONTINUE;
  928. }
  929. int emulator_write_emulated(unsigned long addr,
  930. const void *val,
  931. unsigned int bytes,
  932. struct kvm_vcpu *vcpu)
  933. {
  934. /* Crossing a page boundary? */
  935. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  936. int rc, now;
  937. now = -addr & ~PAGE_MASK;
  938. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  939. if (rc != X86EMUL_CONTINUE)
  940. return rc;
  941. addr += now;
  942. val += now;
  943. bytes -= now;
  944. }
  945. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  946. }
  947. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  948. static int emulator_cmpxchg_emulated(unsigned long addr,
  949. const void *old,
  950. const void *new,
  951. unsigned int bytes,
  952. struct kvm_vcpu *vcpu)
  953. {
  954. static int reported;
  955. if (!reported) {
  956. reported = 1;
  957. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  958. }
  959. return emulator_write_emulated(addr, new, bytes, vcpu);
  960. }
  961. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  962. {
  963. return kvm_arch_ops->get_segment_base(vcpu, seg);
  964. }
  965. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  966. {
  967. return X86EMUL_CONTINUE;
  968. }
  969. int emulate_clts(struct kvm_vcpu *vcpu)
  970. {
  971. unsigned long cr0;
  972. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  973. kvm_arch_ops->set_cr0(vcpu, cr0);
  974. return X86EMUL_CONTINUE;
  975. }
  976. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  977. {
  978. struct kvm_vcpu *vcpu = ctxt->vcpu;
  979. switch (dr) {
  980. case 0 ... 3:
  981. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  982. return X86EMUL_CONTINUE;
  983. default:
  984. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  985. __FUNCTION__, dr);
  986. return X86EMUL_UNHANDLEABLE;
  987. }
  988. }
  989. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  990. {
  991. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  992. int exception;
  993. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  994. if (exception) {
  995. /* FIXME: better handling */
  996. return X86EMUL_UNHANDLEABLE;
  997. }
  998. return X86EMUL_CONTINUE;
  999. }
  1000. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1001. {
  1002. static int reported;
  1003. u8 opcodes[4];
  1004. unsigned long rip = ctxt->vcpu->rip;
  1005. unsigned long rip_linear;
  1006. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1007. if (reported)
  1008. return;
  1009. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  1010. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1011. " rip %lx %02x %02x %02x %02x\n",
  1012. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1013. reported = 1;
  1014. }
  1015. struct x86_emulate_ops emulate_ops = {
  1016. .read_std = emulator_read_std,
  1017. .write_std = emulator_write_std,
  1018. .read_emulated = emulator_read_emulated,
  1019. .write_emulated = emulator_write_emulated,
  1020. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1021. };
  1022. int emulate_instruction(struct kvm_vcpu *vcpu,
  1023. struct kvm_run *run,
  1024. unsigned long cr2,
  1025. u16 error_code)
  1026. {
  1027. struct x86_emulate_ctxt emulate_ctxt;
  1028. int r;
  1029. int cs_db, cs_l;
  1030. vcpu->mmio_fault_cr2 = cr2;
  1031. kvm_arch_ops->cache_regs(vcpu);
  1032. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1033. emulate_ctxt.vcpu = vcpu;
  1034. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1035. emulate_ctxt.cr2 = cr2;
  1036. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1037. ? X86EMUL_MODE_REAL : cs_l
  1038. ? X86EMUL_MODE_PROT64 : cs_db
  1039. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1040. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1041. emulate_ctxt.cs_base = 0;
  1042. emulate_ctxt.ds_base = 0;
  1043. emulate_ctxt.es_base = 0;
  1044. emulate_ctxt.ss_base = 0;
  1045. } else {
  1046. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1047. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1048. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1049. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1050. }
  1051. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1052. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1053. vcpu->mmio_is_write = 0;
  1054. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1055. if ((r || vcpu->mmio_is_write) && run) {
  1056. run->exit_reason = KVM_EXIT_MMIO;
  1057. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1058. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1059. run->mmio.len = vcpu->mmio_size;
  1060. run->mmio.is_write = vcpu->mmio_is_write;
  1061. }
  1062. if (r) {
  1063. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1064. return EMULATE_DONE;
  1065. if (!vcpu->mmio_needed) {
  1066. report_emulation_failure(&emulate_ctxt);
  1067. return EMULATE_FAIL;
  1068. }
  1069. return EMULATE_DO_MMIO;
  1070. }
  1071. kvm_arch_ops->decache_regs(vcpu);
  1072. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1073. if (vcpu->mmio_is_write) {
  1074. vcpu->mmio_needed = 0;
  1075. return EMULATE_DO_MMIO;
  1076. }
  1077. return EMULATE_DONE;
  1078. }
  1079. EXPORT_SYMBOL_GPL(emulate_instruction);
  1080. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1081. {
  1082. if (vcpu->irq_summary)
  1083. return 1;
  1084. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1085. ++vcpu->stat.halt_exits;
  1086. return 0;
  1087. }
  1088. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1089. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1090. {
  1091. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1092. kvm_arch_ops->cache_regs(vcpu);
  1093. ret = -KVM_EINVAL;
  1094. #ifdef CONFIG_X86_64
  1095. if (is_long_mode(vcpu)) {
  1096. nr = vcpu->regs[VCPU_REGS_RAX];
  1097. a0 = vcpu->regs[VCPU_REGS_RDI];
  1098. a1 = vcpu->regs[VCPU_REGS_RSI];
  1099. a2 = vcpu->regs[VCPU_REGS_RDX];
  1100. a3 = vcpu->regs[VCPU_REGS_RCX];
  1101. a4 = vcpu->regs[VCPU_REGS_R8];
  1102. a5 = vcpu->regs[VCPU_REGS_R9];
  1103. } else
  1104. #endif
  1105. {
  1106. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1107. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1108. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1109. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1110. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1111. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1112. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1113. }
  1114. switch (nr) {
  1115. default:
  1116. run->hypercall.nr = nr;
  1117. run->hypercall.args[0] = a0;
  1118. run->hypercall.args[1] = a1;
  1119. run->hypercall.args[2] = a2;
  1120. run->hypercall.args[3] = a3;
  1121. run->hypercall.args[4] = a4;
  1122. run->hypercall.args[5] = a5;
  1123. run->hypercall.ret = ret;
  1124. run->hypercall.longmode = is_long_mode(vcpu);
  1125. kvm_arch_ops->decache_regs(vcpu);
  1126. return 0;
  1127. }
  1128. vcpu->regs[VCPU_REGS_RAX] = ret;
  1129. kvm_arch_ops->decache_regs(vcpu);
  1130. return 1;
  1131. }
  1132. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1133. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1134. {
  1135. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1136. }
  1137. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1138. {
  1139. struct descriptor_table dt = { limit, base };
  1140. kvm_arch_ops->set_gdt(vcpu, &dt);
  1141. }
  1142. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1143. {
  1144. struct descriptor_table dt = { limit, base };
  1145. kvm_arch_ops->set_idt(vcpu, &dt);
  1146. }
  1147. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1148. unsigned long *rflags)
  1149. {
  1150. lmsw(vcpu, msw);
  1151. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1152. }
  1153. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1154. {
  1155. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1156. switch (cr) {
  1157. case 0:
  1158. return vcpu->cr0;
  1159. case 2:
  1160. return vcpu->cr2;
  1161. case 3:
  1162. return vcpu->cr3;
  1163. case 4:
  1164. return vcpu->cr4;
  1165. default:
  1166. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1167. return 0;
  1168. }
  1169. }
  1170. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1171. unsigned long *rflags)
  1172. {
  1173. switch (cr) {
  1174. case 0:
  1175. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1176. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1177. break;
  1178. case 2:
  1179. vcpu->cr2 = val;
  1180. break;
  1181. case 3:
  1182. set_cr3(vcpu, val);
  1183. break;
  1184. case 4:
  1185. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1186. break;
  1187. default:
  1188. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1189. }
  1190. }
  1191. /*
  1192. * Register the para guest with the host:
  1193. */
  1194. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1195. {
  1196. struct kvm_vcpu_para_state *para_state;
  1197. hpa_t para_state_hpa, hypercall_hpa;
  1198. struct page *para_state_page;
  1199. unsigned char *hypercall;
  1200. gpa_t hypercall_gpa;
  1201. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1202. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1203. /*
  1204. * Needs to be page aligned:
  1205. */
  1206. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1207. goto err_gp;
  1208. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1209. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1210. if (is_error_hpa(para_state_hpa))
  1211. goto err_gp;
  1212. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1213. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1214. para_state = kmap(para_state_page);
  1215. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1216. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1217. para_state->host_version = KVM_PARA_API_VERSION;
  1218. /*
  1219. * We cannot support guests that try to register themselves
  1220. * with a newer API version than the host supports:
  1221. */
  1222. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1223. para_state->ret = -KVM_EINVAL;
  1224. goto err_kunmap_skip;
  1225. }
  1226. hypercall_gpa = para_state->hypercall_gpa;
  1227. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1228. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1229. if (is_error_hpa(hypercall_hpa)) {
  1230. para_state->ret = -KVM_EINVAL;
  1231. goto err_kunmap_skip;
  1232. }
  1233. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1234. vcpu->para_state_page = para_state_page;
  1235. vcpu->para_state_gpa = para_state_gpa;
  1236. vcpu->hypercall_gpa = hypercall_gpa;
  1237. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1238. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1239. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1240. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1241. kunmap_atomic(hypercall, KM_USER1);
  1242. para_state->ret = 0;
  1243. err_kunmap_skip:
  1244. kunmap(para_state_page);
  1245. return 0;
  1246. err_gp:
  1247. return 1;
  1248. }
  1249. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1250. {
  1251. u64 data;
  1252. switch (msr) {
  1253. case 0xc0010010: /* SYSCFG */
  1254. case 0xc0010015: /* HWCR */
  1255. case MSR_IA32_PLATFORM_ID:
  1256. case MSR_IA32_P5_MC_ADDR:
  1257. case MSR_IA32_P5_MC_TYPE:
  1258. case MSR_IA32_MC0_CTL:
  1259. case MSR_IA32_MCG_STATUS:
  1260. case MSR_IA32_MCG_CAP:
  1261. case MSR_IA32_MC0_MISC:
  1262. case MSR_IA32_MC0_MISC+4:
  1263. case MSR_IA32_MC0_MISC+8:
  1264. case MSR_IA32_MC0_MISC+12:
  1265. case MSR_IA32_MC0_MISC+16:
  1266. case MSR_IA32_UCODE_REV:
  1267. case MSR_IA32_PERF_STATUS:
  1268. case MSR_IA32_EBL_CR_POWERON:
  1269. /* MTRR registers */
  1270. case 0xfe:
  1271. case 0x200 ... 0x2ff:
  1272. data = 0;
  1273. break;
  1274. case 0xcd: /* fsb frequency */
  1275. data = 3;
  1276. break;
  1277. case MSR_IA32_APICBASE:
  1278. data = vcpu->apic_base;
  1279. break;
  1280. case MSR_IA32_MISC_ENABLE:
  1281. data = vcpu->ia32_misc_enable_msr;
  1282. break;
  1283. #ifdef CONFIG_X86_64
  1284. case MSR_EFER:
  1285. data = vcpu->shadow_efer;
  1286. break;
  1287. #endif
  1288. default:
  1289. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1290. return 1;
  1291. }
  1292. *pdata = data;
  1293. return 0;
  1294. }
  1295. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1296. /*
  1297. * Reads an msr value (of 'msr_index') into 'pdata'.
  1298. * Returns 0 on success, non-0 otherwise.
  1299. * Assumes vcpu_load() was already called.
  1300. */
  1301. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1302. {
  1303. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1304. }
  1305. #ifdef CONFIG_X86_64
  1306. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1307. {
  1308. if (efer & EFER_RESERVED_BITS) {
  1309. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1310. efer);
  1311. inject_gp(vcpu);
  1312. return;
  1313. }
  1314. if (is_paging(vcpu)
  1315. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1316. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1317. inject_gp(vcpu);
  1318. return;
  1319. }
  1320. kvm_arch_ops->set_efer(vcpu, efer);
  1321. efer &= ~EFER_LMA;
  1322. efer |= vcpu->shadow_efer & EFER_LMA;
  1323. vcpu->shadow_efer = efer;
  1324. }
  1325. #endif
  1326. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1327. {
  1328. switch (msr) {
  1329. #ifdef CONFIG_X86_64
  1330. case MSR_EFER:
  1331. set_efer(vcpu, data);
  1332. break;
  1333. #endif
  1334. case MSR_IA32_MC0_STATUS:
  1335. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1336. __FUNCTION__, data);
  1337. break;
  1338. case MSR_IA32_MCG_STATUS:
  1339. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1340. __FUNCTION__, data);
  1341. break;
  1342. case MSR_IA32_UCODE_REV:
  1343. case MSR_IA32_UCODE_WRITE:
  1344. case 0x200 ... 0x2ff: /* MTRRs */
  1345. break;
  1346. case MSR_IA32_APICBASE:
  1347. vcpu->apic_base = data;
  1348. break;
  1349. case MSR_IA32_MISC_ENABLE:
  1350. vcpu->ia32_misc_enable_msr = data;
  1351. break;
  1352. /*
  1353. * This is the 'probe whether the host is KVM' logic:
  1354. */
  1355. case MSR_KVM_API_MAGIC:
  1356. return vcpu_register_para(vcpu, data);
  1357. default:
  1358. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1359. return 1;
  1360. }
  1361. return 0;
  1362. }
  1363. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1364. /*
  1365. * Writes msr value into into the appropriate "register".
  1366. * Returns 0 on success, non-0 otherwise.
  1367. * Assumes vcpu_load() was already called.
  1368. */
  1369. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1370. {
  1371. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1372. }
  1373. void kvm_resched(struct kvm_vcpu *vcpu)
  1374. {
  1375. if (!need_resched())
  1376. return;
  1377. cond_resched();
  1378. }
  1379. EXPORT_SYMBOL_GPL(kvm_resched);
  1380. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1381. {
  1382. int i;
  1383. u32 function;
  1384. struct kvm_cpuid_entry *e, *best;
  1385. kvm_arch_ops->cache_regs(vcpu);
  1386. function = vcpu->regs[VCPU_REGS_RAX];
  1387. vcpu->regs[VCPU_REGS_RAX] = 0;
  1388. vcpu->regs[VCPU_REGS_RBX] = 0;
  1389. vcpu->regs[VCPU_REGS_RCX] = 0;
  1390. vcpu->regs[VCPU_REGS_RDX] = 0;
  1391. best = NULL;
  1392. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1393. e = &vcpu->cpuid_entries[i];
  1394. if (e->function == function) {
  1395. best = e;
  1396. break;
  1397. }
  1398. /*
  1399. * Both basic or both extended?
  1400. */
  1401. if (((e->function ^ function) & 0x80000000) == 0)
  1402. if (!best || e->function > best->function)
  1403. best = e;
  1404. }
  1405. if (best) {
  1406. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1407. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1408. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1409. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1410. }
  1411. kvm_arch_ops->decache_regs(vcpu);
  1412. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1413. }
  1414. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1415. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1416. {
  1417. void *p = vcpu->pio_data;
  1418. void *q;
  1419. unsigned bytes;
  1420. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1421. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1422. PAGE_KERNEL);
  1423. if (!q) {
  1424. free_pio_guest_pages(vcpu);
  1425. return -ENOMEM;
  1426. }
  1427. q += vcpu->pio.guest_page_offset;
  1428. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1429. if (vcpu->pio.in)
  1430. memcpy(q, p, bytes);
  1431. else
  1432. memcpy(p, q, bytes);
  1433. q -= vcpu->pio.guest_page_offset;
  1434. vunmap(q);
  1435. free_pio_guest_pages(vcpu);
  1436. return 0;
  1437. }
  1438. static int complete_pio(struct kvm_vcpu *vcpu)
  1439. {
  1440. struct kvm_pio_request *io = &vcpu->pio;
  1441. long delta;
  1442. int r;
  1443. kvm_arch_ops->cache_regs(vcpu);
  1444. if (!io->string) {
  1445. if (io->in)
  1446. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1447. io->size);
  1448. } else {
  1449. if (io->in) {
  1450. r = pio_copy_data(vcpu);
  1451. if (r) {
  1452. kvm_arch_ops->cache_regs(vcpu);
  1453. return r;
  1454. }
  1455. }
  1456. delta = 1;
  1457. if (io->rep) {
  1458. delta *= io->cur_count;
  1459. /*
  1460. * The size of the register should really depend on
  1461. * current address size.
  1462. */
  1463. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1464. }
  1465. if (io->down)
  1466. delta = -delta;
  1467. delta *= io->size;
  1468. if (io->in)
  1469. vcpu->regs[VCPU_REGS_RDI] += delta;
  1470. else
  1471. vcpu->regs[VCPU_REGS_RSI] += delta;
  1472. }
  1473. kvm_arch_ops->decache_regs(vcpu);
  1474. io->count -= io->cur_count;
  1475. io->cur_count = 0;
  1476. if (!io->count)
  1477. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1478. return 0;
  1479. }
  1480. static void kernel_pio(struct kvm_io_device *pio_dev,
  1481. struct kvm_vcpu *vcpu,
  1482. void *pd)
  1483. {
  1484. /* TODO: String I/O for in kernel device */
  1485. if (vcpu->pio.in)
  1486. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1487. vcpu->pio.size,
  1488. pd);
  1489. else
  1490. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1491. vcpu->pio.size,
  1492. pd);
  1493. }
  1494. static void pio_string_write(struct kvm_io_device *pio_dev,
  1495. struct kvm_vcpu *vcpu)
  1496. {
  1497. struct kvm_pio_request *io = &vcpu->pio;
  1498. void *pd = vcpu->pio_data;
  1499. int i;
  1500. for (i = 0; i < io->cur_count; i++) {
  1501. kvm_iodevice_write(pio_dev, io->port,
  1502. io->size,
  1503. pd);
  1504. pd += io->size;
  1505. }
  1506. }
  1507. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1508. int size, unsigned long count, int string, int down,
  1509. gva_t address, int rep, unsigned port)
  1510. {
  1511. unsigned now, in_page;
  1512. int i, ret = 0;
  1513. int nr_pages = 1;
  1514. struct page *page;
  1515. struct kvm_io_device *pio_dev;
  1516. vcpu->run->exit_reason = KVM_EXIT_IO;
  1517. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1518. vcpu->run->io.size = size;
  1519. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1520. vcpu->run->io.count = count;
  1521. vcpu->run->io.port = port;
  1522. vcpu->pio.count = count;
  1523. vcpu->pio.cur_count = count;
  1524. vcpu->pio.size = size;
  1525. vcpu->pio.in = in;
  1526. vcpu->pio.port = port;
  1527. vcpu->pio.string = string;
  1528. vcpu->pio.down = down;
  1529. vcpu->pio.guest_page_offset = offset_in_page(address);
  1530. vcpu->pio.rep = rep;
  1531. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1532. if (!string) {
  1533. kvm_arch_ops->cache_regs(vcpu);
  1534. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1535. kvm_arch_ops->decache_regs(vcpu);
  1536. if (pio_dev) {
  1537. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1538. complete_pio(vcpu);
  1539. return 1;
  1540. }
  1541. return 0;
  1542. }
  1543. if (!count) {
  1544. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1545. return 1;
  1546. }
  1547. now = min(count, PAGE_SIZE / size);
  1548. if (!down)
  1549. in_page = PAGE_SIZE - offset_in_page(address);
  1550. else
  1551. in_page = offset_in_page(address) + size;
  1552. now = min(count, (unsigned long)in_page / size);
  1553. if (!now) {
  1554. /*
  1555. * String I/O straddles page boundary. Pin two guest pages
  1556. * so that we satisfy atomicity constraints. Do just one
  1557. * transaction to avoid complexity.
  1558. */
  1559. nr_pages = 2;
  1560. now = 1;
  1561. }
  1562. if (down) {
  1563. /*
  1564. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1565. */
  1566. printk(KERN_ERR "kvm: guest string pio down\n");
  1567. inject_gp(vcpu);
  1568. return 1;
  1569. }
  1570. vcpu->run->io.count = now;
  1571. vcpu->pio.cur_count = now;
  1572. for (i = 0; i < nr_pages; ++i) {
  1573. mutex_lock(&vcpu->kvm->lock);
  1574. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1575. if (page)
  1576. get_page(page);
  1577. vcpu->pio.guest_pages[i] = page;
  1578. mutex_unlock(&vcpu->kvm->lock);
  1579. if (!page) {
  1580. inject_gp(vcpu);
  1581. free_pio_guest_pages(vcpu);
  1582. return 1;
  1583. }
  1584. }
  1585. if (!vcpu->pio.in) {
  1586. /* string PIO write */
  1587. ret = pio_copy_data(vcpu);
  1588. if (ret >= 0 && pio_dev) {
  1589. pio_string_write(pio_dev, vcpu);
  1590. complete_pio(vcpu);
  1591. if (vcpu->pio.count == 0)
  1592. ret = 1;
  1593. }
  1594. } else if (pio_dev)
  1595. printk(KERN_ERR "no string pio read support yet, "
  1596. "port %x size %d count %ld\n",
  1597. port, size, count);
  1598. return ret;
  1599. }
  1600. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1601. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1602. {
  1603. int r;
  1604. sigset_t sigsaved;
  1605. vcpu_load(vcpu);
  1606. if (vcpu->sigset_active)
  1607. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1608. /* re-sync apic's tpr */
  1609. vcpu->cr8 = kvm_run->cr8;
  1610. if (vcpu->pio.cur_count) {
  1611. r = complete_pio(vcpu);
  1612. if (r)
  1613. goto out;
  1614. }
  1615. if (vcpu->mmio_needed) {
  1616. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1617. vcpu->mmio_read_completed = 1;
  1618. vcpu->mmio_needed = 0;
  1619. r = emulate_instruction(vcpu, kvm_run,
  1620. vcpu->mmio_fault_cr2, 0);
  1621. if (r == EMULATE_DO_MMIO) {
  1622. /*
  1623. * Read-modify-write. Back to userspace.
  1624. */
  1625. r = 0;
  1626. goto out;
  1627. }
  1628. }
  1629. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1630. kvm_arch_ops->cache_regs(vcpu);
  1631. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1632. kvm_arch_ops->decache_regs(vcpu);
  1633. }
  1634. r = kvm_arch_ops->run(vcpu, kvm_run);
  1635. out:
  1636. if (vcpu->sigset_active)
  1637. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1638. vcpu_put(vcpu);
  1639. return r;
  1640. }
  1641. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1642. struct kvm_regs *regs)
  1643. {
  1644. vcpu_load(vcpu);
  1645. kvm_arch_ops->cache_regs(vcpu);
  1646. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1647. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1648. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1649. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1650. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1651. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1652. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1653. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1654. #ifdef CONFIG_X86_64
  1655. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1656. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1657. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1658. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1659. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1660. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1661. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1662. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1663. #endif
  1664. regs->rip = vcpu->rip;
  1665. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1666. /*
  1667. * Don't leak debug flags in case they were set for guest debugging
  1668. */
  1669. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1670. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1671. vcpu_put(vcpu);
  1672. return 0;
  1673. }
  1674. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1675. struct kvm_regs *regs)
  1676. {
  1677. vcpu_load(vcpu);
  1678. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1679. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1680. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1681. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1682. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1683. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1684. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1685. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1686. #ifdef CONFIG_X86_64
  1687. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1688. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1689. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1690. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1691. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1692. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1693. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1694. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1695. #endif
  1696. vcpu->rip = regs->rip;
  1697. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1698. kvm_arch_ops->decache_regs(vcpu);
  1699. vcpu_put(vcpu);
  1700. return 0;
  1701. }
  1702. static void get_segment(struct kvm_vcpu *vcpu,
  1703. struct kvm_segment *var, int seg)
  1704. {
  1705. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1706. }
  1707. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1708. struct kvm_sregs *sregs)
  1709. {
  1710. struct descriptor_table dt;
  1711. vcpu_load(vcpu);
  1712. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1713. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1714. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1715. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1716. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1717. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1718. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1719. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1720. kvm_arch_ops->get_idt(vcpu, &dt);
  1721. sregs->idt.limit = dt.limit;
  1722. sregs->idt.base = dt.base;
  1723. kvm_arch_ops->get_gdt(vcpu, &dt);
  1724. sregs->gdt.limit = dt.limit;
  1725. sregs->gdt.base = dt.base;
  1726. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1727. sregs->cr0 = vcpu->cr0;
  1728. sregs->cr2 = vcpu->cr2;
  1729. sregs->cr3 = vcpu->cr3;
  1730. sregs->cr4 = vcpu->cr4;
  1731. sregs->cr8 = vcpu->cr8;
  1732. sregs->efer = vcpu->shadow_efer;
  1733. sregs->apic_base = vcpu->apic_base;
  1734. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1735. sizeof sregs->interrupt_bitmap);
  1736. vcpu_put(vcpu);
  1737. return 0;
  1738. }
  1739. static void set_segment(struct kvm_vcpu *vcpu,
  1740. struct kvm_segment *var, int seg)
  1741. {
  1742. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1743. }
  1744. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1745. struct kvm_sregs *sregs)
  1746. {
  1747. int mmu_reset_needed = 0;
  1748. int i;
  1749. struct descriptor_table dt;
  1750. vcpu_load(vcpu);
  1751. dt.limit = sregs->idt.limit;
  1752. dt.base = sregs->idt.base;
  1753. kvm_arch_ops->set_idt(vcpu, &dt);
  1754. dt.limit = sregs->gdt.limit;
  1755. dt.base = sregs->gdt.base;
  1756. kvm_arch_ops->set_gdt(vcpu, &dt);
  1757. vcpu->cr2 = sregs->cr2;
  1758. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1759. vcpu->cr3 = sregs->cr3;
  1760. vcpu->cr8 = sregs->cr8;
  1761. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1762. #ifdef CONFIG_X86_64
  1763. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1764. #endif
  1765. vcpu->apic_base = sregs->apic_base;
  1766. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1767. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1768. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1769. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1770. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1771. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1772. load_pdptrs(vcpu, vcpu->cr3);
  1773. if (mmu_reset_needed)
  1774. kvm_mmu_reset_context(vcpu);
  1775. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1776. sizeof vcpu->irq_pending);
  1777. vcpu->irq_summary = 0;
  1778. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1779. if (vcpu->irq_pending[i])
  1780. __set_bit(i, &vcpu->irq_summary);
  1781. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1782. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1783. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1784. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1785. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1786. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1787. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1788. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1789. vcpu_put(vcpu);
  1790. return 0;
  1791. }
  1792. /*
  1793. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1794. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1795. *
  1796. * This list is modified at module load time to reflect the
  1797. * capabilities of the host cpu.
  1798. */
  1799. static u32 msrs_to_save[] = {
  1800. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1801. MSR_K6_STAR,
  1802. #ifdef CONFIG_X86_64
  1803. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1804. #endif
  1805. MSR_IA32_TIME_STAMP_COUNTER,
  1806. };
  1807. static unsigned num_msrs_to_save;
  1808. static u32 emulated_msrs[] = {
  1809. MSR_IA32_MISC_ENABLE,
  1810. };
  1811. static __init void kvm_init_msr_list(void)
  1812. {
  1813. u32 dummy[2];
  1814. unsigned i, j;
  1815. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1816. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1817. continue;
  1818. if (j < i)
  1819. msrs_to_save[j] = msrs_to_save[i];
  1820. j++;
  1821. }
  1822. num_msrs_to_save = j;
  1823. }
  1824. /*
  1825. * Adapt set_msr() to msr_io()'s calling convention
  1826. */
  1827. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1828. {
  1829. return kvm_set_msr(vcpu, index, *data);
  1830. }
  1831. /*
  1832. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1833. *
  1834. * @return number of msrs set successfully.
  1835. */
  1836. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1837. struct kvm_msr_entry *entries,
  1838. int (*do_msr)(struct kvm_vcpu *vcpu,
  1839. unsigned index, u64 *data))
  1840. {
  1841. int i;
  1842. vcpu_load(vcpu);
  1843. for (i = 0; i < msrs->nmsrs; ++i)
  1844. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1845. break;
  1846. vcpu_put(vcpu);
  1847. return i;
  1848. }
  1849. /*
  1850. * Read or write a bunch of msrs. Parameters are user addresses.
  1851. *
  1852. * @return number of msrs set successfully.
  1853. */
  1854. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1855. int (*do_msr)(struct kvm_vcpu *vcpu,
  1856. unsigned index, u64 *data),
  1857. int writeback)
  1858. {
  1859. struct kvm_msrs msrs;
  1860. struct kvm_msr_entry *entries;
  1861. int r, n;
  1862. unsigned size;
  1863. r = -EFAULT;
  1864. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1865. goto out;
  1866. r = -E2BIG;
  1867. if (msrs.nmsrs >= MAX_IO_MSRS)
  1868. goto out;
  1869. r = -ENOMEM;
  1870. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1871. entries = vmalloc(size);
  1872. if (!entries)
  1873. goto out;
  1874. r = -EFAULT;
  1875. if (copy_from_user(entries, user_msrs->entries, size))
  1876. goto out_free;
  1877. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1878. if (r < 0)
  1879. goto out_free;
  1880. r = -EFAULT;
  1881. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1882. goto out_free;
  1883. r = n;
  1884. out_free:
  1885. vfree(entries);
  1886. out:
  1887. return r;
  1888. }
  1889. /*
  1890. * Translate a guest virtual address to a guest physical address.
  1891. */
  1892. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1893. struct kvm_translation *tr)
  1894. {
  1895. unsigned long vaddr = tr->linear_address;
  1896. gpa_t gpa;
  1897. vcpu_load(vcpu);
  1898. mutex_lock(&vcpu->kvm->lock);
  1899. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1900. tr->physical_address = gpa;
  1901. tr->valid = gpa != UNMAPPED_GVA;
  1902. tr->writeable = 1;
  1903. tr->usermode = 0;
  1904. mutex_unlock(&vcpu->kvm->lock);
  1905. vcpu_put(vcpu);
  1906. return 0;
  1907. }
  1908. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1909. struct kvm_interrupt *irq)
  1910. {
  1911. if (irq->irq < 0 || irq->irq >= 256)
  1912. return -EINVAL;
  1913. vcpu_load(vcpu);
  1914. set_bit(irq->irq, vcpu->irq_pending);
  1915. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1916. vcpu_put(vcpu);
  1917. return 0;
  1918. }
  1919. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1920. struct kvm_debug_guest *dbg)
  1921. {
  1922. int r;
  1923. vcpu_load(vcpu);
  1924. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1925. vcpu_put(vcpu);
  1926. return r;
  1927. }
  1928. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1929. unsigned long address,
  1930. int *type)
  1931. {
  1932. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1933. unsigned long pgoff;
  1934. struct page *page;
  1935. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1936. if (pgoff == 0)
  1937. page = virt_to_page(vcpu->run);
  1938. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1939. page = virt_to_page(vcpu->pio_data);
  1940. else
  1941. return NOPAGE_SIGBUS;
  1942. get_page(page);
  1943. if (type != NULL)
  1944. *type = VM_FAULT_MINOR;
  1945. return page;
  1946. }
  1947. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1948. .nopage = kvm_vcpu_nopage,
  1949. };
  1950. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1951. {
  1952. vma->vm_ops = &kvm_vcpu_vm_ops;
  1953. return 0;
  1954. }
  1955. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1956. {
  1957. struct kvm_vcpu *vcpu = filp->private_data;
  1958. fput(vcpu->kvm->filp);
  1959. return 0;
  1960. }
  1961. static struct file_operations kvm_vcpu_fops = {
  1962. .release = kvm_vcpu_release,
  1963. .unlocked_ioctl = kvm_vcpu_ioctl,
  1964. .compat_ioctl = kvm_vcpu_ioctl,
  1965. .mmap = kvm_vcpu_mmap,
  1966. };
  1967. /*
  1968. * Allocates an inode for the vcpu.
  1969. */
  1970. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1971. {
  1972. int fd, r;
  1973. struct inode *inode;
  1974. struct file *file;
  1975. r = anon_inode_getfd(&fd, &inode, &file,
  1976. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1977. if (r)
  1978. return r;
  1979. atomic_inc(&vcpu->kvm->filp->f_count);
  1980. return fd;
  1981. }
  1982. /*
  1983. * Creates some virtual cpus. Good luck creating more than one.
  1984. */
  1985. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1986. {
  1987. int r;
  1988. struct kvm_vcpu *vcpu;
  1989. if (!valid_vcpu(n))
  1990. return -EINVAL;
  1991. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  1992. if (IS_ERR(vcpu))
  1993. return PTR_ERR(vcpu);
  1994. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1995. vcpu_load(vcpu);
  1996. r = kvm_mmu_setup(vcpu);
  1997. vcpu_put(vcpu);
  1998. if (r < 0)
  1999. goto free_vcpu;
  2000. mutex_lock(&kvm->lock);
  2001. if (kvm->vcpus[n]) {
  2002. r = -EEXIST;
  2003. mutex_unlock(&kvm->lock);
  2004. goto mmu_unload;
  2005. }
  2006. kvm->vcpus[n] = vcpu;
  2007. mutex_unlock(&kvm->lock);
  2008. /* Now it's all set up, let userspace reach it */
  2009. r = create_vcpu_fd(vcpu);
  2010. if (r < 0)
  2011. goto unlink;
  2012. return r;
  2013. unlink:
  2014. mutex_lock(&kvm->lock);
  2015. kvm->vcpus[n] = NULL;
  2016. mutex_unlock(&kvm->lock);
  2017. mmu_unload:
  2018. vcpu_load(vcpu);
  2019. kvm_mmu_unload(vcpu);
  2020. vcpu_put(vcpu);
  2021. free_vcpu:
  2022. kvm_arch_ops->vcpu_free(vcpu);
  2023. return r;
  2024. }
  2025. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2026. {
  2027. u64 efer;
  2028. int i;
  2029. struct kvm_cpuid_entry *e, *entry;
  2030. rdmsrl(MSR_EFER, efer);
  2031. entry = NULL;
  2032. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2033. e = &vcpu->cpuid_entries[i];
  2034. if (e->function == 0x80000001) {
  2035. entry = e;
  2036. break;
  2037. }
  2038. }
  2039. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2040. entry->edx &= ~(1 << 20);
  2041. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2042. }
  2043. }
  2044. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2045. struct kvm_cpuid *cpuid,
  2046. struct kvm_cpuid_entry __user *entries)
  2047. {
  2048. int r;
  2049. r = -E2BIG;
  2050. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2051. goto out;
  2052. r = -EFAULT;
  2053. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2054. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2055. goto out;
  2056. vcpu->cpuid_nent = cpuid->nent;
  2057. cpuid_fix_nx_cap(vcpu);
  2058. return 0;
  2059. out:
  2060. return r;
  2061. }
  2062. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2063. {
  2064. if (sigset) {
  2065. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2066. vcpu->sigset_active = 1;
  2067. vcpu->sigset = *sigset;
  2068. } else
  2069. vcpu->sigset_active = 0;
  2070. return 0;
  2071. }
  2072. /*
  2073. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2074. * we have asm/x86/processor.h
  2075. */
  2076. struct fxsave {
  2077. u16 cwd;
  2078. u16 swd;
  2079. u16 twd;
  2080. u16 fop;
  2081. u64 rip;
  2082. u64 rdp;
  2083. u32 mxcsr;
  2084. u32 mxcsr_mask;
  2085. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2086. #ifdef CONFIG_X86_64
  2087. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2088. #else
  2089. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2090. #endif
  2091. };
  2092. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2093. {
  2094. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2095. vcpu_load(vcpu);
  2096. memcpy(fpu->fpr, fxsave->st_space, 128);
  2097. fpu->fcw = fxsave->cwd;
  2098. fpu->fsw = fxsave->swd;
  2099. fpu->ftwx = fxsave->twd;
  2100. fpu->last_opcode = fxsave->fop;
  2101. fpu->last_ip = fxsave->rip;
  2102. fpu->last_dp = fxsave->rdp;
  2103. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2104. vcpu_put(vcpu);
  2105. return 0;
  2106. }
  2107. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2108. {
  2109. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2110. vcpu_load(vcpu);
  2111. memcpy(fxsave->st_space, fpu->fpr, 128);
  2112. fxsave->cwd = fpu->fcw;
  2113. fxsave->swd = fpu->fsw;
  2114. fxsave->twd = fpu->ftwx;
  2115. fxsave->fop = fpu->last_opcode;
  2116. fxsave->rip = fpu->last_ip;
  2117. fxsave->rdp = fpu->last_dp;
  2118. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2119. vcpu_put(vcpu);
  2120. return 0;
  2121. }
  2122. static long kvm_vcpu_ioctl(struct file *filp,
  2123. unsigned int ioctl, unsigned long arg)
  2124. {
  2125. struct kvm_vcpu *vcpu = filp->private_data;
  2126. void __user *argp = (void __user *)arg;
  2127. int r = -EINVAL;
  2128. switch (ioctl) {
  2129. case KVM_RUN:
  2130. r = -EINVAL;
  2131. if (arg)
  2132. goto out;
  2133. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2134. break;
  2135. case KVM_GET_REGS: {
  2136. struct kvm_regs kvm_regs;
  2137. memset(&kvm_regs, 0, sizeof kvm_regs);
  2138. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2139. if (r)
  2140. goto out;
  2141. r = -EFAULT;
  2142. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2143. goto out;
  2144. r = 0;
  2145. break;
  2146. }
  2147. case KVM_SET_REGS: {
  2148. struct kvm_regs kvm_regs;
  2149. r = -EFAULT;
  2150. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2151. goto out;
  2152. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2153. if (r)
  2154. goto out;
  2155. r = 0;
  2156. break;
  2157. }
  2158. case KVM_GET_SREGS: {
  2159. struct kvm_sregs kvm_sregs;
  2160. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2161. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2162. if (r)
  2163. goto out;
  2164. r = -EFAULT;
  2165. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2166. goto out;
  2167. r = 0;
  2168. break;
  2169. }
  2170. case KVM_SET_SREGS: {
  2171. struct kvm_sregs kvm_sregs;
  2172. r = -EFAULT;
  2173. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2174. goto out;
  2175. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2176. if (r)
  2177. goto out;
  2178. r = 0;
  2179. break;
  2180. }
  2181. case KVM_TRANSLATE: {
  2182. struct kvm_translation tr;
  2183. r = -EFAULT;
  2184. if (copy_from_user(&tr, argp, sizeof tr))
  2185. goto out;
  2186. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2187. if (r)
  2188. goto out;
  2189. r = -EFAULT;
  2190. if (copy_to_user(argp, &tr, sizeof tr))
  2191. goto out;
  2192. r = 0;
  2193. break;
  2194. }
  2195. case KVM_INTERRUPT: {
  2196. struct kvm_interrupt irq;
  2197. r = -EFAULT;
  2198. if (copy_from_user(&irq, argp, sizeof irq))
  2199. goto out;
  2200. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2201. if (r)
  2202. goto out;
  2203. r = 0;
  2204. break;
  2205. }
  2206. case KVM_DEBUG_GUEST: {
  2207. struct kvm_debug_guest dbg;
  2208. r = -EFAULT;
  2209. if (copy_from_user(&dbg, argp, sizeof dbg))
  2210. goto out;
  2211. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2212. if (r)
  2213. goto out;
  2214. r = 0;
  2215. break;
  2216. }
  2217. case KVM_GET_MSRS:
  2218. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2219. break;
  2220. case KVM_SET_MSRS:
  2221. r = msr_io(vcpu, argp, do_set_msr, 0);
  2222. break;
  2223. case KVM_SET_CPUID: {
  2224. struct kvm_cpuid __user *cpuid_arg = argp;
  2225. struct kvm_cpuid cpuid;
  2226. r = -EFAULT;
  2227. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2228. goto out;
  2229. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2230. if (r)
  2231. goto out;
  2232. break;
  2233. }
  2234. case KVM_SET_SIGNAL_MASK: {
  2235. struct kvm_signal_mask __user *sigmask_arg = argp;
  2236. struct kvm_signal_mask kvm_sigmask;
  2237. sigset_t sigset, *p;
  2238. p = NULL;
  2239. if (argp) {
  2240. r = -EFAULT;
  2241. if (copy_from_user(&kvm_sigmask, argp,
  2242. sizeof kvm_sigmask))
  2243. goto out;
  2244. r = -EINVAL;
  2245. if (kvm_sigmask.len != sizeof sigset)
  2246. goto out;
  2247. r = -EFAULT;
  2248. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2249. sizeof sigset))
  2250. goto out;
  2251. p = &sigset;
  2252. }
  2253. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2254. break;
  2255. }
  2256. case KVM_GET_FPU: {
  2257. struct kvm_fpu fpu;
  2258. memset(&fpu, 0, sizeof fpu);
  2259. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2260. if (r)
  2261. goto out;
  2262. r = -EFAULT;
  2263. if (copy_to_user(argp, &fpu, sizeof fpu))
  2264. goto out;
  2265. r = 0;
  2266. break;
  2267. }
  2268. case KVM_SET_FPU: {
  2269. struct kvm_fpu fpu;
  2270. r = -EFAULT;
  2271. if (copy_from_user(&fpu, argp, sizeof fpu))
  2272. goto out;
  2273. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2274. if (r)
  2275. goto out;
  2276. r = 0;
  2277. break;
  2278. }
  2279. default:
  2280. ;
  2281. }
  2282. out:
  2283. return r;
  2284. }
  2285. static long kvm_vm_ioctl(struct file *filp,
  2286. unsigned int ioctl, unsigned long arg)
  2287. {
  2288. struct kvm *kvm = filp->private_data;
  2289. void __user *argp = (void __user *)arg;
  2290. int r = -EINVAL;
  2291. switch (ioctl) {
  2292. case KVM_CREATE_VCPU:
  2293. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2294. if (r < 0)
  2295. goto out;
  2296. break;
  2297. case KVM_SET_MEMORY_REGION: {
  2298. struct kvm_memory_region kvm_mem;
  2299. r = -EFAULT;
  2300. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2301. goto out;
  2302. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2303. if (r)
  2304. goto out;
  2305. break;
  2306. }
  2307. case KVM_GET_DIRTY_LOG: {
  2308. struct kvm_dirty_log log;
  2309. r = -EFAULT;
  2310. if (copy_from_user(&log, argp, sizeof log))
  2311. goto out;
  2312. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2313. if (r)
  2314. goto out;
  2315. break;
  2316. }
  2317. case KVM_SET_MEMORY_ALIAS: {
  2318. struct kvm_memory_alias alias;
  2319. r = -EFAULT;
  2320. if (copy_from_user(&alias, argp, sizeof alias))
  2321. goto out;
  2322. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2323. if (r)
  2324. goto out;
  2325. break;
  2326. }
  2327. default:
  2328. ;
  2329. }
  2330. out:
  2331. return r;
  2332. }
  2333. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2334. unsigned long address,
  2335. int *type)
  2336. {
  2337. struct kvm *kvm = vma->vm_file->private_data;
  2338. unsigned long pgoff;
  2339. struct page *page;
  2340. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2341. page = gfn_to_page(kvm, pgoff);
  2342. if (!page)
  2343. return NOPAGE_SIGBUS;
  2344. get_page(page);
  2345. if (type != NULL)
  2346. *type = VM_FAULT_MINOR;
  2347. return page;
  2348. }
  2349. static struct vm_operations_struct kvm_vm_vm_ops = {
  2350. .nopage = kvm_vm_nopage,
  2351. };
  2352. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2353. {
  2354. vma->vm_ops = &kvm_vm_vm_ops;
  2355. return 0;
  2356. }
  2357. static struct file_operations kvm_vm_fops = {
  2358. .release = kvm_vm_release,
  2359. .unlocked_ioctl = kvm_vm_ioctl,
  2360. .compat_ioctl = kvm_vm_ioctl,
  2361. .mmap = kvm_vm_mmap,
  2362. };
  2363. static int kvm_dev_ioctl_create_vm(void)
  2364. {
  2365. int fd, r;
  2366. struct inode *inode;
  2367. struct file *file;
  2368. struct kvm *kvm;
  2369. kvm = kvm_create_vm();
  2370. if (IS_ERR(kvm))
  2371. return PTR_ERR(kvm);
  2372. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2373. if (r) {
  2374. kvm_destroy_vm(kvm);
  2375. return r;
  2376. }
  2377. kvm->filp = file;
  2378. return fd;
  2379. }
  2380. static long kvm_dev_ioctl(struct file *filp,
  2381. unsigned int ioctl, unsigned long arg)
  2382. {
  2383. void __user *argp = (void __user *)arg;
  2384. long r = -EINVAL;
  2385. switch (ioctl) {
  2386. case KVM_GET_API_VERSION:
  2387. r = -EINVAL;
  2388. if (arg)
  2389. goto out;
  2390. r = KVM_API_VERSION;
  2391. break;
  2392. case KVM_CREATE_VM:
  2393. r = -EINVAL;
  2394. if (arg)
  2395. goto out;
  2396. r = kvm_dev_ioctl_create_vm();
  2397. break;
  2398. case KVM_GET_MSR_INDEX_LIST: {
  2399. struct kvm_msr_list __user *user_msr_list = argp;
  2400. struct kvm_msr_list msr_list;
  2401. unsigned n;
  2402. r = -EFAULT;
  2403. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2404. goto out;
  2405. n = msr_list.nmsrs;
  2406. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2407. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2408. goto out;
  2409. r = -E2BIG;
  2410. if (n < num_msrs_to_save)
  2411. goto out;
  2412. r = -EFAULT;
  2413. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2414. num_msrs_to_save * sizeof(u32)))
  2415. goto out;
  2416. if (copy_to_user(user_msr_list->indices
  2417. + num_msrs_to_save * sizeof(u32),
  2418. &emulated_msrs,
  2419. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2420. goto out;
  2421. r = 0;
  2422. break;
  2423. }
  2424. case KVM_CHECK_EXTENSION:
  2425. /*
  2426. * No extensions defined at present.
  2427. */
  2428. r = 0;
  2429. break;
  2430. case KVM_GET_VCPU_MMAP_SIZE:
  2431. r = -EINVAL;
  2432. if (arg)
  2433. goto out;
  2434. r = 2 * PAGE_SIZE;
  2435. break;
  2436. default:
  2437. ;
  2438. }
  2439. out:
  2440. return r;
  2441. }
  2442. static struct file_operations kvm_chardev_ops = {
  2443. .open = kvm_dev_open,
  2444. .release = kvm_dev_release,
  2445. .unlocked_ioctl = kvm_dev_ioctl,
  2446. .compat_ioctl = kvm_dev_ioctl,
  2447. };
  2448. static struct miscdevice kvm_dev = {
  2449. KVM_MINOR,
  2450. "kvm",
  2451. &kvm_chardev_ops,
  2452. };
  2453. /*
  2454. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2455. * cached on it.
  2456. */
  2457. static void decache_vcpus_on_cpu(int cpu)
  2458. {
  2459. struct kvm *vm;
  2460. struct kvm_vcpu *vcpu;
  2461. int i;
  2462. spin_lock(&kvm_lock);
  2463. list_for_each_entry(vm, &vm_list, vm_list)
  2464. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2465. vcpu = vm->vcpus[i];
  2466. if (!vcpu)
  2467. continue;
  2468. /*
  2469. * If the vcpu is locked, then it is running on some
  2470. * other cpu and therefore it is not cached on the
  2471. * cpu in question.
  2472. *
  2473. * If it's not locked, check the last cpu it executed
  2474. * on.
  2475. */
  2476. if (mutex_trylock(&vcpu->mutex)) {
  2477. if (vcpu->cpu == cpu) {
  2478. kvm_arch_ops->vcpu_decache(vcpu);
  2479. vcpu->cpu = -1;
  2480. }
  2481. mutex_unlock(&vcpu->mutex);
  2482. }
  2483. }
  2484. spin_unlock(&kvm_lock);
  2485. }
  2486. static void hardware_enable(void *junk)
  2487. {
  2488. int cpu = raw_smp_processor_id();
  2489. if (cpu_isset(cpu, cpus_hardware_enabled))
  2490. return;
  2491. cpu_set(cpu, cpus_hardware_enabled);
  2492. kvm_arch_ops->hardware_enable(NULL);
  2493. }
  2494. static void hardware_disable(void *junk)
  2495. {
  2496. int cpu = raw_smp_processor_id();
  2497. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2498. return;
  2499. cpu_clear(cpu, cpus_hardware_enabled);
  2500. decache_vcpus_on_cpu(cpu);
  2501. kvm_arch_ops->hardware_disable(NULL);
  2502. }
  2503. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2504. void *v)
  2505. {
  2506. int cpu = (long)v;
  2507. switch (val) {
  2508. case CPU_DYING:
  2509. case CPU_DYING_FROZEN:
  2510. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2511. cpu);
  2512. hardware_disable(NULL);
  2513. break;
  2514. case CPU_UP_CANCELED:
  2515. case CPU_UP_CANCELED_FROZEN:
  2516. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2517. cpu);
  2518. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2519. break;
  2520. case CPU_ONLINE:
  2521. case CPU_ONLINE_FROZEN:
  2522. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2523. cpu);
  2524. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2525. break;
  2526. }
  2527. return NOTIFY_OK;
  2528. }
  2529. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2530. void *v)
  2531. {
  2532. if (val == SYS_RESTART) {
  2533. /*
  2534. * Some (well, at least mine) BIOSes hang on reboot if
  2535. * in vmx root mode.
  2536. */
  2537. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2538. on_each_cpu(hardware_disable, NULL, 0, 1);
  2539. }
  2540. return NOTIFY_OK;
  2541. }
  2542. static struct notifier_block kvm_reboot_notifier = {
  2543. .notifier_call = kvm_reboot,
  2544. .priority = 0,
  2545. };
  2546. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2547. {
  2548. memset(bus, 0, sizeof(*bus));
  2549. }
  2550. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2551. {
  2552. int i;
  2553. for (i = 0; i < bus->dev_count; i++) {
  2554. struct kvm_io_device *pos = bus->devs[i];
  2555. kvm_iodevice_destructor(pos);
  2556. }
  2557. }
  2558. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2559. {
  2560. int i;
  2561. for (i = 0; i < bus->dev_count; i++) {
  2562. struct kvm_io_device *pos = bus->devs[i];
  2563. if (pos->in_range(pos, addr))
  2564. return pos;
  2565. }
  2566. return NULL;
  2567. }
  2568. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2569. {
  2570. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2571. bus->devs[bus->dev_count++] = dev;
  2572. }
  2573. static struct notifier_block kvm_cpu_notifier = {
  2574. .notifier_call = kvm_cpu_hotplug,
  2575. .priority = 20, /* must be > scheduler priority */
  2576. };
  2577. static u64 stat_get(void *_offset)
  2578. {
  2579. unsigned offset = (long)_offset;
  2580. u64 total = 0;
  2581. struct kvm *kvm;
  2582. struct kvm_vcpu *vcpu;
  2583. int i;
  2584. spin_lock(&kvm_lock);
  2585. list_for_each_entry(kvm, &vm_list, vm_list)
  2586. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2587. vcpu = kvm->vcpus[i];
  2588. if (vcpu)
  2589. total += *(u32 *)((void *)vcpu + offset);
  2590. }
  2591. spin_unlock(&kvm_lock);
  2592. return total;
  2593. }
  2594. static void stat_set(void *offset, u64 val)
  2595. {
  2596. }
  2597. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2598. static __init void kvm_init_debug(void)
  2599. {
  2600. struct kvm_stats_debugfs_item *p;
  2601. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2602. for (p = debugfs_entries; p->name; ++p)
  2603. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2604. (void *)(long)p->offset,
  2605. &stat_fops);
  2606. }
  2607. static void kvm_exit_debug(void)
  2608. {
  2609. struct kvm_stats_debugfs_item *p;
  2610. for (p = debugfs_entries; p->name; ++p)
  2611. debugfs_remove(p->dentry);
  2612. debugfs_remove(debugfs_dir);
  2613. }
  2614. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2615. {
  2616. hardware_disable(NULL);
  2617. return 0;
  2618. }
  2619. static int kvm_resume(struct sys_device *dev)
  2620. {
  2621. hardware_enable(NULL);
  2622. return 0;
  2623. }
  2624. static struct sysdev_class kvm_sysdev_class = {
  2625. set_kset_name("kvm"),
  2626. .suspend = kvm_suspend,
  2627. .resume = kvm_resume,
  2628. };
  2629. static struct sys_device kvm_sysdev = {
  2630. .id = 0,
  2631. .cls = &kvm_sysdev_class,
  2632. };
  2633. hpa_t bad_page_address;
  2634. static inline
  2635. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2636. {
  2637. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2638. }
  2639. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2640. {
  2641. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2642. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2643. }
  2644. static void kvm_sched_out(struct preempt_notifier *pn,
  2645. struct task_struct *next)
  2646. {
  2647. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2648. kvm_arch_ops->vcpu_put(vcpu);
  2649. }
  2650. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2651. {
  2652. int r;
  2653. if (kvm_arch_ops) {
  2654. printk(KERN_ERR "kvm: already loaded the other module\n");
  2655. return -EEXIST;
  2656. }
  2657. if (!ops->cpu_has_kvm_support()) {
  2658. printk(KERN_ERR "kvm: no hardware support\n");
  2659. return -EOPNOTSUPP;
  2660. }
  2661. if (ops->disabled_by_bios()) {
  2662. printk(KERN_ERR "kvm: disabled by bios\n");
  2663. return -EOPNOTSUPP;
  2664. }
  2665. kvm_arch_ops = ops;
  2666. r = kvm_arch_ops->hardware_setup();
  2667. if (r < 0)
  2668. goto out;
  2669. on_each_cpu(hardware_enable, NULL, 0, 1);
  2670. r = register_cpu_notifier(&kvm_cpu_notifier);
  2671. if (r)
  2672. goto out_free_1;
  2673. register_reboot_notifier(&kvm_reboot_notifier);
  2674. r = sysdev_class_register(&kvm_sysdev_class);
  2675. if (r)
  2676. goto out_free_2;
  2677. r = sysdev_register(&kvm_sysdev);
  2678. if (r)
  2679. goto out_free_3;
  2680. kvm_chardev_ops.owner = module;
  2681. r = misc_register(&kvm_dev);
  2682. if (r) {
  2683. printk (KERN_ERR "kvm: misc device register failed\n");
  2684. goto out_free;
  2685. }
  2686. kvm_preempt_ops.sched_in = kvm_sched_in;
  2687. kvm_preempt_ops.sched_out = kvm_sched_out;
  2688. return r;
  2689. out_free:
  2690. sysdev_unregister(&kvm_sysdev);
  2691. out_free_3:
  2692. sysdev_class_unregister(&kvm_sysdev_class);
  2693. out_free_2:
  2694. unregister_reboot_notifier(&kvm_reboot_notifier);
  2695. unregister_cpu_notifier(&kvm_cpu_notifier);
  2696. out_free_1:
  2697. on_each_cpu(hardware_disable, NULL, 0, 1);
  2698. kvm_arch_ops->hardware_unsetup();
  2699. out:
  2700. kvm_arch_ops = NULL;
  2701. return r;
  2702. }
  2703. void kvm_exit_arch(void)
  2704. {
  2705. misc_deregister(&kvm_dev);
  2706. sysdev_unregister(&kvm_sysdev);
  2707. sysdev_class_unregister(&kvm_sysdev_class);
  2708. unregister_reboot_notifier(&kvm_reboot_notifier);
  2709. unregister_cpu_notifier(&kvm_cpu_notifier);
  2710. on_each_cpu(hardware_disable, NULL, 0, 1);
  2711. kvm_arch_ops->hardware_unsetup();
  2712. kvm_arch_ops = NULL;
  2713. }
  2714. static __init int kvm_init(void)
  2715. {
  2716. static struct page *bad_page;
  2717. int r;
  2718. r = kvm_mmu_module_init();
  2719. if (r)
  2720. goto out4;
  2721. kvm_init_debug();
  2722. kvm_init_msr_list();
  2723. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2724. r = -ENOMEM;
  2725. goto out;
  2726. }
  2727. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2728. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2729. return 0;
  2730. out:
  2731. kvm_exit_debug();
  2732. kvm_mmu_module_exit();
  2733. out4:
  2734. return r;
  2735. }
  2736. static __exit void kvm_exit(void)
  2737. {
  2738. kvm_exit_debug();
  2739. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2740. kvm_mmu_module_exit();
  2741. }
  2742. module_init(kvm_init)
  2743. module_exit(kvm_exit)
  2744. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2745. EXPORT_SYMBOL_GPL(kvm_exit_arch);