btree.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531
  1. /*
  2. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3. *
  4. * Uses a block device as cache for other block devices; optimized for SSDs.
  5. * All allocation is done in buckets, which should match the erase block size
  6. * of the device.
  7. *
  8. * Buckets containing cached data are kept on a heap sorted by priority;
  9. * bucket priority is increased on cache hit, and periodically all the buckets
  10. * on the heap have their priority scaled down. This currently is just used as
  11. * an LRU but in the future should allow for more intelligent heuristics.
  12. *
  13. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  14. * counter. Garbage collection is used to remove stale pointers.
  15. *
  16. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  17. * as keys are inserted we only sort the pages that have not yet been written.
  18. * When garbage collection is run, we resort the entire node.
  19. *
  20. * All configuration is done via sysfs; see Documentation/bcache.txt.
  21. */
  22. #include "bcache.h"
  23. #include "btree.h"
  24. #include "debug.h"
  25. #include "request.h"
  26. #include "writeback.h"
  27. #include <linux/slab.h>
  28. #include <linux/bitops.h>
  29. #include <linux/hash.h>
  30. #include <linux/prefetch.h>
  31. #include <linux/random.h>
  32. #include <linux/rcupdate.h>
  33. #include <trace/events/bcache.h>
  34. /*
  35. * Todo:
  36. * register_bcache: Return errors out to userspace correctly
  37. *
  38. * Writeback: don't undirty key until after a cache flush
  39. *
  40. * Create an iterator for key pointers
  41. *
  42. * On btree write error, mark bucket such that it won't be freed from the cache
  43. *
  44. * Journalling:
  45. * Check for bad keys in replay
  46. * Propagate barriers
  47. * Refcount journal entries in journal_replay
  48. *
  49. * Garbage collection:
  50. * Finish incremental gc
  51. * Gc should free old UUIDs, data for invalid UUIDs
  52. *
  53. * Provide a way to list backing device UUIDs we have data cached for, and
  54. * probably how long it's been since we've seen them, and a way to invalidate
  55. * dirty data for devices that will never be attached again
  56. *
  57. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  58. * that based on that and how much dirty data we have we can keep writeback
  59. * from being starved
  60. *
  61. * Add a tracepoint or somesuch to watch for writeback starvation
  62. *
  63. * When btree depth > 1 and splitting an interior node, we have to make sure
  64. * alloc_bucket() cannot fail. This should be true but is not completely
  65. * obvious.
  66. *
  67. * Make sure all allocations get charged to the root cgroup
  68. *
  69. * Plugging?
  70. *
  71. * If data write is less than hard sector size of ssd, round up offset in open
  72. * bucket to the next whole sector
  73. *
  74. * Also lookup by cgroup in get_open_bucket()
  75. *
  76. * Superblock needs to be fleshed out for multiple cache devices
  77. *
  78. * Add a sysfs tunable for the number of writeback IOs in flight
  79. *
  80. * Add a sysfs tunable for the number of open data buckets
  81. *
  82. * IO tracking: Can we track when one process is doing io on behalf of another?
  83. * IO tracking: Don't use just an average, weigh more recent stuff higher
  84. *
  85. * Test module load/unload
  86. */
  87. static const char * const op_types[] = {
  88. "insert", "replace"
  89. };
  90. static const char *op_type(struct btree_op *op)
  91. {
  92. return op_types[op->type];
  93. }
  94. #define MAX_NEED_GC 64
  95. #define MAX_SAVE_PRIO 72
  96. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  97. #define PTR_HASH(c, k) \
  98. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  99. struct workqueue_struct *bch_gc_wq;
  100. static struct workqueue_struct *btree_io_wq;
  101. void bch_btree_op_init_stack(struct btree_op *op)
  102. {
  103. memset(op, 0, sizeof(struct btree_op));
  104. closure_init_stack(&op->cl);
  105. op->lock = -1;
  106. bch_keylist_init(&op->keys);
  107. }
  108. /* Btree key manipulation */
  109. void __bkey_put(struct cache_set *c, struct bkey *k)
  110. {
  111. unsigned i;
  112. for (i = 0; i < KEY_PTRS(k); i++)
  113. if (ptr_available(c, k, i))
  114. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  115. }
  116. static void bkey_put(struct cache_set *c, struct bkey *k, int level)
  117. {
  118. if ((level && KEY_OFFSET(k)) || !level)
  119. __bkey_put(c, k);
  120. }
  121. /* Btree IO */
  122. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  123. {
  124. uint64_t crc = b->key.ptr[0];
  125. void *data = (void *) i + 8, *end = end(i);
  126. crc = bch_crc64_update(crc, data, end - data);
  127. return crc ^ 0xffffffffffffffffULL;
  128. }
  129. static void bch_btree_node_read_done(struct btree *b)
  130. {
  131. const char *err = "bad btree header";
  132. struct bset *i = b->sets[0].data;
  133. struct btree_iter *iter;
  134. iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
  135. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  136. iter->used = 0;
  137. if (!i->seq)
  138. goto err;
  139. for (;
  140. b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
  141. i = write_block(b)) {
  142. err = "unsupported bset version";
  143. if (i->version > BCACHE_BSET_VERSION)
  144. goto err;
  145. err = "bad btree header";
  146. if (b->written + set_blocks(i, b->c) > btree_blocks(b))
  147. goto err;
  148. err = "bad magic";
  149. if (i->magic != bset_magic(b->c))
  150. goto err;
  151. err = "bad checksum";
  152. switch (i->version) {
  153. case 0:
  154. if (i->csum != csum_set(i))
  155. goto err;
  156. break;
  157. case BCACHE_BSET_VERSION:
  158. if (i->csum != btree_csum_set(b, i))
  159. goto err;
  160. break;
  161. }
  162. err = "empty set";
  163. if (i != b->sets[0].data && !i->keys)
  164. goto err;
  165. bch_btree_iter_push(iter, i->start, end(i));
  166. b->written += set_blocks(i, b->c);
  167. }
  168. err = "corrupted btree";
  169. for (i = write_block(b);
  170. index(i, b) < btree_blocks(b);
  171. i = ((void *) i) + block_bytes(b->c))
  172. if (i->seq == b->sets[0].data->seq)
  173. goto err;
  174. bch_btree_sort_and_fix_extents(b, iter);
  175. i = b->sets[0].data;
  176. err = "short btree key";
  177. if (b->sets[0].size &&
  178. bkey_cmp(&b->key, &b->sets[0].end) < 0)
  179. goto err;
  180. if (b->written < btree_blocks(b))
  181. bch_bset_init_next(b);
  182. out:
  183. mempool_free(iter, b->c->fill_iter);
  184. return;
  185. err:
  186. set_btree_node_io_error(b);
  187. bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
  188. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  189. index(i, b), i->keys);
  190. goto out;
  191. }
  192. static void btree_node_read_endio(struct bio *bio, int error)
  193. {
  194. struct closure *cl = bio->bi_private;
  195. closure_put(cl);
  196. }
  197. void bch_btree_node_read(struct btree *b)
  198. {
  199. uint64_t start_time = local_clock();
  200. struct closure cl;
  201. struct bio *bio;
  202. trace_bcache_btree_read(b);
  203. closure_init_stack(&cl);
  204. bio = bch_bbio_alloc(b->c);
  205. bio->bi_rw = REQ_META|READ_SYNC;
  206. bio->bi_size = KEY_SIZE(&b->key) << 9;
  207. bio->bi_end_io = btree_node_read_endio;
  208. bio->bi_private = &cl;
  209. bch_bio_map(bio, b->sets[0].data);
  210. bch_submit_bbio(bio, b->c, &b->key, 0);
  211. closure_sync(&cl);
  212. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  213. set_btree_node_io_error(b);
  214. bch_bbio_free(bio, b->c);
  215. if (btree_node_io_error(b))
  216. goto err;
  217. bch_btree_node_read_done(b);
  218. spin_lock(&b->c->btree_read_time_lock);
  219. bch_time_stats_update(&b->c->btree_read_time, start_time);
  220. spin_unlock(&b->c->btree_read_time_lock);
  221. return;
  222. err:
  223. bch_cache_set_error(b->c, "io error reading bucket %zu",
  224. PTR_BUCKET_NR(b->c, &b->key, 0));
  225. }
  226. static void btree_complete_write(struct btree *b, struct btree_write *w)
  227. {
  228. if (w->prio_blocked &&
  229. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  230. wake_up_allocators(b->c);
  231. if (w->journal) {
  232. atomic_dec_bug(w->journal);
  233. __closure_wake_up(&b->c->journal.wait);
  234. }
  235. w->prio_blocked = 0;
  236. w->journal = NULL;
  237. }
  238. static void __btree_node_write_done(struct closure *cl)
  239. {
  240. struct btree *b = container_of(cl, struct btree, io.cl);
  241. struct btree_write *w = btree_prev_write(b);
  242. bch_bbio_free(b->bio, b->c);
  243. b->bio = NULL;
  244. btree_complete_write(b, w);
  245. if (btree_node_dirty(b))
  246. queue_delayed_work(btree_io_wq, &b->work,
  247. msecs_to_jiffies(30000));
  248. closure_return(cl);
  249. }
  250. static void btree_node_write_done(struct closure *cl)
  251. {
  252. struct btree *b = container_of(cl, struct btree, io.cl);
  253. struct bio_vec *bv;
  254. int n;
  255. __bio_for_each_segment(bv, b->bio, n, 0)
  256. __free_page(bv->bv_page);
  257. __btree_node_write_done(cl);
  258. }
  259. static void btree_node_write_endio(struct bio *bio, int error)
  260. {
  261. struct closure *cl = bio->bi_private;
  262. struct btree *b = container_of(cl, struct btree, io.cl);
  263. if (error)
  264. set_btree_node_io_error(b);
  265. bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
  266. closure_put(cl);
  267. }
  268. static void do_btree_node_write(struct btree *b)
  269. {
  270. struct closure *cl = &b->io.cl;
  271. struct bset *i = b->sets[b->nsets].data;
  272. BKEY_PADDED(key) k;
  273. i->version = BCACHE_BSET_VERSION;
  274. i->csum = btree_csum_set(b, i);
  275. BUG_ON(b->bio);
  276. b->bio = bch_bbio_alloc(b->c);
  277. b->bio->bi_end_io = btree_node_write_endio;
  278. b->bio->bi_private = &b->io.cl;
  279. b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
  280. b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
  281. bch_bio_map(b->bio, i);
  282. /*
  283. * If we're appending to a leaf node, we don't technically need FUA -
  284. * this write just needs to be persisted before the next journal write,
  285. * which will be marked FLUSH|FUA.
  286. *
  287. * Similarly if we're writing a new btree root - the pointer is going to
  288. * be in the next journal entry.
  289. *
  290. * But if we're writing a new btree node (that isn't a root) or
  291. * appending to a non leaf btree node, we need either FUA or a flush
  292. * when we write the parent with the new pointer. FUA is cheaper than a
  293. * flush, and writes appending to leaf nodes aren't blocking anything so
  294. * just make all btree node writes FUA to keep things sane.
  295. */
  296. bkey_copy(&k.key, &b->key);
  297. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
  298. if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
  299. int j;
  300. struct bio_vec *bv;
  301. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  302. bio_for_each_segment(bv, b->bio, j)
  303. memcpy(page_address(bv->bv_page),
  304. base + j * PAGE_SIZE, PAGE_SIZE);
  305. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  306. continue_at(cl, btree_node_write_done, NULL);
  307. } else {
  308. b->bio->bi_vcnt = 0;
  309. bch_bio_map(b->bio, i);
  310. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  311. closure_sync(cl);
  312. __btree_node_write_done(cl);
  313. }
  314. }
  315. void bch_btree_node_write(struct btree *b, struct closure *parent)
  316. {
  317. struct bset *i = b->sets[b->nsets].data;
  318. trace_bcache_btree_write(b);
  319. BUG_ON(current->bio_list);
  320. BUG_ON(b->written >= btree_blocks(b));
  321. BUG_ON(b->written && !i->keys);
  322. BUG_ON(b->sets->data->seq != i->seq);
  323. bch_check_key_order(b, i);
  324. cancel_delayed_work(&b->work);
  325. /* If caller isn't waiting for write, parent refcount is cache set */
  326. closure_lock(&b->io, parent ?: &b->c->cl);
  327. clear_bit(BTREE_NODE_dirty, &b->flags);
  328. change_bit(BTREE_NODE_write_idx, &b->flags);
  329. do_btree_node_write(b);
  330. b->written += set_blocks(i, b->c);
  331. atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
  332. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  333. bch_btree_sort_lazy(b);
  334. if (b->written < btree_blocks(b))
  335. bch_bset_init_next(b);
  336. }
  337. static void btree_node_write_work(struct work_struct *w)
  338. {
  339. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  340. rw_lock(true, b, b->level);
  341. if (btree_node_dirty(b))
  342. bch_btree_node_write(b, NULL);
  343. rw_unlock(true, b);
  344. }
  345. static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op)
  346. {
  347. struct bset *i = b->sets[b->nsets].data;
  348. struct btree_write *w = btree_current_write(b);
  349. BUG_ON(!b->written);
  350. BUG_ON(!i->keys);
  351. if (!btree_node_dirty(b))
  352. queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
  353. set_btree_node_dirty(b);
  354. if (op && op->journal) {
  355. if (w->journal &&
  356. journal_pin_cmp(b->c, w, op)) {
  357. atomic_dec_bug(w->journal);
  358. w->journal = NULL;
  359. }
  360. if (!w->journal) {
  361. w->journal = op->journal;
  362. atomic_inc(w->journal);
  363. }
  364. }
  365. /* Force write if set is too big */
  366. if (set_bytes(i) > PAGE_SIZE - 48 &&
  367. !current->bio_list)
  368. bch_btree_node_write(b, NULL);
  369. }
  370. /*
  371. * Btree in memory cache - allocation/freeing
  372. * mca -> memory cache
  373. */
  374. static void mca_reinit(struct btree *b)
  375. {
  376. unsigned i;
  377. b->flags = 0;
  378. b->written = 0;
  379. b->nsets = 0;
  380. for (i = 0; i < MAX_BSETS; i++)
  381. b->sets[i].size = 0;
  382. /*
  383. * Second loop starts at 1 because b->sets[0]->data is the memory we
  384. * allocated
  385. */
  386. for (i = 1; i < MAX_BSETS; i++)
  387. b->sets[i].data = NULL;
  388. }
  389. #define mca_reserve(c) (((c->root && c->root->level) \
  390. ? c->root->level : 1) * 8 + 16)
  391. #define mca_can_free(c) \
  392. max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
  393. static void mca_data_free(struct btree *b)
  394. {
  395. struct bset_tree *t = b->sets;
  396. BUG_ON(!closure_is_unlocked(&b->io.cl));
  397. if (bset_prev_bytes(b) < PAGE_SIZE)
  398. kfree(t->prev);
  399. else
  400. free_pages((unsigned long) t->prev,
  401. get_order(bset_prev_bytes(b)));
  402. if (bset_tree_bytes(b) < PAGE_SIZE)
  403. kfree(t->tree);
  404. else
  405. free_pages((unsigned long) t->tree,
  406. get_order(bset_tree_bytes(b)));
  407. free_pages((unsigned long) t->data, b->page_order);
  408. t->prev = NULL;
  409. t->tree = NULL;
  410. t->data = NULL;
  411. list_move(&b->list, &b->c->btree_cache_freed);
  412. b->c->bucket_cache_used--;
  413. }
  414. static void mca_bucket_free(struct btree *b)
  415. {
  416. BUG_ON(btree_node_dirty(b));
  417. b->key.ptr[0] = 0;
  418. hlist_del_init_rcu(&b->hash);
  419. list_move(&b->list, &b->c->btree_cache_freeable);
  420. }
  421. static unsigned btree_order(struct bkey *k)
  422. {
  423. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  424. }
  425. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  426. {
  427. struct bset_tree *t = b->sets;
  428. BUG_ON(t->data);
  429. b->page_order = max_t(unsigned,
  430. ilog2(b->c->btree_pages),
  431. btree_order(k));
  432. t->data = (void *) __get_free_pages(gfp, b->page_order);
  433. if (!t->data)
  434. goto err;
  435. t->tree = bset_tree_bytes(b) < PAGE_SIZE
  436. ? kmalloc(bset_tree_bytes(b), gfp)
  437. : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
  438. if (!t->tree)
  439. goto err;
  440. t->prev = bset_prev_bytes(b) < PAGE_SIZE
  441. ? kmalloc(bset_prev_bytes(b), gfp)
  442. : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
  443. if (!t->prev)
  444. goto err;
  445. list_move(&b->list, &b->c->btree_cache);
  446. b->c->bucket_cache_used++;
  447. return;
  448. err:
  449. mca_data_free(b);
  450. }
  451. static struct btree *mca_bucket_alloc(struct cache_set *c,
  452. struct bkey *k, gfp_t gfp)
  453. {
  454. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  455. if (!b)
  456. return NULL;
  457. init_rwsem(&b->lock);
  458. lockdep_set_novalidate_class(&b->lock);
  459. INIT_LIST_HEAD(&b->list);
  460. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  461. b->c = c;
  462. closure_init_unlocked(&b->io);
  463. mca_data_alloc(b, k, gfp);
  464. return b;
  465. }
  466. static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order)
  467. {
  468. lockdep_assert_held(&b->c->bucket_lock);
  469. if (!down_write_trylock(&b->lock))
  470. return -ENOMEM;
  471. if (b->page_order < min_order) {
  472. rw_unlock(true, b);
  473. return -ENOMEM;
  474. }
  475. BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
  476. if (cl && btree_node_dirty(b))
  477. bch_btree_node_write(b, NULL);
  478. if (cl)
  479. closure_wait_event_async(&b->io.wait, cl,
  480. atomic_read(&b->io.cl.remaining) == -1);
  481. if (btree_node_dirty(b) ||
  482. !closure_is_unlocked(&b->io.cl) ||
  483. work_pending(&b->work.work)) {
  484. rw_unlock(true, b);
  485. return -EAGAIN;
  486. }
  487. return 0;
  488. }
  489. static unsigned long bch_mca_scan(struct shrinker *shrink,
  490. struct shrink_control *sc)
  491. {
  492. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  493. struct btree *b, *t;
  494. unsigned long i, nr = sc->nr_to_scan;
  495. unsigned long freed = 0;
  496. if (c->shrinker_disabled)
  497. return SHRINK_STOP;
  498. if (c->try_harder)
  499. return SHRINK_STOP;
  500. /* Return -1 if we can't do anything right now */
  501. if (sc->gfp_mask & __GFP_IO)
  502. mutex_lock(&c->bucket_lock);
  503. else if (!mutex_trylock(&c->bucket_lock))
  504. return -1;
  505. /*
  506. * It's _really_ critical that we don't free too many btree nodes - we
  507. * have to always leave ourselves a reserve. The reserve is how we
  508. * guarantee that allocating memory for a new btree node can always
  509. * succeed, so that inserting keys into the btree can always succeed and
  510. * IO can always make forward progress:
  511. */
  512. nr /= c->btree_pages;
  513. nr = min_t(unsigned long, nr, mca_can_free(c));
  514. i = 0;
  515. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  516. if (freed >= nr)
  517. break;
  518. if (++i > 3 &&
  519. !mca_reap(b, NULL, 0)) {
  520. mca_data_free(b);
  521. rw_unlock(true, b);
  522. freed++;
  523. }
  524. }
  525. /*
  526. * Can happen right when we first start up, before we've read in any
  527. * btree nodes
  528. */
  529. if (list_empty(&c->btree_cache))
  530. goto out;
  531. for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
  532. b = list_first_entry(&c->btree_cache, struct btree, list);
  533. list_rotate_left(&c->btree_cache);
  534. if (!b->accessed &&
  535. !mca_reap(b, NULL, 0)) {
  536. mca_bucket_free(b);
  537. mca_data_free(b);
  538. rw_unlock(true, b);
  539. freed++;
  540. } else
  541. b->accessed = 0;
  542. }
  543. out:
  544. mutex_unlock(&c->bucket_lock);
  545. return freed;
  546. }
  547. static unsigned long bch_mca_count(struct shrinker *shrink,
  548. struct shrink_control *sc)
  549. {
  550. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  551. if (c->shrinker_disabled)
  552. return 0;
  553. if (c->try_harder)
  554. return 0;
  555. return mca_can_free(c) * c->btree_pages;
  556. }
  557. void bch_btree_cache_free(struct cache_set *c)
  558. {
  559. struct btree *b;
  560. struct closure cl;
  561. closure_init_stack(&cl);
  562. if (c->shrink.list.next)
  563. unregister_shrinker(&c->shrink);
  564. mutex_lock(&c->bucket_lock);
  565. #ifdef CONFIG_BCACHE_DEBUG
  566. if (c->verify_data)
  567. list_move(&c->verify_data->list, &c->btree_cache);
  568. #endif
  569. list_splice(&c->btree_cache_freeable,
  570. &c->btree_cache);
  571. while (!list_empty(&c->btree_cache)) {
  572. b = list_first_entry(&c->btree_cache, struct btree, list);
  573. if (btree_node_dirty(b))
  574. btree_complete_write(b, btree_current_write(b));
  575. clear_bit(BTREE_NODE_dirty, &b->flags);
  576. mca_data_free(b);
  577. }
  578. while (!list_empty(&c->btree_cache_freed)) {
  579. b = list_first_entry(&c->btree_cache_freed,
  580. struct btree, list);
  581. list_del(&b->list);
  582. cancel_delayed_work_sync(&b->work);
  583. kfree(b);
  584. }
  585. mutex_unlock(&c->bucket_lock);
  586. }
  587. int bch_btree_cache_alloc(struct cache_set *c)
  588. {
  589. unsigned i;
  590. /* XXX: doesn't check for errors */
  591. closure_init_unlocked(&c->gc);
  592. for (i = 0; i < mca_reserve(c); i++)
  593. mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  594. list_splice_init(&c->btree_cache,
  595. &c->btree_cache_freeable);
  596. #ifdef CONFIG_BCACHE_DEBUG
  597. mutex_init(&c->verify_lock);
  598. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  599. if (c->verify_data &&
  600. c->verify_data->sets[0].data)
  601. list_del_init(&c->verify_data->list);
  602. else
  603. c->verify_data = NULL;
  604. #endif
  605. c->shrink.count_objects = bch_mca_count;
  606. c->shrink.scan_objects = bch_mca_scan;
  607. c->shrink.seeks = 4;
  608. c->shrink.batch = c->btree_pages * 2;
  609. register_shrinker(&c->shrink);
  610. return 0;
  611. }
  612. /* Btree in memory cache - hash table */
  613. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  614. {
  615. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  616. }
  617. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  618. {
  619. struct btree *b;
  620. rcu_read_lock();
  621. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  622. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  623. goto out;
  624. b = NULL;
  625. out:
  626. rcu_read_unlock();
  627. return b;
  628. }
  629. static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k,
  630. int level, struct closure *cl)
  631. {
  632. int ret = -ENOMEM;
  633. struct btree *i;
  634. trace_bcache_btree_cache_cannibalize(c);
  635. if (!cl)
  636. return ERR_PTR(-ENOMEM);
  637. /*
  638. * Trying to free up some memory - i.e. reuse some btree nodes - may
  639. * require initiating IO to flush the dirty part of the node. If we're
  640. * running under generic_make_request(), that IO will never finish and
  641. * we would deadlock. Returning -EAGAIN causes the cache lookup code to
  642. * punt to workqueue and retry.
  643. */
  644. if (current->bio_list)
  645. return ERR_PTR(-EAGAIN);
  646. if (c->try_harder && c->try_harder != cl) {
  647. closure_wait_event_async(&c->try_wait, cl, !c->try_harder);
  648. return ERR_PTR(-EAGAIN);
  649. }
  650. c->try_harder = cl;
  651. c->try_harder_start = local_clock();
  652. retry:
  653. list_for_each_entry_reverse(i, &c->btree_cache, list) {
  654. int r = mca_reap(i, cl, btree_order(k));
  655. if (!r)
  656. return i;
  657. if (r != -ENOMEM)
  658. ret = r;
  659. }
  660. if (ret == -EAGAIN &&
  661. closure_blocking(cl)) {
  662. mutex_unlock(&c->bucket_lock);
  663. closure_sync(cl);
  664. mutex_lock(&c->bucket_lock);
  665. goto retry;
  666. }
  667. return ERR_PTR(ret);
  668. }
  669. /*
  670. * We can only have one thread cannibalizing other cached btree nodes at a time,
  671. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  672. * cannibalize_bucket() will take. This means every time we unlock the root of
  673. * the btree, we need to release this lock if we have it held.
  674. */
  675. void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl)
  676. {
  677. if (c->try_harder == cl) {
  678. bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
  679. c->try_harder = NULL;
  680. __closure_wake_up(&c->try_wait);
  681. }
  682. }
  683. static struct btree *mca_alloc(struct cache_set *c, struct bkey *k,
  684. int level, struct closure *cl)
  685. {
  686. struct btree *b;
  687. lockdep_assert_held(&c->bucket_lock);
  688. if (mca_find(c, k))
  689. return NULL;
  690. /* btree_free() doesn't free memory; it sticks the node on the end of
  691. * the list. Check if there's any freed nodes there:
  692. */
  693. list_for_each_entry(b, &c->btree_cache_freeable, list)
  694. if (!mca_reap(b, NULL, btree_order(k)))
  695. goto out;
  696. /* We never free struct btree itself, just the memory that holds the on
  697. * disk node. Check the freed list before allocating a new one:
  698. */
  699. list_for_each_entry(b, &c->btree_cache_freed, list)
  700. if (!mca_reap(b, NULL, 0)) {
  701. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  702. if (!b->sets[0].data)
  703. goto err;
  704. else
  705. goto out;
  706. }
  707. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  708. if (!b)
  709. goto err;
  710. BUG_ON(!down_write_trylock(&b->lock));
  711. if (!b->sets->data)
  712. goto err;
  713. out:
  714. BUG_ON(!closure_is_unlocked(&b->io.cl));
  715. bkey_copy(&b->key, k);
  716. list_move(&b->list, &c->btree_cache);
  717. hlist_del_init_rcu(&b->hash);
  718. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  719. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  720. b->level = level;
  721. b->parent = (void *) ~0UL;
  722. mca_reinit(b);
  723. return b;
  724. err:
  725. if (b)
  726. rw_unlock(true, b);
  727. b = mca_cannibalize(c, k, level, cl);
  728. if (!IS_ERR(b))
  729. goto out;
  730. return b;
  731. }
  732. /**
  733. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  734. * in from disk if necessary.
  735. *
  736. * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
  737. * if that closure is in non blocking mode, will return -EAGAIN.
  738. *
  739. * The btree node will have either a read or a write lock held, depending on
  740. * level and op->lock.
  741. */
  742. struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
  743. int level, struct btree_op *op)
  744. {
  745. int i = 0;
  746. bool write = level <= op->lock;
  747. struct btree *b;
  748. BUG_ON(level < 0);
  749. retry:
  750. b = mca_find(c, k);
  751. if (!b) {
  752. if (current->bio_list)
  753. return ERR_PTR(-EAGAIN);
  754. mutex_lock(&c->bucket_lock);
  755. b = mca_alloc(c, k, level, &op->cl);
  756. mutex_unlock(&c->bucket_lock);
  757. if (!b)
  758. goto retry;
  759. if (IS_ERR(b))
  760. return b;
  761. bch_btree_node_read(b);
  762. if (!write)
  763. downgrade_write(&b->lock);
  764. } else {
  765. rw_lock(write, b, level);
  766. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  767. rw_unlock(write, b);
  768. goto retry;
  769. }
  770. BUG_ON(b->level != level);
  771. }
  772. b->accessed = 1;
  773. for (; i <= b->nsets && b->sets[i].size; i++) {
  774. prefetch(b->sets[i].tree);
  775. prefetch(b->sets[i].data);
  776. }
  777. for (; i <= b->nsets; i++)
  778. prefetch(b->sets[i].data);
  779. if (btree_node_io_error(b)) {
  780. rw_unlock(write, b);
  781. return ERR_PTR(-EIO);
  782. }
  783. BUG_ON(!b->written);
  784. return b;
  785. }
  786. static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
  787. {
  788. struct btree *b;
  789. mutex_lock(&c->bucket_lock);
  790. b = mca_alloc(c, k, level, NULL);
  791. mutex_unlock(&c->bucket_lock);
  792. if (!IS_ERR_OR_NULL(b)) {
  793. bch_btree_node_read(b);
  794. rw_unlock(true, b);
  795. }
  796. }
  797. /* Btree alloc */
  798. static void btree_node_free(struct btree *b, struct btree_op *op)
  799. {
  800. unsigned i;
  801. trace_bcache_btree_node_free(b);
  802. /*
  803. * The BUG_ON() in btree_node_get() implies that we must have a write
  804. * lock on parent to free or even invalidate a node
  805. */
  806. BUG_ON(op->lock <= b->level);
  807. BUG_ON(b == b->c->root);
  808. if (btree_node_dirty(b))
  809. btree_complete_write(b, btree_current_write(b));
  810. clear_bit(BTREE_NODE_dirty, &b->flags);
  811. cancel_delayed_work(&b->work);
  812. mutex_lock(&b->c->bucket_lock);
  813. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  814. BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
  815. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  816. PTR_BUCKET(b->c, &b->key, i));
  817. }
  818. bch_bucket_free(b->c, &b->key);
  819. mca_bucket_free(b);
  820. mutex_unlock(&b->c->bucket_lock);
  821. }
  822. struct btree *bch_btree_node_alloc(struct cache_set *c, int level,
  823. struct closure *cl)
  824. {
  825. BKEY_PADDED(key) k;
  826. struct btree *b = ERR_PTR(-EAGAIN);
  827. mutex_lock(&c->bucket_lock);
  828. retry:
  829. if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl))
  830. goto err;
  831. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  832. b = mca_alloc(c, &k.key, level, cl);
  833. if (IS_ERR(b))
  834. goto err_free;
  835. if (!b) {
  836. cache_bug(c,
  837. "Tried to allocate bucket that was in btree cache");
  838. __bkey_put(c, &k.key);
  839. goto retry;
  840. }
  841. b->accessed = 1;
  842. bch_bset_init_next(b);
  843. mutex_unlock(&c->bucket_lock);
  844. trace_bcache_btree_node_alloc(b);
  845. return b;
  846. err_free:
  847. bch_bucket_free(c, &k.key);
  848. __bkey_put(c, &k.key);
  849. err:
  850. mutex_unlock(&c->bucket_lock);
  851. trace_bcache_btree_node_alloc_fail(b);
  852. return b;
  853. }
  854. static struct btree *btree_node_alloc_replacement(struct btree *b,
  855. struct closure *cl)
  856. {
  857. struct btree *n = bch_btree_node_alloc(b->c, b->level, cl);
  858. if (!IS_ERR_OR_NULL(n))
  859. bch_btree_sort_into(b, n);
  860. return n;
  861. }
  862. /* Garbage collection */
  863. uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
  864. {
  865. uint8_t stale = 0;
  866. unsigned i;
  867. struct bucket *g;
  868. /*
  869. * ptr_invalid() can't return true for the keys that mark btree nodes as
  870. * freed, but since ptr_bad() returns true we'll never actually use them
  871. * for anything and thus we don't want mark their pointers here
  872. */
  873. if (!bkey_cmp(k, &ZERO_KEY))
  874. return stale;
  875. for (i = 0; i < KEY_PTRS(k); i++) {
  876. if (!ptr_available(c, k, i))
  877. continue;
  878. g = PTR_BUCKET(c, k, i);
  879. if (gen_after(g->gc_gen, PTR_GEN(k, i)))
  880. g->gc_gen = PTR_GEN(k, i);
  881. if (ptr_stale(c, k, i)) {
  882. stale = max(stale, ptr_stale(c, k, i));
  883. continue;
  884. }
  885. cache_bug_on(GC_MARK(g) &&
  886. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  887. c, "inconsistent ptrs: mark = %llu, level = %i",
  888. GC_MARK(g), level);
  889. if (level)
  890. SET_GC_MARK(g, GC_MARK_METADATA);
  891. else if (KEY_DIRTY(k))
  892. SET_GC_MARK(g, GC_MARK_DIRTY);
  893. /* guard against overflow */
  894. SET_GC_SECTORS_USED(g, min_t(unsigned,
  895. GC_SECTORS_USED(g) + KEY_SIZE(k),
  896. (1 << 14) - 1));
  897. BUG_ON(!GC_SECTORS_USED(g));
  898. }
  899. return stale;
  900. }
  901. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  902. static int btree_gc_mark_node(struct btree *b, unsigned *keys,
  903. struct gc_stat *gc)
  904. {
  905. uint8_t stale = 0;
  906. unsigned last_dev = -1;
  907. struct bcache_device *d = NULL;
  908. struct bkey *k;
  909. struct btree_iter iter;
  910. struct bset_tree *t;
  911. gc->nodes++;
  912. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  913. if (last_dev != KEY_INODE(k)) {
  914. last_dev = KEY_INODE(k);
  915. d = KEY_INODE(k) < b->c->nr_uuids
  916. ? b->c->devices[last_dev]
  917. : NULL;
  918. }
  919. stale = max(stale, btree_mark_key(b, k));
  920. if (bch_ptr_bad(b, k))
  921. continue;
  922. *keys += bkey_u64s(k);
  923. gc->key_bytes += bkey_u64s(k);
  924. gc->nkeys++;
  925. gc->data += KEY_SIZE(k);
  926. if (KEY_DIRTY(k))
  927. gc->dirty += KEY_SIZE(k);
  928. }
  929. for (t = b->sets; t <= &b->sets[b->nsets]; t++)
  930. btree_bug_on(t->size &&
  931. bset_written(b, t) &&
  932. bkey_cmp(&b->key, &t->end) < 0,
  933. b, "found short btree key in gc");
  934. return stale;
  935. }
  936. static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k,
  937. struct btree_op *op)
  938. {
  939. /*
  940. * We block priorities from being written for the duration of garbage
  941. * collection, so we can't sleep in btree_alloc() ->
  942. * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
  943. * our closure.
  944. */
  945. struct btree *n = btree_node_alloc_replacement(b, NULL);
  946. if (!IS_ERR_OR_NULL(n)) {
  947. swap(b, n);
  948. __bkey_put(b->c, &b->key);
  949. memcpy(k->ptr, b->key.ptr,
  950. sizeof(uint64_t) * KEY_PTRS(&b->key));
  951. btree_node_free(n, op);
  952. up_write(&n->lock);
  953. }
  954. return b;
  955. }
  956. /*
  957. * Leaving this at 2 until we've got incremental garbage collection done; it
  958. * could be higher (and has been tested with 4) except that garbage collection
  959. * could take much longer, adversely affecting latency.
  960. */
  961. #define GC_MERGE_NODES 2U
  962. struct gc_merge_info {
  963. struct btree *b;
  964. struct bkey *k;
  965. unsigned keys;
  966. };
  967. static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
  968. struct gc_stat *gc, struct gc_merge_info *r)
  969. {
  970. unsigned nodes = 0, keys = 0, blocks;
  971. int i;
  972. while (nodes < GC_MERGE_NODES && r[nodes].b)
  973. keys += r[nodes++].keys;
  974. blocks = btree_default_blocks(b->c) * 2 / 3;
  975. if (nodes < 2 ||
  976. __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
  977. return;
  978. for (i = nodes - 1; i >= 0; --i) {
  979. if (r[i].b->written)
  980. r[i].b = btree_gc_alloc(r[i].b, r[i].k, op);
  981. if (r[i].b->written)
  982. return;
  983. }
  984. for (i = nodes - 1; i > 0; --i) {
  985. struct bset *n1 = r[i].b->sets->data;
  986. struct bset *n2 = r[i - 1].b->sets->data;
  987. struct bkey *k, *last = NULL;
  988. keys = 0;
  989. if (i == 1) {
  990. /*
  991. * Last node we're not getting rid of - we're getting
  992. * rid of the node at r[0]. Have to try and fit all of
  993. * the remaining keys into this node; we can't ensure
  994. * they will always fit due to rounding and variable
  995. * length keys (shouldn't be possible in practice,
  996. * though)
  997. */
  998. if (__set_blocks(n1, n1->keys + r->keys,
  999. b->c) > btree_blocks(r[i].b))
  1000. return;
  1001. keys = n2->keys;
  1002. last = &r->b->key;
  1003. } else
  1004. for (k = n2->start;
  1005. k < end(n2);
  1006. k = bkey_next(k)) {
  1007. if (__set_blocks(n1, n1->keys + keys +
  1008. bkey_u64s(k), b->c) > blocks)
  1009. break;
  1010. last = k;
  1011. keys += bkey_u64s(k);
  1012. }
  1013. BUG_ON(__set_blocks(n1, n1->keys + keys,
  1014. b->c) > btree_blocks(r[i].b));
  1015. if (last) {
  1016. bkey_copy_key(&r[i].b->key, last);
  1017. bkey_copy_key(r[i].k, last);
  1018. }
  1019. memcpy(end(n1),
  1020. n2->start,
  1021. (void *) node(n2, keys) - (void *) n2->start);
  1022. n1->keys += keys;
  1023. memmove(n2->start,
  1024. node(n2, keys),
  1025. (void *) end(n2) - (void *) node(n2, keys));
  1026. n2->keys -= keys;
  1027. r[i].keys = n1->keys;
  1028. r[i - 1].keys = n2->keys;
  1029. }
  1030. btree_node_free(r->b, op);
  1031. up_write(&r->b->lock);
  1032. trace_bcache_btree_gc_coalesce(nodes);
  1033. gc->nodes--;
  1034. nodes--;
  1035. memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
  1036. memset(&r[nodes], 0, sizeof(struct gc_merge_info));
  1037. }
  1038. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1039. struct closure *writes, struct gc_stat *gc)
  1040. {
  1041. void write(struct btree *r)
  1042. {
  1043. if (!r->written)
  1044. bch_btree_node_write(r, &op->cl);
  1045. else if (btree_node_dirty(r))
  1046. bch_btree_node_write(r, writes);
  1047. up_write(&r->lock);
  1048. }
  1049. int ret = 0, stale;
  1050. unsigned i;
  1051. struct gc_merge_info r[GC_MERGE_NODES];
  1052. memset(r, 0, sizeof(r));
  1053. while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
  1054. r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op);
  1055. if (IS_ERR(r->b)) {
  1056. ret = PTR_ERR(r->b);
  1057. break;
  1058. }
  1059. r->keys = 0;
  1060. stale = btree_gc_mark_node(r->b, &r->keys, gc);
  1061. if (!b->written &&
  1062. (r->b->level || stale > 10 ||
  1063. b->c->gc_always_rewrite))
  1064. r->b = btree_gc_alloc(r->b, r->k, op);
  1065. if (r->b->level)
  1066. ret = btree_gc_recurse(r->b, op, writes, gc);
  1067. if (ret) {
  1068. write(r->b);
  1069. break;
  1070. }
  1071. bkey_copy_key(&b->c->gc_done, r->k);
  1072. if (!b->written)
  1073. btree_gc_coalesce(b, op, gc, r);
  1074. if (r[GC_MERGE_NODES - 1].b)
  1075. write(r[GC_MERGE_NODES - 1].b);
  1076. memmove(&r[1], &r[0],
  1077. sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
  1078. /* When we've got incremental GC working, we'll want to do
  1079. * if (should_resched())
  1080. * return -EAGAIN;
  1081. */
  1082. cond_resched();
  1083. #if 0
  1084. if (need_resched()) {
  1085. ret = -EAGAIN;
  1086. break;
  1087. }
  1088. #endif
  1089. }
  1090. for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
  1091. write(r[i].b);
  1092. /* Might have freed some children, must remove their keys */
  1093. if (!b->written)
  1094. bch_btree_sort(b);
  1095. return ret;
  1096. }
  1097. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1098. struct closure *writes, struct gc_stat *gc)
  1099. {
  1100. struct btree *n = NULL;
  1101. unsigned keys = 0;
  1102. int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
  1103. if (b->level || stale > 10)
  1104. n = btree_node_alloc_replacement(b, NULL);
  1105. if (!IS_ERR_OR_NULL(n))
  1106. swap(b, n);
  1107. if (b->level)
  1108. ret = btree_gc_recurse(b, op, writes, gc);
  1109. if (!b->written || btree_node_dirty(b)) {
  1110. bch_btree_node_write(b, n ? &op->cl : NULL);
  1111. }
  1112. if (!IS_ERR_OR_NULL(n)) {
  1113. closure_sync(&op->cl);
  1114. bch_btree_set_root(b);
  1115. btree_node_free(n, op);
  1116. rw_unlock(true, b);
  1117. }
  1118. return ret;
  1119. }
  1120. static void btree_gc_start(struct cache_set *c)
  1121. {
  1122. struct cache *ca;
  1123. struct bucket *b;
  1124. unsigned i;
  1125. if (!c->gc_mark_valid)
  1126. return;
  1127. mutex_lock(&c->bucket_lock);
  1128. c->gc_mark_valid = 0;
  1129. c->gc_done = ZERO_KEY;
  1130. for_each_cache(ca, c, i)
  1131. for_each_bucket(b, ca) {
  1132. b->gc_gen = b->gen;
  1133. if (!atomic_read(&b->pin)) {
  1134. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  1135. SET_GC_SECTORS_USED(b, 0);
  1136. }
  1137. }
  1138. mutex_unlock(&c->bucket_lock);
  1139. }
  1140. size_t bch_btree_gc_finish(struct cache_set *c)
  1141. {
  1142. size_t available = 0;
  1143. struct bucket *b;
  1144. struct cache *ca;
  1145. unsigned i;
  1146. mutex_lock(&c->bucket_lock);
  1147. set_gc_sectors(c);
  1148. c->gc_mark_valid = 1;
  1149. c->need_gc = 0;
  1150. if (c->root)
  1151. for (i = 0; i < KEY_PTRS(&c->root->key); i++)
  1152. SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
  1153. GC_MARK_METADATA);
  1154. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1155. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1156. GC_MARK_METADATA);
  1157. for_each_cache(ca, c, i) {
  1158. uint64_t *i;
  1159. ca->invalidate_needs_gc = 0;
  1160. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1161. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1162. for (i = ca->prio_buckets;
  1163. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1164. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1165. for_each_bucket(b, ca) {
  1166. b->last_gc = b->gc_gen;
  1167. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1168. if (!atomic_read(&b->pin) &&
  1169. GC_MARK(b) == GC_MARK_RECLAIMABLE) {
  1170. available++;
  1171. if (!GC_SECTORS_USED(b))
  1172. bch_bucket_add_unused(ca, b);
  1173. }
  1174. }
  1175. }
  1176. mutex_unlock(&c->bucket_lock);
  1177. return available;
  1178. }
  1179. static void bch_btree_gc(struct closure *cl)
  1180. {
  1181. struct cache_set *c = container_of(cl, struct cache_set, gc.cl);
  1182. int ret;
  1183. unsigned long available;
  1184. struct gc_stat stats;
  1185. struct closure writes;
  1186. struct btree_op op;
  1187. uint64_t start_time = local_clock();
  1188. trace_bcache_gc_start(c);
  1189. memset(&stats, 0, sizeof(struct gc_stat));
  1190. closure_init_stack(&writes);
  1191. bch_btree_op_init_stack(&op);
  1192. op.lock = SHRT_MAX;
  1193. btree_gc_start(c);
  1194. atomic_inc(&c->prio_blocked);
  1195. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1196. closure_sync(&op.cl);
  1197. closure_sync(&writes);
  1198. if (ret) {
  1199. pr_warn("gc failed!");
  1200. continue_at(cl, bch_btree_gc, bch_gc_wq);
  1201. }
  1202. /* Possibly wait for new UUIDs or whatever to hit disk */
  1203. bch_journal_meta(c, &op.cl);
  1204. closure_sync(&op.cl);
  1205. available = bch_btree_gc_finish(c);
  1206. atomic_dec(&c->prio_blocked);
  1207. wake_up_allocators(c);
  1208. bch_time_stats_update(&c->btree_gc_time, start_time);
  1209. stats.key_bytes *= sizeof(uint64_t);
  1210. stats.dirty <<= 9;
  1211. stats.data <<= 9;
  1212. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1213. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1214. trace_bcache_gc_end(c);
  1215. continue_at(cl, bch_moving_gc, bch_gc_wq);
  1216. }
  1217. void bch_queue_gc(struct cache_set *c)
  1218. {
  1219. closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl);
  1220. }
  1221. /* Initial partial gc */
  1222. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
  1223. unsigned long **seen)
  1224. {
  1225. int ret;
  1226. unsigned i;
  1227. struct bkey *k;
  1228. struct bucket *g;
  1229. struct btree_iter iter;
  1230. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  1231. for (i = 0; i < KEY_PTRS(k); i++) {
  1232. if (!ptr_available(b->c, k, i))
  1233. continue;
  1234. g = PTR_BUCKET(b->c, k, i);
  1235. if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
  1236. seen[PTR_DEV(k, i)]) ||
  1237. !ptr_stale(b->c, k, i)) {
  1238. g->gen = PTR_GEN(k, i);
  1239. if (b->level)
  1240. g->prio = BTREE_PRIO;
  1241. else if (g->prio == BTREE_PRIO)
  1242. g->prio = INITIAL_PRIO;
  1243. }
  1244. }
  1245. btree_mark_key(b, k);
  1246. }
  1247. if (b->level) {
  1248. k = bch_next_recurse_key(b, &ZERO_KEY);
  1249. while (k) {
  1250. struct bkey *p = bch_next_recurse_key(b, k);
  1251. if (p)
  1252. btree_node_prefetch(b->c, p, b->level - 1);
  1253. ret = btree(check_recurse, k, b, op, seen);
  1254. if (ret)
  1255. return ret;
  1256. k = p;
  1257. }
  1258. }
  1259. return 0;
  1260. }
  1261. int bch_btree_check(struct cache_set *c, struct btree_op *op)
  1262. {
  1263. int ret = -ENOMEM;
  1264. unsigned i;
  1265. unsigned long *seen[MAX_CACHES_PER_SET];
  1266. memset(seen, 0, sizeof(seen));
  1267. for (i = 0; c->cache[i]; i++) {
  1268. size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
  1269. seen[i] = kmalloc(n, GFP_KERNEL);
  1270. if (!seen[i])
  1271. goto err;
  1272. /* Disables the seen array until prio_read() uses it too */
  1273. memset(seen[i], 0xFF, n);
  1274. }
  1275. ret = btree_root(check_recurse, c, op, seen);
  1276. err:
  1277. for (i = 0; i < MAX_CACHES_PER_SET; i++)
  1278. kfree(seen[i]);
  1279. return ret;
  1280. }
  1281. /* Btree insertion */
  1282. static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
  1283. {
  1284. struct bset *i = b->sets[b->nsets].data;
  1285. memmove((uint64_t *) where + bkey_u64s(insert),
  1286. where,
  1287. (void *) end(i) - (void *) where);
  1288. i->keys += bkey_u64s(insert);
  1289. bkey_copy(where, insert);
  1290. bch_bset_fix_lookup_table(b, where);
  1291. }
  1292. static bool fix_overlapping_extents(struct btree *b,
  1293. struct bkey *insert,
  1294. struct btree_iter *iter,
  1295. struct btree_op *op)
  1296. {
  1297. void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
  1298. {
  1299. if (KEY_DIRTY(k))
  1300. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1301. offset, -sectors);
  1302. }
  1303. uint64_t old_offset;
  1304. unsigned old_size, sectors_found = 0;
  1305. while (1) {
  1306. struct bkey *k = bch_btree_iter_next(iter);
  1307. if (!k ||
  1308. bkey_cmp(&START_KEY(k), insert) >= 0)
  1309. break;
  1310. if (bkey_cmp(k, &START_KEY(insert)) <= 0)
  1311. continue;
  1312. old_offset = KEY_START(k);
  1313. old_size = KEY_SIZE(k);
  1314. /*
  1315. * We might overlap with 0 size extents; we can't skip these
  1316. * because if they're in the set we're inserting to we have to
  1317. * adjust them so they don't overlap with the key we're
  1318. * inserting. But we don't want to check them for BTREE_REPLACE
  1319. * operations.
  1320. */
  1321. if (op->type == BTREE_REPLACE &&
  1322. KEY_SIZE(k)) {
  1323. /*
  1324. * k might have been split since we inserted/found the
  1325. * key we're replacing
  1326. */
  1327. unsigned i;
  1328. uint64_t offset = KEY_START(k) -
  1329. KEY_START(&op->replace);
  1330. /* But it must be a subset of the replace key */
  1331. if (KEY_START(k) < KEY_START(&op->replace) ||
  1332. KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
  1333. goto check_failed;
  1334. /* We didn't find a key that we were supposed to */
  1335. if (KEY_START(k) > KEY_START(insert) + sectors_found)
  1336. goto check_failed;
  1337. if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
  1338. goto check_failed;
  1339. /* skip past gen */
  1340. offset <<= 8;
  1341. BUG_ON(!KEY_PTRS(&op->replace));
  1342. for (i = 0; i < KEY_PTRS(&op->replace); i++)
  1343. if (k->ptr[i] != op->replace.ptr[i] + offset)
  1344. goto check_failed;
  1345. sectors_found = KEY_OFFSET(k) - KEY_START(insert);
  1346. }
  1347. if (bkey_cmp(insert, k) < 0 &&
  1348. bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
  1349. /*
  1350. * We overlapped in the middle of an existing key: that
  1351. * means we have to split the old key. But we have to do
  1352. * slightly different things depending on whether the
  1353. * old key has been written out yet.
  1354. */
  1355. struct bkey *top;
  1356. subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
  1357. if (bkey_written(b, k)) {
  1358. /*
  1359. * We insert a new key to cover the top of the
  1360. * old key, and the old key is modified in place
  1361. * to represent the bottom split.
  1362. *
  1363. * It's completely arbitrary whether the new key
  1364. * is the top or the bottom, but it has to match
  1365. * up with what btree_sort_fixup() does - it
  1366. * doesn't check for this kind of overlap, it
  1367. * depends on us inserting a new key for the top
  1368. * here.
  1369. */
  1370. top = bch_bset_search(b, &b->sets[b->nsets],
  1371. insert);
  1372. shift_keys(b, top, k);
  1373. } else {
  1374. BKEY_PADDED(key) temp;
  1375. bkey_copy(&temp.key, k);
  1376. shift_keys(b, k, &temp.key);
  1377. top = bkey_next(k);
  1378. }
  1379. bch_cut_front(insert, top);
  1380. bch_cut_back(&START_KEY(insert), k);
  1381. bch_bset_fix_invalidated_key(b, k);
  1382. return false;
  1383. }
  1384. if (bkey_cmp(insert, k) < 0) {
  1385. bch_cut_front(insert, k);
  1386. } else {
  1387. if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
  1388. old_offset = KEY_START(insert);
  1389. if (bkey_written(b, k) &&
  1390. bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
  1391. /*
  1392. * Completely overwrote, so we don't have to
  1393. * invalidate the binary search tree
  1394. */
  1395. bch_cut_front(k, k);
  1396. } else {
  1397. __bch_cut_back(&START_KEY(insert), k);
  1398. bch_bset_fix_invalidated_key(b, k);
  1399. }
  1400. }
  1401. subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
  1402. }
  1403. check_failed:
  1404. if (op->type == BTREE_REPLACE) {
  1405. if (!sectors_found) {
  1406. op->insert_collision = true;
  1407. return true;
  1408. } else if (sectors_found < KEY_SIZE(insert)) {
  1409. SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
  1410. (KEY_SIZE(insert) - sectors_found));
  1411. SET_KEY_SIZE(insert, sectors_found);
  1412. }
  1413. }
  1414. return false;
  1415. }
  1416. static bool btree_insert_key(struct btree *b, struct btree_op *op,
  1417. struct bkey *k)
  1418. {
  1419. struct bset *i = b->sets[b->nsets].data;
  1420. struct bkey *m, *prev;
  1421. unsigned status = BTREE_INSERT_STATUS_INSERT;
  1422. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1423. BUG_ON(b->level && !KEY_PTRS(k));
  1424. BUG_ON(!b->level && !KEY_OFFSET(k));
  1425. if (!b->level) {
  1426. struct btree_iter iter;
  1427. struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
  1428. /*
  1429. * bset_search() returns the first key that is strictly greater
  1430. * than the search key - but for back merging, we want to find
  1431. * the first key that is greater than or equal to KEY_START(k) -
  1432. * unless KEY_START(k) is 0.
  1433. */
  1434. if (KEY_OFFSET(&search))
  1435. SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
  1436. prev = NULL;
  1437. m = bch_btree_iter_init(b, &iter, &search);
  1438. if (fix_overlapping_extents(b, k, &iter, op))
  1439. return false;
  1440. if (KEY_DIRTY(k))
  1441. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1442. KEY_START(k), KEY_SIZE(k));
  1443. while (m != end(i) &&
  1444. bkey_cmp(k, &START_KEY(m)) > 0)
  1445. prev = m, m = bkey_next(m);
  1446. if (key_merging_disabled(b->c))
  1447. goto insert;
  1448. /* prev is in the tree, if we merge we're done */
  1449. status = BTREE_INSERT_STATUS_BACK_MERGE;
  1450. if (prev &&
  1451. bch_bkey_try_merge(b, prev, k))
  1452. goto merged;
  1453. status = BTREE_INSERT_STATUS_OVERWROTE;
  1454. if (m != end(i) &&
  1455. KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
  1456. goto copy;
  1457. status = BTREE_INSERT_STATUS_FRONT_MERGE;
  1458. if (m != end(i) &&
  1459. bch_bkey_try_merge(b, k, m))
  1460. goto copy;
  1461. } else
  1462. m = bch_bset_search(b, &b->sets[b->nsets], k);
  1463. insert: shift_keys(b, m, k);
  1464. copy: bkey_copy(m, k);
  1465. merged:
  1466. bch_check_keys(b, "%u for %s", status, op_type(op));
  1467. if (b->level && !KEY_OFFSET(k))
  1468. btree_current_write(b)->prio_blocked++;
  1469. trace_bcache_btree_insert_key(b, k, op->type, status);
  1470. return true;
  1471. }
  1472. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1473. struct keylist *insert_keys)
  1474. {
  1475. bool ret = false;
  1476. unsigned oldsize = bch_count_data(b);
  1477. while (!bch_keylist_empty(insert_keys)) {
  1478. struct bset *i = write_block(b);
  1479. struct bkey *k = insert_keys->bottom;
  1480. if (b->written + __set_blocks(i, i->keys + bkey_u64s(k), b->c)
  1481. > btree_blocks(b))
  1482. break;
  1483. if (bkey_cmp(k, &b->key) <= 0) {
  1484. bkey_put(b->c, k, b->level);
  1485. ret |= btree_insert_key(b, op, k);
  1486. bch_keylist_pop_front(insert_keys);
  1487. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1488. #if 0
  1489. if (op->type == BTREE_REPLACE) {
  1490. bkey_put(b->c, k, b->level);
  1491. bch_keylist_pop_front(insert_keys);
  1492. op->insert_collision = true;
  1493. break;
  1494. }
  1495. #endif
  1496. BKEY_PADDED(key) temp;
  1497. bkey_copy(&temp.key, insert_keys->bottom);
  1498. bch_cut_back(&b->key, &temp.key);
  1499. bch_cut_front(&b->key, insert_keys->bottom);
  1500. ret |= btree_insert_key(b, op, &temp.key);
  1501. break;
  1502. } else {
  1503. break;
  1504. }
  1505. }
  1506. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1507. BUG_ON(bch_count_data(b) < oldsize);
  1508. return ret;
  1509. }
  1510. static int btree_split(struct btree *b, struct btree_op *op,
  1511. struct keylist *insert_keys,
  1512. struct keylist *parent_keys)
  1513. {
  1514. bool split;
  1515. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1516. uint64_t start_time = local_clock();
  1517. if (b->level)
  1518. set_closure_blocking(&op->cl);
  1519. n1 = btree_node_alloc_replacement(b, &op->cl);
  1520. if (IS_ERR(n1))
  1521. goto err;
  1522. split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
  1523. if (split) {
  1524. unsigned keys = 0;
  1525. trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
  1526. n2 = bch_btree_node_alloc(b->c, b->level, &op->cl);
  1527. if (IS_ERR(n2))
  1528. goto err_free1;
  1529. if (!b->parent) {
  1530. n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl);
  1531. if (IS_ERR(n3))
  1532. goto err_free2;
  1533. }
  1534. bch_btree_insert_keys(n1, op, insert_keys);
  1535. /*
  1536. * Has to be a linear search because we don't have an auxiliary
  1537. * search tree yet
  1538. */
  1539. while (keys < (n1->sets[0].data->keys * 3) / 5)
  1540. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1541. bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
  1542. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1543. n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
  1544. n1->sets[0].data->keys = keys;
  1545. memcpy(n2->sets[0].data->start,
  1546. end(n1->sets[0].data),
  1547. n2->sets[0].data->keys * sizeof(uint64_t));
  1548. bkey_copy_key(&n2->key, &b->key);
  1549. bch_keylist_add(parent_keys, &n2->key);
  1550. bch_btree_node_write(n2, &op->cl);
  1551. rw_unlock(true, n2);
  1552. } else {
  1553. trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
  1554. bch_btree_insert_keys(n1, op, insert_keys);
  1555. }
  1556. bch_keylist_add(parent_keys, &n1->key);
  1557. bch_btree_node_write(n1, &op->cl);
  1558. if (n3) {
  1559. /* Depth increases, make a new root */
  1560. bkey_copy_key(&n3->key, &MAX_KEY);
  1561. bch_btree_insert_keys(n3, op, parent_keys);
  1562. bch_btree_node_write(n3, &op->cl);
  1563. closure_sync(&op->cl);
  1564. bch_btree_set_root(n3);
  1565. rw_unlock(true, n3);
  1566. } else if (!b->parent) {
  1567. /* Root filled up but didn't need to be split */
  1568. parent_keys->top = parent_keys->bottom;
  1569. closure_sync(&op->cl);
  1570. bch_btree_set_root(n1);
  1571. } else {
  1572. unsigned i;
  1573. bkey_copy(parent_keys->top, &b->key);
  1574. bkey_copy_key(parent_keys->top, &ZERO_KEY);
  1575. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  1576. uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
  1577. SET_PTR_GEN(parent_keys->top, i, g);
  1578. }
  1579. bch_keylist_push(parent_keys);
  1580. closure_sync(&op->cl);
  1581. atomic_inc(&b->c->prio_blocked);
  1582. }
  1583. rw_unlock(true, n1);
  1584. btree_node_free(b, op);
  1585. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1586. return 0;
  1587. err_free2:
  1588. __bkey_put(n2->c, &n2->key);
  1589. btree_node_free(n2, op);
  1590. rw_unlock(true, n2);
  1591. err_free1:
  1592. __bkey_put(n1->c, &n1->key);
  1593. btree_node_free(n1, op);
  1594. rw_unlock(true, n1);
  1595. err:
  1596. if (n3 == ERR_PTR(-EAGAIN) ||
  1597. n2 == ERR_PTR(-EAGAIN) ||
  1598. n1 == ERR_PTR(-EAGAIN))
  1599. return -EAGAIN;
  1600. pr_warn("couldn't split");
  1601. return -ENOMEM;
  1602. }
  1603. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1604. struct keylist *insert_keys)
  1605. {
  1606. int ret = 0;
  1607. struct keylist split_keys;
  1608. bch_keylist_init(&split_keys);
  1609. BUG_ON(b->level);
  1610. do {
  1611. if (should_split(b)) {
  1612. if (current->bio_list) {
  1613. op->lock = b->c->root->level + 1;
  1614. ret = -EAGAIN;
  1615. } else if (op->lock <= b->c->root->level) {
  1616. op->lock = b->c->root->level + 1;
  1617. ret = -EINTR;
  1618. } else {
  1619. struct btree *parent = b->parent;
  1620. ret = btree_split(b, op, insert_keys,
  1621. &split_keys);
  1622. insert_keys = &split_keys;
  1623. b = parent;
  1624. if (!ret)
  1625. ret = -EINTR;
  1626. }
  1627. } else {
  1628. BUG_ON(write_block(b) != b->sets[b->nsets].data);
  1629. if (bch_btree_insert_keys(b, op, insert_keys)) {
  1630. if (!b->level)
  1631. bch_btree_leaf_dirty(b, op);
  1632. else
  1633. bch_btree_node_write(b, &op->cl);
  1634. }
  1635. }
  1636. } while (!bch_keylist_empty(&split_keys));
  1637. return ret;
  1638. }
  1639. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1640. struct bkey *check_key)
  1641. {
  1642. int ret = -EINTR;
  1643. uint64_t btree_ptr = b->key.ptr[0];
  1644. unsigned long seq = b->seq;
  1645. struct keylist insert;
  1646. bool upgrade = op->lock == -1;
  1647. bch_keylist_init(&insert);
  1648. if (upgrade) {
  1649. rw_unlock(false, b);
  1650. rw_lock(true, b, b->level);
  1651. if (b->key.ptr[0] != btree_ptr ||
  1652. b->seq != seq + 1)
  1653. goto out;
  1654. }
  1655. SET_KEY_PTRS(check_key, 1);
  1656. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1657. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1658. bch_keylist_add(&insert, check_key);
  1659. BUG_ON(op->type != BTREE_INSERT);
  1660. ret = bch_btree_insert_node(b, op, &insert);
  1661. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1662. out:
  1663. if (upgrade)
  1664. downgrade_write(&b->lock);
  1665. return ret;
  1666. }
  1667. static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op)
  1668. {
  1669. if (bch_keylist_empty(&op->keys))
  1670. return 0;
  1671. if (b->level) {
  1672. struct bkey *insert = op->keys.bottom;
  1673. struct bkey *k = bch_next_recurse_key(b, &START_KEY(insert));
  1674. if (!k) {
  1675. btree_bug(b, "no key to recurse on at level %i/%i",
  1676. b->level, b->c->root->level);
  1677. op->keys.top = op->keys.bottom;
  1678. return -EIO;
  1679. }
  1680. return btree(insert_recurse, k, b, op);
  1681. } else {
  1682. return bch_btree_insert_node(b, op, &op->keys);
  1683. }
  1684. }
  1685. int bch_btree_insert(struct btree_op *op, struct cache_set *c)
  1686. {
  1687. int ret = 0;
  1688. /*
  1689. * Don't want to block with the btree locked unless we have to,
  1690. * otherwise we get deadlocks with try_harder and between split/gc
  1691. */
  1692. clear_closure_blocking(&op->cl);
  1693. BUG_ON(bch_keylist_empty(&op->keys));
  1694. while (!bch_keylist_empty(&op->keys)) {
  1695. op->lock = 0;
  1696. ret = btree_root(insert_recurse, c, op);
  1697. if (ret == -EAGAIN) {
  1698. ret = 0;
  1699. closure_sync(&op->cl);
  1700. } else if (ret) {
  1701. struct bkey *k;
  1702. pr_err("error %i trying to insert key for %s",
  1703. ret, op_type(op));
  1704. while ((k = bch_keylist_pop(&op->keys)))
  1705. bkey_put(c, k, 0);
  1706. }
  1707. }
  1708. if (op->journal)
  1709. atomic_dec_bug(op->journal);
  1710. op->journal = NULL;
  1711. return ret;
  1712. }
  1713. void bch_btree_set_root(struct btree *b)
  1714. {
  1715. unsigned i;
  1716. struct closure cl;
  1717. closure_init_stack(&cl);
  1718. trace_bcache_btree_set_root(b);
  1719. BUG_ON(!b->written);
  1720. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1721. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1722. mutex_lock(&b->c->bucket_lock);
  1723. list_del_init(&b->list);
  1724. mutex_unlock(&b->c->bucket_lock);
  1725. b->c->root = b;
  1726. __bkey_put(b->c, &b->key);
  1727. bch_journal_meta(b->c, &cl);
  1728. closure_sync(&cl);
  1729. }
  1730. /* Cache lookup */
  1731. static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
  1732. struct bkey *k)
  1733. {
  1734. struct search *s = container_of(op, struct search, op);
  1735. struct bio *bio = &s->bio.bio;
  1736. int ret = 0;
  1737. while (!ret &&
  1738. !op->lookup_done) {
  1739. unsigned sectors = INT_MAX;
  1740. if (KEY_INODE(k) == op->inode) {
  1741. if (KEY_START(k) <= bio->bi_sector)
  1742. break;
  1743. sectors = min_t(uint64_t, sectors,
  1744. KEY_START(k) - bio->bi_sector);
  1745. }
  1746. ret = s->d->cache_miss(b, s, bio, sectors);
  1747. }
  1748. return ret;
  1749. }
  1750. /*
  1751. * Read from a single key, handling the initial cache miss if the key starts in
  1752. * the middle of the bio
  1753. */
  1754. static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
  1755. struct bkey *k)
  1756. {
  1757. struct search *s = container_of(op, struct search, op);
  1758. struct bio *bio = &s->bio.bio;
  1759. unsigned ptr;
  1760. struct bio *n;
  1761. int ret = submit_partial_cache_miss(b, op, k);
  1762. if (ret || op->lookup_done)
  1763. return ret;
  1764. /* XXX: figure out best pointer - for multiple cache devices */
  1765. ptr = 0;
  1766. PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
  1767. while (!op->lookup_done &&
  1768. KEY_INODE(k) == op->inode &&
  1769. bio->bi_sector < KEY_OFFSET(k)) {
  1770. struct bkey *bio_key;
  1771. sector_t sector = PTR_OFFSET(k, ptr) +
  1772. (bio->bi_sector - KEY_START(k));
  1773. unsigned sectors = min_t(uint64_t, INT_MAX,
  1774. KEY_OFFSET(k) - bio->bi_sector);
  1775. n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  1776. if (n == bio)
  1777. op->lookup_done = true;
  1778. bio_key = &container_of(n, struct bbio, bio)->key;
  1779. /*
  1780. * The bucket we're reading from might be reused while our bio
  1781. * is in flight, and we could then end up reading the wrong
  1782. * data.
  1783. *
  1784. * We guard against this by checking (in cache_read_endio()) if
  1785. * the pointer is stale again; if so, we treat it as an error
  1786. * and reread from the backing device (but we don't pass that
  1787. * error up anywhere).
  1788. */
  1789. bch_bkey_copy_single_ptr(bio_key, k, ptr);
  1790. SET_PTR_OFFSET(bio_key, 0, sector);
  1791. n->bi_end_io = bch_cache_read_endio;
  1792. n->bi_private = &s->cl;
  1793. __bch_submit_bbio(n, b->c);
  1794. }
  1795. return 0;
  1796. }
  1797. int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
  1798. {
  1799. struct search *s = container_of(op, struct search, op);
  1800. struct bio *bio = &s->bio.bio;
  1801. int ret = 0;
  1802. struct bkey *k;
  1803. struct btree_iter iter;
  1804. bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
  1805. do {
  1806. k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
  1807. if (!k) {
  1808. /*
  1809. * b->key would be exactly what we want, except that
  1810. * pointers to btree nodes have nonzero size - we
  1811. * wouldn't go far enough
  1812. */
  1813. ret = submit_partial_cache_miss(b, op,
  1814. &KEY(KEY_INODE(&b->key),
  1815. KEY_OFFSET(&b->key), 0));
  1816. break;
  1817. }
  1818. ret = b->level
  1819. ? btree(search_recurse, k, b, op)
  1820. : submit_partial_cache_hit(b, op, k);
  1821. } while (!ret &&
  1822. !op->lookup_done);
  1823. return ret;
  1824. }
  1825. /* Keybuf code */
  1826. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1827. {
  1828. /* Overlapping keys compare equal */
  1829. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1830. return -1;
  1831. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1832. return 1;
  1833. return 0;
  1834. }
  1835. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1836. struct keybuf_key *r)
  1837. {
  1838. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1839. }
  1840. static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
  1841. struct keybuf *buf, struct bkey *end,
  1842. keybuf_pred_fn *pred)
  1843. {
  1844. struct btree_iter iter;
  1845. bch_btree_iter_init(b, &iter, &buf->last_scanned);
  1846. while (!array_freelist_empty(&buf->freelist)) {
  1847. struct bkey *k = bch_btree_iter_next_filter(&iter, b,
  1848. bch_ptr_bad);
  1849. if (!b->level) {
  1850. if (!k) {
  1851. buf->last_scanned = b->key;
  1852. break;
  1853. }
  1854. buf->last_scanned = *k;
  1855. if (bkey_cmp(&buf->last_scanned, end) >= 0)
  1856. break;
  1857. if (pred(buf, k)) {
  1858. struct keybuf_key *w;
  1859. spin_lock(&buf->lock);
  1860. w = array_alloc(&buf->freelist);
  1861. w->private = NULL;
  1862. bkey_copy(&w->key, k);
  1863. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1864. array_free(&buf->freelist, w);
  1865. spin_unlock(&buf->lock);
  1866. }
  1867. } else {
  1868. if (!k)
  1869. break;
  1870. btree(refill_keybuf, k, b, op, buf, end, pred);
  1871. /*
  1872. * Might get an error here, but can't really do anything
  1873. * and it'll get logged elsewhere. Just read what we
  1874. * can.
  1875. */
  1876. if (bkey_cmp(&buf->last_scanned, end) >= 0)
  1877. break;
  1878. cond_resched();
  1879. }
  1880. }
  1881. return 0;
  1882. }
  1883. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1884. struct bkey *end, keybuf_pred_fn *pred)
  1885. {
  1886. struct bkey start = buf->last_scanned;
  1887. struct btree_op op;
  1888. bch_btree_op_init_stack(&op);
  1889. cond_resched();
  1890. btree_root(refill_keybuf, c, &op, buf, end, pred);
  1891. closure_sync(&op.cl);
  1892. pr_debug("found %s keys from %llu:%llu to %llu:%llu",
  1893. RB_EMPTY_ROOT(&buf->keys) ? "no" :
  1894. array_freelist_empty(&buf->freelist) ? "some" : "a few",
  1895. KEY_INODE(&start), KEY_OFFSET(&start),
  1896. KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
  1897. spin_lock(&buf->lock);
  1898. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1899. struct keybuf_key *w;
  1900. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1901. buf->start = START_KEY(&w->key);
  1902. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1903. buf->end = w->key;
  1904. } else {
  1905. buf->start = MAX_KEY;
  1906. buf->end = MAX_KEY;
  1907. }
  1908. spin_unlock(&buf->lock);
  1909. }
  1910. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1911. {
  1912. rb_erase(&w->node, &buf->keys);
  1913. array_free(&buf->freelist, w);
  1914. }
  1915. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1916. {
  1917. spin_lock(&buf->lock);
  1918. __bch_keybuf_del(buf, w);
  1919. spin_unlock(&buf->lock);
  1920. }
  1921. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1922. struct bkey *end)
  1923. {
  1924. bool ret = false;
  1925. struct keybuf_key *p, *w, s;
  1926. s.key = *start;
  1927. if (bkey_cmp(end, &buf->start) <= 0 ||
  1928. bkey_cmp(start, &buf->end) >= 0)
  1929. return false;
  1930. spin_lock(&buf->lock);
  1931. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1932. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1933. p = w;
  1934. w = RB_NEXT(w, node);
  1935. if (p->private)
  1936. ret = true;
  1937. else
  1938. __bch_keybuf_del(buf, p);
  1939. }
  1940. spin_unlock(&buf->lock);
  1941. return ret;
  1942. }
  1943. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1944. {
  1945. struct keybuf_key *w;
  1946. spin_lock(&buf->lock);
  1947. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1948. while (w && w->private)
  1949. w = RB_NEXT(w, node);
  1950. if (w)
  1951. w->private = ERR_PTR(-EINTR);
  1952. spin_unlock(&buf->lock);
  1953. return w;
  1954. }
  1955. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1956. struct keybuf *buf,
  1957. struct bkey *end,
  1958. keybuf_pred_fn *pred)
  1959. {
  1960. struct keybuf_key *ret;
  1961. while (1) {
  1962. ret = bch_keybuf_next(buf);
  1963. if (ret)
  1964. break;
  1965. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  1966. pr_debug("scan finished");
  1967. break;
  1968. }
  1969. bch_refill_keybuf(c, buf, end, pred);
  1970. }
  1971. return ret;
  1972. }
  1973. void bch_keybuf_init(struct keybuf *buf)
  1974. {
  1975. buf->last_scanned = MAX_KEY;
  1976. buf->keys = RB_ROOT;
  1977. spin_lock_init(&buf->lock);
  1978. array_allocator_init(&buf->freelist);
  1979. }
  1980. void bch_btree_exit(void)
  1981. {
  1982. if (btree_io_wq)
  1983. destroy_workqueue(btree_io_wq);
  1984. if (bch_gc_wq)
  1985. destroy_workqueue(bch_gc_wq);
  1986. }
  1987. int __init bch_btree_init(void)
  1988. {
  1989. if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) ||
  1990. !(btree_io_wq = create_singlethread_workqueue("bch_btree_io")))
  1991. return -ENOMEM;
  1992. return 0;
  1993. }