common.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149
  1. #include <linux/init.h>
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/string.h>
  5. #include <linux/bootmem.h>
  6. #include <linux/bitops.h>
  7. #include <linux/module.h>
  8. #include <linux/kgdb.h>
  9. #include <linux/topology.h>
  10. #include <linux/delay.h>
  11. #include <linux/smp.h>
  12. #include <linux/percpu.h>
  13. #include <asm/i387.h>
  14. #include <asm/msr.h>
  15. #include <asm/io.h>
  16. #include <asm/linkage.h>
  17. #include <asm/mmu_context.h>
  18. #include <asm/mtrr.h>
  19. #include <asm/mce.h>
  20. #include <asm/pat.h>
  21. #include <asm/asm.h>
  22. #include <asm/numa.h>
  23. #include <asm/smp.h>
  24. #include <asm/cpu.h>
  25. #include <asm/cpumask.h>
  26. #ifdef CONFIG_X86_LOCAL_APIC
  27. #include <asm/mpspec.h>
  28. #include <asm/apic.h>
  29. #include <mach_apic.h>
  30. #include <asm/genapic.h>
  31. #endif
  32. #include <asm/pda.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/processor.h>
  35. #include <asm/desc.h>
  36. #include <asm/atomic.h>
  37. #include <asm/proto.h>
  38. #include <asm/sections.h>
  39. #include <asm/setup.h>
  40. #include <asm/hypervisor.h>
  41. #include "cpu.h"
  42. #ifdef CONFIG_X86_64
  43. /* all of these masks are initialized in setup_cpu_local_masks() */
  44. cpumask_var_t cpu_callin_mask;
  45. cpumask_var_t cpu_callout_mask;
  46. cpumask_var_t cpu_initialized_mask;
  47. /* representing cpus for which sibling maps can be computed */
  48. cpumask_var_t cpu_sibling_setup_mask;
  49. #else /* CONFIG_X86_32 */
  50. cpumask_t cpu_callin_map;
  51. cpumask_t cpu_callout_map;
  52. cpumask_t cpu_initialized;
  53. cpumask_t cpu_sibling_setup_map;
  54. #endif /* CONFIG_X86_32 */
  55. static struct cpu_dev *this_cpu __cpuinitdata;
  56. #ifdef CONFIG_X86_64
  57. /* We need valid kernel segments for data and code in long mode too
  58. * IRET will check the segment types kkeil 2000/10/28
  59. * Also sysret mandates a special GDT layout
  60. */
  61. /* The TLS descriptors are currently at a different place compared to i386.
  62. Hopefully nobody expects them at a fixed place (Wine?) */
  63. DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
  64. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  65. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  66. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  67. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  68. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  69. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  70. } };
  71. #else
  72. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  73. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  74. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  75. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  76. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  77. /*
  78. * Segments used for calling PnP BIOS have byte granularity.
  79. * They code segments and data segments have fixed 64k limits,
  80. * the transfer segment sizes are set at run time.
  81. */
  82. /* 32-bit code */
  83. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  84. /* 16-bit code */
  85. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  86. /* 16-bit data */
  87. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  88. /* 16-bit data */
  89. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  90. /* 16-bit data */
  91. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  92. /*
  93. * The APM segments have byte granularity and their bases
  94. * are set at run time. All have 64k limits.
  95. */
  96. /* 32-bit code */
  97. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  98. /* 16-bit code */
  99. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  100. /* data */
  101. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  102. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  103. [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
  104. } };
  105. #endif
  106. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  107. #ifdef CONFIG_X86_32
  108. static int cachesize_override __cpuinitdata = -1;
  109. static int disable_x86_serial_nr __cpuinitdata = 1;
  110. static int __init cachesize_setup(char *str)
  111. {
  112. get_option(&str, &cachesize_override);
  113. return 1;
  114. }
  115. __setup("cachesize=", cachesize_setup);
  116. static int __init x86_fxsr_setup(char *s)
  117. {
  118. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  119. setup_clear_cpu_cap(X86_FEATURE_XMM);
  120. return 1;
  121. }
  122. __setup("nofxsr", x86_fxsr_setup);
  123. static int __init x86_sep_setup(char *s)
  124. {
  125. setup_clear_cpu_cap(X86_FEATURE_SEP);
  126. return 1;
  127. }
  128. __setup("nosep", x86_sep_setup);
  129. /* Standard macro to see if a specific flag is changeable */
  130. static inline int flag_is_changeable_p(u32 flag)
  131. {
  132. u32 f1, f2;
  133. /*
  134. * Cyrix and IDT cpus allow disabling of CPUID
  135. * so the code below may return different results
  136. * when it is executed before and after enabling
  137. * the CPUID. Add "volatile" to not allow gcc to
  138. * optimize the subsequent calls to this function.
  139. */
  140. asm volatile ("pushfl\n\t"
  141. "pushfl\n\t"
  142. "popl %0\n\t"
  143. "movl %0,%1\n\t"
  144. "xorl %2,%0\n\t"
  145. "pushl %0\n\t"
  146. "popfl\n\t"
  147. "pushfl\n\t"
  148. "popl %0\n\t"
  149. "popfl\n\t"
  150. : "=&r" (f1), "=&r" (f2)
  151. : "ir" (flag));
  152. return ((f1^f2) & flag) != 0;
  153. }
  154. /* Probe for the CPUID instruction */
  155. static int __cpuinit have_cpuid_p(void)
  156. {
  157. return flag_is_changeable_p(X86_EFLAGS_ID);
  158. }
  159. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  160. {
  161. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
  162. /* Disable processor serial number */
  163. unsigned long lo, hi;
  164. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  165. lo |= 0x200000;
  166. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  167. printk(KERN_NOTICE "CPU serial number disabled.\n");
  168. clear_cpu_cap(c, X86_FEATURE_PN);
  169. /* Disabling the serial number may affect the cpuid level */
  170. c->cpuid_level = cpuid_eax(0);
  171. }
  172. }
  173. static int __init x86_serial_nr_setup(char *s)
  174. {
  175. disable_x86_serial_nr = 0;
  176. return 1;
  177. }
  178. __setup("serialnumber", x86_serial_nr_setup);
  179. #else
  180. static inline int flag_is_changeable_p(u32 flag)
  181. {
  182. return 1;
  183. }
  184. /* Probe for the CPUID instruction */
  185. static inline int have_cpuid_p(void)
  186. {
  187. return 1;
  188. }
  189. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  190. {
  191. }
  192. #endif
  193. /*
  194. * Naming convention should be: <Name> [(<Codename>)]
  195. * This table only is used unless init_<vendor>() below doesn't set it;
  196. * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
  197. *
  198. */
  199. /* Look up CPU names by table lookup. */
  200. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  201. {
  202. struct cpu_model_info *info;
  203. if (c->x86_model >= 16)
  204. return NULL; /* Range check */
  205. if (!this_cpu)
  206. return NULL;
  207. info = this_cpu->c_models;
  208. while (info && info->family) {
  209. if (info->family == c->x86)
  210. return info->model_names[c->x86_model];
  211. info++;
  212. }
  213. return NULL; /* Not found */
  214. }
  215. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  216. /* Current gdt points %fs at the "master" per-cpu area: after this,
  217. * it's on the real one. */
  218. void switch_to_new_gdt(void)
  219. {
  220. struct desc_ptr gdt_descr;
  221. gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
  222. gdt_descr.size = GDT_SIZE - 1;
  223. load_gdt(&gdt_descr);
  224. #ifdef CONFIG_X86_32
  225. asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
  226. #endif
  227. }
  228. static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  229. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  230. {
  231. #ifdef CONFIG_X86_64
  232. display_cacheinfo(c);
  233. #else
  234. /* Not much we can do here... */
  235. /* Check if at least it has cpuid */
  236. if (c->cpuid_level == -1) {
  237. /* No cpuid. It must be an ancient CPU */
  238. if (c->x86 == 4)
  239. strcpy(c->x86_model_id, "486");
  240. else if (c->x86 == 3)
  241. strcpy(c->x86_model_id, "386");
  242. }
  243. #endif
  244. }
  245. static struct cpu_dev __cpuinitdata default_cpu = {
  246. .c_init = default_init,
  247. .c_vendor = "Unknown",
  248. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  249. };
  250. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  251. {
  252. unsigned int *v;
  253. char *p, *q;
  254. if (c->extended_cpuid_level < 0x80000004)
  255. return;
  256. v = (unsigned int *) c->x86_model_id;
  257. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  258. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  259. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  260. c->x86_model_id[48] = 0;
  261. /* Intel chips right-justify this string for some dumb reason;
  262. undo that brain damage */
  263. p = q = &c->x86_model_id[0];
  264. while (*p == ' ')
  265. p++;
  266. if (p != q) {
  267. while (*p)
  268. *q++ = *p++;
  269. while (q <= &c->x86_model_id[48])
  270. *q++ = '\0'; /* Zero-pad the rest */
  271. }
  272. }
  273. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  274. {
  275. unsigned int n, dummy, ebx, ecx, edx, l2size;
  276. n = c->extended_cpuid_level;
  277. if (n >= 0x80000005) {
  278. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  279. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  280. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  281. c->x86_cache_size = (ecx>>24) + (edx>>24);
  282. #ifdef CONFIG_X86_64
  283. /* On K8 L1 TLB is inclusive, so don't count it */
  284. c->x86_tlbsize = 0;
  285. #endif
  286. }
  287. if (n < 0x80000006) /* Some chips just has a large L1. */
  288. return;
  289. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  290. l2size = ecx >> 16;
  291. #ifdef CONFIG_X86_64
  292. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  293. #else
  294. /* do processor-specific cache resizing */
  295. if (this_cpu->c_size_cache)
  296. l2size = this_cpu->c_size_cache(c, l2size);
  297. /* Allow user to override all this if necessary. */
  298. if (cachesize_override != -1)
  299. l2size = cachesize_override;
  300. if (l2size == 0)
  301. return; /* Again, no L2 cache is possible */
  302. #endif
  303. c->x86_cache_size = l2size;
  304. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  305. l2size, ecx & 0xFF);
  306. }
  307. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  308. {
  309. #ifdef CONFIG_X86_HT
  310. u32 eax, ebx, ecx, edx;
  311. int index_msb, core_bits;
  312. if (!cpu_has(c, X86_FEATURE_HT))
  313. return;
  314. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  315. goto out;
  316. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  317. return;
  318. cpuid(1, &eax, &ebx, &ecx, &edx);
  319. smp_num_siblings = (ebx & 0xff0000) >> 16;
  320. if (smp_num_siblings == 1) {
  321. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  322. } else if (smp_num_siblings > 1) {
  323. if (smp_num_siblings > nr_cpu_ids) {
  324. printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
  325. smp_num_siblings);
  326. smp_num_siblings = 1;
  327. return;
  328. }
  329. index_msb = get_count_order(smp_num_siblings);
  330. #ifdef CONFIG_X86_64
  331. c->phys_proc_id = phys_pkg_id(index_msb);
  332. #else
  333. c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
  334. #endif
  335. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  336. index_msb = get_count_order(smp_num_siblings);
  337. core_bits = get_count_order(c->x86_max_cores);
  338. #ifdef CONFIG_X86_64
  339. c->cpu_core_id = phys_pkg_id(index_msb) &
  340. ((1 << core_bits) - 1);
  341. #else
  342. c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
  343. ((1 << core_bits) - 1);
  344. #endif
  345. }
  346. out:
  347. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  348. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  349. c->phys_proc_id);
  350. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  351. c->cpu_core_id);
  352. }
  353. #endif
  354. }
  355. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  356. {
  357. char *v = c->x86_vendor_id;
  358. int i;
  359. static int printed;
  360. for (i = 0; i < X86_VENDOR_NUM; i++) {
  361. if (!cpu_devs[i])
  362. break;
  363. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  364. (cpu_devs[i]->c_ident[1] &&
  365. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  366. this_cpu = cpu_devs[i];
  367. c->x86_vendor = this_cpu->c_x86_vendor;
  368. return;
  369. }
  370. }
  371. if (!printed) {
  372. printed++;
  373. printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
  374. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  375. }
  376. c->x86_vendor = X86_VENDOR_UNKNOWN;
  377. this_cpu = &default_cpu;
  378. }
  379. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  380. {
  381. /* Get vendor name */
  382. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  383. (unsigned int *)&c->x86_vendor_id[0],
  384. (unsigned int *)&c->x86_vendor_id[8],
  385. (unsigned int *)&c->x86_vendor_id[4]);
  386. c->x86 = 4;
  387. /* Intel-defined flags: level 0x00000001 */
  388. if (c->cpuid_level >= 0x00000001) {
  389. u32 junk, tfms, cap0, misc;
  390. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  391. c->x86 = (tfms >> 8) & 0xf;
  392. c->x86_model = (tfms >> 4) & 0xf;
  393. c->x86_mask = tfms & 0xf;
  394. if (c->x86 == 0xf)
  395. c->x86 += (tfms >> 20) & 0xff;
  396. if (c->x86 >= 0x6)
  397. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  398. if (cap0 & (1<<19)) {
  399. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  400. c->x86_cache_alignment = c->x86_clflush_size;
  401. }
  402. }
  403. }
  404. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  405. {
  406. u32 tfms, xlvl;
  407. u32 ebx;
  408. /* Intel-defined flags: level 0x00000001 */
  409. if (c->cpuid_level >= 0x00000001) {
  410. u32 capability, excap;
  411. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  412. c->x86_capability[0] = capability;
  413. c->x86_capability[4] = excap;
  414. }
  415. /* AMD-defined flags: level 0x80000001 */
  416. xlvl = cpuid_eax(0x80000000);
  417. c->extended_cpuid_level = xlvl;
  418. if ((xlvl & 0xffff0000) == 0x80000000) {
  419. if (xlvl >= 0x80000001) {
  420. c->x86_capability[1] = cpuid_edx(0x80000001);
  421. c->x86_capability[6] = cpuid_ecx(0x80000001);
  422. }
  423. }
  424. #ifdef CONFIG_X86_64
  425. if (c->extended_cpuid_level >= 0x80000008) {
  426. u32 eax = cpuid_eax(0x80000008);
  427. c->x86_virt_bits = (eax >> 8) & 0xff;
  428. c->x86_phys_bits = eax & 0xff;
  429. }
  430. #endif
  431. if (c->extended_cpuid_level >= 0x80000007)
  432. c->x86_power = cpuid_edx(0x80000007);
  433. }
  434. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  435. {
  436. #ifdef CONFIG_X86_32
  437. int i;
  438. /*
  439. * First of all, decide if this is a 486 or higher
  440. * It's a 486 if we can modify the AC flag
  441. */
  442. if (flag_is_changeable_p(X86_EFLAGS_AC))
  443. c->x86 = 4;
  444. else
  445. c->x86 = 3;
  446. for (i = 0; i < X86_VENDOR_NUM; i++)
  447. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  448. c->x86_vendor_id[0] = 0;
  449. cpu_devs[i]->c_identify(c);
  450. if (c->x86_vendor_id[0]) {
  451. get_cpu_vendor(c);
  452. break;
  453. }
  454. }
  455. #endif
  456. }
  457. /*
  458. * Do minimum CPU detection early.
  459. * Fields really needed: vendor, cpuid_level, family, model, mask,
  460. * cache alignment.
  461. * The others are not touched to avoid unwanted side effects.
  462. *
  463. * WARNING: this function is only called on the BP. Don't add code here
  464. * that is supposed to run on all CPUs.
  465. */
  466. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  467. {
  468. #ifdef CONFIG_X86_64
  469. c->x86_clflush_size = 64;
  470. #else
  471. c->x86_clflush_size = 32;
  472. #endif
  473. c->x86_cache_alignment = c->x86_clflush_size;
  474. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  475. c->extended_cpuid_level = 0;
  476. if (!have_cpuid_p())
  477. identify_cpu_without_cpuid(c);
  478. /* cyrix could have cpuid enabled via c_identify()*/
  479. if (!have_cpuid_p())
  480. return;
  481. cpu_detect(c);
  482. get_cpu_vendor(c);
  483. get_cpu_cap(c);
  484. if (this_cpu->c_early_init)
  485. this_cpu->c_early_init(c);
  486. validate_pat_support(c);
  487. #ifdef CONFIG_SMP
  488. c->cpu_index = boot_cpu_id;
  489. #endif
  490. }
  491. void __init early_cpu_init(void)
  492. {
  493. struct cpu_dev **cdev;
  494. int count = 0;
  495. printk("KERNEL supported cpus:\n");
  496. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  497. struct cpu_dev *cpudev = *cdev;
  498. unsigned int j;
  499. if (count >= X86_VENDOR_NUM)
  500. break;
  501. cpu_devs[count] = cpudev;
  502. count++;
  503. for (j = 0; j < 2; j++) {
  504. if (!cpudev->c_ident[j])
  505. continue;
  506. printk(" %s %s\n", cpudev->c_vendor,
  507. cpudev->c_ident[j]);
  508. }
  509. }
  510. early_identify_cpu(&boot_cpu_data);
  511. }
  512. /*
  513. * The NOPL instruction is supposed to exist on all CPUs with
  514. * family >= 6; unfortunately, that's not true in practice because
  515. * of early VIA chips and (more importantly) broken virtualizers that
  516. * are not easy to detect. In the latter case it doesn't even *fail*
  517. * reliably, so probing for it doesn't even work. Disable it completely
  518. * unless we can find a reliable way to detect all the broken cases.
  519. */
  520. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  521. {
  522. clear_cpu_cap(c, X86_FEATURE_NOPL);
  523. }
  524. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  525. {
  526. c->extended_cpuid_level = 0;
  527. if (!have_cpuid_p())
  528. identify_cpu_without_cpuid(c);
  529. /* cyrix could have cpuid enabled via c_identify()*/
  530. if (!have_cpuid_p())
  531. return;
  532. cpu_detect(c);
  533. get_cpu_vendor(c);
  534. get_cpu_cap(c);
  535. if (c->cpuid_level >= 0x00000001) {
  536. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  537. #ifdef CONFIG_X86_32
  538. # ifdef CONFIG_X86_HT
  539. c->apicid = phys_pkg_id(c->initial_apicid, 0);
  540. # else
  541. c->apicid = c->initial_apicid;
  542. # endif
  543. #endif
  544. #ifdef CONFIG_X86_HT
  545. c->phys_proc_id = c->initial_apicid;
  546. #endif
  547. }
  548. get_model_name(c); /* Default name */
  549. init_scattered_cpuid_features(c);
  550. detect_nopl(c);
  551. }
  552. /*
  553. * This does the hard work of actually picking apart the CPU stuff...
  554. */
  555. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  556. {
  557. int i;
  558. c->loops_per_jiffy = loops_per_jiffy;
  559. c->x86_cache_size = -1;
  560. c->x86_vendor = X86_VENDOR_UNKNOWN;
  561. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  562. c->x86_vendor_id[0] = '\0'; /* Unset */
  563. c->x86_model_id[0] = '\0'; /* Unset */
  564. c->x86_max_cores = 1;
  565. c->x86_coreid_bits = 0;
  566. #ifdef CONFIG_X86_64
  567. c->x86_clflush_size = 64;
  568. #else
  569. c->cpuid_level = -1; /* CPUID not detected */
  570. c->x86_clflush_size = 32;
  571. #endif
  572. c->x86_cache_alignment = c->x86_clflush_size;
  573. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  574. generic_identify(c);
  575. if (this_cpu->c_identify)
  576. this_cpu->c_identify(c);
  577. #ifdef CONFIG_X86_64
  578. c->apicid = phys_pkg_id(0);
  579. #endif
  580. /*
  581. * Vendor-specific initialization. In this section we
  582. * canonicalize the feature flags, meaning if there are
  583. * features a certain CPU supports which CPUID doesn't
  584. * tell us, CPUID claiming incorrect flags, or other bugs,
  585. * we handle them here.
  586. *
  587. * At the end of this section, c->x86_capability better
  588. * indicate the features this CPU genuinely supports!
  589. */
  590. if (this_cpu->c_init)
  591. this_cpu->c_init(c);
  592. /* Disable the PN if appropriate */
  593. squash_the_stupid_serial_number(c);
  594. /*
  595. * The vendor-specific functions might have changed features. Now
  596. * we do "generic changes."
  597. */
  598. /* If the model name is still unset, do table lookup. */
  599. if (!c->x86_model_id[0]) {
  600. char *p;
  601. p = table_lookup_model(c);
  602. if (p)
  603. strcpy(c->x86_model_id, p);
  604. else
  605. /* Last resort... */
  606. sprintf(c->x86_model_id, "%02x/%02x",
  607. c->x86, c->x86_model);
  608. }
  609. #ifdef CONFIG_X86_64
  610. detect_ht(c);
  611. #endif
  612. init_hypervisor(c);
  613. /*
  614. * On SMP, boot_cpu_data holds the common feature set between
  615. * all CPUs; so make sure that we indicate which features are
  616. * common between the CPUs. The first time this routine gets
  617. * executed, c == &boot_cpu_data.
  618. */
  619. if (c != &boot_cpu_data) {
  620. /* AND the already accumulated flags with these */
  621. for (i = 0; i < NCAPINTS; i++)
  622. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  623. }
  624. /* Clear all flags overriden by options */
  625. for (i = 0; i < NCAPINTS; i++)
  626. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  627. #ifdef CONFIG_X86_MCE
  628. /* Init Machine Check Exception if available. */
  629. mcheck_init(c);
  630. #endif
  631. select_idle_routine(c);
  632. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  633. numa_add_cpu(smp_processor_id());
  634. #endif
  635. }
  636. #ifdef CONFIG_X86_64
  637. static void vgetcpu_set_mode(void)
  638. {
  639. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  640. vgetcpu_mode = VGETCPU_RDTSCP;
  641. else
  642. vgetcpu_mode = VGETCPU_LSL;
  643. }
  644. #endif
  645. void __init identify_boot_cpu(void)
  646. {
  647. identify_cpu(&boot_cpu_data);
  648. #ifdef CONFIG_X86_32
  649. sysenter_setup();
  650. enable_sep_cpu();
  651. #else
  652. vgetcpu_set_mode();
  653. #endif
  654. }
  655. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  656. {
  657. BUG_ON(c == &boot_cpu_data);
  658. identify_cpu(c);
  659. #ifdef CONFIG_X86_32
  660. enable_sep_cpu();
  661. #endif
  662. mtrr_ap_init();
  663. }
  664. struct msr_range {
  665. unsigned min;
  666. unsigned max;
  667. };
  668. static struct msr_range msr_range_array[] __cpuinitdata = {
  669. { 0x00000000, 0x00000418},
  670. { 0xc0000000, 0xc000040b},
  671. { 0xc0010000, 0xc0010142},
  672. { 0xc0011000, 0xc001103b},
  673. };
  674. static void __cpuinit print_cpu_msr(void)
  675. {
  676. unsigned index;
  677. u64 val;
  678. int i;
  679. unsigned index_min, index_max;
  680. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  681. index_min = msr_range_array[i].min;
  682. index_max = msr_range_array[i].max;
  683. for (index = index_min; index < index_max; index++) {
  684. if (rdmsrl_amd_safe(index, &val))
  685. continue;
  686. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  687. }
  688. }
  689. }
  690. static int show_msr __cpuinitdata;
  691. static __init int setup_show_msr(char *arg)
  692. {
  693. int num;
  694. get_option(&arg, &num);
  695. if (num > 0)
  696. show_msr = num;
  697. return 1;
  698. }
  699. __setup("show_msr=", setup_show_msr);
  700. static __init int setup_noclflush(char *arg)
  701. {
  702. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  703. return 1;
  704. }
  705. __setup("noclflush", setup_noclflush);
  706. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  707. {
  708. char *vendor = NULL;
  709. if (c->x86_vendor < X86_VENDOR_NUM)
  710. vendor = this_cpu->c_vendor;
  711. else if (c->cpuid_level >= 0)
  712. vendor = c->x86_vendor_id;
  713. if (vendor && !strstr(c->x86_model_id, vendor))
  714. printk(KERN_CONT "%s ", vendor);
  715. if (c->x86_model_id[0])
  716. printk(KERN_CONT "%s", c->x86_model_id);
  717. else
  718. printk(KERN_CONT "%d86", c->x86);
  719. if (c->x86_mask || c->cpuid_level >= 0)
  720. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  721. else
  722. printk(KERN_CONT "\n");
  723. #ifdef CONFIG_SMP
  724. if (c->cpu_index < show_msr)
  725. print_cpu_msr();
  726. #else
  727. if (show_msr)
  728. print_cpu_msr();
  729. #endif
  730. }
  731. static __init int setup_disablecpuid(char *arg)
  732. {
  733. int bit;
  734. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  735. setup_clear_cpu_cap(bit);
  736. else
  737. return 0;
  738. return 1;
  739. }
  740. __setup("clearcpuid=", setup_disablecpuid);
  741. #ifdef CONFIG_X86_64
  742. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  743. DEFINE_PER_CPU_PAGE_ALIGNED(char[IRQ_STACK_SIZE], irq_stack);
  744. #ifdef CONFIG_SMP
  745. DEFINE_PER_CPU(char *, irq_stack_ptr); /* will be set during per cpu init */
  746. #else
  747. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  748. per_cpu_var(irq_stack) + IRQ_STACK_SIZE - 64;
  749. #endif
  750. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  751. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  752. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  753. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  754. void __cpuinit pda_init(int cpu)
  755. {
  756. /* Setup up data that may be needed in __get_free_pages early */
  757. loadsegment(fs, 0);
  758. loadsegment(gs, 0);
  759. load_pda_offset(cpu);
  760. }
  761. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  762. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
  763. __aligned(PAGE_SIZE);
  764. extern asmlinkage void ignore_sysret(void);
  765. /* May not be marked __init: used by software suspend */
  766. void syscall_init(void)
  767. {
  768. /*
  769. * LSTAR and STAR live in a bit strange symbiosis.
  770. * They both write to the same internal register. STAR allows to
  771. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  772. */
  773. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  774. wrmsrl(MSR_LSTAR, system_call);
  775. wrmsrl(MSR_CSTAR, ignore_sysret);
  776. #ifdef CONFIG_IA32_EMULATION
  777. syscall32_cpu_init();
  778. #endif
  779. /* Flags to clear on syscall */
  780. wrmsrl(MSR_SYSCALL_MASK,
  781. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  782. }
  783. unsigned long kernel_eflags;
  784. /*
  785. * Copies of the original ist values from the tss are only accessed during
  786. * debugging, no special alignment required.
  787. */
  788. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  789. #else
  790. /* Make sure %fs is initialized properly in idle threads */
  791. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  792. {
  793. memset(regs, 0, sizeof(struct pt_regs));
  794. regs->fs = __KERNEL_PERCPU;
  795. return regs;
  796. }
  797. #endif
  798. /*
  799. * cpu_init() initializes state that is per-CPU. Some data is already
  800. * initialized (naturally) in the bootstrap process, such as the GDT
  801. * and IDT. We reload them nevertheless, this function acts as a
  802. * 'CPU state barrier', nothing should get across.
  803. * A lot of state is already set up in PDA init for 64 bit
  804. */
  805. #ifdef CONFIG_X86_64
  806. void __cpuinit cpu_init(void)
  807. {
  808. int cpu = stack_smp_processor_id();
  809. struct tss_struct *t = &per_cpu(init_tss, cpu);
  810. struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
  811. unsigned long v;
  812. struct task_struct *me;
  813. int i;
  814. /* CPU 0 is initialised in head64.c */
  815. if (cpu != 0)
  816. pda_init(cpu);
  817. #ifdef CONFIG_NUMA
  818. if (cpu != 0 && percpu_read(node_number) == 0 &&
  819. cpu_to_node(cpu) != NUMA_NO_NODE)
  820. percpu_write(node_number, cpu_to_node(cpu));
  821. #endif
  822. me = current;
  823. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  824. panic("CPU#%d already initialized!\n", cpu);
  825. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  826. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  827. /*
  828. * Initialize the per-CPU GDT with the boot GDT,
  829. * and set up the GDT descriptor:
  830. */
  831. switch_to_new_gdt();
  832. load_idt((const struct desc_ptr *)&idt_descr);
  833. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  834. syscall_init();
  835. wrmsrl(MSR_FS_BASE, 0);
  836. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  837. barrier();
  838. check_efer();
  839. if (cpu != 0 && x2apic)
  840. enable_x2apic();
  841. /*
  842. * set up and load the per-CPU TSS
  843. */
  844. if (!orig_ist->ist[0]) {
  845. static const unsigned int sizes[N_EXCEPTION_STACKS] = {
  846. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  847. [DEBUG_STACK - 1] = DEBUG_STKSZ
  848. };
  849. char *estacks = per_cpu(exception_stacks, cpu);
  850. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  851. estacks += sizes[v];
  852. orig_ist->ist[v] = t->x86_tss.ist[v] =
  853. (unsigned long)estacks;
  854. }
  855. }
  856. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  857. /*
  858. * <= is required because the CPU will access up to
  859. * 8 bits beyond the end of the IO permission bitmap.
  860. */
  861. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  862. t->io_bitmap[i] = ~0UL;
  863. atomic_inc(&init_mm.mm_count);
  864. me->active_mm = &init_mm;
  865. if (me->mm)
  866. BUG();
  867. enter_lazy_tlb(&init_mm, me);
  868. load_sp0(t, &current->thread);
  869. set_tss_desc(cpu, t);
  870. load_TR_desc();
  871. load_LDT(&init_mm.context);
  872. #ifdef CONFIG_KGDB
  873. /*
  874. * If the kgdb is connected no debug regs should be altered. This
  875. * is only applicable when KGDB and a KGDB I/O module are built
  876. * into the kernel and you are using early debugging with
  877. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  878. */
  879. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  880. arch_kgdb_ops.correct_hw_break();
  881. else {
  882. #endif
  883. /*
  884. * Clear all 6 debug registers:
  885. */
  886. set_debugreg(0UL, 0);
  887. set_debugreg(0UL, 1);
  888. set_debugreg(0UL, 2);
  889. set_debugreg(0UL, 3);
  890. set_debugreg(0UL, 6);
  891. set_debugreg(0UL, 7);
  892. #ifdef CONFIG_KGDB
  893. /* If the kgdb is connected no debug regs should be altered. */
  894. }
  895. #endif
  896. fpu_init();
  897. raw_local_save_flags(kernel_eflags);
  898. if (is_uv_system())
  899. uv_cpu_init();
  900. }
  901. #else
  902. void __cpuinit cpu_init(void)
  903. {
  904. int cpu = smp_processor_id();
  905. struct task_struct *curr = current;
  906. struct tss_struct *t = &per_cpu(init_tss, cpu);
  907. struct thread_struct *thread = &curr->thread;
  908. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  909. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  910. for (;;) local_irq_enable();
  911. }
  912. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  913. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  914. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  915. load_idt(&idt_descr);
  916. switch_to_new_gdt();
  917. /*
  918. * Set up and load the per-CPU TSS and LDT
  919. */
  920. atomic_inc(&init_mm.mm_count);
  921. curr->active_mm = &init_mm;
  922. if (curr->mm)
  923. BUG();
  924. enter_lazy_tlb(&init_mm, curr);
  925. load_sp0(t, thread);
  926. set_tss_desc(cpu, t);
  927. load_TR_desc();
  928. load_LDT(&init_mm.context);
  929. #ifdef CONFIG_DOUBLEFAULT
  930. /* Set up doublefault TSS pointer in the GDT */
  931. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  932. #endif
  933. /* Clear %gs. */
  934. asm volatile ("mov %0, %%gs" : : "r" (0));
  935. /* Clear all 6 debug registers: */
  936. set_debugreg(0, 0);
  937. set_debugreg(0, 1);
  938. set_debugreg(0, 2);
  939. set_debugreg(0, 3);
  940. set_debugreg(0, 6);
  941. set_debugreg(0, 7);
  942. /*
  943. * Force FPU initialization:
  944. */
  945. if (cpu_has_xsave)
  946. current_thread_info()->status = TS_XSAVE;
  947. else
  948. current_thread_info()->status = 0;
  949. clear_used_math();
  950. mxcsr_feature_mask_init();
  951. /*
  952. * Boot processor to setup the FP and extended state context info.
  953. */
  954. if (smp_processor_id() == boot_cpu_id)
  955. init_thread_xstate();
  956. xsave_init();
  957. }
  958. #endif