genx2apic_uv_x.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV APIC functions (note: not an Intel compatible APIC)
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/threads.h>
  12. #include <linux/cpumask.h>
  13. #include <linux/string.h>
  14. #include <linux/ctype.h>
  15. #include <linux/init.h>
  16. #include <linux/sched.h>
  17. #include <linux/module.h>
  18. #include <linux/hardirq.h>
  19. #include <asm/smp.h>
  20. #include <asm/ipi.h>
  21. #include <asm/genapic.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/uv/uv_mmrs.h>
  24. #include <asm/uv/uv_hub.h>
  25. #include <asm/uv/bios.h>
  26. DEFINE_PER_CPU(int, x2apic_extra_bits);
  27. static enum uv_system_type uv_system_type;
  28. static int uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
  29. {
  30. if (!strcmp(oem_id, "SGI")) {
  31. if (!strcmp(oem_table_id, "UVL"))
  32. uv_system_type = UV_LEGACY_APIC;
  33. else if (!strcmp(oem_table_id, "UVX"))
  34. uv_system_type = UV_X2APIC;
  35. else if (!strcmp(oem_table_id, "UVH")) {
  36. uv_system_type = UV_NON_UNIQUE_APIC;
  37. return 1;
  38. }
  39. }
  40. return 0;
  41. }
  42. enum uv_system_type get_uv_system_type(void)
  43. {
  44. return uv_system_type;
  45. }
  46. int is_uv_system(void)
  47. {
  48. return uv_system_type != UV_NONE;
  49. }
  50. EXPORT_SYMBOL_GPL(is_uv_system);
  51. DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  52. EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
  53. struct uv_blade_info *uv_blade_info;
  54. EXPORT_SYMBOL_GPL(uv_blade_info);
  55. short *uv_node_to_blade;
  56. EXPORT_SYMBOL_GPL(uv_node_to_blade);
  57. short *uv_cpu_to_blade;
  58. EXPORT_SYMBOL_GPL(uv_cpu_to_blade);
  59. short uv_possible_blades;
  60. EXPORT_SYMBOL_GPL(uv_possible_blades);
  61. unsigned long sn_rtc_cycles_per_second;
  62. EXPORT_SYMBOL(sn_rtc_cycles_per_second);
  63. /* Start with all IRQs pointing to boot CPU. IRQ balancing will shift them. */
  64. static const cpumask_t *uv_target_cpus(void)
  65. {
  66. return &cpumask_of_cpu(0);
  67. }
  68. static void uv_vector_allocation_domain(int cpu, cpumask_t *retmask)
  69. {
  70. cpus_clear(*retmask);
  71. cpu_set(cpu, *retmask);
  72. }
  73. int uv_wakeup_secondary(int phys_apicid, unsigned int start_rip)
  74. {
  75. unsigned long val;
  76. int pnode;
  77. pnode = uv_apicid_to_pnode(phys_apicid);
  78. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  79. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  80. (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  81. APIC_DM_INIT;
  82. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  83. mdelay(10);
  84. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  85. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  86. (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  87. APIC_DM_STARTUP;
  88. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  89. return 0;
  90. }
  91. static void uv_send_IPI_one(int cpu, int vector)
  92. {
  93. unsigned long val, apicid, lapicid;
  94. int pnode;
  95. apicid = per_cpu(x86_cpu_to_apicid, cpu);
  96. lapicid = apicid & 0x3f; /* ZZZ macro needed */
  97. pnode = uv_apicid_to_pnode(apicid);
  98. val =
  99. (1UL << UVH_IPI_INT_SEND_SHFT) | (lapicid <<
  100. UVH_IPI_INT_APIC_ID_SHFT) |
  101. (vector << UVH_IPI_INT_VECTOR_SHFT);
  102. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  103. }
  104. static void uv_send_IPI_mask(const cpumask_t *mask, int vector)
  105. {
  106. unsigned int cpu;
  107. for_each_cpu_mask_nr(cpu, *mask)
  108. uv_send_IPI_one(cpu, vector);
  109. }
  110. static void uv_send_IPI_mask_allbutself(const cpumask_t *mask, int vector)
  111. {
  112. unsigned int cpu;
  113. unsigned int this_cpu = smp_processor_id();
  114. for_each_cpu_mask_nr(cpu, *mask)
  115. if (cpu != this_cpu)
  116. uv_send_IPI_one(cpu, vector);
  117. }
  118. static void uv_send_IPI_allbutself(int vector)
  119. {
  120. unsigned int cpu;
  121. unsigned int this_cpu = smp_processor_id();
  122. for_each_online_cpu(cpu)
  123. if (cpu != this_cpu)
  124. uv_send_IPI_one(cpu, vector);
  125. }
  126. static void uv_send_IPI_all(int vector)
  127. {
  128. uv_send_IPI_mask(&cpu_online_map, vector);
  129. }
  130. static int uv_apic_id_registered(void)
  131. {
  132. return 1;
  133. }
  134. static void uv_init_apic_ldr(void)
  135. {
  136. }
  137. static unsigned int uv_cpu_mask_to_apicid(const cpumask_t *cpumask)
  138. {
  139. int cpu;
  140. /*
  141. * We're using fixed IRQ delivery, can only return one phys APIC ID.
  142. * May as well be the first.
  143. */
  144. cpu = first_cpu(*cpumask);
  145. if ((unsigned)cpu < nr_cpu_ids)
  146. return per_cpu(x86_cpu_to_apicid, cpu);
  147. else
  148. return BAD_APICID;
  149. }
  150. static unsigned int get_apic_id(unsigned long x)
  151. {
  152. unsigned int id;
  153. WARN_ON(preemptible() && num_online_cpus() > 1);
  154. id = x | __get_cpu_var(x2apic_extra_bits);
  155. return id;
  156. }
  157. static unsigned long set_apic_id(unsigned int id)
  158. {
  159. unsigned long x;
  160. /* maskout x2apic_extra_bits ? */
  161. x = id;
  162. return x;
  163. }
  164. static unsigned int uv_read_apic_id(void)
  165. {
  166. return get_apic_id(apic_read(APIC_ID));
  167. }
  168. static unsigned int phys_pkg_id(int index_msb)
  169. {
  170. return uv_read_apic_id() >> index_msb;
  171. }
  172. static void uv_send_IPI_self(int vector)
  173. {
  174. apic_write(APIC_SELF_IPI, vector);
  175. }
  176. struct genapic apic_x2apic_uv_x = {
  177. .name = "UV large system",
  178. .acpi_madt_oem_check = uv_acpi_madt_oem_check,
  179. .int_delivery_mode = dest_Fixed,
  180. .int_dest_mode = (APIC_DEST_PHYSICAL != 0),
  181. .target_cpus = uv_target_cpus,
  182. .vector_allocation_domain = uv_vector_allocation_domain,
  183. .apic_id_registered = uv_apic_id_registered,
  184. .init_apic_ldr = uv_init_apic_ldr,
  185. .send_IPI_all = uv_send_IPI_all,
  186. .send_IPI_allbutself = uv_send_IPI_allbutself,
  187. .send_IPI_mask = uv_send_IPI_mask,
  188. .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself,
  189. .send_IPI_self = uv_send_IPI_self,
  190. .cpu_mask_to_apicid = uv_cpu_mask_to_apicid,
  191. .phys_pkg_id = phys_pkg_id,
  192. .get_apic_id = get_apic_id,
  193. .set_apic_id = set_apic_id,
  194. .apic_id_mask = (0xFFFFFFFFu),
  195. };
  196. static __cpuinit void set_x2apic_extra_bits(int pnode)
  197. {
  198. __get_cpu_var(x2apic_extra_bits) = (pnode << 6);
  199. }
  200. /*
  201. * Called on boot cpu.
  202. */
  203. static __init int boot_pnode_to_blade(int pnode)
  204. {
  205. int blade;
  206. for (blade = 0; blade < uv_num_possible_blades(); blade++)
  207. if (pnode == uv_blade_info[blade].pnode)
  208. return blade;
  209. BUG();
  210. }
  211. struct redir_addr {
  212. unsigned long redirect;
  213. unsigned long alias;
  214. };
  215. #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
  216. static __initdata struct redir_addr redir_addrs[] = {
  217. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
  218. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
  219. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
  220. };
  221. static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
  222. {
  223. union uvh_si_alias0_overlay_config_u alias;
  224. union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
  225. int i;
  226. for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
  227. alias.v = uv_read_local_mmr(redir_addrs[i].alias);
  228. if (alias.s.base == 0) {
  229. *size = (1UL << alias.s.m_alias);
  230. redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
  231. *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
  232. return;
  233. }
  234. }
  235. BUG();
  236. }
  237. static __init void map_low_mmrs(void)
  238. {
  239. init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
  240. init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
  241. }
  242. enum map_type {map_wb, map_uc};
  243. static __init void map_high(char *id, unsigned long base, int shift,
  244. int max_pnode, enum map_type map_type)
  245. {
  246. unsigned long bytes, paddr;
  247. paddr = base << shift;
  248. bytes = (1UL << shift) * (max_pnode + 1);
  249. printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr,
  250. paddr + bytes);
  251. if (map_type == map_uc)
  252. init_extra_mapping_uc(paddr, bytes);
  253. else
  254. init_extra_mapping_wb(paddr, bytes);
  255. }
  256. static __init void map_gru_high(int max_pnode)
  257. {
  258. union uvh_rh_gam_gru_overlay_config_mmr_u gru;
  259. int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
  260. gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
  261. if (gru.s.enable)
  262. map_high("GRU", gru.s.base, shift, max_pnode, map_wb);
  263. }
  264. static __init void map_config_high(int max_pnode)
  265. {
  266. union uvh_rh_gam_cfg_overlay_config_mmr_u cfg;
  267. int shift = UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR_BASE_SHFT;
  268. cfg.v = uv_read_local_mmr(UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR);
  269. if (cfg.s.enable)
  270. map_high("CONFIG", cfg.s.base, shift, max_pnode, map_uc);
  271. }
  272. static __init void map_mmr_high(int max_pnode)
  273. {
  274. union uvh_rh_gam_mmr_overlay_config_mmr_u mmr;
  275. int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT;
  276. mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR);
  277. if (mmr.s.enable)
  278. map_high("MMR", mmr.s.base, shift, max_pnode, map_uc);
  279. }
  280. static __init void map_mmioh_high(int max_pnode)
  281. {
  282. union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
  283. int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
  284. mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
  285. if (mmioh.s.enable)
  286. map_high("MMIOH", mmioh.s.base, shift, max_pnode, map_uc);
  287. }
  288. static __init void uv_rtc_init(void)
  289. {
  290. long status;
  291. u64 ticks_per_sec;
  292. status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK,
  293. &ticks_per_sec);
  294. if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
  295. printk(KERN_WARNING
  296. "unable to determine platform RTC clock frequency, "
  297. "guessing.\n");
  298. /* BIOS gives wrong value for clock freq. so guess */
  299. sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
  300. } else
  301. sn_rtc_cycles_per_second = ticks_per_sec;
  302. }
  303. /*
  304. * Called on each cpu to initialize the per_cpu UV data area.
  305. * ZZZ hotplug not supported yet
  306. */
  307. void __cpuinit uv_cpu_init(void)
  308. {
  309. /* CPU 0 initilization will be done via uv_system_init. */
  310. if (!uv_blade_info)
  311. return;
  312. uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;
  313. if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
  314. set_x2apic_extra_bits(uv_hub_info->pnode);
  315. }
  316. void __init uv_system_init(void)
  317. {
  318. union uvh_si_addr_map_config_u m_n_config;
  319. union uvh_node_id_u node_id;
  320. unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
  321. int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
  322. int max_pnode = 0;
  323. unsigned long mmr_base, present;
  324. map_low_mmrs();
  325. m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
  326. m_val = m_n_config.s.m_skt;
  327. n_val = m_n_config.s.n_skt;
  328. mmr_base =
  329. uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
  330. ~UV_MMR_ENABLE;
  331. printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);
  332. for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
  333. uv_possible_blades +=
  334. hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
  335. printk(KERN_DEBUG "UV: Found %d blades\n", uv_num_possible_blades());
  336. bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
  337. uv_blade_info = kmalloc(bytes, GFP_KERNEL);
  338. get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
  339. bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
  340. uv_node_to_blade = kmalloc(bytes, GFP_KERNEL);
  341. memset(uv_node_to_blade, 255, bytes);
  342. bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
  343. uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL);
  344. memset(uv_cpu_to_blade, 255, bytes);
  345. blade = 0;
  346. for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
  347. present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
  348. for (j = 0; j < 64; j++) {
  349. if (!test_bit(j, &present))
  350. continue;
  351. uv_blade_info[blade].pnode = (i * 64 + j);
  352. uv_blade_info[blade].nr_possible_cpus = 0;
  353. uv_blade_info[blade].nr_online_cpus = 0;
  354. blade++;
  355. }
  356. }
  357. node_id.v = uv_read_local_mmr(UVH_NODE_ID);
  358. gnode_upper = (((unsigned long)node_id.s.node_id) &
  359. ~((1 << n_val) - 1)) << m_val;
  360. uv_bios_init();
  361. uv_bios_get_sn_info(0, &uv_type, &sn_partition_id,
  362. &uv_coherency_id, &uv_region_size);
  363. uv_rtc_init();
  364. for_each_present_cpu(cpu) {
  365. nid = cpu_to_node(cpu);
  366. pnode = uv_apicid_to_pnode(per_cpu(x86_cpu_to_apicid, cpu));
  367. blade = boot_pnode_to_blade(pnode);
  368. lcpu = uv_blade_info[blade].nr_possible_cpus;
  369. uv_blade_info[blade].nr_possible_cpus++;
  370. uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
  371. uv_cpu_hub_info(cpu)->lowmem_remap_top =
  372. lowmem_redir_base + lowmem_redir_size;
  373. uv_cpu_hub_info(cpu)->m_val = m_val;
  374. uv_cpu_hub_info(cpu)->n_val = m_val;
  375. uv_cpu_hub_info(cpu)->numa_blade_id = blade;
  376. uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
  377. uv_cpu_hub_info(cpu)->pnode = pnode;
  378. uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) - 1;
  379. uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
  380. uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
  381. uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
  382. uv_cpu_hub_info(cpu)->coherency_domain_number = uv_coherency_id;
  383. uv_node_to_blade[nid] = blade;
  384. uv_cpu_to_blade[cpu] = blade;
  385. max_pnode = max(pnode, max_pnode);
  386. printk(KERN_DEBUG "UV: cpu %d, apicid 0x%x, pnode %d, nid %d, "
  387. "lcpu %d, blade %d\n",
  388. cpu, per_cpu(x86_cpu_to_apicid, cpu), pnode, nid,
  389. lcpu, blade);
  390. }
  391. map_gru_high(max_pnode);
  392. map_mmr_high(max_pnode);
  393. map_config_high(max_pnode);
  394. map_mmioh_high(max_pnode);
  395. uv_cpu_init();
  396. }