bootmem.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. /*
  2. * linux/mm/bootmem.c
  3. *
  4. * Copyright (C) 1999 Ingo Molnar
  5. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  6. *
  7. * simple boot-time physical memory area allocator and
  8. * free memory collector. It's used to deal with reserved
  9. * system memory and memory holes as well.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/module.h>
  14. #include <asm/bug.h>
  15. #include <asm/io.h>
  16. #include "internal.h"
  17. /*
  18. * Access to this subsystem has to be serialized externally. (this is
  19. * true for the boot process anyway)
  20. */
  21. unsigned long max_low_pfn;
  22. unsigned long min_low_pfn;
  23. unsigned long max_pfn;
  24. EXPORT_UNUSED_SYMBOL(max_pfn); /* June 2006 */
  25. static LIST_HEAD(bdata_list);
  26. #ifdef CONFIG_CRASH_DUMP
  27. /*
  28. * If we have booted due to a crash, max_pfn will be a very low value. We need
  29. * to know the amount of memory that the previous kernel used.
  30. */
  31. unsigned long saved_max_pfn;
  32. #endif
  33. /* return the number of _pages_ that will be allocated for the boot bitmap */
  34. unsigned long __init bootmem_bootmap_pages (unsigned long pages)
  35. {
  36. unsigned long mapsize;
  37. mapsize = (pages+7)/8;
  38. mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
  39. mapsize >>= PAGE_SHIFT;
  40. return mapsize;
  41. }
  42. /*
  43. * link bdata in order
  44. */
  45. static void __init link_bootmem(bootmem_data_t *bdata)
  46. {
  47. bootmem_data_t *ent;
  48. if (list_empty(&bdata_list)) {
  49. list_add(&bdata->list, &bdata_list);
  50. return;
  51. }
  52. /* insert in order */
  53. list_for_each_entry(ent, &bdata_list, list) {
  54. if (bdata->node_boot_start < ent->node_boot_start) {
  55. list_add_tail(&bdata->list, &ent->list);
  56. return;
  57. }
  58. }
  59. list_add_tail(&bdata->list, &bdata_list);
  60. return;
  61. }
  62. /*
  63. * Called once to set up the allocator itself.
  64. */
  65. static unsigned long __init init_bootmem_core (pg_data_t *pgdat,
  66. unsigned long mapstart, unsigned long start, unsigned long end)
  67. {
  68. bootmem_data_t *bdata = pgdat->bdata;
  69. unsigned long mapsize = ((end - start)+7)/8;
  70. mapsize = ALIGN(mapsize, sizeof(long));
  71. bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);
  72. bdata->node_boot_start = (start << PAGE_SHIFT);
  73. bdata->node_low_pfn = end;
  74. link_bootmem(bdata);
  75. /*
  76. * Initially all pages are reserved - setup_arch() has to
  77. * register free RAM areas explicitly.
  78. */
  79. memset(bdata->node_bootmem_map, 0xff, mapsize);
  80. return mapsize;
  81. }
  82. /*
  83. * Marks a particular physical memory range as unallocatable. Usable RAM
  84. * might be used for boot-time allocations - or it might get added
  85. * to the free page pool later on.
  86. */
  87. static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
  88. unsigned long size)
  89. {
  90. unsigned long i;
  91. /*
  92. * round up, partially reserved pages are considered
  93. * fully reserved.
  94. */
  95. unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;
  96. unsigned long eidx = (addr + size - bdata->node_boot_start +
  97. PAGE_SIZE-1)/PAGE_SIZE;
  98. unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
  99. BUG_ON(!size);
  100. BUG_ON(sidx >= eidx);
  101. BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn);
  102. BUG_ON(end > bdata->node_low_pfn);
  103. for (i = sidx; i < eidx; i++)
  104. if (test_and_set_bit(i, bdata->node_bootmem_map)) {
  105. #ifdef CONFIG_DEBUG_BOOTMEM
  106. printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
  107. #endif
  108. }
  109. }
  110. static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
  111. unsigned long size)
  112. {
  113. unsigned long i;
  114. unsigned long start;
  115. /*
  116. * round down end of usable mem, partially free pages are
  117. * considered reserved.
  118. */
  119. unsigned long sidx;
  120. unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE;
  121. unsigned long end = (addr + size)/PAGE_SIZE;
  122. BUG_ON(!size);
  123. BUG_ON(end > bdata->node_low_pfn);
  124. if (addr < bdata->last_success)
  125. bdata->last_success = addr;
  126. /*
  127. * Round up the beginning of the address.
  128. */
  129. start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
  130. sidx = start - (bdata->node_boot_start/PAGE_SIZE);
  131. for (i = sidx; i < eidx; i++) {
  132. if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
  133. BUG();
  134. }
  135. }
  136. /*
  137. * We 'merge' subsequent allocations to save space. We might 'lose'
  138. * some fraction of a page if allocations cannot be satisfied due to
  139. * size constraints on boxes where there is physical RAM space
  140. * fragmentation - in these cases (mostly large memory boxes) this
  141. * is not a problem.
  142. *
  143. * On low memory boxes we get it right in 100% of the cases.
  144. *
  145. * alignment has to be a power of 2 value.
  146. *
  147. * NOTE: This function is _not_ reentrant.
  148. */
  149. void * __init
  150. __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
  151. unsigned long align, unsigned long goal, unsigned long limit)
  152. {
  153. unsigned long offset, remaining_size, areasize, preferred;
  154. unsigned long i, start = 0, incr, eidx, end_pfn = bdata->node_low_pfn;
  155. void *ret;
  156. if(!size) {
  157. printk("__alloc_bootmem_core(): zero-sized request\n");
  158. BUG();
  159. }
  160. BUG_ON(align & (align-1));
  161. if (limit && bdata->node_boot_start >= limit)
  162. return NULL;
  163. limit >>=PAGE_SHIFT;
  164. if (limit && end_pfn > limit)
  165. end_pfn = limit;
  166. eidx = end_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  167. offset = 0;
  168. if (align &&
  169. (bdata->node_boot_start & (align - 1UL)) != 0)
  170. offset = (align - (bdata->node_boot_start & (align - 1UL)));
  171. offset >>= PAGE_SHIFT;
  172. /*
  173. * We try to allocate bootmem pages above 'goal'
  174. * first, then we try to allocate lower pages.
  175. */
  176. if (goal && (goal >= bdata->node_boot_start) &&
  177. ((goal >> PAGE_SHIFT) < end_pfn)) {
  178. preferred = goal - bdata->node_boot_start;
  179. if (bdata->last_success >= preferred)
  180. if (!limit || (limit && limit > bdata->last_success))
  181. preferred = bdata->last_success;
  182. } else
  183. preferred = 0;
  184. preferred = ALIGN(preferred, align) >> PAGE_SHIFT;
  185. preferred += offset;
  186. areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
  187. incr = align >> PAGE_SHIFT ? : 1;
  188. restart_scan:
  189. for (i = preferred; i < eidx; i += incr) {
  190. unsigned long j;
  191. i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
  192. i = ALIGN(i, incr);
  193. if (i >= eidx)
  194. break;
  195. if (test_bit(i, bdata->node_bootmem_map))
  196. continue;
  197. for (j = i + 1; j < i + areasize; ++j) {
  198. if (j >= eidx)
  199. goto fail_block;
  200. if (test_bit (j, bdata->node_bootmem_map))
  201. goto fail_block;
  202. }
  203. start = i;
  204. goto found;
  205. fail_block:
  206. i = ALIGN(j, incr);
  207. }
  208. if (preferred > offset) {
  209. preferred = offset;
  210. goto restart_scan;
  211. }
  212. return NULL;
  213. found:
  214. bdata->last_success = start << PAGE_SHIFT;
  215. BUG_ON(start >= eidx);
  216. /*
  217. * Is the next page of the previous allocation-end the start
  218. * of this allocation's buffer? If yes then we can 'merge'
  219. * the previous partial page with this allocation.
  220. */
  221. if (align < PAGE_SIZE &&
  222. bdata->last_offset && bdata->last_pos+1 == start) {
  223. offset = ALIGN(bdata->last_offset, align);
  224. BUG_ON(offset > PAGE_SIZE);
  225. remaining_size = PAGE_SIZE-offset;
  226. if (size < remaining_size) {
  227. areasize = 0;
  228. /* last_pos unchanged */
  229. bdata->last_offset = offset+size;
  230. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  231. bdata->node_boot_start);
  232. } else {
  233. remaining_size = size - remaining_size;
  234. areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;
  235. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  236. bdata->node_boot_start);
  237. bdata->last_pos = start+areasize-1;
  238. bdata->last_offset = remaining_size;
  239. }
  240. bdata->last_offset &= ~PAGE_MASK;
  241. } else {
  242. bdata->last_pos = start + areasize - 1;
  243. bdata->last_offset = size & ~PAGE_MASK;
  244. ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
  245. }
  246. /*
  247. * Reserve the area now:
  248. */
  249. for (i = start; i < start+areasize; i++)
  250. if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
  251. BUG();
  252. memset(ret, 0, size);
  253. return ret;
  254. }
  255. static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
  256. {
  257. struct page *page;
  258. unsigned long pfn;
  259. bootmem_data_t *bdata = pgdat->bdata;
  260. unsigned long i, count, total = 0;
  261. unsigned long idx;
  262. unsigned long *map;
  263. int gofast = 0;
  264. BUG_ON(!bdata->node_bootmem_map);
  265. count = 0;
  266. /* first extant page of the node */
  267. pfn = bdata->node_boot_start >> PAGE_SHIFT;
  268. idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  269. map = bdata->node_bootmem_map;
  270. /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
  271. if (bdata->node_boot_start == 0 ||
  272. ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
  273. gofast = 1;
  274. for (i = 0; i < idx; ) {
  275. unsigned long v = ~map[i / BITS_PER_LONG];
  276. if (gofast && v == ~0UL) {
  277. int order;
  278. page = pfn_to_page(pfn);
  279. count += BITS_PER_LONG;
  280. order = ffs(BITS_PER_LONG) - 1;
  281. __free_pages_bootmem(page, order);
  282. i += BITS_PER_LONG;
  283. page += BITS_PER_LONG;
  284. } else if (v) {
  285. unsigned long m;
  286. page = pfn_to_page(pfn);
  287. for (m = 1; m && i < idx; m<<=1, page++, i++) {
  288. if (v & m) {
  289. count++;
  290. __free_pages_bootmem(page, 0);
  291. }
  292. }
  293. } else {
  294. i+=BITS_PER_LONG;
  295. }
  296. pfn += BITS_PER_LONG;
  297. }
  298. total += count;
  299. /*
  300. * Now free the allocator bitmap itself, it's not
  301. * needed anymore:
  302. */
  303. page = virt_to_page(bdata->node_bootmem_map);
  304. count = 0;
  305. for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
  306. count++;
  307. __free_pages_bootmem(page, 0);
  308. }
  309. total += count;
  310. bdata->node_bootmem_map = NULL;
  311. return total;
  312. }
  313. unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn,
  314. unsigned long startpfn, unsigned long endpfn)
  315. {
  316. return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));
  317. }
  318. void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr,
  319. unsigned long size)
  320. {
  321. reserve_bootmem_core(pgdat->bdata, physaddr, size);
  322. }
  323. void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr,
  324. unsigned long size)
  325. {
  326. free_bootmem_core(pgdat->bdata, physaddr, size);
  327. }
  328. unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)
  329. {
  330. return(free_all_bootmem_core(pgdat));
  331. }
  332. unsigned long __init init_bootmem (unsigned long start, unsigned long pages)
  333. {
  334. max_low_pfn = pages;
  335. min_low_pfn = start;
  336. return(init_bootmem_core(NODE_DATA(0), start, 0, pages));
  337. }
  338. #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
  339. void __init reserve_bootmem (unsigned long addr, unsigned long size)
  340. {
  341. reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  342. }
  343. #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
  344. void __init free_bootmem (unsigned long addr, unsigned long size)
  345. {
  346. free_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  347. }
  348. unsigned long __init free_all_bootmem (void)
  349. {
  350. return(free_all_bootmem_core(NODE_DATA(0)));
  351. }
  352. void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
  353. unsigned long goal)
  354. {
  355. bootmem_data_t *bdata;
  356. void *ptr;
  357. list_for_each_entry(bdata, &bdata_list, list)
  358. if ((ptr = __alloc_bootmem_core(bdata, size, align, goal, 0)))
  359. return(ptr);
  360. return NULL;
  361. }
  362. void * __init __alloc_bootmem(unsigned long size, unsigned long align,
  363. unsigned long goal)
  364. {
  365. void *mem = __alloc_bootmem_nopanic(size,align,goal);
  366. if (mem)
  367. return mem;
  368. /*
  369. * Whoops, we cannot satisfy the allocation request.
  370. */
  371. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  372. panic("Out of memory");
  373. return NULL;
  374. }
  375. void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
  376. unsigned long align, unsigned long goal)
  377. {
  378. void *ptr;
  379. ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
  380. if (ptr)
  381. return (ptr);
  382. return __alloc_bootmem(size, align, goal);
  383. }
  384. #define LOW32LIMIT 0xffffffff
  385. void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
  386. unsigned long goal)
  387. {
  388. bootmem_data_t *bdata;
  389. void *ptr;
  390. list_for_each_entry(bdata, &bdata_list, list)
  391. if ((ptr = __alloc_bootmem_core(bdata, size,
  392. align, goal, LOW32LIMIT)))
  393. return(ptr);
  394. /*
  395. * Whoops, we cannot satisfy the allocation request.
  396. */
  397. printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
  398. panic("Out of low memory");
  399. return NULL;
  400. }
  401. void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
  402. unsigned long align, unsigned long goal)
  403. {
  404. return __alloc_bootmem_core(pgdat->bdata, size, align, goal, LOW32LIMIT);
  405. }