arm.c 22 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License, version 2, as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/err.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/fs.h>
  24. #include <linux/mman.h>
  25. #include <linux/sched.h>
  26. #include <linux/kvm.h>
  27. #include <trace/events/kvm.h>
  28. #define CREATE_TRACE_POINTS
  29. #include "trace.h"
  30. #include <asm/uaccess.h>
  31. #include <asm/ptrace.h>
  32. #include <asm/mman.h>
  33. #include <asm/cputype.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/cacheflush.h>
  36. #include <asm/virt.h>
  37. #include <asm/kvm_arm.h>
  38. #include <asm/kvm_asm.h>
  39. #include <asm/kvm_mmu.h>
  40. #include <asm/kvm_emulate.h>
  41. #include <asm/kvm_coproc.h>
  42. #include <asm/kvm_psci.h>
  43. #ifdef REQUIRES_VIRT
  44. __asm__(".arch_extension virt");
  45. #endif
  46. static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  47. static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
  48. static unsigned long hyp_default_vectors;
  49. /* Per-CPU variable containing the currently running vcpu. */
  50. static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  51. /* The VMID used in the VTTBR */
  52. static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  53. static u8 kvm_next_vmid;
  54. static DEFINE_SPINLOCK(kvm_vmid_lock);
  55. static bool vgic_present;
  56. static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  57. {
  58. BUG_ON(preemptible());
  59. __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
  60. }
  61. /**
  62. * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  63. * Must be called from non-preemptible context
  64. */
  65. struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  66. {
  67. BUG_ON(preemptible());
  68. return __get_cpu_var(kvm_arm_running_vcpu);
  69. }
  70. /**
  71. * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  72. */
  73. struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
  74. {
  75. return &kvm_arm_running_vcpu;
  76. }
  77. int kvm_arch_hardware_enable(void *garbage)
  78. {
  79. return 0;
  80. }
  81. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  82. {
  83. return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  84. }
  85. void kvm_arch_hardware_disable(void *garbage)
  86. {
  87. }
  88. int kvm_arch_hardware_setup(void)
  89. {
  90. return 0;
  91. }
  92. void kvm_arch_hardware_unsetup(void)
  93. {
  94. }
  95. void kvm_arch_check_processor_compat(void *rtn)
  96. {
  97. *(int *)rtn = 0;
  98. }
  99. void kvm_arch_sync_events(struct kvm *kvm)
  100. {
  101. }
  102. /**
  103. * kvm_arch_init_vm - initializes a VM data structure
  104. * @kvm: pointer to the KVM struct
  105. */
  106. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  107. {
  108. int ret = 0;
  109. if (type)
  110. return -EINVAL;
  111. ret = kvm_alloc_stage2_pgd(kvm);
  112. if (ret)
  113. goto out_fail_alloc;
  114. ret = create_hyp_mappings(kvm, kvm + 1);
  115. if (ret)
  116. goto out_free_stage2_pgd;
  117. /* Mark the initial VMID generation invalid */
  118. kvm->arch.vmid_gen = 0;
  119. return ret;
  120. out_free_stage2_pgd:
  121. kvm_free_stage2_pgd(kvm);
  122. out_fail_alloc:
  123. return ret;
  124. }
  125. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  126. {
  127. return VM_FAULT_SIGBUS;
  128. }
  129. void kvm_arch_free_memslot(struct kvm_memory_slot *free,
  130. struct kvm_memory_slot *dont)
  131. {
  132. }
  133. int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
  134. {
  135. return 0;
  136. }
  137. /**
  138. * kvm_arch_destroy_vm - destroy the VM data structure
  139. * @kvm: pointer to the KVM struct
  140. */
  141. void kvm_arch_destroy_vm(struct kvm *kvm)
  142. {
  143. int i;
  144. kvm_free_stage2_pgd(kvm);
  145. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  146. if (kvm->vcpus[i]) {
  147. kvm_arch_vcpu_free(kvm->vcpus[i]);
  148. kvm->vcpus[i] = NULL;
  149. }
  150. }
  151. }
  152. int kvm_dev_ioctl_check_extension(long ext)
  153. {
  154. int r;
  155. switch (ext) {
  156. case KVM_CAP_IRQCHIP:
  157. r = vgic_present;
  158. break;
  159. case KVM_CAP_USER_MEMORY:
  160. case KVM_CAP_SYNC_MMU:
  161. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  162. case KVM_CAP_ONE_REG:
  163. case KVM_CAP_ARM_PSCI:
  164. r = 1;
  165. break;
  166. case KVM_CAP_COALESCED_MMIO:
  167. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  168. break;
  169. case KVM_CAP_ARM_SET_DEVICE_ADDR:
  170. r = 1;
  171. case KVM_CAP_NR_VCPUS:
  172. r = num_online_cpus();
  173. break;
  174. case KVM_CAP_MAX_VCPUS:
  175. r = KVM_MAX_VCPUS;
  176. break;
  177. default:
  178. r = 0;
  179. break;
  180. }
  181. return r;
  182. }
  183. long kvm_arch_dev_ioctl(struct file *filp,
  184. unsigned int ioctl, unsigned long arg)
  185. {
  186. return -EINVAL;
  187. }
  188. int kvm_arch_set_memory_region(struct kvm *kvm,
  189. struct kvm_userspace_memory_region *mem,
  190. struct kvm_memory_slot old,
  191. int user_alloc)
  192. {
  193. return 0;
  194. }
  195. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  196. struct kvm_memory_slot *memslot,
  197. struct kvm_memory_slot old,
  198. struct kvm_userspace_memory_region *mem,
  199. bool user_alloc)
  200. {
  201. return 0;
  202. }
  203. void kvm_arch_commit_memory_region(struct kvm *kvm,
  204. struct kvm_userspace_memory_region *mem,
  205. struct kvm_memory_slot old,
  206. bool user_alloc)
  207. {
  208. }
  209. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  210. {
  211. }
  212. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  213. struct kvm_memory_slot *slot)
  214. {
  215. }
  216. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  217. {
  218. int err;
  219. struct kvm_vcpu *vcpu;
  220. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  221. if (!vcpu) {
  222. err = -ENOMEM;
  223. goto out;
  224. }
  225. err = kvm_vcpu_init(vcpu, kvm, id);
  226. if (err)
  227. goto free_vcpu;
  228. err = create_hyp_mappings(vcpu, vcpu + 1);
  229. if (err)
  230. goto vcpu_uninit;
  231. return vcpu;
  232. vcpu_uninit:
  233. kvm_vcpu_uninit(vcpu);
  234. free_vcpu:
  235. kmem_cache_free(kvm_vcpu_cache, vcpu);
  236. out:
  237. return ERR_PTR(err);
  238. }
  239. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  240. {
  241. return 0;
  242. }
  243. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  244. {
  245. kvm_mmu_free_memory_caches(vcpu);
  246. kvm_timer_vcpu_terminate(vcpu);
  247. kmem_cache_free(kvm_vcpu_cache, vcpu);
  248. }
  249. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  250. {
  251. kvm_arch_vcpu_free(vcpu);
  252. }
  253. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  254. {
  255. return 0;
  256. }
  257. int __attribute_const__ kvm_target_cpu(void)
  258. {
  259. unsigned long implementor = read_cpuid_implementor();
  260. unsigned long part_number = read_cpuid_part_number();
  261. if (implementor != ARM_CPU_IMP_ARM)
  262. return -EINVAL;
  263. switch (part_number) {
  264. case ARM_CPU_PART_CORTEX_A15:
  265. return KVM_ARM_TARGET_CORTEX_A15;
  266. default:
  267. return -EINVAL;
  268. }
  269. }
  270. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  271. {
  272. int ret;
  273. /* Force users to call KVM_ARM_VCPU_INIT */
  274. vcpu->arch.target = -1;
  275. /* Set up VGIC */
  276. ret = kvm_vgic_vcpu_init(vcpu);
  277. if (ret)
  278. return ret;
  279. /* Set up the timer */
  280. kvm_timer_vcpu_init(vcpu);
  281. return 0;
  282. }
  283. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  284. {
  285. }
  286. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  287. {
  288. vcpu->cpu = cpu;
  289. vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
  290. /*
  291. * Check whether this vcpu requires the cache to be flushed on
  292. * this physical CPU. This is a consequence of doing dcache
  293. * operations by set/way on this vcpu. We do it here to be in
  294. * a non-preemptible section.
  295. */
  296. if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
  297. flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
  298. kvm_arm_set_running_vcpu(vcpu);
  299. }
  300. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  301. {
  302. kvm_arm_set_running_vcpu(NULL);
  303. }
  304. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  305. struct kvm_guest_debug *dbg)
  306. {
  307. return -EINVAL;
  308. }
  309. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  310. struct kvm_mp_state *mp_state)
  311. {
  312. return -EINVAL;
  313. }
  314. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  315. struct kvm_mp_state *mp_state)
  316. {
  317. return -EINVAL;
  318. }
  319. /**
  320. * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
  321. * @v: The VCPU pointer
  322. *
  323. * If the guest CPU is not waiting for interrupts or an interrupt line is
  324. * asserted, the CPU is by definition runnable.
  325. */
  326. int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
  327. {
  328. return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
  329. }
  330. /* Just ensure a guest exit from a particular CPU */
  331. static void exit_vm_noop(void *info)
  332. {
  333. }
  334. void force_vm_exit(const cpumask_t *mask)
  335. {
  336. smp_call_function_many(mask, exit_vm_noop, NULL, true);
  337. }
  338. /**
  339. * need_new_vmid_gen - check that the VMID is still valid
  340. * @kvm: The VM's VMID to checkt
  341. *
  342. * return true if there is a new generation of VMIDs being used
  343. *
  344. * The hardware supports only 256 values with the value zero reserved for the
  345. * host, so we check if an assigned value belongs to a previous generation,
  346. * which which requires us to assign a new value. If we're the first to use a
  347. * VMID for the new generation, we must flush necessary caches and TLBs on all
  348. * CPUs.
  349. */
  350. static bool need_new_vmid_gen(struct kvm *kvm)
  351. {
  352. return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
  353. }
  354. /**
  355. * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
  356. * @kvm The guest that we are about to run
  357. *
  358. * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
  359. * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
  360. * caches and TLBs.
  361. */
  362. static void update_vttbr(struct kvm *kvm)
  363. {
  364. phys_addr_t pgd_phys;
  365. u64 vmid;
  366. if (!need_new_vmid_gen(kvm))
  367. return;
  368. spin_lock(&kvm_vmid_lock);
  369. /*
  370. * We need to re-check the vmid_gen here to ensure that if another vcpu
  371. * already allocated a valid vmid for this vm, then this vcpu should
  372. * use the same vmid.
  373. */
  374. if (!need_new_vmid_gen(kvm)) {
  375. spin_unlock(&kvm_vmid_lock);
  376. return;
  377. }
  378. /* First user of a new VMID generation? */
  379. if (unlikely(kvm_next_vmid == 0)) {
  380. atomic64_inc(&kvm_vmid_gen);
  381. kvm_next_vmid = 1;
  382. /*
  383. * On SMP we know no other CPUs can use this CPU's or each
  384. * other's VMID after force_vm_exit returns since the
  385. * kvm_vmid_lock blocks them from reentry to the guest.
  386. */
  387. force_vm_exit(cpu_all_mask);
  388. /*
  389. * Now broadcast TLB + ICACHE invalidation over the inner
  390. * shareable domain to make sure all data structures are
  391. * clean.
  392. */
  393. kvm_call_hyp(__kvm_flush_vm_context);
  394. }
  395. kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
  396. kvm->arch.vmid = kvm_next_vmid;
  397. kvm_next_vmid++;
  398. /* update vttbr to be used with the new vmid */
  399. pgd_phys = virt_to_phys(kvm->arch.pgd);
  400. vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
  401. kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
  402. kvm->arch.vttbr |= vmid;
  403. spin_unlock(&kvm_vmid_lock);
  404. }
  405. static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
  406. {
  407. if (likely(vcpu->arch.has_run_once))
  408. return 0;
  409. vcpu->arch.has_run_once = true;
  410. /*
  411. * Initialize the VGIC before running a vcpu the first time on
  412. * this VM.
  413. */
  414. if (irqchip_in_kernel(vcpu->kvm) &&
  415. unlikely(!vgic_initialized(vcpu->kvm))) {
  416. int ret = kvm_vgic_init(vcpu->kvm);
  417. if (ret)
  418. return ret;
  419. }
  420. /*
  421. * Handle the "start in power-off" case by calling into the
  422. * PSCI code.
  423. */
  424. if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
  425. *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
  426. kvm_psci_call(vcpu);
  427. }
  428. return 0;
  429. }
  430. static void vcpu_pause(struct kvm_vcpu *vcpu)
  431. {
  432. wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
  433. wait_event_interruptible(*wq, !vcpu->arch.pause);
  434. }
  435. /**
  436. * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
  437. * @vcpu: The VCPU pointer
  438. * @run: The kvm_run structure pointer used for userspace state exchange
  439. *
  440. * This function is called through the VCPU_RUN ioctl called from user space. It
  441. * will execute VM code in a loop until the time slice for the process is used
  442. * or some emulation is needed from user space in which case the function will
  443. * return with return value 0 and with the kvm_run structure filled in with the
  444. * required data for the requested emulation.
  445. */
  446. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  447. {
  448. int ret;
  449. sigset_t sigsaved;
  450. /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
  451. if (unlikely(vcpu->arch.target < 0))
  452. return -ENOEXEC;
  453. ret = kvm_vcpu_first_run_init(vcpu);
  454. if (ret)
  455. return ret;
  456. if (run->exit_reason == KVM_EXIT_MMIO) {
  457. ret = kvm_handle_mmio_return(vcpu, vcpu->run);
  458. if (ret)
  459. return ret;
  460. }
  461. if (vcpu->sigset_active)
  462. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  463. ret = 1;
  464. run->exit_reason = KVM_EXIT_UNKNOWN;
  465. while (ret > 0) {
  466. /*
  467. * Check conditions before entering the guest
  468. */
  469. cond_resched();
  470. update_vttbr(vcpu->kvm);
  471. if (vcpu->arch.pause)
  472. vcpu_pause(vcpu);
  473. kvm_vgic_flush_hwstate(vcpu);
  474. kvm_timer_flush_hwstate(vcpu);
  475. local_irq_disable();
  476. /*
  477. * Re-check atomic conditions
  478. */
  479. if (signal_pending(current)) {
  480. ret = -EINTR;
  481. run->exit_reason = KVM_EXIT_INTR;
  482. }
  483. if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
  484. local_irq_enable();
  485. kvm_timer_sync_hwstate(vcpu);
  486. kvm_vgic_sync_hwstate(vcpu);
  487. continue;
  488. }
  489. /**************************************************************
  490. * Enter the guest
  491. */
  492. trace_kvm_entry(*vcpu_pc(vcpu));
  493. kvm_guest_enter();
  494. vcpu->mode = IN_GUEST_MODE;
  495. ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
  496. vcpu->mode = OUTSIDE_GUEST_MODE;
  497. vcpu->arch.last_pcpu = smp_processor_id();
  498. kvm_guest_exit();
  499. trace_kvm_exit(*vcpu_pc(vcpu));
  500. /*
  501. * We may have taken a host interrupt in HYP mode (ie
  502. * while executing the guest). This interrupt is still
  503. * pending, as we haven't serviced it yet!
  504. *
  505. * We're now back in SVC mode, with interrupts
  506. * disabled. Enabling the interrupts now will have
  507. * the effect of taking the interrupt again, in SVC
  508. * mode this time.
  509. */
  510. local_irq_enable();
  511. /*
  512. * Back from guest
  513. *************************************************************/
  514. kvm_timer_sync_hwstate(vcpu);
  515. kvm_vgic_sync_hwstate(vcpu);
  516. ret = handle_exit(vcpu, run, ret);
  517. }
  518. if (vcpu->sigset_active)
  519. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  520. return ret;
  521. }
  522. static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
  523. {
  524. int bit_index;
  525. bool set;
  526. unsigned long *ptr;
  527. if (number == KVM_ARM_IRQ_CPU_IRQ)
  528. bit_index = __ffs(HCR_VI);
  529. else /* KVM_ARM_IRQ_CPU_FIQ */
  530. bit_index = __ffs(HCR_VF);
  531. ptr = (unsigned long *)&vcpu->arch.irq_lines;
  532. if (level)
  533. set = test_and_set_bit(bit_index, ptr);
  534. else
  535. set = test_and_clear_bit(bit_index, ptr);
  536. /*
  537. * If we didn't change anything, no need to wake up or kick other CPUs
  538. */
  539. if (set == level)
  540. return 0;
  541. /*
  542. * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
  543. * trigger a world-switch round on the running physical CPU to set the
  544. * virtual IRQ/FIQ fields in the HCR appropriately.
  545. */
  546. kvm_vcpu_kick(vcpu);
  547. return 0;
  548. }
  549. int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
  550. {
  551. u32 irq = irq_level->irq;
  552. unsigned int irq_type, vcpu_idx, irq_num;
  553. int nrcpus = atomic_read(&kvm->online_vcpus);
  554. struct kvm_vcpu *vcpu = NULL;
  555. bool level = irq_level->level;
  556. irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
  557. vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
  558. irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
  559. trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
  560. switch (irq_type) {
  561. case KVM_ARM_IRQ_TYPE_CPU:
  562. if (irqchip_in_kernel(kvm))
  563. return -ENXIO;
  564. if (vcpu_idx >= nrcpus)
  565. return -EINVAL;
  566. vcpu = kvm_get_vcpu(kvm, vcpu_idx);
  567. if (!vcpu)
  568. return -EINVAL;
  569. if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
  570. return -EINVAL;
  571. return vcpu_interrupt_line(vcpu, irq_num, level);
  572. case KVM_ARM_IRQ_TYPE_PPI:
  573. if (!irqchip_in_kernel(kvm))
  574. return -ENXIO;
  575. if (vcpu_idx >= nrcpus)
  576. return -EINVAL;
  577. vcpu = kvm_get_vcpu(kvm, vcpu_idx);
  578. if (!vcpu)
  579. return -EINVAL;
  580. if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
  581. return -EINVAL;
  582. return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
  583. case KVM_ARM_IRQ_TYPE_SPI:
  584. if (!irqchip_in_kernel(kvm))
  585. return -ENXIO;
  586. if (irq_num < VGIC_NR_PRIVATE_IRQS ||
  587. irq_num > KVM_ARM_IRQ_GIC_MAX)
  588. return -EINVAL;
  589. return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
  590. }
  591. return -EINVAL;
  592. }
  593. long kvm_arch_vcpu_ioctl(struct file *filp,
  594. unsigned int ioctl, unsigned long arg)
  595. {
  596. struct kvm_vcpu *vcpu = filp->private_data;
  597. void __user *argp = (void __user *)arg;
  598. switch (ioctl) {
  599. case KVM_ARM_VCPU_INIT: {
  600. struct kvm_vcpu_init init;
  601. if (copy_from_user(&init, argp, sizeof(init)))
  602. return -EFAULT;
  603. return kvm_vcpu_set_target(vcpu, &init);
  604. }
  605. case KVM_SET_ONE_REG:
  606. case KVM_GET_ONE_REG: {
  607. struct kvm_one_reg reg;
  608. if (copy_from_user(&reg, argp, sizeof(reg)))
  609. return -EFAULT;
  610. if (ioctl == KVM_SET_ONE_REG)
  611. return kvm_arm_set_reg(vcpu, &reg);
  612. else
  613. return kvm_arm_get_reg(vcpu, &reg);
  614. }
  615. case KVM_GET_REG_LIST: {
  616. struct kvm_reg_list __user *user_list = argp;
  617. struct kvm_reg_list reg_list;
  618. unsigned n;
  619. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  620. return -EFAULT;
  621. n = reg_list.n;
  622. reg_list.n = kvm_arm_num_regs(vcpu);
  623. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  624. return -EFAULT;
  625. if (n < reg_list.n)
  626. return -E2BIG;
  627. return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
  628. }
  629. default:
  630. return -EINVAL;
  631. }
  632. }
  633. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  634. {
  635. return -EINVAL;
  636. }
  637. static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
  638. struct kvm_arm_device_addr *dev_addr)
  639. {
  640. unsigned long dev_id, type;
  641. dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
  642. KVM_ARM_DEVICE_ID_SHIFT;
  643. type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
  644. KVM_ARM_DEVICE_TYPE_SHIFT;
  645. switch (dev_id) {
  646. case KVM_ARM_DEVICE_VGIC_V2:
  647. if (!vgic_present)
  648. return -ENXIO;
  649. return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
  650. default:
  651. return -ENODEV;
  652. }
  653. }
  654. long kvm_arch_vm_ioctl(struct file *filp,
  655. unsigned int ioctl, unsigned long arg)
  656. {
  657. struct kvm *kvm = filp->private_data;
  658. void __user *argp = (void __user *)arg;
  659. switch (ioctl) {
  660. case KVM_CREATE_IRQCHIP: {
  661. if (vgic_present)
  662. return kvm_vgic_create(kvm);
  663. else
  664. return -ENXIO;
  665. }
  666. case KVM_ARM_SET_DEVICE_ADDR: {
  667. struct kvm_arm_device_addr dev_addr;
  668. if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
  669. return -EFAULT;
  670. return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
  671. }
  672. default:
  673. return -EINVAL;
  674. }
  675. }
  676. static void cpu_init_hyp_mode(void *vector)
  677. {
  678. unsigned long long pgd_ptr;
  679. unsigned long hyp_stack_ptr;
  680. unsigned long stack_page;
  681. unsigned long vector_ptr;
  682. /* Switch from the HYP stub to our own HYP init vector */
  683. __hyp_set_vectors((unsigned long)vector);
  684. pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
  685. stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
  686. hyp_stack_ptr = stack_page + PAGE_SIZE;
  687. vector_ptr = (unsigned long)__kvm_hyp_vector;
  688. __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
  689. }
  690. /**
  691. * Inits Hyp-mode on all online CPUs
  692. */
  693. static int init_hyp_mode(void)
  694. {
  695. phys_addr_t init_phys_addr;
  696. int cpu;
  697. int err = 0;
  698. /*
  699. * Allocate Hyp PGD and setup Hyp identity mapping
  700. */
  701. err = kvm_mmu_init();
  702. if (err)
  703. goto out_err;
  704. /*
  705. * It is probably enough to obtain the default on one
  706. * CPU. It's unlikely to be different on the others.
  707. */
  708. hyp_default_vectors = __hyp_get_vectors();
  709. /*
  710. * Allocate stack pages for Hypervisor-mode
  711. */
  712. for_each_possible_cpu(cpu) {
  713. unsigned long stack_page;
  714. stack_page = __get_free_page(GFP_KERNEL);
  715. if (!stack_page) {
  716. err = -ENOMEM;
  717. goto out_free_stack_pages;
  718. }
  719. per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
  720. }
  721. /*
  722. * Execute the init code on each CPU.
  723. *
  724. * Note: The stack is not mapped yet, so don't do anything else than
  725. * initializing the hypervisor mode on each CPU using a local stack
  726. * space for temporary storage.
  727. */
  728. init_phys_addr = virt_to_phys(__kvm_hyp_init);
  729. for_each_online_cpu(cpu) {
  730. smp_call_function_single(cpu, cpu_init_hyp_mode,
  731. (void *)(long)init_phys_addr, 1);
  732. }
  733. /*
  734. * Unmap the identity mapping
  735. */
  736. kvm_clear_hyp_idmap();
  737. /*
  738. * Map the Hyp-code called directly from the host
  739. */
  740. err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
  741. if (err) {
  742. kvm_err("Cannot map world-switch code\n");
  743. goto out_free_mappings;
  744. }
  745. /*
  746. * Map the Hyp stack pages
  747. */
  748. for_each_possible_cpu(cpu) {
  749. char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
  750. err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
  751. if (err) {
  752. kvm_err("Cannot map hyp stack\n");
  753. goto out_free_mappings;
  754. }
  755. }
  756. /*
  757. * Map the host VFP structures
  758. */
  759. kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
  760. if (!kvm_host_vfp_state) {
  761. err = -ENOMEM;
  762. kvm_err("Cannot allocate host VFP state\n");
  763. goto out_free_mappings;
  764. }
  765. for_each_possible_cpu(cpu) {
  766. struct vfp_hard_struct *vfp;
  767. vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
  768. err = create_hyp_mappings(vfp, vfp + 1);
  769. if (err) {
  770. kvm_err("Cannot map host VFP state: %d\n", err);
  771. goto out_free_vfp;
  772. }
  773. }
  774. /*
  775. * Init HYP view of VGIC
  776. */
  777. err = kvm_vgic_hyp_init();
  778. if (err)
  779. goto out_free_vfp;
  780. #ifdef CONFIG_KVM_ARM_VGIC
  781. vgic_present = true;
  782. #endif
  783. /*
  784. * Init HYP architected timer support
  785. */
  786. err = kvm_timer_hyp_init();
  787. if (err)
  788. goto out_free_mappings;
  789. kvm_info("Hyp mode initialized successfully\n");
  790. return 0;
  791. out_free_vfp:
  792. free_percpu(kvm_host_vfp_state);
  793. out_free_mappings:
  794. free_hyp_pmds();
  795. out_free_stack_pages:
  796. for_each_possible_cpu(cpu)
  797. free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
  798. out_err:
  799. kvm_err("error initializing Hyp mode: %d\n", err);
  800. return err;
  801. }
  802. /**
  803. * Initialize Hyp-mode and memory mappings on all CPUs.
  804. */
  805. int kvm_arch_init(void *opaque)
  806. {
  807. int err;
  808. if (!is_hyp_mode_available()) {
  809. kvm_err("HYP mode not available\n");
  810. return -ENODEV;
  811. }
  812. if (kvm_target_cpu() < 0) {
  813. kvm_err("Target CPU not supported!\n");
  814. return -ENODEV;
  815. }
  816. err = init_hyp_mode();
  817. if (err)
  818. goto out_err;
  819. kvm_coproc_table_init();
  820. return 0;
  821. out_err:
  822. return err;
  823. }
  824. /* NOP: Compiling as a module not supported */
  825. void kvm_arch_exit(void)
  826. {
  827. }
  828. static int arm_init(void)
  829. {
  830. int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  831. return rc;
  832. }
  833. module_init(arm_init);