mmap.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853
  1. /**
  2. * eCryptfs: Linux filesystem encryption layer
  3. * This is where eCryptfs coordinates the symmetric encryption and
  4. * decryption of the file data as it passes between the lower
  5. * encrypted file and the upper decrypted file.
  6. *
  7. * Copyright (C) 1997-2003 Erez Zadok
  8. * Copyright (C) 2001-2003 Stony Brook University
  9. * Copyright (C) 2004-2007 International Business Machines Corp.
  10. * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License as
  14. * published by the Free Software Foundation; either version 2 of the
  15. * License, or (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful, but
  18. * WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  25. * 02111-1307, USA.
  26. */
  27. #include <linux/pagemap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/page-flags.h>
  30. #include <linux/mount.h>
  31. #include <linux/file.h>
  32. #include <linux/crypto.h>
  33. #include <linux/scatterlist.h>
  34. #include "ecryptfs_kernel.h"
  35. struct kmem_cache *ecryptfs_lower_page_cache;
  36. /**
  37. * ecryptfs_get1page
  38. *
  39. * Get one page from cache or lower f/s, return error otherwise.
  40. *
  41. * Returns unlocked and up-to-date page (if ok), with increased
  42. * refcnt.
  43. */
  44. static struct page *ecryptfs_get1page(struct file *file, int index)
  45. {
  46. struct page *page;
  47. struct dentry *dentry;
  48. struct inode *inode;
  49. struct address_space *mapping;
  50. dentry = file->f_path.dentry;
  51. inode = dentry->d_inode;
  52. mapping = inode->i_mapping;
  53. page = read_cache_page(mapping, index,
  54. (filler_t *)mapping->a_ops->readpage,
  55. (void *)file);
  56. if (IS_ERR(page))
  57. goto out;
  58. wait_on_page_locked(page);
  59. out:
  60. return page;
  61. }
  62. static
  63. int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros);
  64. /**
  65. * ecryptfs_fill_zeros
  66. * @file: The ecryptfs file
  67. * @new_length: The new length of the data in the underlying file;
  68. * everything between the prior end of the file and the
  69. * new end of the file will be filled with zero's.
  70. * new_length must be greater than current length
  71. *
  72. * Function for handling lseek-ing past the end of the file.
  73. *
  74. * This function does not support shrinking, only growing a file.
  75. *
  76. * Returns zero on success; non-zero otherwise.
  77. */
  78. int ecryptfs_fill_zeros(struct file *file, loff_t new_length)
  79. {
  80. int rc = 0;
  81. struct dentry *dentry = file->f_path.dentry;
  82. struct inode *inode = dentry->d_inode;
  83. pgoff_t old_end_page_index = 0;
  84. pgoff_t index = old_end_page_index;
  85. int old_end_pos_in_page = -1;
  86. pgoff_t new_end_page_index;
  87. int new_end_pos_in_page;
  88. loff_t cur_length = i_size_read(inode);
  89. if (cur_length != 0) {
  90. index = old_end_page_index =
  91. ((cur_length - 1) >> PAGE_CACHE_SHIFT);
  92. old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK);
  93. }
  94. new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT);
  95. new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK);
  96. ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; "
  97. "old_end_pos_in_page = [%d]; "
  98. "new_end_page_index = [0x%.16x]; "
  99. "new_end_pos_in_page = [%d]\n",
  100. old_end_page_index, old_end_pos_in_page,
  101. new_end_page_index, new_end_pos_in_page);
  102. if (old_end_page_index == new_end_page_index) {
  103. /* Start and end are in the same page; we just need to
  104. * set a portion of the existing page to zero's */
  105. rc = write_zeros(file, index, (old_end_pos_in_page + 1),
  106. (new_end_pos_in_page - old_end_pos_in_page));
  107. if (rc)
  108. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  109. "index=[0x%.16x], "
  110. "old_end_pos_in_page=[d], "
  111. "(PAGE_CACHE_SIZE - new_end_pos_in_page"
  112. "=[%d]"
  113. ")=[d]) returned [%d]\n", file, index,
  114. old_end_pos_in_page,
  115. new_end_pos_in_page,
  116. (PAGE_CACHE_SIZE - new_end_pos_in_page),
  117. rc);
  118. goto out;
  119. }
  120. /* Fill the remainder of the previous last page with zeros */
  121. rc = write_zeros(file, index, (old_end_pos_in_page + 1),
  122. ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page));
  123. if (rc) {
  124. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  125. "index=[0x%.16x], old_end_pos_in_page=[d], "
  126. "(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) "
  127. "returned [%d]\n", file, index,
  128. old_end_pos_in_page,
  129. (PAGE_CACHE_SIZE - old_end_pos_in_page), rc);
  130. goto out;
  131. }
  132. index++;
  133. while (index < new_end_page_index) {
  134. /* Fill all intermediate pages with zeros */
  135. rc = write_zeros(file, index, 0, PAGE_CACHE_SIZE);
  136. if (rc) {
  137. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  138. "index=[0x%.16x], "
  139. "old_end_pos_in_page=[d], "
  140. "(PAGE_CACHE_SIZE - new_end_pos_in_page"
  141. "=[%d]"
  142. ")=[d]) returned [%d]\n", file, index,
  143. old_end_pos_in_page,
  144. new_end_pos_in_page,
  145. (PAGE_CACHE_SIZE - new_end_pos_in_page),
  146. rc);
  147. goto out;
  148. }
  149. index++;
  150. }
  151. /* Fill the portion at the beginning of the last new page with
  152. * zero's */
  153. rc = write_zeros(file, index, 0, (new_end_pos_in_page + 1));
  154. if (rc) {
  155. ecryptfs_printk(KERN_ERR, "write_zeros(file="
  156. "[%p], index=[0x%.16x], 0, "
  157. "new_end_pos_in_page=[%d]"
  158. "returned [%d]\n", file, index,
  159. new_end_pos_in_page, rc);
  160. goto out;
  161. }
  162. out:
  163. return rc;
  164. }
  165. /**
  166. * ecryptfs_writepage
  167. * @page: Page that is locked before this call is made
  168. *
  169. * Returns zero on success; non-zero otherwise
  170. */
  171. static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
  172. {
  173. struct ecryptfs_page_crypt_context ctx;
  174. int rc;
  175. ctx.page = page;
  176. ctx.mode = ECRYPTFS_WRITEPAGE_MODE;
  177. ctx.param.wbc = wbc;
  178. rc = ecryptfs_encrypt_page(&ctx);
  179. if (rc) {
  180. ecryptfs_printk(KERN_WARNING, "Error encrypting "
  181. "page (upper index [0x%.16x])\n", page->index);
  182. ClearPageUptodate(page);
  183. goto out;
  184. }
  185. SetPageUptodate(page);
  186. unlock_page(page);
  187. out:
  188. return rc;
  189. }
  190. /**
  191. * Reads the data from the lower file file at index lower_page_index
  192. * and copies that data into page.
  193. *
  194. * @param page Page to fill
  195. * @param lower_page_index Index of the page in the lower file to get
  196. */
  197. int ecryptfs_do_readpage(struct file *file, struct page *page,
  198. pgoff_t lower_page_index)
  199. {
  200. int rc;
  201. struct dentry *dentry;
  202. struct file *lower_file;
  203. struct dentry *lower_dentry;
  204. struct inode *inode;
  205. struct inode *lower_inode;
  206. char *page_data;
  207. struct page *lower_page = NULL;
  208. char *lower_page_data;
  209. const struct address_space_operations *lower_a_ops;
  210. dentry = file->f_path.dentry;
  211. lower_file = ecryptfs_file_to_lower(file);
  212. lower_dentry = ecryptfs_dentry_to_lower(dentry);
  213. inode = dentry->d_inode;
  214. lower_inode = ecryptfs_inode_to_lower(inode);
  215. lower_a_ops = lower_inode->i_mapping->a_ops;
  216. lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index,
  217. (filler_t *)lower_a_ops->readpage,
  218. (void *)lower_file);
  219. if (IS_ERR(lower_page)) {
  220. rc = PTR_ERR(lower_page);
  221. lower_page = NULL;
  222. ecryptfs_printk(KERN_ERR, "Error reading from page cache\n");
  223. goto out;
  224. }
  225. wait_on_page_locked(lower_page);
  226. page_data = (char *)kmap(page);
  227. if (!page_data) {
  228. rc = -ENOMEM;
  229. ecryptfs_printk(KERN_ERR, "Error mapping page\n");
  230. goto out;
  231. }
  232. lower_page_data = (char *)kmap(lower_page);
  233. if (!lower_page_data) {
  234. rc = -ENOMEM;
  235. ecryptfs_printk(KERN_ERR, "Error mapping page\n");
  236. kunmap(page);
  237. goto out;
  238. }
  239. memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE);
  240. kunmap(lower_page);
  241. kunmap(page);
  242. rc = 0;
  243. out:
  244. if (likely(lower_page))
  245. page_cache_release(lower_page);
  246. if (rc == 0)
  247. SetPageUptodate(page);
  248. else
  249. ClearPageUptodate(page);
  250. return rc;
  251. }
  252. /**
  253. * Header Extent:
  254. * Octets 0-7: Unencrypted file size (big-endian)
  255. * Octets 8-15: eCryptfs special marker
  256. * Octets 16-19: Flags
  257. * Octet 16: File format version number (between 0 and 255)
  258. * Octets 17-18: Reserved
  259. * Octet 19: Bit 1 (lsb): Reserved
  260. * Bit 2: Encrypted?
  261. * Bits 3-8: Reserved
  262. * Octets 20-23: Header extent size (big-endian)
  263. * Octets 24-25: Number of header extents at front of file
  264. * (big-endian)
  265. * Octet 26: Begin RFC 2440 authentication token packet set
  266. */
  267. static void set_header_info(char *page_virt,
  268. struct ecryptfs_crypt_stat *crypt_stat)
  269. {
  270. size_t written;
  271. int save_num_header_extents_at_front =
  272. crypt_stat->num_header_extents_at_front;
  273. crypt_stat->num_header_extents_at_front = 1;
  274. ecryptfs_write_header_metadata(page_virt + 20, crypt_stat, &written);
  275. crypt_stat->num_header_extents_at_front =
  276. save_num_header_extents_at_front;
  277. }
  278. /**
  279. * ecryptfs_readpage
  280. * @file: This is an ecryptfs file
  281. * @page: ecryptfs associated page to stick the read data into
  282. *
  283. * Read in a page, decrypting if necessary.
  284. *
  285. * Returns zero on success; non-zero on error.
  286. */
  287. static int ecryptfs_readpage(struct file *file, struct page *page)
  288. {
  289. int rc = 0;
  290. struct ecryptfs_crypt_stat *crypt_stat;
  291. BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode));
  292. crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
  293. ->crypt_stat;
  294. if (!crypt_stat
  295. || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)
  296. || ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) {
  297. ecryptfs_printk(KERN_DEBUG,
  298. "Passing through unencrypted page\n");
  299. rc = ecryptfs_do_readpage(file, page, page->index);
  300. if (rc) {
  301. ecryptfs_printk(KERN_ERR, "Error reading page; rc = "
  302. "[%d]\n", rc);
  303. goto out;
  304. }
  305. } else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
  306. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
  307. int num_pages_in_header_region =
  308. (crypt_stat->header_extent_size
  309. / PAGE_CACHE_SIZE);
  310. if (page->index < num_pages_in_header_region) {
  311. char *page_virt;
  312. page_virt = (char *)kmap(page);
  313. if (!page_virt) {
  314. rc = -ENOMEM;
  315. printk(KERN_ERR "Error mapping page\n");
  316. goto out;
  317. }
  318. memset(page_virt, 0, PAGE_CACHE_SIZE);
  319. if (page->index == 0) {
  320. rc = ecryptfs_read_xattr_region(
  321. page_virt, file->f_path.dentry);
  322. set_header_info(page_virt, crypt_stat);
  323. }
  324. kunmap(page);
  325. if (rc) {
  326. printk(KERN_ERR "Error reading xattr "
  327. "region\n");
  328. goto out;
  329. }
  330. } else {
  331. rc = ecryptfs_do_readpage(
  332. file, page,
  333. (page->index
  334. - num_pages_in_header_region));
  335. if (rc) {
  336. printk(KERN_ERR "Error reading page; "
  337. "rc = [%d]\n", rc);
  338. goto out;
  339. }
  340. }
  341. } else {
  342. rc = ecryptfs_do_readpage(file, page, page->index);
  343. if (rc) {
  344. printk(KERN_ERR "Error reading page; rc = "
  345. "[%d]\n", rc);
  346. goto out;
  347. }
  348. }
  349. } else {
  350. rc = ecryptfs_decrypt_page(file, page);
  351. if (rc) {
  352. ecryptfs_printk(KERN_ERR, "Error decrypting page; "
  353. "rc = [%d]\n", rc);
  354. goto out;
  355. }
  356. }
  357. SetPageUptodate(page);
  358. out:
  359. if (rc)
  360. ClearPageUptodate(page);
  361. ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
  362. page->index);
  363. unlock_page(page);
  364. return rc;
  365. }
  366. /**
  367. * Called with lower inode mutex held.
  368. */
  369. static int fill_zeros_to_end_of_page(struct page *page, unsigned int to)
  370. {
  371. struct inode *inode = page->mapping->host;
  372. int end_byte_in_page;
  373. int rc = 0;
  374. char *page_virt;
  375. if ((i_size_read(inode) / PAGE_CACHE_SIZE) == page->index) {
  376. end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE;
  377. if (to > end_byte_in_page)
  378. end_byte_in_page = to;
  379. page_virt = kmap(page);
  380. if (!page_virt) {
  381. rc = -ENOMEM;
  382. ecryptfs_printk(KERN_WARNING,
  383. "Could not map page\n");
  384. goto out;
  385. }
  386. memset((page_virt + end_byte_in_page), 0,
  387. (PAGE_CACHE_SIZE - end_byte_in_page));
  388. kunmap(page);
  389. }
  390. out:
  391. return rc;
  392. }
  393. static int ecryptfs_prepare_write(struct file *file, struct page *page,
  394. unsigned from, unsigned to)
  395. {
  396. int rc = 0;
  397. kmap(page);
  398. if (from == 0 && to == PAGE_CACHE_SIZE)
  399. goto out; /* If we are writing a full page, it will be
  400. up to date. */
  401. if (!PageUptodate(page))
  402. rc = ecryptfs_do_readpage(file, page, page->index);
  403. out:
  404. return rc;
  405. }
  406. int ecryptfs_grab_and_map_lower_page(struct page **lower_page,
  407. char **lower_virt,
  408. struct inode *lower_inode,
  409. unsigned long lower_page_index)
  410. {
  411. int rc = 0;
  412. (*lower_page) = grab_cache_page(lower_inode->i_mapping,
  413. lower_page_index);
  414. if (!(*lower_page)) {
  415. ecryptfs_printk(KERN_ERR, "grab_cache_page for "
  416. "lower_page_index = [0x%.16x] failed\n",
  417. lower_page_index);
  418. rc = -EINVAL;
  419. goto out;
  420. }
  421. if (lower_virt)
  422. (*lower_virt) = kmap((*lower_page));
  423. else
  424. kmap((*lower_page));
  425. out:
  426. return rc;
  427. }
  428. int ecryptfs_writepage_and_release_lower_page(struct page *lower_page,
  429. struct inode *lower_inode,
  430. struct writeback_control *wbc)
  431. {
  432. int rc = 0;
  433. rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc);
  434. if (rc) {
  435. ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); "
  436. "rc = [%d]\n", rc);
  437. goto out;
  438. }
  439. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  440. page_cache_release(lower_page);
  441. out:
  442. return rc;
  443. }
  444. static void ecryptfs_unmap_and_release_lower_page(struct page *lower_page)
  445. {
  446. kunmap(lower_page);
  447. ecryptfs_printk(KERN_DEBUG, "Unlocking lower page with index = "
  448. "[0x%.16x]\n", lower_page->index);
  449. unlock_page(lower_page);
  450. page_cache_release(lower_page);
  451. }
  452. /**
  453. * ecryptfs_write_inode_size_to_header
  454. *
  455. * Writes the lower file size to the first 8 bytes of the header.
  456. *
  457. * Returns zero on success; non-zero on error.
  458. */
  459. static int ecryptfs_write_inode_size_to_header(struct file *lower_file,
  460. struct inode *lower_inode,
  461. struct inode *inode)
  462. {
  463. int rc = 0;
  464. struct page *header_page;
  465. char *header_virt;
  466. const struct address_space_operations *lower_a_ops;
  467. u64 file_size;
  468. rc = ecryptfs_grab_and_map_lower_page(&header_page, &header_virt,
  469. lower_inode, 0);
  470. if (rc) {
  471. ecryptfs_printk(KERN_ERR, "grab_cache_page for header page "
  472. "failed\n");
  473. goto out;
  474. }
  475. lower_a_ops = lower_inode->i_mapping->a_ops;
  476. rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8);
  477. file_size = (u64)i_size_read(inode);
  478. ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size);
  479. file_size = cpu_to_be64(file_size);
  480. memcpy(header_virt, &file_size, sizeof(u64));
  481. rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8);
  482. if (rc < 0)
  483. ecryptfs_printk(KERN_ERR, "Error commiting header page "
  484. "write\n");
  485. ecryptfs_unmap_and_release_lower_page(header_page);
  486. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  487. mark_inode_dirty_sync(inode);
  488. out:
  489. return rc;
  490. }
  491. static int ecryptfs_write_inode_size_to_xattr(struct inode *lower_inode,
  492. struct inode *inode,
  493. struct dentry *ecryptfs_dentry,
  494. int lower_i_mutex_held)
  495. {
  496. ssize_t size;
  497. void *xattr_virt;
  498. struct dentry *lower_dentry;
  499. u64 file_size;
  500. int rc;
  501. xattr_virt = kmem_cache_alloc(ecryptfs_xattr_cache, GFP_KERNEL);
  502. if (!xattr_virt) {
  503. printk(KERN_ERR "Out of memory whilst attempting to write "
  504. "inode size to xattr\n");
  505. rc = -ENOMEM;
  506. goto out;
  507. }
  508. lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
  509. if (!lower_dentry->d_inode->i_op->getxattr) {
  510. printk(KERN_WARNING
  511. "No support for setting xattr in lower filesystem\n");
  512. rc = -ENOSYS;
  513. kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
  514. goto out;
  515. }
  516. if (!lower_i_mutex_held)
  517. mutex_lock(&lower_dentry->d_inode->i_mutex);
  518. size = lower_dentry->d_inode->i_op->getxattr(lower_dentry,
  519. ECRYPTFS_XATTR_NAME,
  520. xattr_virt,
  521. PAGE_CACHE_SIZE);
  522. if (!lower_i_mutex_held)
  523. mutex_unlock(&lower_dentry->d_inode->i_mutex);
  524. if (size < 0)
  525. size = 8;
  526. file_size = (u64)i_size_read(inode);
  527. file_size = cpu_to_be64(file_size);
  528. memcpy(xattr_virt, &file_size, sizeof(u64));
  529. if (!lower_i_mutex_held)
  530. mutex_lock(&lower_dentry->d_inode->i_mutex);
  531. rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry,
  532. ECRYPTFS_XATTR_NAME,
  533. xattr_virt, size, 0);
  534. if (!lower_i_mutex_held)
  535. mutex_unlock(&lower_dentry->d_inode->i_mutex);
  536. if (rc)
  537. printk(KERN_ERR "Error whilst attempting to write inode size "
  538. "to lower file xattr; rc = [%d]\n", rc);
  539. kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
  540. out:
  541. return rc;
  542. }
  543. int
  544. ecryptfs_write_inode_size_to_metadata(struct file *lower_file,
  545. struct inode *lower_inode,
  546. struct inode *inode,
  547. struct dentry *ecryptfs_dentry,
  548. int lower_i_mutex_held)
  549. {
  550. struct ecryptfs_crypt_stat *crypt_stat;
  551. crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
  552. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
  553. return ecryptfs_write_inode_size_to_xattr(lower_inode, inode,
  554. ecryptfs_dentry,
  555. lower_i_mutex_held);
  556. else
  557. return ecryptfs_write_inode_size_to_header(lower_file,
  558. lower_inode,
  559. inode);
  560. }
  561. int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode,
  562. struct file *lower_file,
  563. unsigned long lower_page_index, int byte_offset,
  564. int region_bytes)
  565. {
  566. int rc = 0;
  567. rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL, lower_inode,
  568. lower_page_index);
  569. if (rc) {
  570. ecryptfs_printk(KERN_ERR, "Error attempting to grab and map "
  571. "lower page with index [0x%.16x]\n",
  572. lower_page_index);
  573. goto out;
  574. }
  575. rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file,
  576. (*lower_page),
  577. byte_offset,
  578. region_bytes);
  579. if (rc) {
  580. ecryptfs_printk(KERN_ERR, "prepare_write for "
  581. "lower_page_index = [0x%.16x] failed; rc = "
  582. "[%d]\n", lower_page_index, rc);
  583. }
  584. out:
  585. if (rc && (*lower_page)) {
  586. ecryptfs_unmap_and_release_lower_page(*lower_page);
  587. (*lower_page) = NULL;
  588. }
  589. return rc;
  590. }
  591. /**
  592. * ecryptfs_commit_lower_page
  593. *
  594. * Returns zero on success; non-zero on error
  595. */
  596. int
  597. ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode,
  598. struct file *lower_file, int byte_offset,
  599. int region_size)
  600. {
  601. int rc = 0;
  602. rc = lower_inode->i_mapping->a_ops->commit_write(
  603. lower_file, lower_page, byte_offset, region_size);
  604. if (rc < 0) {
  605. ecryptfs_printk(KERN_ERR,
  606. "Error committing write; rc = [%d]\n", rc);
  607. } else
  608. rc = 0;
  609. ecryptfs_unmap_and_release_lower_page(lower_page);
  610. return rc;
  611. }
  612. /**
  613. * ecryptfs_copy_page_to_lower
  614. *
  615. * Used for plaintext pass-through; no page index interpolation
  616. * required.
  617. */
  618. int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode,
  619. struct file *lower_file)
  620. {
  621. int rc = 0;
  622. struct page *lower_page;
  623. rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file,
  624. page->index, 0, PAGE_CACHE_SIZE);
  625. if (rc) {
  626. ecryptfs_printk(KERN_ERR, "Error attempting to get page "
  627. "at index [0x%.16x]\n", page->index);
  628. goto out;
  629. }
  630. /* TODO: aops */
  631. memcpy((char *)page_address(lower_page), page_address(page),
  632. PAGE_CACHE_SIZE);
  633. rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file,
  634. 0, PAGE_CACHE_SIZE);
  635. if (rc)
  636. ecryptfs_printk(KERN_ERR, "Error attempting to commit page "
  637. "at index [0x%.16x]\n", page->index);
  638. out:
  639. return rc;
  640. }
  641. struct kmem_cache *ecryptfs_xattr_cache;
  642. /**
  643. * ecryptfs_commit_write
  644. * @file: The eCryptfs file object
  645. * @page: The eCryptfs page
  646. * @from: Ignored (we rotate the page IV on each write)
  647. * @to: Ignored
  648. *
  649. * This is where we encrypt the data and pass the encrypted data to
  650. * the lower filesystem. In OpenPGP-compatible mode, we operate on
  651. * entire underlying packets.
  652. */
  653. static int ecryptfs_commit_write(struct file *file, struct page *page,
  654. unsigned from, unsigned to)
  655. {
  656. struct ecryptfs_page_crypt_context ctx;
  657. loff_t pos;
  658. struct inode *inode;
  659. struct inode *lower_inode;
  660. struct file *lower_file;
  661. struct ecryptfs_crypt_stat *crypt_stat;
  662. int rc;
  663. inode = page->mapping->host;
  664. lower_inode = ecryptfs_inode_to_lower(inode);
  665. lower_file = ecryptfs_file_to_lower(file);
  666. mutex_lock(&lower_inode->i_mutex);
  667. crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
  668. ->crypt_stat;
  669. if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) {
  670. ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in "
  671. "crypt_stat at memory location [%p]\n", crypt_stat);
  672. ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE);
  673. } else
  674. ecryptfs_printk(KERN_DEBUG, "Not a new file\n");
  675. ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
  676. "(page w/ index = [0x%.16x], to = [%d])\n", page->index,
  677. to);
  678. rc = fill_zeros_to_end_of_page(page, to);
  679. if (rc) {
  680. ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
  681. "zeros in page with index = [0x%.16x]\n",
  682. page->index);
  683. goto out;
  684. }
  685. ctx.page = page;
  686. ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE;
  687. ctx.param.lower_file = lower_file;
  688. rc = ecryptfs_encrypt_page(&ctx);
  689. if (rc) {
  690. ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
  691. "index [0x%.16x])\n", page->index);
  692. goto out;
  693. }
  694. inode->i_blocks = lower_inode->i_blocks;
  695. pos = (page->index << PAGE_CACHE_SHIFT) + to;
  696. if (pos > i_size_read(inode)) {
  697. i_size_write(inode, pos);
  698. ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
  699. "[0x%.16x]\n", i_size_read(inode));
  700. }
  701. rc = ecryptfs_write_inode_size_to_metadata(lower_file, lower_inode,
  702. inode, file->f_dentry,
  703. ECRYPTFS_LOWER_I_MUTEX_HELD);
  704. if (rc)
  705. printk(KERN_ERR "Error writing inode size to metadata; "
  706. "rc = [%d]\n", rc);
  707. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  708. mark_inode_dirty_sync(inode);
  709. out:
  710. kunmap(page); /* mapped in prior call (prepare_write) */
  711. if (rc < 0)
  712. ClearPageUptodate(page);
  713. else
  714. SetPageUptodate(page);
  715. mutex_unlock(&lower_inode->i_mutex);
  716. return rc;
  717. }
  718. /**
  719. * write_zeros
  720. * @file: The ecryptfs file
  721. * @index: The index in which we are writing
  722. * @start: The position after the last block of data
  723. * @num_zeros: The number of zeros to write
  724. *
  725. * Write a specified number of zero's to a page.
  726. *
  727. * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE
  728. */
  729. static
  730. int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros)
  731. {
  732. int rc = 0;
  733. struct page *tmp_page;
  734. tmp_page = ecryptfs_get1page(file, index);
  735. if (IS_ERR(tmp_page)) {
  736. ecryptfs_printk(KERN_ERR, "Error getting page at index "
  737. "[0x%.16x]\n", index);
  738. rc = PTR_ERR(tmp_page);
  739. goto out;
  740. }
  741. kmap(tmp_page);
  742. rc = ecryptfs_prepare_write(file, tmp_page, start, start + num_zeros);
  743. if (rc) {
  744. ecryptfs_printk(KERN_ERR, "Error preparing to write zero's "
  745. "to remainder of page at index [0x%.16x]\n",
  746. index);
  747. kunmap(tmp_page);
  748. page_cache_release(tmp_page);
  749. goto out;
  750. }
  751. memset(((char *)page_address(tmp_page) + start), 0, num_zeros);
  752. rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros);
  753. if (rc < 0) {
  754. ecryptfs_printk(KERN_ERR, "Error attempting to write zero's "
  755. "to remainder of page at index [0x%.16x]\n",
  756. index);
  757. kunmap(tmp_page);
  758. page_cache_release(tmp_page);
  759. goto out;
  760. }
  761. rc = 0;
  762. kunmap(tmp_page);
  763. page_cache_release(tmp_page);
  764. out:
  765. return rc;
  766. }
  767. static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
  768. {
  769. int rc = 0;
  770. struct inode *inode;
  771. struct inode *lower_inode;
  772. inode = (struct inode *)mapping->host;
  773. lower_inode = ecryptfs_inode_to_lower(inode);
  774. if (lower_inode->i_mapping->a_ops->bmap)
  775. rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping,
  776. block);
  777. return rc;
  778. }
  779. static void ecryptfs_sync_page(struct page *page)
  780. {
  781. struct inode *inode;
  782. struct inode *lower_inode;
  783. struct page *lower_page;
  784. inode = page->mapping->host;
  785. lower_inode = ecryptfs_inode_to_lower(inode);
  786. /* NOTE: Recently swapped with grab_cache_page(), since
  787. * sync_page() just makes sure that pending I/O gets done. */
  788. lower_page = find_lock_page(lower_inode->i_mapping, page->index);
  789. if (!lower_page) {
  790. ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n");
  791. return;
  792. }
  793. lower_page->mapping->a_ops->sync_page(lower_page);
  794. ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
  795. lower_page->index);
  796. unlock_page(lower_page);
  797. page_cache_release(lower_page);
  798. }
  799. struct address_space_operations ecryptfs_aops = {
  800. .writepage = ecryptfs_writepage,
  801. .readpage = ecryptfs_readpage,
  802. .prepare_write = ecryptfs_prepare_write,
  803. .commit_write = ecryptfs_commit_write,
  804. .bmap = ecryptfs_bmap,
  805. .sync_page = ecryptfs_sync_page,
  806. };