intel-iommu.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009
  1. /*
  2. * Copyright (c) 2006, Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  15. * Place - Suite 330, Boston, MA 02111-1307 USA.
  16. *
  17. * Copyright (C) 2006-2008 Intel Corporation
  18. * Author: Ashok Raj <ashok.raj@intel.com>
  19. * Author: Shaohua Li <shaohua.li@intel.com>
  20. * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  21. * Author: Fenghua Yu <fenghua.yu@intel.com>
  22. */
  23. #include <linux/init.h>
  24. #include <linux/bitmap.h>
  25. #include <linux/debugfs.h>
  26. #include <linux/slab.h>
  27. #include <linux/irq.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/pci.h>
  31. #include <linux/dmar.h>
  32. #include <linux/dma-mapping.h>
  33. #include <linux/mempool.h>
  34. #include <linux/timer.h>
  35. #include <linux/iova.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/iommu.h>
  40. #include "pci.h"
  41. #define ROOT_SIZE VTD_PAGE_SIZE
  42. #define CONTEXT_SIZE VTD_PAGE_SIZE
  43. #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
  44. #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
  45. #define IOAPIC_RANGE_START (0xfee00000)
  46. #define IOAPIC_RANGE_END (0xfeefffff)
  47. #define IOVA_START_ADDR (0x1000)
  48. #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
  49. #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
  50. #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
  51. #define DMA_32BIT_PFN IOVA_PFN(DMA_32BIT_MASK)
  52. #define DMA_64BIT_PFN IOVA_PFN(DMA_64BIT_MASK)
  53. /* global iommu list, set NULL for ignored DMAR units */
  54. static struct intel_iommu **g_iommus;
  55. static int rwbf_quirk;
  56. /*
  57. * 0: Present
  58. * 1-11: Reserved
  59. * 12-63: Context Ptr (12 - (haw-1))
  60. * 64-127: Reserved
  61. */
  62. struct root_entry {
  63. u64 val;
  64. u64 rsvd1;
  65. };
  66. #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
  67. static inline bool root_present(struct root_entry *root)
  68. {
  69. return (root->val & 1);
  70. }
  71. static inline void set_root_present(struct root_entry *root)
  72. {
  73. root->val |= 1;
  74. }
  75. static inline void set_root_value(struct root_entry *root, unsigned long value)
  76. {
  77. root->val |= value & VTD_PAGE_MASK;
  78. }
  79. static inline struct context_entry *
  80. get_context_addr_from_root(struct root_entry *root)
  81. {
  82. return (struct context_entry *)
  83. (root_present(root)?phys_to_virt(
  84. root->val & VTD_PAGE_MASK) :
  85. NULL);
  86. }
  87. /*
  88. * low 64 bits:
  89. * 0: present
  90. * 1: fault processing disable
  91. * 2-3: translation type
  92. * 12-63: address space root
  93. * high 64 bits:
  94. * 0-2: address width
  95. * 3-6: aval
  96. * 8-23: domain id
  97. */
  98. struct context_entry {
  99. u64 lo;
  100. u64 hi;
  101. };
  102. static inline bool context_present(struct context_entry *context)
  103. {
  104. return (context->lo & 1);
  105. }
  106. static inline void context_set_present(struct context_entry *context)
  107. {
  108. context->lo |= 1;
  109. }
  110. static inline void context_set_fault_enable(struct context_entry *context)
  111. {
  112. context->lo &= (((u64)-1) << 2) | 1;
  113. }
  114. #define CONTEXT_TT_MULTI_LEVEL 0
  115. static inline void context_set_translation_type(struct context_entry *context,
  116. unsigned long value)
  117. {
  118. context->lo &= (((u64)-1) << 4) | 3;
  119. context->lo |= (value & 3) << 2;
  120. }
  121. static inline void context_set_address_root(struct context_entry *context,
  122. unsigned long value)
  123. {
  124. context->lo |= value & VTD_PAGE_MASK;
  125. }
  126. static inline void context_set_address_width(struct context_entry *context,
  127. unsigned long value)
  128. {
  129. context->hi |= value & 7;
  130. }
  131. static inline void context_set_domain_id(struct context_entry *context,
  132. unsigned long value)
  133. {
  134. context->hi |= (value & ((1 << 16) - 1)) << 8;
  135. }
  136. static inline void context_clear_entry(struct context_entry *context)
  137. {
  138. context->lo = 0;
  139. context->hi = 0;
  140. }
  141. /*
  142. * 0: readable
  143. * 1: writable
  144. * 2-6: reserved
  145. * 7: super page
  146. * 8-11: available
  147. * 12-63: Host physcial address
  148. */
  149. struct dma_pte {
  150. u64 val;
  151. };
  152. static inline void dma_clear_pte(struct dma_pte *pte)
  153. {
  154. pte->val = 0;
  155. }
  156. static inline void dma_set_pte_readable(struct dma_pte *pte)
  157. {
  158. pte->val |= DMA_PTE_READ;
  159. }
  160. static inline void dma_set_pte_writable(struct dma_pte *pte)
  161. {
  162. pte->val |= DMA_PTE_WRITE;
  163. }
  164. static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
  165. {
  166. pte->val = (pte->val & ~3) | (prot & 3);
  167. }
  168. static inline u64 dma_pte_addr(struct dma_pte *pte)
  169. {
  170. return (pte->val & VTD_PAGE_MASK);
  171. }
  172. static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
  173. {
  174. pte->val |= (addr & VTD_PAGE_MASK);
  175. }
  176. static inline bool dma_pte_present(struct dma_pte *pte)
  177. {
  178. return (pte->val & 3) != 0;
  179. }
  180. /* devices under the same p2p bridge are owned in one domain */
  181. #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
  182. /* domain represents a virtual machine, more than one devices
  183. * across iommus may be owned in one domain, e.g. kvm guest.
  184. */
  185. #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
  186. struct dmar_domain {
  187. int id; /* domain id */
  188. unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
  189. struct list_head devices; /* all devices' list */
  190. struct iova_domain iovad; /* iova's that belong to this domain */
  191. struct dma_pte *pgd; /* virtual address */
  192. spinlock_t mapping_lock; /* page table lock */
  193. int gaw; /* max guest address width */
  194. /* adjusted guest address width, 0 is level 2 30-bit */
  195. int agaw;
  196. int flags; /* flags to find out type of domain */
  197. int iommu_coherency;/* indicate coherency of iommu access */
  198. int iommu_count; /* reference count of iommu */
  199. spinlock_t iommu_lock; /* protect iommu set in domain */
  200. u64 max_addr; /* maximum mapped address */
  201. };
  202. /* PCI domain-device relationship */
  203. struct device_domain_info {
  204. struct list_head link; /* link to domain siblings */
  205. struct list_head global; /* link to global list */
  206. u8 bus; /* PCI bus numer */
  207. u8 devfn; /* PCI devfn number */
  208. struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
  209. struct dmar_domain *domain; /* pointer to domain */
  210. };
  211. static void flush_unmaps_timeout(unsigned long data);
  212. DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
  213. #define HIGH_WATER_MARK 250
  214. struct deferred_flush_tables {
  215. int next;
  216. struct iova *iova[HIGH_WATER_MARK];
  217. struct dmar_domain *domain[HIGH_WATER_MARK];
  218. };
  219. static struct deferred_flush_tables *deferred_flush;
  220. /* bitmap for indexing intel_iommus */
  221. static int g_num_of_iommus;
  222. static DEFINE_SPINLOCK(async_umap_flush_lock);
  223. static LIST_HEAD(unmaps_to_do);
  224. static int timer_on;
  225. static long list_size;
  226. static void domain_remove_dev_info(struct dmar_domain *domain);
  227. #ifdef CONFIG_DMAR_DEFAULT_ON
  228. int dmar_disabled = 0;
  229. #else
  230. int dmar_disabled = 1;
  231. #endif /*CONFIG_DMAR_DEFAULT_ON*/
  232. static int __initdata dmar_map_gfx = 1;
  233. static int dmar_forcedac;
  234. static int intel_iommu_strict;
  235. #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
  236. static DEFINE_SPINLOCK(device_domain_lock);
  237. static LIST_HEAD(device_domain_list);
  238. static struct iommu_ops intel_iommu_ops;
  239. static int __init intel_iommu_setup(char *str)
  240. {
  241. if (!str)
  242. return -EINVAL;
  243. while (*str) {
  244. if (!strncmp(str, "on", 2)) {
  245. dmar_disabled = 0;
  246. printk(KERN_INFO "Intel-IOMMU: enabled\n");
  247. } else if (!strncmp(str, "off", 3)) {
  248. dmar_disabled = 1;
  249. printk(KERN_INFO "Intel-IOMMU: disabled\n");
  250. } else if (!strncmp(str, "igfx_off", 8)) {
  251. dmar_map_gfx = 0;
  252. printk(KERN_INFO
  253. "Intel-IOMMU: disable GFX device mapping\n");
  254. } else if (!strncmp(str, "forcedac", 8)) {
  255. printk(KERN_INFO
  256. "Intel-IOMMU: Forcing DAC for PCI devices\n");
  257. dmar_forcedac = 1;
  258. } else if (!strncmp(str, "strict", 6)) {
  259. printk(KERN_INFO
  260. "Intel-IOMMU: disable batched IOTLB flush\n");
  261. intel_iommu_strict = 1;
  262. }
  263. str += strcspn(str, ",");
  264. while (*str == ',')
  265. str++;
  266. }
  267. return 0;
  268. }
  269. __setup("intel_iommu=", intel_iommu_setup);
  270. static struct kmem_cache *iommu_domain_cache;
  271. static struct kmem_cache *iommu_devinfo_cache;
  272. static struct kmem_cache *iommu_iova_cache;
  273. static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
  274. {
  275. unsigned int flags;
  276. void *vaddr;
  277. /* trying to avoid low memory issues */
  278. flags = current->flags & PF_MEMALLOC;
  279. current->flags |= PF_MEMALLOC;
  280. vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
  281. current->flags &= (~PF_MEMALLOC | flags);
  282. return vaddr;
  283. }
  284. static inline void *alloc_pgtable_page(void)
  285. {
  286. unsigned int flags;
  287. void *vaddr;
  288. /* trying to avoid low memory issues */
  289. flags = current->flags & PF_MEMALLOC;
  290. current->flags |= PF_MEMALLOC;
  291. vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
  292. current->flags &= (~PF_MEMALLOC | flags);
  293. return vaddr;
  294. }
  295. static inline void free_pgtable_page(void *vaddr)
  296. {
  297. free_page((unsigned long)vaddr);
  298. }
  299. static inline void *alloc_domain_mem(void)
  300. {
  301. return iommu_kmem_cache_alloc(iommu_domain_cache);
  302. }
  303. static void free_domain_mem(void *vaddr)
  304. {
  305. kmem_cache_free(iommu_domain_cache, vaddr);
  306. }
  307. static inline void * alloc_devinfo_mem(void)
  308. {
  309. return iommu_kmem_cache_alloc(iommu_devinfo_cache);
  310. }
  311. static inline void free_devinfo_mem(void *vaddr)
  312. {
  313. kmem_cache_free(iommu_devinfo_cache, vaddr);
  314. }
  315. struct iova *alloc_iova_mem(void)
  316. {
  317. return iommu_kmem_cache_alloc(iommu_iova_cache);
  318. }
  319. void free_iova_mem(struct iova *iova)
  320. {
  321. kmem_cache_free(iommu_iova_cache, iova);
  322. }
  323. static inline int width_to_agaw(int width);
  324. /* calculate agaw for each iommu.
  325. * "SAGAW" may be different across iommus, use a default agaw, and
  326. * get a supported less agaw for iommus that don't support the default agaw.
  327. */
  328. int iommu_calculate_agaw(struct intel_iommu *iommu)
  329. {
  330. unsigned long sagaw;
  331. int agaw = -1;
  332. sagaw = cap_sagaw(iommu->cap);
  333. for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
  334. agaw >= 0; agaw--) {
  335. if (test_bit(agaw, &sagaw))
  336. break;
  337. }
  338. return agaw;
  339. }
  340. /* in native case, each domain is related to only one iommu */
  341. static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
  342. {
  343. int iommu_id;
  344. BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
  345. iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
  346. if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
  347. return NULL;
  348. return g_iommus[iommu_id];
  349. }
  350. /* "Coherency" capability may be different across iommus */
  351. static void domain_update_iommu_coherency(struct dmar_domain *domain)
  352. {
  353. int i;
  354. domain->iommu_coherency = 1;
  355. i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
  356. for (; i < g_num_of_iommus; ) {
  357. if (!ecap_coherent(g_iommus[i]->ecap)) {
  358. domain->iommu_coherency = 0;
  359. break;
  360. }
  361. i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
  362. }
  363. }
  364. static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn)
  365. {
  366. struct dmar_drhd_unit *drhd = NULL;
  367. int i;
  368. for_each_drhd_unit(drhd) {
  369. if (drhd->ignored)
  370. continue;
  371. for (i = 0; i < drhd->devices_cnt; i++)
  372. if (drhd->devices[i] &&
  373. drhd->devices[i]->bus->number == bus &&
  374. drhd->devices[i]->devfn == devfn)
  375. return drhd->iommu;
  376. if (drhd->include_all)
  377. return drhd->iommu;
  378. }
  379. return NULL;
  380. }
  381. static void domain_flush_cache(struct dmar_domain *domain,
  382. void *addr, int size)
  383. {
  384. if (!domain->iommu_coherency)
  385. clflush_cache_range(addr, size);
  386. }
  387. /* Gets context entry for a given bus and devfn */
  388. static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
  389. u8 bus, u8 devfn)
  390. {
  391. struct root_entry *root;
  392. struct context_entry *context;
  393. unsigned long phy_addr;
  394. unsigned long flags;
  395. spin_lock_irqsave(&iommu->lock, flags);
  396. root = &iommu->root_entry[bus];
  397. context = get_context_addr_from_root(root);
  398. if (!context) {
  399. context = (struct context_entry *)alloc_pgtable_page();
  400. if (!context) {
  401. spin_unlock_irqrestore(&iommu->lock, flags);
  402. return NULL;
  403. }
  404. __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
  405. phy_addr = virt_to_phys((void *)context);
  406. set_root_value(root, phy_addr);
  407. set_root_present(root);
  408. __iommu_flush_cache(iommu, root, sizeof(*root));
  409. }
  410. spin_unlock_irqrestore(&iommu->lock, flags);
  411. return &context[devfn];
  412. }
  413. static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
  414. {
  415. struct root_entry *root;
  416. struct context_entry *context;
  417. int ret;
  418. unsigned long flags;
  419. spin_lock_irqsave(&iommu->lock, flags);
  420. root = &iommu->root_entry[bus];
  421. context = get_context_addr_from_root(root);
  422. if (!context) {
  423. ret = 0;
  424. goto out;
  425. }
  426. ret = context_present(&context[devfn]);
  427. out:
  428. spin_unlock_irqrestore(&iommu->lock, flags);
  429. return ret;
  430. }
  431. static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
  432. {
  433. struct root_entry *root;
  434. struct context_entry *context;
  435. unsigned long flags;
  436. spin_lock_irqsave(&iommu->lock, flags);
  437. root = &iommu->root_entry[bus];
  438. context = get_context_addr_from_root(root);
  439. if (context) {
  440. context_clear_entry(&context[devfn]);
  441. __iommu_flush_cache(iommu, &context[devfn], \
  442. sizeof(*context));
  443. }
  444. spin_unlock_irqrestore(&iommu->lock, flags);
  445. }
  446. static void free_context_table(struct intel_iommu *iommu)
  447. {
  448. struct root_entry *root;
  449. int i;
  450. unsigned long flags;
  451. struct context_entry *context;
  452. spin_lock_irqsave(&iommu->lock, flags);
  453. if (!iommu->root_entry) {
  454. goto out;
  455. }
  456. for (i = 0; i < ROOT_ENTRY_NR; i++) {
  457. root = &iommu->root_entry[i];
  458. context = get_context_addr_from_root(root);
  459. if (context)
  460. free_pgtable_page(context);
  461. }
  462. free_pgtable_page(iommu->root_entry);
  463. iommu->root_entry = NULL;
  464. out:
  465. spin_unlock_irqrestore(&iommu->lock, flags);
  466. }
  467. /* page table handling */
  468. #define LEVEL_STRIDE (9)
  469. #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
  470. static inline int agaw_to_level(int agaw)
  471. {
  472. return agaw + 2;
  473. }
  474. static inline int agaw_to_width(int agaw)
  475. {
  476. return 30 + agaw * LEVEL_STRIDE;
  477. }
  478. static inline int width_to_agaw(int width)
  479. {
  480. return (width - 30) / LEVEL_STRIDE;
  481. }
  482. static inline unsigned int level_to_offset_bits(int level)
  483. {
  484. return (12 + (level - 1) * LEVEL_STRIDE);
  485. }
  486. static inline int address_level_offset(u64 addr, int level)
  487. {
  488. return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
  489. }
  490. static inline u64 level_mask(int level)
  491. {
  492. return ((u64)-1 << level_to_offset_bits(level));
  493. }
  494. static inline u64 level_size(int level)
  495. {
  496. return ((u64)1 << level_to_offset_bits(level));
  497. }
  498. static inline u64 align_to_level(u64 addr, int level)
  499. {
  500. return ((addr + level_size(level) - 1) & level_mask(level));
  501. }
  502. static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
  503. {
  504. int addr_width = agaw_to_width(domain->agaw);
  505. struct dma_pte *parent, *pte = NULL;
  506. int level = agaw_to_level(domain->agaw);
  507. int offset;
  508. unsigned long flags;
  509. BUG_ON(!domain->pgd);
  510. addr &= (((u64)1) << addr_width) - 1;
  511. parent = domain->pgd;
  512. spin_lock_irqsave(&domain->mapping_lock, flags);
  513. while (level > 0) {
  514. void *tmp_page;
  515. offset = address_level_offset(addr, level);
  516. pte = &parent[offset];
  517. if (level == 1)
  518. break;
  519. if (!dma_pte_present(pte)) {
  520. tmp_page = alloc_pgtable_page();
  521. if (!tmp_page) {
  522. spin_unlock_irqrestore(&domain->mapping_lock,
  523. flags);
  524. return NULL;
  525. }
  526. domain_flush_cache(domain, tmp_page, PAGE_SIZE);
  527. dma_set_pte_addr(pte, virt_to_phys(tmp_page));
  528. /*
  529. * high level table always sets r/w, last level page
  530. * table control read/write
  531. */
  532. dma_set_pte_readable(pte);
  533. dma_set_pte_writable(pte);
  534. domain_flush_cache(domain, pte, sizeof(*pte));
  535. }
  536. parent = phys_to_virt(dma_pte_addr(pte));
  537. level--;
  538. }
  539. spin_unlock_irqrestore(&domain->mapping_lock, flags);
  540. return pte;
  541. }
  542. /* return address's pte at specific level */
  543. static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
  544. int level)
  545. {
  546. struct dma_pte *parent, *pte = NULL;
  547. int total = agaw_to_level(domain->agaw);
  548. int offset;
  549. parent = domain->pgd;
  550. while (level <= total) {
  551. offset = address_level_offset(addr, total);
  552. pte = &parent[offset];
  553. if (level == total)
  554. return pte;
  555. if (!dma_pte_present(pte))
  556. break;
  557. parent = phys_to_virt(dma_pte_addr(pte));
  558. total--;
  559. }
  560. return NULL;
  561. }
  562. /* clear one page's page table */
  563. static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
  564. {
  565. struct dma_pte *pte = NULL;
  566. /* get last level pte */
  567. pte = dma_addr_level_pte(domain, addr, 1);
  568. if (pte) {
  569. dma_clear_pte(pte);
  570. domain_flush_cache(domain, pte, sizeof(*pte));
  571. }
  572. }
  573. /* clear last level pte, a tlb flush should be followed */
  574. static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
  575. {
  576. int addr_width = agaw_to_width(domain->agaw);
  577. start &= (((u64)1) << addr_width) - 1;
  578. end &= (((u64)1) << addr_width) - 1;
  579. /* in case it's partial page */
  580. start = PAGE_ALIGN(start);
  581. end &= PAGE_MASK;
  582. /* we don't need lock here, nobody else touches the iova range */
  583. while (start < end) {
  584. dma_pte_clear_one(domain, start);
  585. start += VTD_PAGE_SIZE;
  586. }
  587. }
  588. /* free page table pages. last level pte should already be cleared */
  589. static void dma_pte_free_pagetable(struct dmar_domain *domain,
  590. u64 start, u64 end)
  591. {
  592. int addr_width = agaw_to_width(domain->agaw);
  593. struct dma_pte *pte;
  594. int total = agaw_to_level(domain->agaw);
  595. int level;
  596. u64 tmp;
  597. start &= (((u64)1) << addr_width) - 1;
  598. end &= (((u64)1) << addr_width) - 1;
  599. /* we don't need lock here, nobody else touches the iova range */
  600. level = 2;
  601. while (level <= total) {
  602. tmp = align_to_level(start, level);
  603. if (tmp >= end || (tmp + level_size(level) > end))
  604. return;
  605. while (tmp < end) {
  606. pte = dma_addr_level_pte(domain, tmp, level);
  607. if (pte) {
  608. free_pgtable_page(
  609. phys_to_virt(dma_pte_addr(pte)));
  610. dma_clear_pte(pte);
  611. domain_flush_cache(domain, pte, sizeof(*pte));
  612. }
  613. tmp += level_size(level);
  614. }
  615. level++;
  616. }
  617. /* free pgd */
  618. if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
  619. free_pgtable_page(domain->pgd);
  620. domain->pgd = NULL;
  621. }
  622. }
  623. /* iommu handling */
  624. static int iommu_alloc_root_entry(struct intel_iommu *iommu)
  625. {
  626. struct root_entry *root;
  627. unsigned long flags;
  628. root = (struct root_entry *)alloc_pgtable_page();
  629. if (!root)
  630. return -ENOMEM;
  631. __iommu_flush_cache(iommu, root, ROOT_SIZE);
  632. spin_lock_irqsave(&iommu->lock, flags);
  633. iommu->root_entry = root;
  634. spin_unlock_irqrestore(&iommu->lock, flags);
  635. return 0;
  636. }
  637. static void iommu_set_root_entry(struct intel_iommu *iommu)
  638. {
  639. void *addr;
  640. u32 cmd, sts;
  641. unsigned long flag;
  642. addr = iommu->root_entry;
  643. spin_lock_irqsave(&iommu->register_lock, flag);
  644. dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
  645. cmd = iommu->gcmd | DMA_GCMD_SRTP;
  646. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  647. /* Make sure hardware complete it */
  648. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  649. readl, (sts & DMA_GSTS_RTPS), sts);
  650. spin_unlock_irqrestore(&iommu->register_lock, flag);
  651. }
  652. static void iommu_flush_write_buffer(struct intel_iommu *iommu)
  653. {
  654. u32 val;
  655. unsigned long flag;
  656. if (!rwbf_quirk && !cap_rwbf(iommu->cap))
  657. return;
  658. val = iommu->gcmd | DMA_GCMD_WBF;
  659. spin_lock_irqsave(&iommu->register_lock, flag);
  660. writel(val, iommu->reg + DMAR_GCMD_REG);
  661. /* Make sure hardware complete it */
  662. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  663. readl, (!(val & DMA_GSTS_WBFS)), val);
  664. spin_unlock_irqrestore(&iommu->register_lock, flag);
  665. }
  666. /* return value determine if we need a write buffer flush */
  667. static int __iommu_flush_context(struct intel_iommu *iommu,
  668. u16 did, u16 source_id, u8 function_mask, u64 type,
  669. int non_present_entry_flush)
  670. {
  671. u64 val = 0;
  672. unsigned long flag;
  673. /*
  674. * In the non-present entry flush case, if hardware doesn't cache
  675. * non-present entry we do nothing and if hardware cache non-present
  676. * entry, we flush entries of domain 0 (the domain id is used to cache
  677. * any non-present entries)
  678. */
  679. if (non_present_entry_flush) {
  680. if (!cap_caching_mode(iommu->cap))
  681. return 1;
  682. else
  683. did = 0;
  684. }
  685. switch (type) {
  686. case DMA_CCMD_GLOBAL_INVL:
  687. val = DMA_CCMD_GLOBAL_INVL;
  688. break;
  689. case DMA_CCMD_DOMAIN_INVL:
  690. val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
  691. break;
  692. case DMA_CCMD_DEVICE_INVL:
  693. val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
  694. | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
  695. break;
  696. default:
  697. BUG();
  698. }
  699. val |= DMA_CCMD_ICC;
  700. spin_lock_irqsave(&iommu->register_lock, flag);
  701. dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
  702. /* Make sure hardware complete it */
  703. IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
  704. dmar_readq, (!(val & DMA_CCMD_ICC)), val);
  705. spin_unlock_irqrestore(&iommu->register_lock, flag);
  706. /* flush context entry will implicitly flush write buffer */
  707. return 0;
  708. }
  709. /* return value determine if we need a write buffer flush */
  710. static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
  711. u64 addr, unsigned int size_order, u64 type,
  712. int non_present_entry_flush)
  713. {
  714. int tlb_offset = ecap_iotlb_offset(iommu->ecap);
  715. u64 val = 0, val_iva = 0;
  716. unsigned long flag;
  717. /*
  718. * In the non-present entry flush case, if hardware doesn't cache
  719. * non-present entry we do nothing and if hardware cache non-present
  720. * entry, we flush entries of domain 0 (the domain id is used to cache
  721. * any non-present entries)
  722. */
  723. if (non_present_entry_flush) {
  724. if (!cap_caching_mode(iommu->cap))
  725. return 1;
  726. else
  727. did = 0;
  728. }
  729. switch (type) {
  730. case DMA_TLB_GLOBAL_FLUSH:
  731. /* global flush doesn't need set IVA_REG */
  732. val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
  733. break;
  734. case DMA_TLB_DSI_FLUSH:
  735. val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
  736. break;
  737. case DMA_TLB_PSI_FLUSH:
  738. val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
  739. /* Note: always flush non-leaf currently */
  740. val_iva = size_order | addr;
  741. break;
  742. default:
  743. BUG();
  744. }
  745. /* Note: set drain read/write */
  746. #if 0
  747. /*
  748. * This is probably to be super secure.. Looks like we can
  749. * ignore it without any impact.
  750. */
  751. if (cap_read_drain(iommu->cap))
  752. val |= DMA_TLB_READ_DRAIN;
  753. #endif
  754. if (cap_write_drain(iommu->cap))
  755. val |= DMA_TLB_WRITE_DRAIN;
  756. spin_lock_irqsave(&iommu->register_lock, flag);
  757. /* Note: Only uses first TLB reg currently */
  758. if (val_iva)
  759. dmar_writeq(iommu->reg + tlb_offset, val_iva);
  760. dmar_writeq(iommu->reg + tlb_offset + 8, val);
  761. /* Make sure hardware complete it */
  762. IOMMU_WAIT_OP(iommu, tlb_offset + 8,
  763. dmar_readq, (!(val & DMA_TLB_IVT)), val);
  764. spin_unlock_irqrestore(&iommu->register_lock, flag);
  765. /* check IOTLB invalidation granularity */
  766. if (DMA_TLB_IAIG(val) == 0)
  767. printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
  768. if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
  769. pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
  770. (unsigned long long)DMA_TLB_IIRG(type),
  771. (unsigned long long)DMA_TLB_IAIG(val));
  772. /* flush iotlb entry will implicitly flush write buffer */
  773. return 0;
  774. }
  775. static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
  776. u64 addr, unsigned int pages, int non_present_entry_flush)
  777. {
  778. unsigned int mask;
  779. BUG_ON(addr & (~VTD_PAGE_MASK));
  780. BUG_ON(pages == 0);
  781. /* Fallback to domain selective flush if no PSI support */
  782. if (!cap_pgsel_inv(iommu->cap))
  783. return iommu->flush.flush_iotlb(iommu, did, 0, 0,
  784. DMA_TLB_DSI_FLUSH,
  785. non_present_entry_flush);
  786. /*
  787. * PSI requires page size to be 2 ^ x, and the base address is naturally
  788. * aligned to the size
  789. */
  790. mask = ilog2(__roundup_pow_of_two(pages));
  791. /* Fallback to domain selective flush if size is too big */
  792. if (mask > cap_max_amask_val(iommu->cap))
  793. return iommu->flush.flush_iotlb(iommu, did, 0, 0,
  794. DMA_TLB_DSI_FLUSH, non_present_entry_flush);
  795. return iommu->flush.flush_iotlb(iommu, did, addr, mask,
  796. DMA_TLB_PSI_FLUSH,
  797. non_present_entry_flush);
  798. }
  799. static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
  800. {
  801. u32 pmen;
  802. unsigned long flags;
  803. spin_lock_irqsave(&iommu->register_lock, flags);
  804. pmen = readl(iommu->reg + DMAR_PMEN_REG);
  805. pmen &= ~DMA_PMEN_EPM;
  806. writel(pmen, iommu->reg + DMAR_PMEN_REG);
  807. /* wait for the protected region status bit to clear */
  808. IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
  809. readl, !(pmen & DMA_PMEN_PRS), pmen);
  810. spin_unlock_irqrestore(&iommu->register_lock, flags);
  811. }
  812. static int iommu_enable_translation(struct intel_iommu *iommu)
  813. {
  814. u32 sts;
  815. unsigned long flags;
  816. spin_lock_irqsave(&iommu->register_lock, flags);
  817. writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
  818. /* Make sure hardware complete it */
  819. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  820. readl, (sts & DMA_GSTS_TES), sts);
  821. iommu->gcmd |= DMA_GCMD_TE;
  822. spin_unlock_irqrestore(&iommu->register_lock, flags);
  823. return 0;
  824. }
  825. static int iommu_disable_translation(struct intel_iommu *iommu)
  826. {
  827. u32 sts;
  828. unsigned long flag;
  829. spin_lock_irqsave(&iommu->register_lock, flag);
  830. iommu->gcmd &= ~DMA_GCMD_TE;
  831. writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
  832. /* Make sure hardware complete it */
  833. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  834. readl, (!(sts & DMA_GSTS_TES)), sts);
  835. spin_unlock_irqrestore(&iommu->register_lock, flag);
  836. return 0;
  837. }
  838. static int iommu_init_domains(struct intel_iommu *iommu)
  839. {
  840. unsigned long ndomains;
  841. unsigned long nlongs;
  842. ndomains = cap_ndoms(iommu->cap);
  843. pr_debug("Number of Domains supportd <%ld>\n", ndomains);
  844. nlongs = BITS_TO_LONGS(ndomains);
  845. /* TBD: there might be 64K domains,
  846. * consider other allocation for future chip
  847. */
  848. iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
  849. if (!iommu->domain_ids) {
  850. printk(KERN_ERR "Allocating domain id array failed\n");
  851. return -ENOMEM;
  852. }
  853. iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
  854. GFP_KERNEL);
  855. if (!iommu->domains) {
  856. printk(KERN_ERR "Allocating domain array failed\n");
  857. kfree(iommu->domain_ids);
  858. return -ENOMEM;
  859. }
  860. spin_lock_init(&iommu->lock);
  861. /*
  862. * if Caching mode is set, then invalid translations are tagged
  863. * with domainid 0. Hence we need to pre-allocate it.
  864. */
  865. if (cap_caching_mode(iommu->cap))
  866. set_bit(0, iommu->domain_ids);
  867. return 0;
  868. }
  869. static void domain_exit(struct dmar_domain *domain);
  870. static void vm_domain_exit(struct dmar_domain *domain);
  871. void free_dmar_iommu(struct intel_iommu *iommu)
  872. {
  873. struct dmar_domain *domain;
  874. int i;
  875. unsigned long flags;
  876. i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
  877. for (; i < cap_ndoms(iommu->cap); ) {
  878. domain = iommu->domains[i];
  879. clear_bit(i, iommu->domain_ids);
  880. spin_lock_irqsave(&domain->iommu_lock, flags);
  881. if (--domain->iommu_count == 0) {
  882. if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
  883. vm_domain_exit(domain);
  884. else
  885. domain_exit(domain);
  886. }
  887. spin_unlock_irqrestore(&domain->iommu_lock, flags);
  888. i = find_next_bit(iommu->domain_ids,
  889. cap_ndoms(iommu->cap), i+1);
  890. }
  891. if (iommu->gcmd & DMA_GCMD_TE)
  892. iommu_disable_translation(iommu);
  893. if (iommu->irq) {
  894. set_irq_data(iommu->irq, NULL);
  895. /* This will mask the irq */
  896. free_irq(iommu->irq, iommu);
  897. destroy_irq(iommu->irq);
  898. }
  899. kfree(iommu->domains);
  900. kfree(iommu->domain_ids);
  901. g_iommus[iommu->seq_id] = NULL;
  902. /* if all iommus are freed, free g_iommus */
  903. for (i = 0; i < g_num_of_iommus; i++) {
  904. if (g_iommus[i])
  905. break;
  906. }
  907. if (i == g_num_of_iommus)
  908. kfree(g_iommus);
  909. /* free context mapping */
  910. free_context_table(iommu);
  911. }
  912. static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
  913. {
  914. unsigned long num;
  915. unsigned long ndomains;
  916. struct dmar_domain *domain;
  917. unsigned long flags;
  918. domain = alloc_domain_mem();
  919. if (!domain)
  920. return NULL;
  921. ndomains = cap_ndoms(iommu->cap);
  922. spin_lock_irqsave(&iommu->lock, flags);
  923. num = find_first_zero_bit(iommu->domain_ids, ndomains);
  924. if (num >= ndomains) {
  925. spin_unlock_irqrestore(&iommu->lock, flags);
  926. free_domain_mem(domain);
  927. printk(KERN_ERR "IOMMU: no free domain ids\n");
  928. return NULL;
  929. }
  930. set_bit(num, iommu->domain_ids);
  931. domain->id = num;
  932. memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
  933. set_bit(iommu->seq_id, &domain->iommu_bmp);
  934. domain->flags = 0;
  935. iommu->domains[num] = domain;
  936. spin_unlock_irqrestore(&iommu->lock, flags);
  937. return domain;
  938. }
  939. static void iommu_free_domain(struct dmar_domain *domain)
  940. {
  941. unsigned long flags;
  942. struct intel_iommu *iommu;
  943. iommu = domain_get_iommu(domain);
  944. spin_lock_irqsave(&iommu->lock, flags);
  945. clear_bit(domain->id, iommu->domain_ids);
  946. spin_unlock_irqrestore(&iommu->lock, flags);
  947. }
  948. static struct iova_domain reserved_iova_list;
  949. static struct lock_class_key reserved_alloc_key;
  950. static struct lock_class_key reserved_rbtree_key;
  951. static void dmar_init_reserved_ranges(void)
  952. {
  953. struct pci_dev *pdev = NULL;
  954. struct iova *iova;
  955. int i;
  956. u64 addr, size;
  957. init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
  958. lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
  959. &reserved_alloc_key);
  960. lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
  961. &reserved_rbtree_key);
  962. /* IOAPIC ranges shouldn't be accessed by DMA */
  963. iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
  964. IOVA_PFN(IOAPIC_RANGE_END));
  965. if (!iova)
  966. printk(KERN_ERR "Reserve IOAPIC range failed\n");
  967. /* Reserve all PCI MMIO to avoid peer-to-peer access */
  968. for_each_pci_dev(pdev) {
  969. struct resource *r;
  970. for (i = 0; i < PCI_NUM_RESOURCES; i++) {
  971. r = &pdev->resource[i];
  972. if (!r->flags || !(r->flags & IORESOURCE_MEM))
  973. continue;
  974. addr = r->start;
  975. addr &= PAGE_MASK;
  976. size = r->end - addr;
  977. size = PAGE_ALIGN(size);
  978. iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
  979. IOVA_PFN(size + addr) - 1);
  980. if (!iova)
  981. printk(KERN_ERR "Reserve iova failed\n");
  982. }
  983. }
  984. }
  985. static void domain_reserve_special_ranges(struct dmar_domain *domain)
  986. {
  987. copy_reserved_iova(&reserved_iova_list, &domain->iovad);
  988. }
  989. static inline int guestwidth_to_adjustwidth(int gaw)
  990. {
  991. int agaw;
  992. int r = (gaw - 12) % 9;
  993. if (r == 0)
  994. agaw = gaw;
  995. else
  996. agaw = gaw + 9 - r;
  997. if (agaw > 64)
  998. agaw = 64;
  999. return agaw;
  1000. }
  1001. static int domain_init(struct dmar_domain *domain, int guest_width)
  1002. {
  1003. struct intel_iommu *iommu;
  1004. int adjust_width, agaw;
  1005. unsigned long sagaw;
  1006. init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
  1007. spin_lock_init(&domain->mapping_lock);
  1008. spin_lock_init(&domain->iommu_lock);
  1009. domain_reserve_special_ranges(domain);
  1010. /* calculate AGAW */
  1011. iommu = domain_get_iommu(domain);
  1012. if (guest_width > cap_mgaw(iommu->cap))
  1013. guest_width = cap_mgaw(iommu->cap);
  1014. domain->gaw = guest_width;
  1015. adjust_width = guestwidth_to_adjustwidth(guest_width);
  1016. agaw = width_to_agaw(adjust_width);
  1017. sagaw = cap_sagaw(iommu->cap);
  1018. if (!test_bit(agaw, &sagaw)) {
  1019. /* hardware doesn't support it, choose a bigger one */
  1020. pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
  1021. agaw = find_next_bit(&sagaw, 5, agaw);
  1022. if (agaw >= 5)
  1023. return -ENODEV;
  1024. }
  1025. domain->agaw = agaw;
  1026. INIT_LIST_HEAD(&domain->devices);
  1027. if (ecap_coherent(iommu->ecap))
  1028. domain->iommu_coherency = 1;
  1029. else
  1030. domain->iommu_coherency = 0;
  1031. domain->iommu_count = 1;
  1032. /* always allocate the top pgd */
  1033. domain->pgd = (struct dma_pte *)alloc_pgtable_page();
  1034. if (!domain->pgd)
  1035. return -ENOMEM;
  1036. __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
  1037. return 0;
  1038. }
  1039. static void domain_exit(struct dmar_domain *domain)
  1040. {
  1041. u64 end;
  1042. /* Domain 0 is reserved, so dont process it */
  1043. if (!domain)
  1044. return;
  1045. domain_remove_dev_info(domain);
  1046. /* destroy iovas */
  1047. put_iova_domain(&domain->iovad);
  1048. end = DOMAIN_MAX_ADDR(domain->gaw);
  1049. end = end & (~PAGE_MASK);
  1050. /* clear ptes */
  1051. dma_pte_clear_range(domain, 0, end);
  1052. /* free page tables */
  1053. dma_pte_free_pagetable(domain, 0, end);
  1054. iommu_free_domain(domain);
  1055. free_domain_mem(domain);
  1056. }
  1057. static int domain_context_mapping_one(struct dmar_domain *domain,
  1058. u8 bus, u8 devfn)
  1059. {
  1060. struct context_entry *context;
  1061. unsigned long flags;
  1062. struct intel_iommu *iommu;
  1063. struct dma_pte *pgd;
  1064. unsigned long num;
  1065. unsigned long ndomains;
  1066. int id;
  1067. int agaw;
  1068. pr_debug("Set context mapping for %02x:%02x.%d\n",
  1069. bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
  1070. BUG_ON(!domain->pgd);
  1071. iommu = device_to_iommu(bus, devfn);
  1072. if (!iommu)
  1073. return -ENODEV;
  1074. context = device_to_context_entry(iommu, bus, devfn);
  1075. if (!context)
  1076. return -ENOMEM;
  1077. spin_lock_irqsave(&iommu->lock, flags);
  1078. if (context_present(context)) {
  1079. spin_unlock_irqrestore(&iommu->lock, flags);
  1080. return 0;
  1081. }
  1082. id = domain->id;
  1083. pgd = domain->pgd;
  1084. if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
  1085. int found = 0;
  1086. /* find an available domain id for this device in iommu */
  1087. ndomains = cap_ndoms(iommu->cap);
  1088. num = find_first_bit(iommu->domain_ids, ndomains);
  1089. for (; num < ndomains; ) {
  1090. if (iommu->domains[num] == domain) {
  1091. id = num;
  1092. found = 1;
  1093. break;
  1094. }
  1095. num = find_next_bit(iommu->domain_ids,
  1096. cap_ndoms(iommu->cap), num+1);
  1097. }
  1098. if (found == 0) {
  1099. num = find_first_zero_bit(iommu->domain_ids, ndomains);
  1100. if (num >= ndomains) {
  1101. spin_unlock_irqrestore(&iommu->lock, flags);
  1102. printk(KERN_ERR "IOMMU: no free domain ids\n");
  1103. return -EFAULT;
  1104. }
  1105. set_bit(num, iommu->domain_ids);
  1106. iommu->domains[num] = domain;
  1107. id = num;
  1108. }
  1109. /* Skip top levels of page tables for
  1110. * iommu which has less agaw than default.
  1111. */
  1112. for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
  1113. pgd = phys_to_virt(dma_pte_addr(pgd));
  1114. if (!dma_pte_present(pgd)) {
  1115. spin_unlock_irqrestore(&iommu->lock, flags);
  1116. return -ENOMEM;
  1117. }
  1118. }
  1119. }
  1120. context_set_domain_id(context, id);
  1121. context_set_address_width(context, iommu->agaw);
  1122. context_set_address_root(context, virt_to_phys(pgd));
  1123. context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
  1124. context_set_fault_enable(context);
  1125. context_set_present(context);
  1126. domain_flush_cache(domain, context, sizeof(*context));
  1127. /* it's a non-present to present mapping */
  1128. if (iommu->flush.flush_context(iommu, domain->id,
  1129. (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
  1130. DMA_CCMD_DEVICE_INVL, 1))
  1131. iommu_flush_write_buffer(iommu);
  1132. else
  1133. iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
  1134. spin_unlock_irqrestore(&iommu->lock, flags);
  1135. spin_lock_irqsave(&domain->iommu_lock, flags);
  1136. if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
  1137. domain->iommu_count++;
  1138. domain_update_iommu_coherency(domain);
  1139. }
  1140. spin_unlock_irqrestore(&domain->iommu_lock, flags);
  1141. return 0;
  1142. }
  1143. static int
  1144. domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
  1145. {
  1146. int ret;
  1147. struct pci_dev *tmp, *parent;
  1148. ret = domain_context_mapping_one(domain, pdev->bus->number,
  1149. pdev->devfn);
  1150. if (ret)
  1151. return ret;
  1152. /* dependent device mapping */
  1153. tmp = pci_find_upstream_pcie_bridge(pdev);
  1154. if (!tmp)
  1155. return 0;
  1156. /* Secondary interface's bus number and devfn 0 */
  1157. parent = pdev->bus->self;
  1158. while (parent != tmp) {
  1159. ret = domain_context_mapping_one(domain, parent->bus->number,
  1160. parent->devfn);
  1161. if (ret)
  1162. return ret;
  1163. parent = parent->bus->self;
  1164. }
  1165. if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
  1166. return domain_context_mapping_one(domain,
  1167. tmp->subordinate->number, 0);
  1168. else /* this is a legacy PCI bridge */
  1169. return domain_context_mapping_one(domain,
  1170. tmp->bus->number, tmp->devfn);
  1171. }
  1172. static int domain_context_mapped(struct pci_dev *pdev)
  1173. {
  1174. int ret;
  1175. struct pci_dev *tmp, *parent;
  1176. struct intel_iommu *iommu;
  1177. iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
  1178. if (!iommu)
  1179. return -ENODEV;
  1180. ret = device_context_mapped(iommu,
  1181. pdev->bus->number, pdev->devfn);
  1182. if (!ret)
  1183. return ret;
  1184. /* dependent device mapping */
  1185. tmp = pci_find_upstream_pcie_bridge(pdev);
  1186. if (!tmp)
  1187. return ret;
  1188. /* Secondary interface's bus number and devfn 0 */
  1189. parent = pdev->bus->self;
  1190. while (parent != tmp) {
  1191. ret = device_context_mapped(iommu, parent->bus->number,
  1192. parent->devfn);
  1193. if (!ret)
  1194. return ret;
  1195. parent = parent->bus->self;
  1196. }
  1197. if (tmp->is_pcie)
  1198. return device_context_mapped(iommu,
  1199. tmp->subordinate->number, 0);
  1200. else
  1201. return device_context_mapped(iommu,
  1202. tmp->bus->number, tmp->devfn);
  1203. }
  1204. static int
  1205. domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
  1206. u64 hpa, size_t size, int prot)
  1207. {
  1208. u64 start_pfn, end_pfn;
  1209. struct dma_pte *pte;
  1210. int index;
  1211. int addr_width = agaw_to_width(domain->agaw);
  1212. hpa &= (((u64)1) << addr_width) - 1;
  1213. if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
  1214. return -EINVAL;
  1215. iova &= PAGE_MASK;
  1216. start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
  1217. end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
  1218. index = 0;
  1219. while (start_pfn < end_pfn) {
  1220. pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
  1221. if (!pte)
  1222. return -ENOMEM;
  1223. /* We don't need lock here, nobody else
  1224. * touches the iova range
  1225. */
  1226. BUG_ON(dma_pte_addr(pte));
  1227. dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
  1228. dma_set_pte_prot(pte, prot);
  1229. domain_flush_cache(domain, pte, sizeof(*pte));
  1230. start_pfn++;
  1231. index++;
  1232. }
  1233. return 0;
  1234. }
  1235. static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
  1236. {
  1237. if (!iommu)
  1238. return;
  1239. clear_context_table(iommu, bus, devfn);
  1240. iommu->flush.flush_context(iommu, 0, 0, 0,
  1241. DMA_CCMD_GLOBAL_INVL, 0);
  1242. iommu->flush.flush_iotlb(iommu, 0, 0, 0,
  1243. DMA_TLB_GLOBAL_FLUSH, 0);
  1244. }
  1245. static void domain_remove_dev_info(struct dmar_domain *domain)
  1246. {
  1247. struct device_domain_info *info;
  1248. unsigned long flags;
  1249. struct intel_iommu *iommu;
  1250. spin_lock_irqsave(&device_domain_lock, flags);
  1251. while (!list_empty(&domain->devices)) {
  1252. info = list_entry(domain->devices.next,
  1253. struct device_domain_info, link);
  1254. list_del(&info->link);
  1255. list_del(&info->global);
  1256. if (info->dev)
  1257. info->dev->dev.archdata.iommu = NULL;
  1258. spin_unlock_irqrestore(&device_domain_lock, flags);
  1259. iommu = device_to_iommu(info->bus, info->devfn);
  1260. iommu_detach_dev(iommu, info->bus, info->devfn);
  1261. free_devinfo_mem(info);
  1262. spin_lock_irqsave(&device_domain_lock, flags);
  1263. }
  1264. spin_unlock_irqrestore(&device_domain_lock, flags);
  1265. }
  1266. /*
  1267. * find_domain
  1268. * Note: we use struct pci_dev->dev.archdata.iommu stores the info
  1269. */
  1270. static struct dmar_domain *
  1271. find_domain(struct pci_dev *pdev)
  1272. {
  1273. struct device_domain_info *info;
  1274. /* No lock here, assumes no domain exit in normal case */
  1275. info = pdev->dev.archdata.iommu;
  1276. if (info)
  1277. return info->domain;
  1278. return NULL;
  1279. }
  1280. /* domain is initialized */
  1281. static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
  1282. {
  1283. struct dmar_domain *domain, *found = NULL;
  1284. struct intel_iommu *iommu;
  1285. struct dmar_drhd_unit *drhd;
  1286. struct device_domain_info *info, *tmp;
  1287. struct pci_dev *dev_tmp;
  1288. unsigned long flags;
  1289. int bus = 0, devfn = 0;
  1290. domain = find_domain(pdev);
  1291. if (domain)
  1292. return domain;
  1293. dev_tmp = pci_find_upstream_pcie_bridge(pdev);
  1294. if (dev_tmp) {
  1295. if (dev_tmp->is_pcie) {
  1296. bus = dev_tmp->subordinate->number;
  1297. devfn = 0;
  1298. } else {
  1299. bus = dev_tmp->bus->number;
  1300. devfn = dev_tmp->devfn;
  1301. }
  1302. spin_lock_irqsave(&device_domain_lock, flags);
  1303. list_for_each_entry(info, &device_domain_list, global) {
  1304. if (info->bus == bus && info->devfn == devfn) {
  1305. found = info->domain;
  1306. break;
  1307. }
  1308. }
  1309. spin_unlock_irqrestore(&device_domain_lock, flags);
  1310. /* pcie-pci bridge already has a domain, uses it */
  1311. if (found) {
  1312. domain = found;
  1313. goto found_domain;
  1314. }
  1315. }
  1316. /* Allocate new domain for the device */
  1317. drhd = dmar_find_matched_drhd_unit(pdev);
  1318. if (!drhd) {
  1319. printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
  1320. pci_name(pdev));
  1321. return NULL;
  1322. }
  1323. iommu = drhd->iommu;
  1324. domain = iommu_alloc_domain(iommu);
  1325. if (!domain)
  1326. goto error;
  1327. if (domain_init(domain, gaw)) {
  1328. domain_exit(domain);
  1329. goto error;
  1330. }
  1331. /* register pcie-to-pci device */
  1332. if (dev_tmp) {
  1333. info = alloc_devinfo_mem();
  1334. if (!info) {
  1335. domain_exit(domain);
  1336. goto error;
  1337. }
  1338. info->bus = bus;
  1339. info->devfn = devfn;
  1340. info->dev = NULL;
  1341. info->domain = domain;
  1342. /* This domain is shared by devices under p2p bridge */
  1343. domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
  1344. /* pcie-to-pci bridge already has a domain, uses it */
  1345. found = NULL;
  1346. spin_lock_irqsave(&device_domain_lock, flags);
  1347. list_for_each_entry(tmp, &device_domain_list, global) {
  1348. if (tmp->bus == bus && tmp->devfn == devfn) {
  1349. found = tmp->domain;
  1350. break;
  1351. }
  1352. }
  1353. if (found) {
  1354. free_devinfo_mem(info);
  1355. domain_exit(domain);
  1356. domain = found;
  1357. } else {
  1358. list_add(&info->link, &domain->devices);
  1359. list_add(&info->global, &device_domain_list);
  1360. }
  1361. spin_unlock_irqrestore(&device_domain_lock, flags);
  1362. }
  1363. found_domain:
  1364. info = alloc_devinfo_mem();
  1365. if (!info)
  1366. goto error;
  1367. info->bus = pdev->bus->number;
  1368. info->devfn = pdev->devfn;
  1369. info->dev = pdev;
  1370. info->domain = domain;
  1371. spin_lock_irqsave(&device_domain_lock, flags);
  1372. /* somebody is fast */
  1373. found = find_domain(pdev);
  1374. if (found != NULL) {
  1375. spin_unlock_irqrestore(&device_domain_lock, flags);
  1376. if (found != domain) {
  1377. domain_exit(domain);
  1378. domain = found;
  1379. }
  1380. free_devinfo_mem(info);
  1381. return domain;
  1382. }
  1383. list_add(&info->link, &domain->devices);
  1384. list_add(&info->global, &device_domain_list);
  1385. pdev->dev.archdata.iommu = info;
  1386. spin_unlock_irqrestore(&device_domain_lock, flags);
  1387. return domain;
  1388. error:
  1389. /* recheck it here, maybe others set it */
  1390. return find_domain(pdev);
  1391. }
  1392. static int iommu_prepare_identity_map(struct pci_dev *pdev,
  1393. unsigned long long start,
  1394. unsigned long long end)
  1395. {
  1396. struct dmar_domain *domain;
  1397. unsigned long size;
  1398. unsigned long long base;
  1399. int ret;
  1400. printk(KERN_INFO
  1401. "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
  1402. pci_name(pdev), start, end);
  1403. /* page table init */
  1404. domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
  1405. if (!domain)
  1406. return -ENOMEM;
  1407. /* The address might not be aligned */
  1408. base = start & PAGE_MASK;
  1409. size = end - base;
  1410. size = PAGE_ALIGN(size);
  1411. if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
  1412. IOVA_PFN(base + size) - 1)) {
  1413. printk(KERN_ERR "IOMMU: reserve iova failed\n");
  1414. ret = -ENOMEM;
  1415. goto error;
  1416. }
  1417. pr_debug("Mapping reserved region %lx@%llx for %s\n",
  1418. size, base, pci_name(pdev));
  1419. /*
  1420. * RMRR range might have overlap with physical memory range,
  1421. * clear it first
  1422. */
  1423. dma_pte_clear_range(domain, base, base + size);
  1424. ret = domain_page_mapping(domain, base, base, size,
  1425. DMA_PTE_READ|DMA_PTE_WRITE);
  1426. if (ret)
  1427. goto error;
  1428. /* context entry init */
  1429. ret = domain_context_mapping(domain, pdev);
  1430. if (!ret)
  1431. return 0;
  1432. error:
  1433. domain_exit(domain);
  1434. return ret;
  1435. }
  1436. static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
  1437. struct pci_dev *pdev)
  1438. {
  1439. if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
  1440. return 0;
  1441. return iommu_prepare_identity_map(pdev, rmrr->base_address,
  1442. rmrr->end_address + 1);
  1443. }
  1444. #ifdef CONFIG_DMAR_GFX_WA
  1445. struct iommu_prepare_data {
  1446. struct pci_dev *pdev;
  1447. int ret;
  1448. };
  1449. static int __init iommu_prepare_work_fn(unsigned long start_pfn,
  1450. unsigned long end_pfn, void *datax)
  1451. {
  1452. struct iommu_prepare_data *data;
  1453. data = (struct iommu_prepare_data *)datax;
  1454. data->ret = iommu_prepare_identity_map(data->pdev,
  1455. start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
  1456. return data->ret;
  1457. }
  1458. static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
  1459. {
  1460. int nid;
  1461. struct iommu_prepare_data data;
  1462. data.pdev = pdev;
  1463. data.ret = 0;
  1464. for_each_online_node(nid) {
  1465. work_with_active_regions(nid, iommu_prepare_work_fn, &data);
  1466. if (data.ret)
  1467. return data.ret;
  1468. }
  1469. return data.ret;
  1470. }
  1471. static void __init iommu_prepare_gfx_mapping(void)
  1472. {
  1473. struct pci_dev *pdev = NULL;
  1474. int ret;
  1475. for_each_pci_dev(pdev) {
  1476. if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
  1477. !IS_GFX_DEVICE(pdev))
  1478. continue;
  1479. printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
  1480. pci_name(pdev));
  1481. ret = iommu_prepare_with_active_regions(pdev);
  1482. if (ret)
  1483. printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
  1484. }
  1485. }
  1486. #else /* !CONFIG_DMAR_GFX_WA */
  1487. static inline void iommu_prepare_gfx_mapping(void)
  1488. {
  1489. return;
  1490. }
  1491. #endif
  1492. #ifdef CONFIG_DMAR_FLOPPY_WA
  1493. static inline void iommu_prepare_isa(void)
  1494. {
  1495. struct pci_dev *pdev;
  1496. int ret;
  1497. pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
  1498. if (!pdev)
  1499. return;
  1500. printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
  1501. ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
  1502. if (ret)
  1503. printk(KERN_ERR "IOMMU: Failed to create 0-64M identity map, "
  1504. "floppy might not work\n");
  1505. }
  1506. #else
  1507. static inline void iommu_prepare_isa(void)
  1508. {
  1509. return;
  1510. }
  1511. #endif /* !CONFIG_DMAR_FLPY_WA */
  1512. static int __init init_dmars(void)
  1513. {
  1514. struct dmar_drhd_unit *drhd;
  1515. struct dmar_rmrr_unit *rmrr;
  1516. struct pci_dev *pdev;
  1517. struct intel_iommu *iommu;
  1518. int i, ret;
  1519. /*
  1520. * for each drhd
  1521. * allocate root
  1522. * initialize and program root entry to not present
  1523. * endfor
  1524. */
  1525. for_each_drhd_unit(drhd) {
  1526. g_num_of_iommus++;
  1527. /*
  1528. * lock not needed as this is only incremented in the single
  1529. * threaded kernel __init code path all other access are read
  1530. * only
  1531. */
  1532. }
  1533. g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
  1534. GFP_KERNEL);
  1535. if (!g_iommus) {
  1536. printk(KERN_ERR "Allocating global iommu array failed\n");
  1537. ret = -ENOMEM;
  1538. goto error;
  1539. }
  1540. deferred_flush = kzalloc(g_num_of_iommus *
  1541. sizeof(struct deferred_flush_tables), GFP_KERNEL);
  1542. if (!deferred_flush) {
  1543. kfree(g_iommus);
  1544. ret = -ENOMEM;
  1545. goto error;
  1546. }
  1547. for_each_drhd_unit(drhd) {
  1548. if (drhd->ignored)
  1549. continue;
  1550. iommu = drhd->iommu;
  1551. g_iommus[iommu->seq_id] = iommu;
  1552. ret = iommu_init_domains(iommu);
  1553. if (ret)
  1554. goto error;
  1555. /*
  1556. * TBD:
  1557. * we could share the same root & context tables
  1558. * amoung all IOMMU's. Need to Split it later.
  1559. */
  1560. ret = iommu_alloc_root_entry(iommu);
  1561. if (ret) {
  1562. printk(KERN_ERR "IOMMU: allocate root entry failed\n");
  1563. goto error;
  1564. }
  1565. }
  1566. /*
  1567. * Start from the sane iommu hardware state.
  1568. */
  1569. for_each_drhd_unit(drhd) {
  1570. if (drhd->ignored)
  1571. continue;
  1572. iommu = drhd->iommu;
  1573. /*
  1574. * If the queued invalidation is already initialized by us
  1575. * (for example, while enabling interrupt-remapping) then
  1576. * we got the things already rolling from a sane state.
  1577. */
  1578. if (iommu->qi)
  1579. continue;
  1580. /*
  1581. * Clear any previous faults.
  1582. */
  1583. dmar_fault(-1, iommu);
  1584. /*
  1585. * Disable queued invalidation if supported and already enabled
  1586. * before OS handover.
  1587. */
  1588. dmar_disable_qi(iommu);
  1589. }
  1590. for_each_drhd_unit(drhd) {
  1591. if (drhd->ignored)
  1592. continue;
  1593. iommu = drhd->iommu;
  1594. if (dmar_enable_qi(iommu)) {
  1595. /*
  1596. * Queued Invalidate not enabled, use Register Based
  1597. * Invalidate
  1598. */
  1599. iommu->flush.flush_context = __iommu_flush_context;
  1600. iommu->flush.flush_iotlb = __iommu_flush_iotlb;
  1601. printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
  1602. "invalidation\n",
  1603. (unsigned long long)drhd->reg_base_addr);
  1604. } else {
  1605. iommu->flush.flush_context = qi_flush_context;
  1606. iommu->flush.flush_iotlb = qi_flush_iotlb;
  1607. printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
  1608. "invalidation\n",
  1609. (unsigned long long)drhd->reg_base_addr);
  1610. }
  1611. }
  1612. /*
  1613. * For each rmrr
  1614. * for each dev attached to rmrr
  1615. * do
  1616. * locate drhd for dev, alloc domain for dev
  1617. * allocate free domain
  1618. * allocate page table entries for rmrr
  1619. * if context not allocated for bus
  1620. * allocate and init context
  1621. * set present in root table for this bus
  1622. * init context with domain, translation etc
  1623. * endfor
  1624. * endfor
  1625. */
  1626. for_each_rmrr_units(rmrr) {
  1627. for (i = 0; i < rmrr->devices_cnt; i++) {
  1628. pdev = rmrr->devices[i];
  1629. /* some BIOS lists non-exist devices in DMAR table */
  1630. if (!pdev)
  1631. continue;
  1632. ret = iommu_prepare_rmrr_dev(rmrr, pdev);
  1633. if (ret)
  1634. printk(KERN_ERR
  1635. "IOMMU: mapping reserved region failed\n");
  1636. }
  1637. }
  1638. iommu_prepare_gfx_mapping();
  1639. iommu_prepare_isa();
  1640. /*
  1641. * for each drhd
  1642. * enable fault log
  1643. * global invalidate context cache
  1644. * global invalidate iotlb
  1645. * enable translation
  1646. */
  1647. for_each_drhd_unit(drhd) {
  1648. if (drhd->ignored)
  1649. continue;
  1650. iommu = drhd->iommu;
  1651. iommu_flush_write_buffer(iommu);
  1652. ret = dmar_set_interrupt(iommu);
  1653. if (ret)
  1654. goto error;
  1655. iommu_set_root_entry(iommu);
  1656. iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
  1657. 0);
  1658. iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
  1659. 0);
  1660. iommu_disable_protect_mem_regions(iommu);
  1661. ret = iommu_enable_translation(iommu);
  1662. if (ret)
  1663. goto error;
  1664. }
  1665. return 0;
  1666. error:
  1667. for_each_drhd_unit(drhd) {
  1668. if (drhd->ignored)
  1669. continue;
  1670. iommu = drhd->iommu;
  1671. free_iommu(iommu);
  1672. }
  1673. kfree(g_iommus);
  1674. return ret;
  1675. }
  1676. static inline u64 aligned_size(u64 host_addr, size_t size)
  1677. {
  1678. u64 addr;
  1679. addr = (host_addr & (~PAGE_MASK)) + size;
  1680. return PAGE_ALIGN(addr);
  1681. }
  1682. struct iova *
  1683. iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
  1684. {
  1685. struct iova *piova;
  1686. /* Make sure it's in range */
  1687. end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
  1688. if (!size || (IOVA_START_ADDR + size > end))
  1689. return NULL;
  1690. piova = alloc_iova(&domain->iovad,
  1691. size >> PAGE_SHIFT, IOVA_PFN(end), 1);
  1692. return piova;
  1693. }
  1694. static struct iova *
  1695. __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
  1696. size_t size, u64 dma_mask)
  1697. {
  1698. struct pci_dev *pdev = to_pci_dev(dev);
  1699. struct iova *iova = NULL;
  1700. if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac)
  1701. iova = iommu_alloc_iova(domain, size, dma_mask);
  1702. else {
  1703. /*
  1704. * First try to allocate an io virtual address in
  1705. * DMA_32BIT_MASK and if that fails then try allocating
  1706. * from higher range
  1707. */
  1708. iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
  1709. if (!iova)
  1710. iova = iommu_alloc_iova(domain, size, dma_mask);
  1711. }
  1712. if (!iova) {
  1713. printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
  1714. return NULL;
  1715. }
  1716. return iova;
  1717. }
  1718. static struct dmar_domain *
  1719. get_valid_domain_for_dev(struct pci_dev *pdev)
  1720. {
  1721. struct dmar_domain *domain;
  1722. int ret;
  1723. domain = get_domain_for_dev(pdev,
  1724. DEFAULT_DOMAIN_ADDRESS_WIDTH);
  1725. if (!domain) {
  1726. printk(KERN_ERR
  1727. "Allocating domain for %s failed", pci_name(pdev));
  1728. return NULL;
  1729. }
  1730. /* make sure context mapping is ok */
  1731. if (unlikely(!domain_context_mapped(pdev))) {
  1732. ret = domain_context_mapping(domain, pdev);
  1733. if (ret) {
  1734. printk(KERN_ERR
  1735. "Domain context map for %s failed",
  1736. pci_name(pdev));
  1737. return NULL;
  1738. }
  1739. }
  1740. return domain;
  1741. }
  1742. static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
  1743. size_t size, int dir, u64 dma_mask)
  1744. {
  1745. struct pci_dev *pdev = to_pci_dev(hwdev);
  1746. struct dmar_domain *domain;
  1747. phys_addr_t start_paddr;
  1748. struct iova *iova;
  1749. int prot = 0;
  1750. int ret;
  1751. struct intel_iommu *iommu;
  1752. BUG_ON(dir == DMA_NONE);
  1753. if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
  1754. return paddr;
  1755. domain = get_valid_domain_for_dev(pdev);
  1756. if (!domain)
  1757. return 0;
  1758. iommu = domain_get_iommu(domain);
  1759. size = aligned_size((u64)paddr, size);
  1760. iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
  1761. if (!iova)
  1762. goto error;
  1763. start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
  1764. /*
  1765. * Check if DMAR supports zero-length reads on write only
  1766. * mappings..
  1767. */
  1768. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
  1769. !cap_zlr(iommu->cap))
  1770. prot |= DMA_PTE_READ;
  1771. if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
  1772. prot |= DMA_PTE_WRITE;
  1773. /*
  1774. * paddr - (paddr + size) might be partial page, we should map the whole
  1775. * page. Note: if two part of one page are separately mapped, we
  1776. * might have two guest_addr mapping to the same host paddr, but this
  1777. * is not a big problem
  1778. */
  1779. ret = domain_page_mapping(domain, start_paddr,
  1780. ((u64)paddr) & PAGE_MASK, size, prot);
  1781. if (ret)
  1782. goto error;
  1783. /* it's a non-present to present mapping */
  1784. ret = iommu_flush_iotlb_psi(iommu, domain->id,
  1785. start_paddr, size >> VTD_PAGE_SHIFT, 1);
  1786. if (ret)
  1787. iommu_flush_write_buffer(iommu);
  1788. return start_paddr + ((u64)paddr & (~PAGE_MASK));
  1789. error:
  1790. if (iova)
  1791. __free_iova(&domain->iovad, iova);
  1792. printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
  1793. pci_name(pdev), size, (unsigned long long)paddr, dir);
  1794. return 0;
  1795. }
  1796. static dma_addr_t intel_map_page(struct device *dev, struct page *page,
  1797. unsigned long offset, size_t size,
  1798. enum dma_data_direction dir,
  1799. struct dma_attrs *attrs)
  1800. {
  1801. return __intel_map_single(dev, page_to_phys(page) + offset, size,
  1802. dir, to_pci_dev(dev)->dma_mask);
  1803. }
  1804. static void flush_unmaps(void)
  1805. {
  1806. int i, j;
  1807. timer_on = 0;
  1808. /* just flush them all */
  1809. for (i = 0; i < g_num_of_iommus; i++) {
  1810. struct intel_iommu *iommu = g_iommus[i];
  1811. if (!iommu)
  1812. continue;
  1813. if (deferred_flush[i].next) {
  1814. iommu->flush.flush_iotlb(iommu, 0, 0, 0,
  1815. DMA_TLB_GLOBAL_FLUSH, 0);
  1816. for (j = 0; j < deferred_flush[i].next; j++) {
  1817. __free_iova(&deferred_flush[i].domain[j]->iovad,
  1818. deferred_flush[i].iova[j]);
  1819. }
  1820. deferred_flush[i].next = 0;
  1821. }
  1822. }
  1823. list_size = 0;
  1824. }
  1825. static void flush_unmaps_timeout(unsigned long data)
  1826. {
  1827. unsigned long flags;
  1828. spin_lock_irqsave(&async_umap_flush_lock, flags);
  1829. flush_unmaps();
  1830. spin_unlock_irqrestore(&async_umap_flush_lock, flags);
  1831. }
  1832. static void add_unmap(struct dmar_domain *dom, struct iova *iova)
  1833. {
  1834. unsigned long flags;
  1835. int next, iommu_id;
  1836. struct intel_iommu *iommu;
  1837. spin_lock_irqsave(&async_umap_flush_lock, flags);
  1838. if (list_size == HIGH_WATER_MARK)
  1839. flush_unmaps();
  1840. iommu = domain_get_iommu(dom);
  1841. iommu_id = iommu->seq_id;
  1842. next = deferred_flush[iommu_id].next;
  1843. deferred_flush[iommu_id].domain[next] = dom;
  1844. deferred_flush[iommu_id].iova[next] = iova;
  1845. deferred_flush[iommu_id].next++;
  1846. if (!timer_on) {
  1847. mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
  1848. timer_on = 1;
  1849. }
  1850. list_size++;
  1851. spin_unlock_irqrestore(&async_umap_flush_lock, flags);
  1852. }
  1853. static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
  1854. size_t size, enum dma_data_direction dir,
  1855. struct dma_attrs *attrs)
  1856. {
  1857. struct pci_dev *pdev = to_pci_dev(dev);
  1858. struct dmar_domain *domain;
  1859. unsigned long start_addr;
  1860. struct iova *iova;
  1861. struct intel_iommu *iommu;
  1862. if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
  1863. return;
  1864. domain = find_domain(pdev);
  1865. BUG_ON(!domain);
  1866. iommu = domain_get_iommu(domain);
  1867. iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
  1868. if (!iova)
  1869. return;
  1870. start_addr = iova->pfn_lo << PAGE_SHIFT;
  1871. size = aligned_size((u64)dev_addr, size);
  1872. pr_debug("Device %s unmapping: %lx@%llx\n",
  1873. pci_name(pdev), size, (unsigned long long)start_addr);
  1874. /* clear the whole page */
  1875. dma_pte_clear_range(domain, start_addr, start_addr + size);
  1876. /* free page tables */
  1877. dma_pte_free_pagetable(domain, start_addr, start_addr + size);
  1878. if (intel_iommu_strict) {
  1879. if (iommu_flush_iotlb_psi(iommu,
  1880. domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
  1881. iommu_flush_write_buffer(iommu);
  1882. /* free iova */
  1883. __free_iova(&domain->iovad, iova);
  1884. } else {
  1885. add_unmap(domain, iova);
  1886. /*
  1887. * queue up the release of the unmap to save the 1/6th of the
  1888. * cpu used up by the iotlb flush operation...
  1889. */
  1890. }
  1891. }
  1892. static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
  1893. int dir)
  1894. {
  1895. intel_unmap_page(dev, dev_addr, size, dir, NULL);
  1896. }
  1897. static void *intel_alloc_coherent(struct device *hwdev, size_t size,
  1898. dma_addr_t *dma_handle, gfp_t flags)
  1899. {
  1900. void *vaddr;
  1901. int order;
  1902. size = PAGE_ALIGN(size);
  1903. order = get_order(size);
  1904. flags &= ~(GFP_DMA | GFP_DMA32);
  1905. vaddr = (void *)__get_free_pages(flags, order);
  1906. if (!vaddr)
  1907. return NULL;
  1908. memset(vaddr, 0, size);
  1909. *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
  1910. DMA_BIDIRECTIONAL,
  1911. hwdev->coherent_dma_mask);
  1912. if (*dma_handle)
  1913. return vaddr;
  1914. free_pages((unsigned long)vaddr, order);
  1915. return NULL;
  1916. }
  1917. static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  1918. dma_addr_t dma_handle)
  1919. {
  1920. int order;
  1921. size = PAGE_ALIGN(size);
  1922. order = get_order(size);
  1923. intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
  1924. free_pages((unsigned long)vaddr, order);
  1925. }
  1926. #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
  1927. static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
  1928. int nelems, enum dma_data_direction dir,
  1929. struct dma_attrs *attrs)
  1930. {
  1931. int i;
  1932. struct pci_dev *pdev = to_pci_dev(hwdev);
  1933. struct dmar_domain *domain;
  1934. unsigned long start_addr;
  1935. struct iova *iova;
  1936. size_t size = 0;
  1937. void *addr;
  1938. struct scatterlist *sg;
  1939. struct intel_iommu *iommu;
  1940. if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
  1941. return;
  1942. domain = find_domain(pdev);
  1943. BUG_ON(!domain);
  1944. iommu = domain_get_iommu(domain);
  1945. iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
  1946. if (!iova)
  1947. return;
  1948. for_each_sg(sglist, sg, nelems, i) {
  1949. addr = SG_ENT_VIRT_ADDRESS(sg);
  1950. size += aligned_size((u64)addr, sg->length);
  1951. }
  1952. start_addr = iova->pfn_lo << PAGE_SHIFT;
  1953. /* clear the whole page */
  1954. dma_pte_clear_range(domain, start_addr, start_addr + size);
  1955. /* free page tables */
  1956. dma_pte_free_pagetable(domain, start_addr, start_addr + size);
  1957. if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
  1958. size >> VTD_PAGE_SHIFT, 0))
  1959. iommu_flush_write_buffer(iommu);
  1960. /* free iova */
  1961. __free_iova(&domain->iovad, iova);
  1962. }
  1963. static int intel_nontranslate_map_sg(struct device *hddev,
  1964. struct scatterlist *sglist, int nelems, int dir)
  1965. {
  1966. int i;
  1967. struct scatterlist *sg;
  1968. for_each_sg(sglist, sg, nelems, i) {
  1969. BUG_ON(!sg_page(sg));
  1970. sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
  1971. sg->dma_length = sg->length;
  1972. }
  1973. return nelems;
  1974. }
  1975. static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
  1976. enum dma_data_direction dir, struct dma_attrs *attrs)
  1977. {
  1978. void *addr;
  1979. int i;
  1980. struct pci_dev *pdev = to_pci_dev(hwdev);
  1981. struct dmar_domain *domain;
  1982. size_t size = 0;
  1983. int prot = 0;
  1984. size_t offset = 0;
  1985. struct iova *iova = NULL;
  1986. int ret;
  1987. struct scatterlist *sg;
  1988. unsigned long start_addr;
  1989. struct intel_iommu *iommu;
  1990. BUG_ON(dir == DMA_NONE);
  1991. if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
  1992. return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
  1993. domain = get_valid_domain_for_dev(pdev);
  1994. if (!domain)
  1995. return 0;
  1996. iommu = domain_get_iommu(domain);
  1997. for_each_sg(sglist, sg, nelems, i) {
  1998. addr = SG_ENT_VIRT_ADDRESS(sg);
  1999. addr = (void *)virt_to_phys(addr);
  2000. size += aligned_size((u64)addr, sg->length);
  2001. }
  2002. iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
  2003. if (!iova) {
  2004. sglist->dma_length = 0;
  2005. return 0;
  2006. }
  2007. /*
  2008. * Check if DMAR supports zero-length reads on write only
  2009. * mappings..
  2010. */
  2011. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
  2012. !cap_zlr(iommu->cap))
  2013. prot |= DMA_PTE_READ;
  2014. if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
  2015. prot |= DMA_PTE_WRITE;
  2016. start_addr = iova->pfn_lo << PAGE_SHIFT;
  2017. offset = 0;
  2018. for_each_sg(sglist, sg, nelems, i) {
  2019. addr = SG_ENT_VIRT_ADDRESS(sg);
  2020. addr = (void *)virt_to_phys(addr);
  2021. size = aligned_size((u64)addr, sg->length);
  2022. ret = domain_page_mapping(domain, start_addr + offset,
  2023. ((u64)addr) & PAGE_MASK,
  2024. size, prot);
  2025. if (ret) {
  2026. /* clear the page */
  2027. dma_pte_clear_range(domain, start_addr,
  2028. start_addr + offset);
  2029. /* free page tables */
  2030. dma_pte_free_pagetable(domain, start_addr,
  2031. start_addr + offset);
  2032. /* free iova */
  2033. __free_iova(&domain->iovad, iova);
  2034. return 0;
  2035. }
  2036. sg->dma_address = start_addr + offset +
  2037. ((u64)addr & (~PAGE_MASK));
  2038. sg->dma_length = sg->length;
  2039. offset += size;
  2040. }
  2041. /* it's a non-present to present mapping */
  2042. if (iommu_flush_iotlb_psi(iommu, domain->id,
  2043. start_addr, offset >> VTD_PAGE_SHIFT, 1))
  2044. iommu_flush_write_buffer(iommu);
  2045. return nelems;
  2046. }
  2047. static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
  2048. {
  2049. return !dma_addr;
  2050. }
  2051. struct dma_map_ops intel_dma_ops = {
  2052. .alloc_coherent = intel_alloc_coherent,
  2053. .free_coherent = intel_free_coherent,
  2054. .map_sg = intel_map_sg,
  2055. .unmap_sg = intel_unmap_sg,
  2056. .map_page = intel_map_page,
  2057. .unmap_page = intel_unmap_page,
  2058. .mapping_error = intel_mapping_error,
  2059. };
  2060. static inline int iommu_domain_cache_init(void)
  2061. {
  2062. int ret = 0;
  2063. iommu_domain_cache = kmem_cache_create("iommu_domain",
  2064. sizeof(struct dmar_domain),
  2065. 0,
  2066. SLAB_HWCACHE_ALIGN,
  2067. NULL);
  2068. if (!iommu_domain_cache) {
  2069. printk(KERN_ERR "Couldn't create iommu_domain cache\n");
  2070. ret = -ENOMEM;
  2071. }
  2072. return ret;
  2073. }
  2074. static inline int iommu_devinfo_cache_init(void)
  2075. {
  2076. int ret = 0;
  2077. iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
  2078. sizeof(struct device_domain_info),
  2079. 0,
  2080. SLAB_HWCACHE_ALIGN,
  2081. NULL);
  2082. if (!iommu_devinfo_cache) {
  2083. printk(KERN_ERR "Couldn't create devinfo cache\n");
  2084. ret = -ENOMEM;
  2085. }
  2086. return ret;
  2087. }
  2088. static inline int iommu_iova_cache_init(void)
  2089. {
  2090. int ret = 0;
  2091. iommu_iova_cache = kmem_cache_create("iommu_iova",
  2092. sizeof(struct iova),
  2093. 0,
  2094. SLAB_HWCACHE_ALIGN,
  2095. NULL);
  2096. if (!iommu_iova_cache) {
  2097. printk(KERN_ERR "Couldn't create iova cache\n");
  2098. ret = -ENOMEM;
  2099. }
  2100. return ret;
  2101. }
  2102. static int __init iommu_init_mempool(void)
  2103. {
  2104. int ret;
  2105. ret = iommu_iova_cache_init();
  2106. if (ret)
  2107. return ret;
  2108. ret = iommu_domain_cache_init();
  2109. if (ret)
  2110. goto domain_error;
  2111. ret = iommu_devinfo_cache_init();
  2112. if (!ret)
  2113. return ret;
  2114. kmem_cache_destroy(iommu_domain_cache);
  2115. domain_error:
  2116. kmem_cache_destroy(iommu_iova_cache);
  2117. return -ENOMEM;
  2118. }
  2119. static void __init iommu_exit_mempool(void)
  2120. {
  2121. kmem_cache_destroy(iommu_devinfo_cache);
  2122. kmem_cache_destroy(iommu_domain_cache);
  2123. kmem_cache_destroy(iommu_iova_cache);
  2124. }
  2125. static void __init init_no_remapping_devices(void)
  2126. {
  2127. struct dmar_drhd_unit *drhd;
  2128. for_each_drhd_unit(drhd) {
  2129. if (!drhd->include_all) {
  2130. int i;
  2131. for (i = 0; i < drhd->devices_cnt; i++)
  2132. if (drhd->devices[i] != NULL)
  2133. break;
  2134. /* ignore DMAR unit if no pci devices exist */
  2135. if (i == drhd->devices_cnt)
  2136. drhd->ignored = 1;
  2137. }
  2138. }
  2139. if (dmar_map_gfx)
  2140. return;
  2141. for_each_drhd_unit(drhd) {
  2142. int i;
  2143. if (drhd->ignored || drhd->include_all)
  2144. continue;
  2145. for (i = 0; i < drhd->devices_cnt; i++)
  2146. if (drhd->devices[i] &&
  2147. !IS_GFX_DEVICE(drhd->devices[i]))
  2148. break;
  2149. if (i < drhd->devices_cnt)
  2150. continue;
  2151. /* bypass IOMMU if it is just for gfx devices */
  2152. drhd->ignored = 1;
  2153. for (i = 0; i < drhd->devices_cnt; i++) {
  2154. if (!drhd->devices[i])
  2155. continue;
  2156. drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
  2157. }
  2158. }
  2159. }
  2160. int __init intel_iommu_init(void)
  2161. {
  2162. int ret = 0;
  2163. if (dmar_table_init())
  2164. return -ENODEV;
  2165. if (dmar_dev_scope_init())
  2166. return -ENODEV;
  2167. /*
  2168. * Check the need for DMA-remapping initialization now.
  2169. * Above initialization will also be used by Interrupt-remapping.
  2170. */
  2171. if (no_iommu || swiotlb || dmar_disabled)
  2172. return -ENODEV;
  2173. iommu_init_mempool();
  2174. dmar_init_reserved_ranges();
  2175. init_no_remapping_devices();
  2176. ret = init_dmars();
  2177. if (ret) {
  2178. printk(KERN_ERR "IOMMU: dmar init failed\n");
  2179. put_iova_domain(&reserved_iova_list);
  2180. iommu_exit_mempool();
  2181. return ret;
  2182. }
  2183. printk(KERN_INFO
  2184. "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
  2185. init_timer(&unmap_timer);
  2186. force_iommu = 1;
  2187. dma_ops = &intel_dma_ops;
  2188. register_iommu(&intel_iommu_ops);
  2189. return 0;
  2190. }
  2191. static int vm_domain_add_dev_info(struct dmar_domain *domain,
  2192. struct pci_dev *pdev)
  2193. {
  2194. struct device_domain_info *info;
  2195. unsigned long flags;
  2196. info = alloc_devinfo_mem();
  2197. if (!info)
  2198. return -ENOMEM;
  2199. info->bus = pdev->bus->number;
  2200. info->devfn = pdev->devfn;
  2201. info->dev = pdev;
  2202. info->domain = domain;
  2203. spin_lock_irqsave(&device_domain_lock, flags);
  2204. list_add(&info->link, &domain->devices);
  2205. list_add(&info->global, &device_domain_list);
  2206. pdev->dev.archdata.iommu = info;
  2207. spin_unlock_irqrestore(&device_domain_lock, flags);
  2208. return 0;
  2209. }
  2210. static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
  2211. struct pci_dev *pdev)
  2212. {
  2213. struct device_domain_info *info;
  2214. struct intel_iommu *iommu;
  2215. unsigned long flags;
  2216. int found = 0;
  2217. struct list_head *entry, *tmp;
  2218. iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
  2219. if (!iommu)
  2220. return;
  2221. spin_lock_irqsave(&device_domain_lock, flags);
  2222. list_for_each_safe(entry, tmp, &domain->devices) {
  2223. info = list_entry(entry, struct device_domain_info, link);
  2224. if (info->bus == pdev->bus->number &&
  2225. info->devfn == pdev->devfn) {
  2226. list_del(&info->link);
  2227. list_del(&info->global);
  2228. if (info->dev)
  2229. info->dev->dev.archdata.iommu = NULL;
  2230. spin_unlock_irqrestore(&device_domain_lock, flags);
  2231. iommu_detach_dev(iommu, info->bus, info->devfn);
  2232. free_devinfo_mem(info);
  2233. spin_lock_irqsave(&device_domain_lock, flags);
  2234. if (found)
  2235. break;
  2236. else
  2237. continue;
  2238. }
  2239. /* if there is no other devices under the same iommu
  2240. * owned by this domain, clear this iommu in iommu_bmp
  2241. * update iommu count and coherency
  2242. */
  2243. if (device_to_iommu(info->bus, info->devfn) == iommu)
  2244. found = 1;
  2245. }
  2246. if (found == 0) {
  2247. unsigned long tmp_flags;
  2248. spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
  2249. clear_bit(iommu->seq_id, &domain->iommu_bmp);
  2250. domain->iommu_count--;
  2251. domain_update_iommu_coherency(domain);
  2252. spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
  2253. }
  2254. spin_unlock_irqrestore(&device_domain_lock, flags);
  2255. }
  2256. static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
  2257. {
  2258. struct device_domain_info *info;
  2259. struct intel_iommu *iommu;
  2260. unsigned long flags1, flags2;
  2261. spin_lock_irqsave(&device_domain_lock, flags1);
  2262. while (!list_empty(&domain->devices)) {
  2263. info = list_entry(domain->devices.next,
  2264. struct device_domain_info, link);
  2265. list_del(&info->link);
  2266. list_del(&info->global);
  2267. if (info->dev)
  2268. info->dev->dev.archdata.iommu = NULL;
  2269. spin_unlock_irqrestore(&device_domain_lock, flags1);
  2270. iommu = device_to_iommu(info->bus, info->devfn);
  2271. iommu_detach_dev(iommu, info->bus, info->devfn);
  2272. /* clear this iommu in iommu_bmp, update iommu count
  2273. * and coherency
  2274. */
  2275. spin_lock_irqsave(&domain->iommu_lock, flags2);
  2276. if (test_and_clear_bit(iommu->seq_id,
  2277. &domain->iommu_bmp)) {
  2278. domain->iommu_count--;
  2279. domain_update_iommu_coherency(domain);
  2280. }
  2281. spin_unlock_irqrestore(&domain->iommu_lock, flags2);
  2282. free_devinfo_mem(info);
  2283. spin_lock_irqsave(&device_domain_lock, flags1);
  2284. }
  2285. spin_unlock_irqrestore(&device_domain_lock, flags1);
  2286. }
  2287. /* domain id for virtual machine, it won't be set in context */
  2288. static unsigned long vm_domid;
  2289. static int vm_domain_min_agaw(struct dmar_domain *domain)
  2290. {
  2291. int i;
  2292. int min_agaw = domain->agaw;
  2293. i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
  2294. for (; i < g_num_of_iommus; ) {
  2295. if (min_agaw > g_iommus[i]->agaw)
  2296. min_agaw = g_iommus[i]->agaw;
  2297. i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
  2298. }
  2299. return min_agaw;
  2300. }
  2301. static struct dmar_domain *iommu_alloc_vm_domain(void)
  2302. {
  2303. struct dmar_domain *domain;
  2304. domain = alloc_domain_mem();
  2305. if (!domain)
  2306. return NULL;
  2307. domain->id = vm_domid++;
  2308. memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
  2309. domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
  2310. return domain;
  2311. }
  2312. static int vm_domain_init(struct dmar_domain *domain, int guest_width)
  2313. {
  2314. int adjust_width;
  2315. init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
  2316. spin_lock_init(&domain->mapping_lock);
  2317. spin_lock_init(&domain->iommu_lock);
  2318. domain_reserve_special_ranges(domain);
  2319. /* calculate AGAW */
  2320. domain->gaw = guest_width;
  2321. adjust_width = guestwidth_to_adjustwidth(guest_width);
  2322. domain->agaw = width_to_agaw(adjust_width);
  2323. INIT_LIST_HEAD(&domain->devices);
  2324. domain->iommu_count = 0;
  2325. domain->iommu_coherency = 0;
  2326. domain->max_addr = 0;
  2327. /* always allocate the top pgd */
  2328. domain->pgd = (struct dma_pte *)alloc_pgtable_page();
  2329. if (!domain->pgd)
  2330. return -ENOMEM;
  2331. domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
  2332. return 0;
  2333. }
  2334. static void iommu_free_vm_domain(struct dmar_domain *domain)
  2335. {
  2336. unsigned long flags;
  2337. struct dmar_drhd_unit *drhd;
  2338. struct intel_iommu *iommu;
  2339. unsigned long i;
  2340. unsigned long ndomains;
  2341. for_each_drhd_unit(drhd) {
  2342. if (drhd->ignored)
  2343. continue;
  2344. iommu = drhd->iommu;
  2345. ndomains = cap_ndoms(iommu->cap);
  2346. i = find_first_bit(iommu->domain_ids, ndomains);
  2347. for (; i < ndomains; ) {
  2348. if (iommu->domains[i] == domain) {
  2349. spin_lock_irqsave(&iommu->lock, flags);
  2350. clear_bit(i, iommu->domain_ids);
  2351. iommu->domains[i] = NULL;
  2352. spin_unlock_irqrestore(&iommu->lock, flags);
  2353. break;
  2354. }
  2355. i = find_next_bit(iommu->domain_ids, ndomains, i+1);
  2356. }
  2357. }
  2358. }
  2359. static void vm_domain_exit(struct dmar_domain *domain)
  2360. {
  2361. u64 end;
  2362. /* Domain 0 is reserved, so dont process it */
  2363. if (!domain)
  2364. return;
  2365. vm_domain_remove_all_dev_info(domain);
  2366. /* destroy iovas */
  2367. put_iova_domain(&domain->iovad);
  2368. end = DOMAIN_MAX_ADDR(domain->gaw);
  2369. end = end & (~VTD_PAGE_MASK);
  2370. /* clear ptes */
  2371. dma_pte_clear_range(domain, 0, end);
  2372. /* free page tables */
  2373. dma_pte_free_pagetable(domain, 0, end);
  2374. iommu_free_vm_domain(domain);
  2375. free_domain_mem(domain);
  2376. }
  2377. static int intel_iommu_domain_init(struct iommu_domain *domain)
  2378. {
  2379. struct dmar_domain *dmar_domain;
  2380. dmar_domain = iommu_alloc_vm_domain();
  2381. if (!dmar_domain) {
  2382. printk(KERN_ERR
  2383. "intel_iommu_domain_init: dmar_domain == NULL\n");
  2384. return -ENOMEM;
  2385. }
  2386. if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
  2387. printk(KERN_ERR
  2388. "intel_iommu_domain_init() failed\n");
  2389. vm_domain_exit(dmar_domain);
  2390. return -ENOMEM;
  2391. }
  2392. domain->priv = dmar_domain;
  2393. return 0;
  2394. }
  2395. static void intel_iommu_domain_destroy(struct iommu_domain *domain)
  2396. {
  2397. struct dmar_domain *dmar_domain = domain->priv;
  2398. domain->priv = NULL;
  2399. vm_domain_exit(dmar_domain);
  2400. }
  2401. static int intel_iommu_attach_device(struct iommu_domain *domain,
  2402. struct device *dev)
  2403. {
  2404. struct dmar_domain *dmar_domain = domain->priv;
  2405. struct pci_dev *pdev = to_pci_dev(dev);
  2406. struct intel_iommu *iommu;
  2407. int addr_width;
  2408. u64 end;
  2409. int ret;
  2410. /* normally pdev is not mapped */
  2411. if (unlikely(domain_context_mapped(pdev))) {
  2412. struct dmar_domain *old_domain;
  2413. old_domain = find_domain(pdev);
  2414. if (old_domain) {
  2415. if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
  2416. vm_domain_remove_one_dev_info(old_domain, pdev);
  2417. else
  2418. domain_remove_dev_info(old_domain);
  2419. }
  2420. }
  2421. iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
  2422. if (!iommu)
  2423. return -ENODEV;
  2424. /* check if this iommu agaw is sufficient for max mapped address */
  2425. addr_width = agaw_to_width(iommu->agaw);
  2426. end = DOMAIN_MAX_ADDR(addr_width);
  2427. end = end & VTD_PAGE_MASK;
  2428. if (end < dmar_domain->max_addr) {
  2429. printk(KERN_ERR "%s: iommu agaw (%d) is not "
  2430. "sufficient for the mapped address (%llx)\n",
  2431. __func__, iommu->agaw, dmar_domain->max_addr);
  2432. return -EFAULT;
  2433. }
  2434. ret = domain_context_mapping(dmar_domain, pdev);
  2435. if (ret)
  2436. return ret;
  2437. ret = vm_domain_add_dev_info(dmar_domain, pdev);
  2438. return ret;
  2439. }
  2440. static void intel_iommu_detach_device(struct iommu_domain *domain,
  2441. struct device *dev)
  2442. {
  2443. struct dmar_domain *dmar_domain = domain->priv;
  2444. struct pci_dev *pdev = to_pci_dev(dev);
  2445. vm_domain_remove_one_dev_info(dmar_domain, pdev);
  2446. }
  2447. static int intel_iommu_map_range(struct iommu_domain *domain,
  2448. unsigned long iova, phys_addr_t hpa,
  2449. size_t size, int iommu_prot)
  2450. {
  2451. struct dmar_domain *dmar_domain = domain->priv;
  2452. u64 max_addr;
  2453. int addr_width;
  2454. int prot = 0;
  2455. int ret;
  2456. if (iommu_prot & IOMMU_READ)
  2457. prot |= DMA_PTE_READ;
  2458. if (iommu_prot & IOMMU_WRITE)
  2459. prot |= DMA_PTE_WRITE;
  2460. max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
  2461. if (dmar_domain->max_addr < max_addr) {
  2462. int min_agaw;
  2463. u64 end;
  2464. /* check if minimum agaw is sufficient for mapped address */
  2465. min_agaw = vm_domain_min_agaw(dmar_domain);
  2466. addr_width = agaw_to_width(min_agaw);
  2467. end = DOMAIN_MAX_ADDR(addr_width);
  2468. end = end & VTD_PAGE_MASK;
  2469. if (end < max_addr) {
  2470. printk(KERN_ERR "%s: iommu agaw (%d) is not "
  2471. "sufficient for the mapped address (%llx)\n",
  2472. __func__, min_agaw, max_addr);
  2473. return -EFAULT;
  2474. }
  2475. dmar_domain->max_addr = max_addr;
  2476. }
  2477. ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
  2478. return ret;
  2479. }
  2480. static void intel_iommu_unmap_range(struct iommu_domain *domain,
  2481. unsigned long iova, size_t size)
  2482. {
  2483. struct dmar_domain *dmar_domain = domain->priv;
  2484. dma_addr_t base;
  2485. /* The address might not be aligned */
  2486. base = iova & VTD_PAGE_MASK;
  2487. size = VTD_PAGE_ALIGN(size);
  2488. dma_pte_clear_range(dmar_domain, base, base + size);
  2489. if (dmar_domain->max_addr == base + size)
  2490. dmar_domain->max_addr = base;
  2491. }
  2492. static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
  2493. unsigned long iova)
  2494. {
  2495. struct dmar_domain *dmar_domain = domain->priv;
  2496. struct dma_pte *pte;
  2497. u64 phys = 0;
  2498. pte = addr_to_dma_pte(dmar_domain, iova);
  2499. if (pte)
  2500. phys = dma_pte_addr(pte);
  2501. return phys;
  2502. }
  2503. static struct iommu_ops intel_iommu_ops = {
  2504. .domain_init = intel_iommu_domain_init,
  2505. .domain_destroy = intel_iommu_domain_destroy,
  2506. .attach_dev = intel_iommu_attach_device,
  2507. .detach_dev = intel_iommu_detach_device,
  2508. .map = intel_iommu_map_range,
  2509. .unmap = intel_iommu_unmap_range,
  2510. .iova_to_phys = intel_iommu_iova_to_phys,
  2511. };
  2512. static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
  2513. {
  2514. /*
  2515. * Mobile 4 Series Chipset neglects to set RWBF capability,
  2516. * but needs it:
  2517. */
  2518. printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
  2519. rwbf_quirk = 1;
  2520. }
  2521. DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);