sched_rt.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_SMP
  6. static inline int rt_overloaded(struct rq *rq)
  7. {
  8. return atomic_read(&rq->rd->rto_count);
  9. }
  10. static inline void rt_set_overload(struct rq *rq)
  11. {
  12. if (!rq->online)
  13. return;
  14. cpu_set(rq->cpu, rq->rd->rto_mask);
  15. /*
  16. * Make sure the mask is visible before we set
  17. * the overload count. That is checked to determine
  18. * if we should look at the mask. It would be a shame
  19. * if we looked at the mask, but the mask was not
  20. * updated yet.
  21. */
  22. wmb();
  23. atomic_inc(&rq->rd->rto_count);
  24. }
  25. static inline void rt_clear_overload(struct rq *rq)
  26. {
  27. if (!rq->online)
  28. return;
  29. /* the order here really doesn't matter */
  30. atomic_dec(&rq->rd->rto_count);
  31. cpu_clear(rq->cpu, rq->rd->rto_mask);
  32. }
  33. static void update_rt_migration(struct rq *rq)
  34. {
  35. if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
  36. if (!rq->rt.overloaded) {
  37. rt_set_overload(rq);
  38. rq->rt.overloaded = 1;
  39. }
  40. } else if (rq->rt.overloaded) {
  41. rt_clear_overload(rq);
  42. rq->rt.overloaded = 0;
  43. }
  44. }
  45. #endif /* CONFIG_SMP */
  46. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  47. {
  48. return container_of(rt_se, struct task_struct, rt);
  49. }
  50. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  51. {
  52. return !list_empty(&rt_se->run_list);
  53. }
  54. #ifdef CONFIG_RT_GROUP_SCHED
  55. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  56. {
  57. if (!rt_rq->tg)
  58. return RUNTIME_INF;
  59. return rt_rq->rt_runtime;
  60. }
  61. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  62. {
  63. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  64. }
  65. #define for_each_leaf_rt_rq(rt_rq, rq) \
  66. list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  67. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  68. {
  69. return rt_rq->rq;
  70. }
  71. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  72. {
  73. return rt_se->rt_rq;
  74. }
  75. #define for_each_sched_rt_entity(rt_se) \
  76. for (; rt_se; rt_se = rt_se->parent)
  77. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  78. {
  79. return rt_se->my_q;
  80. }
  81. static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
  82. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  83. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  84. {
  85. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  86. if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
  87. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  88. enqueue_rt_entity(rt_se);
  89. if (rt_rq->highest_prio < curr->prio)
  90. resched_task(curr);
  91. }
  92. }
  93. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  94. {
  95. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  96. if (rt_se && on_rt_rq(rt_se))
  97. dequeue_rt_entity(rt_se);
  98. }
  99. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  100. {
  101. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  102. }
  103. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  104. {
  105. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  106. struct task_struct *p;
  107. if (rt_rq)
  108. return !!rt_rq->rt_nr_boosted;
  109. p = rt_task_of(rt_se);
  110. return p->prio != p->normal_prio;
  111. }
  112. #ifdef CONFIG_SMP
  113. static inline cpumask_t sched_rt_period_mask(void)
  114. {
  115. return cpu_rq(smp_processor_id())->rd->span;
  116. }
  117. #else
  118. static inline cpumask_t sched_rt_period_mask(void)
  119. {
  120. return cpu_online_map;
  121. }
  122. #endif
  123. static inline
  124. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  125. {
  126. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  127. }
  128. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  129. {
  130. return &rt_rq->tg->rt_bandwidth;
  131. }
  132. #else /* !CONFIG_RT_GROUP_SCHED */
  133. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  134. {
  135. return rt_rq->rt_runtime;
  136. }
  137. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  138. {
  139. return ktime_to_ns(def_rt_bandwidth.rt_period);
  140. }
  141. #define for_each_leaf_rt_rq(rt_rq, rq) \
  142. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  143. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  144. {
  145. return container_of(rt_rq, struct rq, rt);
  146. }
  147. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  148. {
  149. struct task_struct *p = rt_task_of(rt_se);
  150. struct rq *rq = task_rq(p);
  151. return &rq->rt;
  152. }
  153. #define for_each_sched_rt_entity(rt_se) \
  154. for (; rt_se; rt_se = NULL)
  155. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  156. {
  157. return NULL;
  158. }
  159. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  160. {
  161. }
  162. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  163. {
  164. }
  165. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  166. {
  167. return rt_rq->rt_throttled;
  168. }
  169. static inline cpumask_t sched_rt_period_mask(void)
  170. {
  171. return cpu_online_map;
  172. }
  173. static inline
  174. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  175. {
  176. return &cpu_rq(cpu)->rt;
  177. }
  178. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  179. {
  180. return &def_rt_bandwidth;
  181. }
  182. #endif /* CONFIG_RT_GROUP_SCHED */
  183. #ifdef CONFIG_SMP
  184. static int do_balance_runtime(struct rt_rq *rt_rq)
  185. {
  186. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  187. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  188. int i, weight, more = 0;
  189. u64 rt_period;
  190. weight = cpus_weight(rd->span);
  191. spin_lock(&rt_b->rt_runtime_lock);
  192. rt_period = ktime_to_ns(rt_b->rt_period);
  193. for_each_cpu_mask(i, rd->span) {
  194. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  195. s64 diff;
  196. if (iter == rt_rq)
  197. continue;
  198. spin_lock(&iter->rt_runtime_lock);
  199. if (iter->rt_runtime == RUNTIME_INF)
  200. goto next;
  201. diff = iter->rt_runtime - iter->rt_time;
  202. if (diff > 0) {
  203. do_div(diff, weight);
  204. if (rt_rq->rt_runtime + diff > rt_period)
  205. diff = rt_period - rt_rq->rt_runtime;
  206. iter->rt_runtime -= diff;
  207. rt_rq->rt_runtime += diff;
  208. more = 1;
  209. if (rt_rq->rt_runtime == rt_period) {
  210. spin_unlock(&iter->rt_runtime_lock);
  211. break;
  212. }
  213. }
  214. next:
  215. spin_unlock(&iter->rt_runtime_lock);
  216. }
  217. spin_unlock(&rt_b->rt_runtime_lock);
  218. return more;
  219. }
  220. static void __disable_runtime(struct rq *rq)
  221. {
  222. struct root_domain *rd = rq->rd;
  223. struct rt_rq *rt_rq;
  224. if (unlikely(!scheduler_running))
  225. return;
  226. for_each_leaf_rt_rq(rt_rq, rq) {
  227. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  228. s64 want;
  229. int i;
  230. spin_lock(&rt_b->rt_runtime_lock);
  231. spin_lock(&rt_rq->rt_runtime_lock);
  232. if (rt_rq->rt_runtime == RUNTIME_INF ||
  233. rt_rq->rt_runtime == rt_b->rt_runtime)
  234. goto balanced;
  235. spin_unlock(&rt_rq->rt_runtime_lock);
  236. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  237. for_each_cpu_mask(i, rd->span) {
  238. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  239. s64 diff;
  240. if (iter == rt_rq)
  241. continue;
  242. spin_lock(&iter->rt_runtime_lock);
  243. if (want > 0) {
  244. diff = min_t(s64, iter->rt_runtime, want);
  245. iter->rt_runtime -= diff;
  246. want -= diff;
  247. } else {
  248. iter->rt_runtime -= want;
  249. want -= want;
  250. }
  251. spin_unlock(&iter->rt_runtime_lock);
  252. if (!want)
  253. break;
  254. }
  255. spin_lock(&rt_rq->rt_runtime_lock);
  256. BUG_ON(want);
  257. balanced:
  258. rt_rq->rt_runtime = RUNTIME_INF;
  259. spin_unlock(&rt_rq->rt_runtime_lock);
  260. spin_unlock(&rt_b->rt_runtime_lock);
  261. }
  262. }
  263. static void disable_runtime(struct rq *rq)
  264. {
  265. unsigned long flags;
  266. spin_lock_irqsave(&rq->lock, flags);
  267. __disable_runtime(rq);
  268. spin_unlock_irqrestore(&rq->lock, flags);
  269. }
  270. static void __enable_runtime(struct rq *rq)
  271. {
  272. struct rt_rq *rt_rq;
  273. if (unlikely(!scheduler_running))
  274. return;
  275. for_each_leaf_rt_rq(rt_rq, rq) {
  276. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  277. spin_lock(&rt_b->rt_runtime_lock);
  278. spin_lock(&rt_rq->rt_runtime_lock);
  279. rt_rq->rt_runtime = rt_b->rt_runtime;
  280. rt_rq->rt_time = 0;
  281. spin_unlock(&rt_rq->rt_runtime_lock);
  282. spin_unlock(&rt_b->rt_runtime_lock);
  283. }
  284. }
  285. static void enable_runtime(struct rq *rq)
  286. {
  287. unsigned long flags;
  288. spin_lock_irqsave(&rq->lock, flags);
  289. __enable_runtime(rq);
  290. spin_unlock_irqrestore(&rq->lock, flags);
  291. }
  292. static int balance_runtime(struct rt_rq *rt_rq)
  293. {
  294. int more = 0;
  295. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  296. spin_unlock(&rt_rq->rt_runtime_lock);
  297. more = do_balance_runtime(rt_rq);
  298. spin_lock(&rt_rq->rt_runtime_lock);
  299. }
  300. return more;
  301. }
  302. #else /* !CONFIG_SMP */
  303. static inline int balance_runtime(struct rt_rq *rt_rq)
  304. {
  305. return 0;
  306. }
  307. #endif /* CONFIG_SMP */
  308. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  309. {
  310. int i, idle = 1;
  311. cpumask_t span;
  312. if (rt_b->rt_runtime == RUNTIME_INF)
  313. return 1;
  314. span = sched_rt_period_mask();
  315. for_each_cpu_mask(i, span) {
  316. int enqueue = 0;
  317. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  318. struct rq *rq = rq_of_rt_rq(rt_rq);
  319. spin_lock(&rq->lock);
  320. if (rt_rq->rt_time) {
  321. u64 runtime;
  322. spin_lock(&rt_rq->rt_runtime_lock);
  323. if (rt_rq->rt_throttled)
  324. balance_runtime(rt_rq);
  325. runtime = rt_rq->rt_runtime;
  326. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  327. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  328. rt_rq->rt_throttled = 0;
  329. enqueue = 1;
  330. }
  331. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  332. idle = 0;
  333. spin_unlock(&rt_rq->rt_runtime_lock);
  334. } else if (rt_rq->rt_nr_running)
  335. idle = 0;
  336. if (enqueue)
  337. sched_rt_rq_enqueue(rt_rq);
  338. spin_unlock(&rq->lock);
  339. }
  340. return idle;
  341. }
  342. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  343. {
  344. #ifdef CONFIG_RT_GROUP_SCHED
  345. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  346. if (rt_rq)
  347. return rt_rq->highest_prio;
  348. #endif
  349. return rt_task_of(rt_se)->prio;
  350. }
  351. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  352. {
  353. u64 runtime = sched_rt_runtime(rt_rq);
  354. if (runtime == RUNTIME_INF)
  355. return 0;
  356. if (rt_rq->rt_throttled)
  357. return rt_rq_throttled(rt_rq);
  358. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  359. return 0;
  360. balance_runtime(rt_rq);
  361. runtime = sched_rt_runtime(rt_rq);
  362. if (runtime == RUNTIME_INF)
  363. return 0;
  364. if (rt_rq->rt_time > runtime) {
  365. rt_rq->rt_throttled = 1;
  366. if (rt_rq_throttled(rt_rq)) {
  367. sched_rt_rq_dequeue(rt_rq);
  368. return 1;
  369. }
  370. }
  371. return 0;
  372. }
  373. /*
  374. * Update the current task's runtime statistics. Skip current tasks that
  375. * are not in our scheduling class.
  376. */
  377. static void update_curr_rt(struct rq *rq)
  378. {
  379. struct task_struct *curr = rq->curr;
  380. struct sched_rt_entity *rt_se = &curr->rt;
  381. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  382. u64 delta_exec;
  383. if (!task_has_rt_policy(curr))
  384. return;
  385. delta_exec = rq->clock - curr->se.exec_start;
  386. if (unlikely((s64)delta_exec < 0))
  387. delta_exec = 0;
  388. schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
  389. curr->se.sum_exec_runtime += delta_exec;
  390. curr->se.exec_start = rq->clock;
  391. cpuacct_charge(curr, delta_exec);
  392. for_each_sched_rt_entity(rt_se) {
  393. rt_rq = rt_rq_of_se(rt_se);
  394. spin_lock(&rt_rq->rt_runtime_lock);
  395. rt_rq->rt_time += delta_exec;
  396. if (sched_rt_runtime_exceeded(rt_rq))
  397. resched_task(curr);
  398. spin_unlock(&rt_rq->rt_runtime_lock);
  399. }
  400. }
  401. static inline
  402. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  403. {
  404. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  405. rt_rq->rt_nr_running++;
  406. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  407. if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
  408. struct rq *rq = rq_of_rt_rq(rt_rq);
  409. rt_rq->highest_prio = rt_se_prio(rt_se);
  410. #ifdef CONFIG_SMP
  411. if (rq->online)
  412. cpupri_set(&rq->rd->cpupri, rq->cpu,
  413. rt_se_prio(rt_se));
  414. #endif
  415. }
  416. #endif
  417. #ifdef CONFIG_SMP
  418. if (rt_se->nr_cpus_allowed > 1) {
  419. struct rq *rq = rq_of_rt_rq(rt_rq);
  420. rq->rt.rt_nr_migratory++;
  421. }
  422. update_rt_migration(rq_of_rt_rq(rt_rq));
  423. #endif
  424. #ifdef CONFIG_RT_GROUP_SCHED
  425. if (rt_se_boosted(rt_se))
  426. rt_rq->rt_nr_boosted++;
  427. if (rt_rq->tg)
  428. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  429. #else
  430. start_rt_bandwidth(&def_rt_bandwidth);
  431. #endif
  432. }
  433. static inline
  434. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  435. {
  436. #ifdef CONFIG_SMP
  437. int highest_prio = rt_rq->highest_prio;
  438. #endif
  439. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  440. WARN_ON(!rt_rq->rt_nr_running);
  441. rt_rq->rt_nr_running--;
  442. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  443. if (rt_rq->rt_nr_running) {
  444. struct rt_prio_array *array;
  445. WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
  446. if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
  447. /* recalculate */
  448. array = &rt_rq->active;
  449. rt_rq->highest_prio =
  450. sched_find_first_bit(array->bitmap);
  451. } /* otherwise leave rq->highest prio alone */
  452. } else
  453. rt_rq->highest_prio = MAX_RT_PRIO;
  454. #endif
  455. #ifdef CONFIG_SMP
  456. if (rt_se->nr_cpus_allowed > 1) {
  457. struct rq *rq = rq_of_rt_rq(rt_rq);
  458. rq->rt.rt_nr_migratory--;
  459. }
  460. if (rt_rq->highest_prio != highest_prio) {
  461. struct rq *rq = rq_of_rt_rq(rt_rq);
  462. if (rq->online)
  463. cpupri_set(&rq->rd->cpupri, rq->cpu,
  464. rt_rq->highest_prio);
  465. }
  466. update_rt_migration(rq_of_rt_rq(rt_rq));
  467. #endif /* CONFIG_SMP */
  468. #ifdef CONFIG_RT_GROUP_SCHED
  469. if (rt_se_boosted(rt_se))
  470. rt_rq->rt_nr_boosted--;
  471. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  472. #endif
  473. }
  474. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
  475. {
  476. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  477. struct rt_prio_array *array = &rt_rq->active;
  478. struct rt_rq *group_rq = group_rt_rq(rt_se);
  479. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  480. /*
  481. * Don't enqueue the group if its throttled, or when empty.
  482. * The latter is a consequence of the former when a child group
  483. * get throttled and the current group doesn't have any other
  484. * active members.
  485. */
  486. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  487. return;
  488. list_add_tail(&rt_se->run_list, queue);
  489. __set_bit(rt_se_prio(rt_se), array->bitmap);
  490. inc_rt_tasks(rt_se, rt_rq);
  491. }
  492. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  493. {
  494. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  495. struct rt_prio_array *array = &rt_rq->active;
  496. list_del_init(&rt_se->run_list);
  497. if (list_empty(array->queue + rt_se_prio(rt_se)))
  498. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  499. dec_rt_tasks(rt_se, rt_rq);
  500. }
  501. /*
  502. * Because the prio of an upper entry depends on the lower
  503. * entries, we must remove entries top - down.
  504. */
  505. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  506. {
  507. struct sched_rt_entity *back = NULL;
  508. for_each_sched_rt_entity(rt_se) {
  509. rt_se->back = back;
  510. back = rt_se;
  511. }
  512. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  513. if (on_rt_rq(rt_se))
  514. __dequeue_rt_entity(rt_se);
  515. }
  516. }
  517. static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
  518. {
  519. dequeue_rt_stack(rt_se);
  520. for_each_sched_rt_entity(rt_se)
  521. __enqueue_rt_entity(rt_se);
  522. }
  523. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  524. {
  525. dequeue_rt_stack(rt_se);
  526. for_each_sched_rt_entity(rt_se) {
  527. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  528. if (rt_rq && rt_rq->rt_nr_running)
  529. __enqueue_rt_entity(rt_se);
  530. }
  531. }
  532. /*
  533. * Adding/removing a task to/from a priority array:
  534. */
  535. static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
  536. {
  537. struct sched_rt_entity *rt_se = &p->rt;
  538. if (wakeup)
  539. rt_se->timeout = 0;
  540. enqueue_rt_entity(rt_se);
  541. inc_cpu_load(rq, p->se.load.weight);
  542. }
  543. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
  544. {
  545. struct sched_rt_entity *rt_se = &p->rt;
  546. update_curr_rt(rq);
  547. dequeue_rt_entity(rt_se);
  548. dec_cpu_load(rq, p->se.load.weight);
  549. }
  550. /*
  551. * Put task to the end of the run list without the overhead of dequeue
  552. * followed by enqueue.
  553. */
  554. static void
  555. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  556. {
  557. if (on_rt_rq(rt_se)) {
  558. struct rt_prio_array *array = &rt_rq->active;
  559. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  560. if (head)
  561. list_move(&rt_se->run_list, queue);
  562. else
  563. list_move_tail(&rt_se->run_list, queue);
  564. }
  565. }
  566. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  567. {
  568. struct sched_rt_entity *rt_se = &p->rt;
  569. struct rt_rq *rt_rq;
  570. for_each_sched_rt_entity(rt_se) {
  571. rt_rq = rt_rq_of_se(rt_se);
  572. requeue_rt_entity(rt_rq, rt_se, head);
  573. }
  574. }
  575. static void yield_task_rt(struct rq *rq)
  576. {
  577. requeue_task_rt(rq, rq->curr, 0);
  578. }
  579. #ifdef CONFIG_SMP
  580. static int find_lowest_rq(struct task_struct *task);
  581. static int select_task_rq_rt(struct task_struct *p, int sync)
  582. {
  583. struct rq *rq = task_rq(p);
  584. /*
  585. * If the current task is an RT task, then
  586. * try to see if we can wake this RT task up on another
  587. * runqueue. Otherwise simply start this RT task
  588. * on its current runqueue.
  589. *
  590. * We want to avoid overloading runqueues. Even if
  591. * the RT task is of higher priority than the current RT task.
  592. * RT tasks behave differently than other tasks. If
  593. * one gets preempted, we try to push it off to another queue.
  594. * So trying to keep a preempting RT task on the same
  595. * cache hot CPU will force the running RT task to
  596. * a cold CPU. So we waste all the cache for the lower
  597. * RT task in hopes of saving some of a RT task
  598. * that is just being woken and probably will have
  599. * cold cache anyway.
  600. */
  601. if (unlikely(rt_task(rq->curr)) &&
  602. (p->rt.nr_cpus_allowed > 1)) {
  603. int cpu = find_lowest_rq(p);
  604. return (cpu == -1) ? task_cpu(p) : cpu;
  605. }
  606. /*
  607. * Otherwise, just let it ride on the affined RQ and the
  608. * post-schedule router will push the preempted task away
  609. */
  610. return task_cpu(p);
  611. }
  612. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  613. {
  614. cpumask_t mask;
  615. if (rq->curr->rt.nr_cpus_allowed == 1)
  616. return;
  617. if (p->rt.nr_cpus_allowed != 1
  618. && cpupri_find(&rq->rd->cpupri, p, &mask))
  619. return;
  620. if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
  621. return;
  622. /*
  623. * There appears to be other cpus that can accept
  624. * current and none to run 'p', so lets reschedule
  625. * to try and push current away:
  626. */
  627. requeue_task_rt(rq, p, 1);
  628. resched_task(rq->curr);
  629. }
  630. #endif /* CONFIG_SMP */
  631. /*
  632. * Preempt the current task with a newly woken task if needed:
  633. */
  634. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
  635. {
  636. if (p->prio < rq->curr->prio) {
  637. resched_task(rq->curr);
  638. return;
  639. }
  640. #ifdef CONFIG_SMP
  641. /*
  642. * If:
  643. *
  644. * - the newly woken task is of equal priority to the current task
  645. * - the newly woken task is non-migratable while current is migratable
  646. * - current will be preempted on the next reschedule
  647. *
  648. * we should check to see if current can readily move to a different
  649. * cpu. If so, we will reschedule to allow the push logic to try
  650. * to move current somewhere else, making room for our non-migratable
  651. * task.
  652. */
  653. if (p->prio == rq->curr->prio && !need_resched())
  654. check_preempt_equal_prio(rq, p);
  655. #endif
  656. }
  657. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  658. struct rt_rq *rt_rq)
  659. {
  660. struct rt_prio_array *array = &rt_rq->active;
  661. struct sched_rt_entity *next = NULL;
  662. struct list_head *queue;
  663. int idx;
  664. idx = sched_find_first_bit(array->bitmap);
  665. BUG_ON(idx >= MAX_RT_PRIO);
  666. queue = array->queue + idx;
  667. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  668. return next;
  669. }
  670. static struct task_struct *pick_next_task_rt(struct rq *rq)
  671. {
  672. struct sched_rt_entity *rt_se;
  673. struct task_struct *p;
  674. struct rt_rq *rt_rq;
  675. rt_rq = &rq->rt;
  676. if (unlikely(!rt_rq->rt_nr_running))
  677. return NULL;
  678. if (rt_rq_throttled(rt_rq))
  679. return NULL;
  680. do {
  681. rt_se = pick_next_rt_entity(rq, rt_rq);
  682. BUG_ON(!rt_se);
  683. rt_rq = group_rt_rq(rt_se);
  684. } while (rt_rq);
  685. p = rt_task_of(rt_se);
  686. p->se.exec_start = rq->clock;
  687. return p;
  688. }
  689. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  690. {
  691. update_curr_rt(rq);
  692. p->se.exec_start = 0;
  693. }
  694. #ifdef CONFIG_SMP
  695. /* Only try algorithms three times */
  696. #define RT_MAX_TRIES 3
  697. static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
  698. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  699. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  700. {
  701. if (!task_running(rq, p) &&
  702. (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
  703. (p->rt.nr_cpus_allowed > 1))
  704. return 1;
  705. return 0;
  706. }
  707. /* Return the second highest RT task, NULL otherwise */
  708. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  709. {
  710. struct task_struct *next = NULL;
  711. struct sched_rt_entity *rt_se;
  712. struct rt_prio_array *array;
  713. struct rt_rq *rt_rq;
  714. int idx;
  715. for_each_leaf_rt_rq(rt_rq, rq) {
  716. array = &rt_rq->active;
  717. idx = sched_find_first_bit(array->bitmap);
  718. next_idx:
  719. if (idx >= MAX_RT_PRIO)
  720. continue;
  721. if (next && next->prio < idx)
  722. continue;
  723. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  724. struct task_struct *p = rt_task_of(rt_se);
  725. if (pick_rt_task(rq, p, cpu)) {
  726. next = p;
  727. break;
  728. }
  729. }
  730. if (!next) {
  731. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  732. goto next_idx;
  733. }
  734. }
  735. return next;
  736. }
  737. static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
  738. static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
  739. {
  740. int first;
  741. /* "this_cpu" is cheaper to preempt than a remote processor */
  742. if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
  743. return this_cpu;
  744. first = first_cpu(*mask);
  745. if (first != NR_CPUS)
  746. return first;
  747. return -1;
  748. }
  749. static int find_lowest_rq(struct task_struct *task)
  750. {
  751. struct sched_domain *sd;
  752. cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
  753. int this_cpu = smp_processor_id();
  754. int cpu = task_cpu(task);
  755. if (task->rt.nr_cpus_allowed == 1)
  756. return -1; /* No other targets possible */
  757. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  758. return -1; /* No targets found */
  759. /*
  760. * Only consider CPUs that are usable for migration.
  761. * I guess we might want to change cpupri_find() to ignore those
  762. * in the first place.
  763. */
  764. cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
  765. /*
  766. * At this point we have built a mask of cpus representing the
  767. * lowest priority tasks in the system. Now we want to elect
  768. * the best one based on our affinity and topology.
  769. *
  770. * We prioritize the last cpu that the task executed on since
  771. * it is most likely cache-hot in that location.
  772. */
  773. if (cpu_isset(cpu, *lowest_mask))
  774. return cpu;
  775. /*
  776. * Otherwise, we consult the sched_domains span maps to figure
  777. * out which cpu is logically closest to our hot cache data.
  778. */
  779. if (this_cpu == cpu)
  780. this_cpu = -1; /* Skip this_cpu opt if the same */
  781. for_each_domain(cpu, sd) {
  782. if (sd->flags & SD_WAKE_AFFINE) {
  783. cpumask_t domain_mask;
  784. int best_cpu;
  785. cpus_and(domain_mask, sd->span, *lowest_mask);
  786. best_cpu = pick_optimal_cpu(this_cpu,
  787. &domain_mask);
  788. if (best_cpu != -1)
  789. return best_cpu;
  790. }
  791. }
  792. /*
  793. * And finally, if there were no matches within the domains
  794. * just give the caller *something* to work with from the compatible
  795. * locations.
  796. */
  797. return pick_optimal_cpu(this_cpu, lowest_mask);
  798. }
  799. /* Will lock the rq it finds */
  800. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  801. {
  802. struct rq *lowest_rq = NULL;
  803. int tries;
  804. int cpu;
  805. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  806. cpu = find_lowest_rq(task);
  807. if ((cpu == -1) || (cpu == rq->cpu))
  808. break;
  809. lowest_rq = cpu_rq(cpu);
  810. /* if the prio of this runqueue changed, try again */
  811. if (double_lock_balance(rq, lowest_rq)) {
  812. /*
  813. * We had to unlock the run queue. In
  814. * the mean time, task could have
  815. * migrated already or had its affinity changed.
  816. * Also make sure that it wasn't scheduled on its rq.
  817. */
  818. if (unlikely(task_rq(task) != rq ||
  819. !cpu_isset(lowest_rq->cpu,
  820. task->cpus_allowed) ||
  821. task_running(rq, task) ||
  822. !task->se.on_rq)) {
  823. spin_unlock(&lowest_rq->lock);
  824. lowest_rq = NULL;
  825. break;
  826. }
  827. }
  828. /* If this rq is still suitable use it. */
  829. if (lowest_rq->rt.highest_prio > task->prio)
  830. break;
  831. /* try again */
  832. spin_unlock(&lowest_rq->lock);
  833. lowest_rq = NULL;
  834. }
  835. return lowest_rq;
  836. }
  837. /*
  838. * If the current CPU has more than one RT task, see if the non
  839. * running task can migrate over to a CPU that is running a task
  840. * of lesser priority.
  841. */
  842. static int push_rt_task(struct rq *rq)
  843. {
  844. struct task_struct *next_task;
  845. struct rq *lowest_rq;
  846. int ret = 0;
  847. int paranoid = RT_MAX_TRIES;
  848. if (!rq->rt.overloaded)
  849. return 0;
  850. next_task = pick_next_highest_task_rt(rq, -1);
  851. if (!next_task)
  852. return 0;
  853. retry:
  854. if (unlikely(next_task == rq->curr)) {
  855. WARN_ON(1);
  856. return 0;
  857. }
  858. /*
  859. * It's possible that the next_task slipped in of
  860. * higher priority than current. If that's the case
  861. * just reschedule current.
  862. */
  863. if (unlikely(next_task->prio < rq->curr->prio)) {
  864. resched_task(rq->curr);
  865. return 0;
  866. }
  867. /* We might release rq lock */
  868. get_task_struct(next_task);
  869. /* find_lock_lowest_rq locks the rq if found */
  870. lowest_rq = find_lock_lowest_rq(next_task, rq);
  871. if (!lowest_rq) {
  872. struct task_struct *task;
  873. /*
  874. * find lock_lowest_rq releases rq->lock
  875. * so it is possible that next_task has changed.
  876. * If it has, then try again.
  877. */
  878. task = pick_next_highest_task_rt(rq, -1);
  879. if (unlikely(task != next_task) && task && paranoid--) {
  880. put_task_struct(next_task);
  881. next_task = task;
  882. goto retry;
  883. }
  884. goto out;
  885. }
  886. deactivate_task(rq, next_task, 0);
  887. set_task_cpu(next_task, lowest_rq->cpu);
  888. activate_task(lowest_rq, next_task, 0);
  889. resched_task(lowest_rq->curr);
  890. spin_unlock(&lowest_rq->lock);
  891. ret = 1;
  892. out:
  893. put_task_struct(next_task);
  894. return ret;
  895. }
  896. /*
  897. * TODO: Currently we just use the second highest prio task on
  898. * the queue, and stop when it can't migrate (or there's
  899. * no more RT tasks). There may be a case where a lower
  900. * priority RT task has a different affinity than the
  901. * higher RT task. In this case the lower RT task could
  902. * possibly be able to migrate where as the higher priority
  903. * RT task could not. We currently ignore this issue.
  904. * Enhancements are welcome!
  905. */
  906. static void push_rt_tasks(struct rq *rq)
  907. {
  908. /* push_rt_task will return true if it moved an RT */
  909. while (push_rt_task(rq))
  910. ;
  911. }
  912. static int pull_rt_task(struct rq *this_rq)
  913. {
  914. int this_cpu = this_rq->cpu, ret = 0, cpu;
  915. struct task_struct *p, *next;
  916. struct rq *src_rq;
  917. if (likely(!rt_overloaded(this_rq)))
  918. return 0;
  919. next = pick_next_task_rt(this_rq);
  920. for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
  921. if (this_cpu == cpu)
  922. continue;
  923. src_rq = cpu_rq(cpu);
  924. /*
  925. * We can potentially drop this_rq's lock in
  926. * double_lock_balance, and another CPU could
  927. * steal our next task - hence we must cause
  928. * the caller to recalculate the next task
  929. * in that case:
  930. */
  931. if (double_lock_balance(this_rq, src_rq)) {
  932. struct task_struct *old_next = next;
  933. next = pick_next_task_rt(this_rq);
  934. if (next != old_next)
  935. ret = 1;
  936. }
  937. /*
  938. * Are there still pullable RT tasks?
  939. */
  940. if (src_rq->rt.rt_nr_running <= 1)
  941. goto skip;
  942. p = pick_next_highest_task_rt(src_rq, this_cpu);
  943. /*
  944. * Do we have an RT task that preempts
  945. * the to-be-scheduled task?
  946. */
  947. if (p && (!next || (p->prio < next->prio))) {
  948. WARN_ON(p == src_rq->curr);
  949. WARN_ON(!p->se.on_rq);
  950. /*
  951. * There's a chance that p is higher in priority
  952. * than what's currently running on its cpu.
  953. * This is just that p is wakeing up and hasn't
  954. * had a chance to schedule. We only pull
  955. * p if it is lower in priority than the
  956. * current task on the run queue or
  957. * this_rq next task is lower in prio than
  958. * the current task on that rq.
  959. */
  960. if (p->prio < src_rq->curr->prio ||
  961. (next && next->prio < src_rq->curr->prio))
  962. goto skip;
  963. ret = 1;
  964. deactivate_task(src_rq, p, 0);
  965. set_task_cpu(p, this_cpu);
  966. activate_task(this_rq, p, 0);
  967. /*
  968. * We continue with the search, just in
  969. * case there's an even higher prio task
  970. * in another runqueue. (low likelyhood
  971. * but possible)
  972. *
  973. * Update next so that we won't pick a task
  974. * on another cpu with a priority lower (or equal)
  975. * than the one we just picked.
  976. */
  977. next = p;
  978. }
  979. skip:
  980. spin_unlock(&src_rq->lock);
  981. }
  982. return ret;
  983. }
  984. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  985. {
  986. /* Try to pull RT tasks here if we lower this rq's prio */
  987. if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
  988. pull_rt_task(rq);
  989. }
  990. static void post_schedule_rt(struct rq *rq)
  991. {
  992. /*
  993. * If we have more than one rt_task queued, then
  994. * see if we can push the other rt_tasks off to other CPUS.
  995. * Note we may release the rq lock, and since
  996. * the lock was owned by prev, we need to release it
  997. * first via finish_lock_switch and then reaquire it here.
  998. */
  999. if (unlikely(rq->rt.overloaded)) {
  1000. spin_lock_irq(&rq->lock);
  1001. push_rt_tasks(rq);
  1002. spin_unlock_irq(&rq->lock);
  1003. }
  1004. }
  1005. /*
  1006. * If we are not running and we are not going to reschedule soon, we should
  1007. * try to push tasks away now
  1008. */
  1009. static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
  1010. {
  1011. if (!task_running(rq, p) &&
  1012. !test_tsk_need_resched(rq->curr) &&
  1013. rq->rt.overloaded)
  1014. push_rt_tasks(rq);
  1015. }
  1016. static unsigned long
  1017. load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1018. unsigned long max_load_move,
  1019. struct sched_domain *sd, enum cpu_idle_type idle,
  1020. int *all_pinned, int *this_best_prio)
  1021. {
  1022. /* don't touch RT tasks */
  1023. return 0;
  1024. }
  1025. static int
  1026. move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1027. struct sched_domain *sd, enum cpu_idle_type idle)
  1028. {
  1029. /* don't touch RT tasks */
  1030. return 0;
  1031. }
  1032. static void set_cpus_allowed_rt(struct task_struct *p,
  1033. const cpumask_t *new_mask)
  1034. {
  1035. int weight = cpus_weight(*new_mask);
  1036. BUG_ON(!rt_task(p));
  1037. /*
  1038. * Update the migration status of the RQ if we have an RT task
  1039. * which is running AND changing its weight value.
  1040. */
  1041. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1042. struct rq *rq = task_rq(p);
  1043. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1044. rq->rt.rt_nr_migratory++;
  1045. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1046. BUG_ON(!rq->rt.rt_nr_migratory);
  1047. rq->rt.rt_nr_migratory--;
  1048. }
  1049. update_rt_migration(rq);
  1050. }
  1051. p->cpus_allowed = *new_mask;
  1052. p->rt.nr_cpus_allowed = weight;
  1053. }
  1054. /* Assumes rq->lock is held */
  1055. static void rq_online_rt(struct rq *rq)
  1056. {
  1057. if (rq->rt.overloaded)
  1058. rt_set_overload(rq);
  1059. __enable_runtime(rq);
  1060. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
  1061. }
  1062. /* Assumes rq->lock is held */
  1063. static void rq_offline_rt(struct rq *rq)
  1064. {
  1065. if (rq->rt.overloaded)
  1066. rt_clear_overload(rq);
  1067. __disable_runtime(rq);
  1068. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1069. }
  1070. /*
  1071. * When switch from the rt queue, we bring ourselves to a position
  1072. * that we might want to pull RT tasks from other runqueues.
  1073. */
  1074. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  1075. int running)
  1076. {
  1077. /*
  1078. * If there are other RT tasks then we will reschedule
  1079. * and the scheduling of the other RT tasks will handle
  1080. * the balancing. But if we are the last RT task
  1081. * we may need to handle the pulling of RT tasks
  1082. * now.
  1083. */
  1084. if (!rq->rt.rt_nr_running)
  1085. pull_rt_task(rq);
  1086. }
  1087. #endif /* CONFIG_SMP */
  1088. /*
  1089. * When switching a task to RT, we may overload the runqueue
  1090. * with RT tasks. In this case we try to push them off to
  1091. * other runqueues.
  1092. */
  1093. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  1094. int running)
  1095. {
  1096. int check_resched = 1;
  1097. /*
  1098. * If we are already running, then there's nothing
  1099. * that needs to be done. But if we are not running
  1100. * we may need to preempt the current running task.
  1101. * If that current running task is also an RT task
  1102. * then see if we can move to another run queue.
  1103. */
  1104. if (!running) {
  1105. #ifdef CONFIG_SMP
  1106. if (rq->rt.overloaded && push_rt_task(rq) &&
  1107. /* Don't resched if we changed runqueues */
  1108. rq != task_rq(p))
  1109. check_resched = 0;
  1110. #endif /* CONFIG_SMP */
  1111. if (check_resched && p->prio < rq->curr->prio)
  1112. resched_task(rq->curr);
  1113. }
  1114. }
  1115. /*
  1116. * Priority of the task has changed. This may cause
  1117. * us to initiate a push or pull.
  1118. */
  1119. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1120. int oldprio, int running)
  1121. {
  1122. if (running) {
  1123. #ifdef CONFIG_SMP
  1124. /*
  1125. * If our priority decreases while running, we
  1126. * may need to pull tasks to this runqueue.
  1127. */
  1128. if (oldprio < p->prio)
  1129. pull_rt_task(rq);
  1130. /*
  1131. * If there's a higher priority task waiting to run
  1132. * then reschedule. Note, the above pull_rt_task
  1133. * can release the rq lock and p could migrate.
  1134. * Only reschedule if p is still on the same runqueue.
  1135. */
  1136. if (p->prio > rq->rt.highest_prio && rq->curr == p)
  1137. resched_task(p);
  1138. #else
  1139. /* For UP simply resched on drop of prio */
  1140. if (oldprio < p->prio)
  1141. resched_task(p);
  1142. #endif /* CONFIG_SMP */
  1143. } else {
  1144. /*
  1145. * This task is not running, but if it is
  1146. * greater than the current running task
  1147. * then reschedule.
  1148. */
  1149. if (p->prio < rq->curr->prio)
  1150. resched_task(rq->curr);
  1151. }
  1152. }
  1153. static void watchdog(struct rq *rq, struct task_struct *p)
  1154. {
  1155. unsigned long soft, hard;
  1156. if (!p->signal)
  1157. return;
  1158. soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
  1159. hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
  1160. if (soft != RLIM_INFINITY) {
  1161. unsigned long next;
  1162. p->rt.timeout++;
  1163. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1164. if (p->rt.timeout > next)
  1165. p->it_sched_expires = p->se.sum_exec_runtime;
  1166. }
  1167. }
  1168. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1169. {
  1170. update_curr_rt(rq);
  1171. watchdog(rq, p);
  1172. /*
  1173. * RR tasks need a special form of timeslice management.
  1174. * FIFO tasks have no timeslices.
  1175. */
  1176. if (p->policy != SCHED_RR)
  1177. return;
  1178. if (--p->rt.time_slice)
  1179. return;
  1180. p->rt.time_slice = DEF_TIMESLICE;
  1181. /*
  1182. * Requeue to the end of queue if we are not the only element
  1183. * on the queue:
  1184. */
  1185. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1186. requeue_task_rt(rq, p, 0);
  1187. set_tsk_need_resched(p);
  1188. }
  1189. }
  1190. static void set_curr_task_rt(struct rq *rq)
  1191. {
  1192. struct task_struct *p = rq->curr;
  1193. p->se.exec_start = rq->clock;
  1194. }
  1195. static const struct sched_class rt_sched_class = {
  1196. .next = &fair_sched_class,
  1197. .enqueue_task = enqueue_task_rt,
  1198. .dequeue_task = dequeue_task_rt,
  1199. .yield_task = yield_task_rt,
  1200. #ifdef CONFIG_SMP
  1201. .select_task_rq = select_task_rq_rt,
  1202. #endif /* CONFIG_SMP */
  1203. .check_preempt_curr = check_preempt_curr_rt,
  1204. .pick_next_task = pick_next_task_rt,
  1205. .put_prev_task = put_prev_task_rt,
  1206. #ifdef CONFIG_SMP
  1207. .load_balance = load_balance_rt,
  1208. .move_one_task = move_one_task_rt,
  1209. .set_cpus_allowed = set_cpus_allowed_rt,
  1210. .rq_online = rq_online_rt,
  1211. .rq_offline = rq_offline_rt,
  1212. .pre_schedule = pre_schedule_rt,
  1213. .post_schedule = post_schedule_rt,
  1214. .task_wake_up = task_wake_up_rt,
  1215. .switched_from = switched_from_rt,
  1216. #endif
  1217. .set_curr_task = set_curr_task_rt,
  1218. .task_tick = task_tick_rt,
  1219. .prio_changed = prio_changed_rt,
  1220. .switched_to = switched_to_rt,
  1221. };
  1222. #ifdef CONFIG_SCHED_DEBUG
  1223. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1224. static void print_rt_stats(struct seq_file *m, int cpu)
  1225. {
  1226. struct rt_rq *rt_rq;
  1227. rcu_read_lock();
  1228. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1229. print_rt_rq(m, cpu, rt_rq);
  1230. rcu_read_unlock();
  1231. }
  1232. #endif /* CONFIG_SCHED_DEBUG */