sched.c 220 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #ifdef CONFIG_PARAVIRT
  77. #include <asm/paravirt.h>
  78. #endif
  79. #include "sched_cpupri.h"
  80. #include "workqueue_sched.h"
  81. #include "sched_autogroup.h"
  82. #define CREATE_TRACE_POINTS
  83. #include <trace/events/sched.h>
  84. /*
  85. * Convert user-nice values [ -20 ... 0 ... 19 ]
  86. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  87. * and back.
  88. */
  89. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  90. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  91. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  92. /*
  93. * 'User priority' is the nice value converted to something we
  94. * can work with better when scaling various scheduler parameters,
  95. * it's a [ 0 ... 39 ] range.
  96. */
  97. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  98. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  99. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  100. /*
  101. * Helpers for converting nanosecond timing to jiffy resolution
  102. */
  103. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  104. #define NICE_0_LOAD SCHED_LOAD_SCALE
  105. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  106. /*
  107. * These are the 'tuning knobs' of the scheduler:
  108. *
  109. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  110. * Timeslices get refilled after they expire.
  111. */
  112. #define DEF_TIMESLICE (100 * HZ / 1000)
  113. /*
  114. * single value that denotes runtime == period, ie unlimited time.
  115. */
  116. #define RUNTIME_INF ((u64)~0ULL)
  117. static inline int rt_policy(int policy)
  118. {
  119. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  120. return 1;
  121. return 0;
  122. }
  123. static inline int task_has_rt_policy(struct task_struct *p)
  124. {
  125. return rt_policy(p->policy);
  126. }
  127. /*
  128. * This is the priority-queue data structure of the RT scheduling class:
  129. */
  130. struct rt_prio_array {
  131. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  132. struct list_head queue[MAX_RT_PRIO];
  133. };
  134. struct rt_bandwidth {
  135. /* nests inside the rq lock: */
  136. raw_spinlock_t rt_runtime_lock;
  137. ktime_t rt_period;
  138. u64 rt_runtime;
  139. struct hrtimer rt_period_timer;
  140. };
  141. static struct rt_bandwidth def_rt_bandwidth;
  142. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  143. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  144. {
  145. struct rt_bandwidth *rt_b =
  146. container_of(timer, struct rt_bandwidth, rt_period_timer);
  147. ktime_t now;
  148. int overrun;
  149. int idle = 0;
  150. for (;;) {
  151. now = hrtimer_cb_get_time(timer);
  152. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  153. if (!overrun)
  154. break;
  155. idle = do_sched_rt_period_timer(rt_b, overrun);
  156. }
  157. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  158. }
  159. static
  160. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  161. {
  162. rt_b->rt_period = ns_to_ktime(period);
  163. rt_b->rt_runtime = runtime;
  164. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  165. hrtimer_init(&rt_b->rt_period_timer,
  166. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  167. rt_b->rt_period_timer.function = sched_rt_period_timer;
  168. }
  169. static inline int rt_bandwidth_enabled(void)
  170. {
  171. return sysctl_sched_rt_runtime >= 0;
  172. }
  173. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  174. {
  175. ktime_t now;
  176. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  177. return;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. return;
  180. raw_spin_lock(&rt_b->rt_runtime_lock);
  181. for (;;) {
  182. unsigned long delta;
  183. ktime_t soft, hard;
  184. if (hrtimer_active(&rt_b->rt_period_timer))
  185. break;
  186. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  187. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  188. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  189. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  190. delta = ktime_to_ns(ktime_sub(hard, soft));
  191. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  192. HRTIMER_MODE_ABS_PINNED, 0);
  193. }
  194. raw_spin_unlock(&rt_b->rt_runtime_lock);
  195. }
  196. #ifdef CONFIG_RT_GROUP_SCHED
  197. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  198. {
  199. hrtimer_cancel(&rt_b->rt_period_timer);
  200. }
  201. #endif
  202. /*
  203. * sched_domains_mutex serializes calls to init_sched_domains,
  204. * detach_destroy_domains and partition_sched_domains.
  205. */
  206. static DEFINE_MUTEX(sched_domains_mutex);
  207. #ifdef CONFIG_CGROUP_SCHED
  208. #include <linux/cgroup.h>
  209. struct cfs_rq;
  210. static LIST_HEAD(task_groups);
  211. /* task group related information */
  212. struct task_group {
  213. struct cgroup_subsys_state css;
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. atomic_t load_weight;
  221. #endif
  222. #ifdef CONFIG_RT_GROUP_SCHED
  223. struct sched_rt_entity **rt_se;
  224. struct rt_rq **rt_rq;
  225. struct rt_bandwidth rt_bandwidth;
  226. #endif
  227. struct rcu_head rcu;
  228. struct list_head list;
  229. struct task_group *parent;
  230. struct list_head siblings;
  231. struct list_head children;
  232. #ifdef CONFIG_SCHED_AUTOGROUP
  233. struct autogroup *autogroup;
  234. #endif
  235. };
  236. /* task_group_lock serializes the addition/removal of task groups */
  237. static DEFINE_SPINLOCK(task_group_lock);
  238. #ifdef CONFIG_FAIR_GROUP_SCHED
  239. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  240. /*
  241. * A weight of 0 or 1 can cause arithmetics problems.
  242. * A weight of a cfs_rq is the sum of weights of which entities
  243. * are queued on this cfs_rq, so a weight of a entity should not be
  244. * too large, so as the shares value of a task group.
  245. * (The default weight is 1024 - so there's no practical
  246. * limitation from this.)
  247. */
  248. #define MIN_SHARES 2
  249. #define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION))
  250. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  251. #endif
  252. /* Default task group.
  253. * Every task in system belong to this group at bootup.
  254. */
  255. struct task_group root_task_group;
  256. #endif /* CONFIG_CGROUP_SCHED */
  257. /* CFS-related fields in a runqueue */
  258. struct cfs_rq {
  259. struct load_weight load;
  260. unsigned long nr_running;
  261. u64 exec_clock;
  262. u64 min_vruntime;
  263. #ifndef CONFIG_64BIT
  264. u64 min_vruntime_copy;
  265. #endif
  266. struct rb_root tasks_timeline;
  267. struct rb_node *rb_leftmost;
  268. struct list_head tasks;
  269. struct list_head *balance_iterator;
  270. /*
  271. * 'curr' points to currently running entity on this cfs_rq.
  272. * It is set to NULL otherwise (i.e when none are currently running).
  273. */
  274. struct sched_entity *curr, *next, *last, *skip;
  275. #ifdef CONFIG_SCHED_DEBUG
  276. unsigned int nr_spread_over;
  277. #endif
  278. #ifdef CONFIG_FAIR_GROUP_SCHED
  279. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  280. /*
  281. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  282. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  283. * (like users, containers etc.)
  284. *
  285. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  286. * list is used during load balance.
  287. */
  288. int on_list;
  289. struct list_head leaf_cfs_rq_list;
  290. struct task_group *tg; /* group that "owns" this runqueue */
  291. #ifdef CONFIG_SMP
  292. /*
  293. * the part of load.weight contributed by tasks
  294. */
  295. unsigned long task_weight;
  296. /*
  297. * h_load = weight * f(tg)
  298. *
  299. * Where f(tg) is the recursive weight fraction assigned to
  300. * this group.
  301. */
  302. unsigned long h_load;
  303. /*
  304. * Maintaining per-cpu shares distribution for group scheduling
  305. *
  306. * load_stamp is the last time we updated the load average
  307. * load_last is the last time we updated the load average and saw load
  308. * load_unacc_exec_time is currently unaccounted execution time
  309. */
  310. u64 load_avg;
  311. u64 load_period;
  312. u64 load_stamp, load_last, load_unacc_exec_time;
  313. unsigned long load_contribution;
  314. #endif
  315. #endif
  316. };
  317. /* Real-Time classes' related field in a runqueue: */
  318. struct rt_rq {
  319. struct rt_prio_array active;
  320. unsigned long rt_nr_running;
  321. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  322. struct {
  323. int curr; /* highest queued rt task prio */
  324. #ifdef CONFIG_SMP
  325. int next; /* next highest */
  326. #endif
  327. } highest_prio;
  328. #endif
  329. #ifdef CONFIG_SMP
  330. unsigned long rt_nr_migratory;
  331. unsigned long rt_nr_total;
  332. int overloaded;
  333. struct plist_head pushable_tasks;
  334. #endif
  335. int rt_throttled;
  336. u64 rt_time;
  337. u64 rt_runtime;
  338. /* Nests inside the rq lock: */
  339. raw_spinlock_t rt_runtime_lock;
  340. #ifdef CONFIG_RT_GROUP_SCHED
  341. unsigned long rt_nr_boosted;
  342. struct rq *rq;
  343. struct list_head leaf_rt_rq_list;
  344. struct task_group *tg;
  345. #endif
  346. };
  347. #ifdef CONFIG_SMP
  348. /*
  349. * We add the notion of a root-domain which will be used to define per-domain
  350. * variables. Each exclusive cpuset essentially defines an island domain by
  351. * fully partitioning the member cpus from any other cpuset. Whenever a new
  352. * exclusive cpuset is created, we also create and attach a new root-domain
  353. * object.
  354. *
  355. */
  356. struct root_domain {
  357. atomic_t refcount;
  358. struct rcu_head rcu;
  359. cpumask_var_t span;
  360. cpumask_var_t online;
  361. /*
  362. * The "RT overload" flag: it gets set if a CPU has more than
  363. * one runnable RT task.
  364. */
  365. cpumask_var_t rto_mask;
  366. atomic_t rto_count;
  367. struct cpupri cpupri;
  368. };
  369. /*
  370. * By default the system creates a single root-domain with all cpus as
  371. * members (mimicking the global state we have today).
  372. */
  373. static struct root_domain def_root_domain;
  374. #endif /* CONFIG_SMP */
  375. /*
  376. * This is the main, per-CPU runqueue data structure.
  377. *
  378. * Locking rule: those places that want to lock multiple runqueues
  379. * (such as the load balancing or the thread migration code), lock
  380. * acquire operations must be ordered by ascending &runqueue.
  381. */
  382. struct rq {
  383. /* runqueue lock: */
  384. raw_spinlock_t lock;
  385. /*
  386. * nr_running and cpu_load should be in the same cacheline because
  387. * remote CPUs use both these fields when doing load calculation.
  388. */
  389. unsigned long nr_running;
  390. #define CPU_LOAD_IDX_MAX 5
  391. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  392. unsigned long last_load_update_tick;
  393. #ifdef CONFIG_NO_HZ
  394. u64 nohz_stamp;
  395. unsigned char nohz_balance_kick;
  396. #endif
  397. int skip_clock_update;
  398. /* capture load from *all* tasks on this cpu: */
  399. struct load_weight load;
  400. unsigned long nr_load_updates;
  401. u64 nr_switches;
  402. struct cfs_rq cfs;
  403. struct rt_rq rt;
  404. #ifdef CONFIG_FAIR_GROUP_SCHED
  405. /* list of leaf cfs_rq on this cpu: */
  406. struct list_head leaf_cfs_rq_list;
  407. #endif
  408. #ifdef CONFIG_RT_GROUP_SCHED
  409. struct list_head leaf_rt_rq_list;
  410. #endif
  411. /*
  412. * This is part of a global counter where only the total sum
  413. * over all CPUs matters. A task can increase this counter on
  414. * one CPU and if it got migrated afterwards it may decrease
  415. * it on another CPU. Always updated under the runqueue lock:
  416. */
  417. unsigned long nr_uninterruptible;
  418. struct task_struct *curr, *idle, *stop;
  419. unsigned long next_balance;
  420. struct mm_struct *prev_mm;
  421. u64 clock;
  422. u64 clock_task;
  423. atomic_t nr_iowait;
  424. #ifdef CONFIG_SMP
  425. struct root_domain *rd;
  426. struct sched_domain *sd;
  427. unsigned long cpu_power;
  428. unsigned char idle_at_tick;
  429. /* For active balancing */
  430. int post_schedule;
  431. int active_balance;
  432. int push_cpu;
  433. struct cpu_stop_work active_balance_work;
  434. /* cpu of this runqueue: */
  435. int cpu;
  436. int online;
  437. unsigned long avg_load_per_task;
  438. u64 rt_avg;
  439. u64 age_stamp;
  440. u64 idle_stamp;
  441. u64 avg_idle;
  442. #endif
  443. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  444. u64 prev_irq_time;
  445. #endif
  446. #ifdef CONFIG_PARAVIRT
  447. u64 prev_steal_time;
  448. #endif
  449. /* calc_load related fields */
  450. unsigned long calc_load_update;
  451. long calc_load_active;
  452. #ifdef CONFIG_SCHED_HRTICK
  453. #ifdef CONFIG_SMP
  454. int hrtick_csd_pending;
  455. struct call_single_data hrtick_csd;
  456. #endif
  457. struct hrtimer hrtick_timer;
  458. #endif
  459. #ifdef CONFIG_SCHEDSTATS
  460. /* latency stats */
  461. struct sched_info rq_sched_info;
  462. unsigned long long rq_cpu_time;
  463. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  464. /* sys_sched_yield() stats */
  465. unsigned int yld_count;
  466. /* schedule() stats */
  467. unsigned int sched_switch;
  468. unsigned int sched_count;
  469. unsigned int sched_goidle;
  470. /* try_to_wake_up() stats */
  471. unsigned int ttwu_count;
  472. unsigned int ttwu_local;
  473. #endif
  474. #ifdef CONFIG_SMP
  475. struct task_struct *wake_list;
  476. #endif
  477. };
  478. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  479. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  480. static inline int cpu_of(struct rq *rq)
  481. {
  482. #ifdef CONFIG_SMP
  483. return rq->cpu;
  484. #else
  485. return 0;
  486. #endif
  487. }
  488. #define rcu_dereference_check_sched_domain(p) \
  489. rcu_dereference_check((p), \
  490. rcu_read_lock_held() || \
  491. lockdep_is_held(&sched_domains_mutex))
  492. /*
  493. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  494. * See detach_destroy_domains: synchronize_sched for details.
  495. *
  496. * The domain tree of any CPU may only be accessed from within
  497. * preempt-disabled sections.
  498. */
  499. #define for_each_domain(cpu, __sd) \
  500. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  501. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  502. #define this_rq() (&__get_cpu_var(runqueues))
  503. #define task_rq(p) cpu_rq(task_cpu(p))
  504. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  505. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  506. #ifdef CONFIG_CGROUP_SCHED
  507. /*
  508. * Return the group to which this tasks belongs.
  509. *
  510. * We use task_subsys_state_check() and extend the RCU verification with
  511. * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
  512. * task it moves into the cgroup. Therefore by holding either of those locks,
  513. * we pin the task to the current cgroup.
  514. */
  515. static inline struct task_group *task_group(struct task_struct *p)
  516. {
  517. struct task_group *tg;
  518. struct cgroup_subsys_state *css;
  519. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  520. lockdep_is_held(&p->pi_lock) ||
  521. lockdep_is_held(&task_rq(p)->lock));
  522. tg = container_of(css, struct task_group, css);
  523. return autogroup_task_group(p, tg);
  524. }
  525. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  526. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  527. {
  528. #ifdef CONFIG_FAIR_GROUP_SCHED
  529. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  530. p->se.parent = task_group(p)->se[cpu];
  531. #endif
  532. #ifdef CONFIG_RT_GROUP_SCHED
  533. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  534. p->rt.parent = task_group(p)->rt_se[cpu];
  535. #endif
  536. }
  537. #else /* CONFIG_CGROUP_SCHED */
  538. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  539. static inline struct task_group *task_group(struct task_struct *p)
  540. {
  541. return NULL;
  542. }
  543. #endif /* CONFIG_CGROUP_SCHED */
  544. static void update_rq_clock_task(struct rq *rq, s64 delta);
  545. static void update_rq_clock(struct rq *rq)
  546. {
  547. s64 delta;
  548. if (rq->skip_clock_update > 0)
  549. return;
  550. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  551. rq->clock += delta;
  552. update_rq_clock_task(rq, delta);
  553. }
  554. /*
  555. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  556. */
  557. #ifdef CONFIG_SCHED_DEBUG
  558. # define const_debug __read_mostly
  559. #else
  560. # define const_debug static const
  561. #endif
  562. /**
  563. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  564. * @cpu: the processor in question.
  565. *
  566. * This interface allows printk to be called with the runqueue lock
  567. * held and know whether or not it is OK to wake up the klogd.
  568. */
  569. int runqueue_is_locked(int cpu)
  570. {
  571. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  572. }
  573. /*
  574. * Debugging: various feature bits
  575. */
  576. #define SCHED_FEAT(name, enabled) \
  577. __SCHED_FEAT_##name ,
  578. enum {
  579. #include "sched_features.h"
  580. };
  581. #undef SCHED_FEAT
  582. #define SCHED_FEAT(name, enabled) \
  583. (1UL << __SCHED_FEAT_##name) * enabled |
  584. const_debug unsigned int sysctl_sched_features =
  585. #include "sched_features.h"
  586. 0;
  587. #undef SCHED_FEAT
  588. #ifdef CONFIG_SCHED_DEBUG
  589. #define SCHED_FEAT(name, enabled) \
  590. #name ,
  591. static __read_mostly char *sched_feat_names[] = {
  592. #include "sched_features.h"
  593. NULL
  594. };
  595. #undef SCHED_FEAT
  596. static int sched_feat_show(struct seq_file *m, void *v)
  597. {
  598. int i;
  599. for (i = 0; sched_feat_names[i]; i++) {
  600. if (!(sysctl_sched_features & (1UL << i)))
  601. seq_puts(m, "NO_");
  602. seq_printf(m, "%s ", sched_feat_names[i]);
  603. }
  604. seq_puts(m, "\n");
  605. return 0;
  606. }
  607. static ssize_t
  608. sched_feat_write(struct file *filp, const char __user *ubuf,
  609. size_t cnt, loff_t *ppos)
  610. {
  611. char buf[64];
  612. char *cmp;
  613. int neg = 0;
  614. int i;
  615. if (cnt > 63)
  616. cnt = 63;
  617. if (copy_from_user(&buf, ubuf, cnt))
  618. return -EFAULT;
  619. buf[cnt] = 0;
  620. cmp = strstrip(buf);
  621. if (strncmp(cmp, "NO_", 3) == 0) {
  622. neg = 1;
  623. cmp += 3;
  624. }
  625. for (i = 0; sched_feat_names[i]; i++) {
  626. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  627. if (neg)
  628. sysctl_sched_features &= ~(1UL << i);
  629. else
  630. sysctl_sched_features |= (1UL << i);
  631. break;
  632. }
  633. }
  634. if (!sched_feat_names[i])
  635. return -EINVAL;
  636. *ppos += cnt;
  637. return cnt;
  638. }
  639. static int sched_feat_open(struct inode *inode, struct file *filp)
  640. {
  641. return single_open(filp, sched_feat_show, NULL);
  642. }
  643. static const struct file_operations sched_feat_fops = {
  644. .open = sched_feat_open,
  645. .write = sched_feat_write,
  646. .read = seq_read,
  647. .llseek = seq_lseek,
  648. .release = single_release,
  649. };
  650. static __init int sched_init_debug(void)
  651. {
  652. debugfs_create_file("sched_features", 0644, NULL, NULL,
  653. &sched_feat_fops);
  654. return 0;
  655. }
  656. late_initcall(sched_init_debug);
  657. #endif
  658. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  659. /*
  660. * Number of tasks to iterate in a single balance run.
  661. * Limited because this is done with IRQs disabled.
  662. */
  663. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  664. /*
  665. * period over which we average the RT time consumption, measured
  666. * in ms.
  667. *
  668. * default: 1s
  669. */
  670. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  671. /*
  672. * period over which we measure -rt task cpu usage in us.
  673. * default: 1s
  674. */
  675. unsigned int sysctl_sched_rt_period = 1000000;
  676. static __read_mostly int scheduler_running;
  677. /*
  678. * part of the period that we allow rt tasks to run in us.
  679. * default: 0.95s
  680. */
  681. int sysctl_sched_rt_runtime = 950000;
  682. static inline u64 global_rt_period(void)
  683. {
  684. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  685. }
  686. static inline u64 global_rt_runtime(void)
  687. {
  688. if (sysctl_sched_rt_runtime < 0)
  689. return RUNTIME_INF;
  690. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  691. }
  692. #ifndef prepare_arch_switch
  693. # define prepare_arch_switch(next) do { } while (0)
  694. #endif
  695. #ifndef finish_arch_switch
  696. # define finish_arch_switch(prev) do { } while (0)
  697. #endif
  698. static inline int task_current(struct rq *rq, struct task_struct *p)
  699. {
  700. return rq->curr == p;
  701. }
  702. static inline int task_running(struct rq *rq, struct task_struct *p)
  703. {
  704. #ifdef CONFIG_SMP
  705. return p->on_cpu;
  706. #else
  707. return task_current(rq, p);
  708. #endif
  709. }
  710. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  711. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  712. {
  713. #ifdef CONFIG_SMP
  714. /*
  715. * We can optimise this out completely for !SMP, because the
  716. * SMP rebalancing from interrupt is the only thing that cares
  717. * here.
  718. */
  719. next->on_cpu = 1;
  720. #endif
  721. }
  722. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  723. {
  724. #ifdef CONFIG_SMP
  725. /*
  726. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  727. * We must ensure this doesn't happen until the switch is completely
  728. * finished.
  729. */
  730. smp_wmb();
  731. prev->on_cpu = 0;
  732. #endif
  733. #ifdef CONFIG_DEBUG_SPINLOCK
  734. /* this is a valid case when another task releases the spinlock */
  735. rq->lock.owner = current;
  736. #endif
  737. /*
  738. * If we are tracking spinlock dependencies then we have to
  739. * fix up the runqueue lock - which gets 'carried over' from
  740. * prev into current:
  741. */
  742. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  743. raw_spin_unlock_irq(&rq->lock);
  744. }
  745. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  746. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  747. {
  748. #ifdef CONFIG_SMP
  749. /*
  750. * We can optimise this out completely for !SMP, because the
  751. * SMP rebalancing from interrupt is the only thing that cares
  752. * here.
  753. */
  754. next->on_cpu = 1;
  755. #endif
  756. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  757. raw_spin_unlock_irq(&rq->lock);
  758. #else
  759. raw_spin_unlock(&rq->lock);
  760. #endif
  761. }
  762. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  763. {
  764. #ifdef CONFIG_SMP
  765. /*
  766. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  767. * We must ensure this doesn't happen until the switch is completely
  768. * finished.
  769. */
  770. smp_wmb();
  771. prev->on_cpu = 0;
  772. #endif
  773. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  774. local_irq_enable();
  775. #endif
  776. }
  777. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  778. /*
  779. * __task_rq_lock - lock the rq @p resides on.
  780. */
  781. static inline struct rq *__task_rq_lock(struct task_struct *p)
  782. __acquires(rq->lock)
  783. {
  784. struct rq *rq;
  785. lockdep_assert_held(&p->pi_lock);
  786. for (;;) {
  787. rq = task_rq(p);
  788. raw_spin_lock(&rq->lock);
  789. if (likely(rq == task_rq(p)))
  790. return rq;
  791. raw_spin_unlock(&rq->lock);
  792. }
  793. }
  794. /*
  795. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  796. */
  797. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  798. __acquires(p->pi_lock)
  799. __acquires(rq->lock)
  800. {
  801. struct rq *rq;
  802. for (;;) {
  803. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  804. rq = task_rq(p);
  805. raw_spin_lock(&rq->lock);
  806. if (likely(rq == task_rq(p)))
  807. return rq;
  808. raw_spin_unlock(&rq->lock);
  809. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  810. }
  811. }
  812. static void __task_rq_unlock(struct rq *rq)
  813. __releases(rq->lock)
  814. {
  815. raw_spin_unlock(&rq->lock);
  816. }
  817. static inline void
  818. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  819. __releases(rq->lock)
  820. __releases(p->pi_lock)
  821. {
  822. raw_spin_unlock(&rq->lock);
  823. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  824. }
  825. /*
  826. * this_rq_lock - lock this runqueue and disable interrupts.
  827. */
  828. static struct rq *this_rq_lock(void)
  829. __acquires(rq->lock)
  830. {
  831. struct rq *rq;
  832. local_irq_disable();
  833. rq = this_rq();
  834. raw_spin_lock(&rq->lock);
  835. return rq;
  836. }
  837. #ifdef CONFIG_SCHED_HRTICK
  838. /*
  839. * Use HR-timers to deliver accurate preemption points.
  840. *
  841. * Its all a bit involved since we cannot program an hrt while holding the
  842. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  843. * reschedule event.
  844. *
  845. * When we get rescheduled we reprogram the hrtick_timer outside of the
  846. * rq->lock.
  847. */
  848. /*
  849. * Use hrtick when:
  850. * - enabled by features
  851. * - hrtimer is actually high res
  852. */
  853. static inline int hrtick_enabled(struct rq *rq)
  854. {
  855. if (!sched_feat(HRTICK))
  856. return 0;
  857. if (!cpu_active(cpu_of(rq)))
  858. return 0;
  859. return hrtimer_is_hres_active(&rq->hrtick_timer);
  860. }
  861. static void hrtick_clear(struct rq *rq)
  862. {
  863. if (hrtimer_active(&rq->hrtick_timer))
  864. hrtimer_cancel(&rq->hrtick_timer);
  865. }
  866. /*
  867. * High-resolution timer tick.
  868. * Runs from hardirq context with interrupts disabled.
  869. */
  870. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  871. {
  872. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  873. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  874. raw_spin_lock(&rq->lock);
  875. update_rq_clock(rq);
  876. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  877. raw_spin_unlock(&rq->lock);
  878. return HRTIMER_NORESTART;
  879. }
  880. #ifdef CONFIG_SMP
  881. /*
  882. * called from hardirq (IPI) context
  883. */
  884. static void __hrtick_start(void *arg)
  885. {
  886. struct rq *rq = arg;
  887. raw_spin_lock(&rq->lock);
  888. hrtimer_restart(&rq->hrtick_timer);
  889. rq->hrtick_csd_pending = 0;
  890. raw_spin_unlock(&rq->lock);
  891. }
  892. /*
  893. * Called to set the hrtick timer state.
  894. *
  895. * called with rq->lock held and irqs disabled
  896. */
  897. static void hrtick_start(struct rq *rq, u64 delay)
  898. {
  899. struct hrtimer *timer = &rq->hrtick_timer;
  900. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  901. hrtimer_set_expires(timer, time);
  902. if (rq == this_rq()) {
  903. hrtimer_restart(timer);
  904. } else if (!rq->hrtick_csd_pending) {
  905. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  906. rq->hrtick_csd_pending = 1;
  907. }
  908. }
  909. static int
  910. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  911. {
  912. int cpu = (int)(long)hcpu;
  913. switch (action) {
  914. case CPU_UP_CANCELED:
  915. case CPU_UP_CANCELED_FROZEN:
  916. case CPU_DOWN_PREPARE:
  917. case CPU_DOWN_PREPARE_FROZEN:
  918. case CPU_DEAD:
  919. case CPU_DEAD_FROZEN:
  920. hrtick_clear(cpu_rq(cpu));
  921. return NOTIFY_OK;
  922. }
  923. return NOTIFY_DONE;
  924. }
  925. static __init void init_hrtick(void)
  926. {
  927. hotcpu_notifier(hotplug_hrtick, 0);
  928. }
  929. #else
  930. /*
  931. * Called to set the hrtick timer state.
  932. *
  933. * called with rq->lock held and irqs disabled
  934. */
  935. static void hrtick_start(struct rq *rq, u64 delay)
  936. {
  937. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  938. HRTIMER_MODE_REL_PINNED, 0);
  939. }
  940. static inline void init_hrtick(void)
  941. {
  942. }
  943. #endif /* CONFIG_SMP */
  944. static void init_rq_hrtick(struct rq *rq)
  945. {
  946. #ifdef CONFIG_SMP
  947. rq->hrtick_csd_pending = 0;
  948. rq->hrtick_csd.flags = 0;
  949. rq->hrtick_csd.func = __hrtick_start;
  950. rq->hrtick_csd.info = rq;
  951. #endif
  952. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  953. rq->hrtick_timer.function = hrtick;
  954. }
  955. #else /* CONFIG_SCHED_HRTICK */
  956. static inline void hrtick_clear(struct rq *rq)
  957. {
  958. }
  959. static inline void init_rq_hrtick(struct rq *rq)
  960. {
  961. }
  962. static inline void init_hrtick(void)
  963. {
  964. }
  965. #endif /* CONFIG_SCHED_HRTICK */
  966. /*
  967. * resched_task - mark a task 'to be rescheduled now'.
  968. *
  969. * On UP this means the setting of the need_resched flag, on SMP it
  970. * might also involve a cross-CPU call to trigger the scheduler on
  971. * the target CPU.
  972. */
  973. #ifdef CONFIG_SMP
  974. #ifndef tsk_is_polling
  975. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  976. #endif
  977. static void resched_task(struct task_struct *p)
  978. {
  979. int cpu;
  980. assert_raw_spin_locked(&task_rq(p)->lock);
  981. if (test_tsk_need_resched(p))
  982. return;
  983. set_tsk_need_resched(p);
  984. cpu = task_cpu(p);
  985. if (cpu == smp_processor_id())
  986. return;
  987. /* NEED_RESCHED must be visible before we test polling */
  988. smp_mb();
  989. if (!tsk_is_polling(p))
  990. smp_send_reschedule(cpu);
  991. }
  992. static void resched_cpu(int cpu)
  993. {
  994. struct rq *rq = cpu_rq(cpu);
  995. unsigned long flags;
  996. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  997. return;
  998. resched_task(cpu_curr(cpu));
  999. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1000. }
  1001. #ifdef CONFIG_NO_HZ
  1002. /*
  1003. * In the semi idle case, use the nearest busy cpu for migrating timers
  1004. * from an idle cpu. This is good for power-savings.
  1005. *
  1006. * We don't do similar optimization for completely idle system, as
  1007. * selecting an idle cpu will add more delays to the timers than intended
  1008. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1009. */
  1010. int get_nohz_timer_target(void)
  1011. {
  1012. int cpu = smp_processor_id();
  1013. int i;
  1014. struct sched_domain *sd;
  1015. rcu_read_lock();
  1016. for_each_domain(cpu, sd) {
  1017. for_each_cpu(i, sched_domain_span(sd)) {
  1018. if (!idle_cpu(i)) {
  1019. cpu = i;
  1020. goto unlock;
  1021. }
  1022. }
  1023. }
  1024. unlock:
  1025. rcu_read_unlock();
  1026. return cpu;
  1027. }
  1028. /*
  1029. * When add_timer_on() enqueues a timer into the timer wheel of an
  1030. * idle CPU then this timer might expire before the next timer event
  1031. * which is scheduled to wake up that CPU. In case of a completely
  1032. * idle system the next event might even be infinite time into the
  1033. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1034. * leaves the inner idle loop so the newly added timer is taken into
  1035. * account when the CPU goes back to idle and evaluates the timer
  1036. * wheel for the next timer event.
  1037. */
  1038. void wake_up_idle_cpu(int cpu)
  1039. {
  1040. struct rq *rq = cpu_rq(cpu);
  1041. if (cpu == smp_processor_id())
  1042. return;
  1043. /*
  1044. * This is safe, as this function is called with the timer
  1045. * wheel base lock of (cpu) held. When the CPU is on the way
  1046. * to idle and has not yet set rq->curr to idle then it will
  1047. * be serialized on the timer wheel base lock and take the new
  1048. * timer into account automatically.
  1049. */
  1050. if (rq->curr != rq->idle)
  1051. return;
  1052. /*
  1053. * We can set TIF_RESCHED on the idle task of the other CPU
  1054. * lockless. The worst case is that the other CPU runs the
  1055. * idle task through an additional NOOP schedule()
  1056. */
  1057. set_tsk_need_resched(rq->idle);
  1058. /* NEED_RESCHED must be visible before we test polling */
  1059. smp_mb();
  1060. if (!tsk_is_polling(rq->idle))
  1061. smp_send_reschedule(cpu);
  1062. }
  1063. #endif /* CONFIG_NO_HZ */
  1064. static u64 sched_avg_period(void)
  1065. {
  1066. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1067. }
  1068. static void sched_avg_update(struct rq *rq)
  1069. {
  1070. s64 period = sched_avg_period();
  1071. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1072. /*
  1073. * Inline assembly required to prevent the compiler
  1074. * optimising this loop into a divmod call.
  1075. * See __iter_div_u64_rem() for another example of this.
  1076. */
  1077. asm("" : "+rm" (rq->age_stamp));
  1078. rq->age_stamp += period;
  1079. rq->rt_avg /= 2;
  1080. }
  1081. }
  1082. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1083. {
  1084. rq->rt_avg += rt_delta;
  1085. sched_avg_update(rq);
  1086. }
  1087. #else /* !CONFIG_SMP */
  1088. static void resched_task(struct task_struct *p)
  1089. {
  1090. assert_raw_spin_locked(&task_rq(p)->lock);
  1091. set_tsk_need_resched(p);
  1092. }
  1093. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1094. {
  1095. }
  1096. static void sched_avg_update(struct rq *rq)
  1097. {
  1098. }
  1099. #endif /* CONFIG_SMP */
  1100. #if BITS_PER_LONG == 32
  1101. # define WMULT_CONST (~0UL)
  1102. #else
  1103. # define WMULT_CONST (1UL << 32)
  1104. #endif
  1105. #define WMULT_SHIFT 32
  1106. /*
  1107. * Shift right and round:
  1108. */
  1109. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1110. /*
  1111. * delta *= weight / lw
  1112. */
  1113. static unsigned long
  1114. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1115. struct load_weight *lw)
  1116. {
  1117. u64 tmp;
  1118. /*
  1119. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  1120. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  1121. * 2^SCHED_LOAD_RESOLUTION.
  1122. */
  1123. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  1124. tmp = (u64)delta_exec * scale_load_down(weight);
  1125. else
  1126. tmp = (u64)delta_exec;
  1127. if (!lw->inv_weight) {
  1128. unsigned long w = scale_load_down(lw->weight);
  1129. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  1130. lw->inv_weight = 1;
  1131. else if (unlikely(!w))
  1132. lw->inv_weight = WMULT_CONST;
  1133. else
  1134. lw->inv_weight = WMULT_CONST / w;
  1135. }
  1136. /*
  1137. * Check whether we'd overflow the 64-bit multiplication:
  1138. */
  1139. if (unlikely(tmp > WMULT_CONST))
  1140. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1141. WMULT_SHIFT/2);
  1142. else
  1143. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1144. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1145. }
  1146. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1147. {
  1148. lw->weight += inc;
  1149. lw->inv_weight = 0;
  1150. }
  1151. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1152. {
  1153. lw->weight -= dec;
  1154. lw->inv_weight = 0;
  1155. }
  1156. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1157. {
  1158. lw->weight = w;
  1159. lw->inv_weight = 0;
  1160. }
  1161. /*
  1162. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1163. * of tasks with abnormal "nice" values across CPUs the contribution that
  1164. * each task makes to its run queue's load is weighted according to its
  1165. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1166. * scaled version of the new time slice allocation that they receive on time
  1167. * slice expiry etc.
  1168. */
  1169. #define WEIGHT_IDLEPRIO 3
  1170. #define WMULT_IDLEPRIO 1431655765
  1171. /*
  1172. * Nice levels are multiplicative, with a gentle 10% change for every
  1173. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1174. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1175. * that remained on nice 0.
  1176. *
  1177. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1178. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1179. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1180. * If a task goes up by ~10% and another task goes down by ~10% then
  1181. * the relative distance between them is ~25%.)
  1182. */
  1183. static const int prio_to_weight[40] = {
  1184. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1185. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1186. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1187. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1188. /* 0 */ 1024, 820, 655, 526, 423,
  1189. /* 5 */ 335, 272, 215, 172, 137,
  1190. /* 10 */ 110, 87, 70, 56, 45,
  1191. /* 15 */ 36, 29, 23, 18, 15,
  1192. };
  1193. /*
  1194. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1195. *
  1196. * In cases where the weight does not change often, we can use the
  1197. * precalculated inverse to speed up arithmetics by turning divisions
  1198. * into multiplications:
  1199. */
  1200. static const u32 prio_to_wmult[40] = {
  1201. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1202. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1203. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1204. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1205. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1206. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1207. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1208. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1209. };
  1210. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1211. enum cpuacct_stat_index {
  1212. CPUACCT_STAT_USER, /* ... user mode */
  1213. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1214. CPUACCT_STAT_NSTATS,
  1215. };
  1216. #ifdef CONFIG_CGROUP_CPUACCT
  1217. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1218. static void cpuacct_update_stats(struct task_struct *tsk,
  1219. enum cpuacct_stat_index idx, cputime_t val);
  1220. #else
  1221. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1222. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1223. enum cpuacct_stat_index idx, cputime_t val) {}
  1224. #endif
  1225. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1226. {
  1227. update_load_add(&rq->load, load);
  1228. }
  1229. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1230. {
  1231. update_load_sub(&rq->load, load);
  1232. }
  1233. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1234. typedef int (*tg_visitor)(struct task_group *, void *);
  1235. /*
  1236. * Iterate the full tree, calling @down when first entering a node and @up when
  1237. * leaving it for the final time.
  1238. */
  1239. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1240. {
  1241. struct task_group *parent, *child;
  1242. int ret;
  1243. rcu_read_lock();
  1244. parent = &root_task_group;
  1245. down:
  1246. ret = (*down)(parent, data);
  1247. if (ret)
  1248. goto out_unlock;
  1249. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1250. parent = child;
  1251. goto down;
  1252. up:
  1253. continue;
  1254. }
  1255. ret = (*up)(parent, data);
  1256. if (ret)
  1257. goto out_unlock;
  1258. child = parent;
  1259. parent = parent->parent;
  1260. if (parent)
  1261. goto up;
  1262. out_unlock:
  1263. rcu_read_unlock();
  1264. return ret;
  1265. }
  1266. static int tg_nop(struct task_group *tg, void *data)
  1267. {
  1268. return 0;
  1269. }
  1270. #endif
  1271. #ifdef CONFIG_SMP
  1272. /* Used instead of source_load when we know the type == 0 */
  1273. static unsigned long weighted_cpuload(const int cpu)
  1274. {
  1275. return cpu_rq(cpu)->load.weight;
  1276. }
  1277. /*
  1278. * Return a low guess at the load of a migration-source cpu weighted
  1279. * according to the scheduling class and "nice" value.
  1280. *
  1281. * We want to under-estimate the load of migration sources, to
  1282. * balance conservatively.
  1283. */
  1284. static unsigned long source_load(int cpu, int type)
  1285. {
  1286. struct rq *rq = cpu_rq(cpu);
  1287. unsigned long total = weighted_cpuload(cpu);
  1288. if (type == 0 || !sched_feat(LB_BIAS))
  1289. return total;
  1290. return min(rq->cpu_load[type-1], total);
  1291. }
  1292. /*
  1293. * Return a high guess at the load of a migration-target cpu weighted
  1294. * according to the scheduling class and "nice" value.
  1295. */
  1296. static unsigned long target_load(int cpu, int type)
  1297. {
  1298. struct rq *rq = cpu_rq(cpu);
  1299. unsigned long total = weighted_cpuload(cpu);
  1300. if (type == 0 || !sched_feat(LB_BIAS))
  1301. return total;
  1302. return max(rq->cpu_load[type-1], total);
  1303. }
  1304. static unsigned long power_of(int cpu)
  1305. {
  1306. return cpu_rq(cpu)->cpu_power;
  1307. }
  1308. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1309. static unsigned long cpu_avg_load_per_task(int cpu)
  1310. {
  1311. struct rq *rq = cpu_rq(cpu);
  1312. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1313. if (nr_running)
  1314. rq->avg_load_per_task = rq->load.weight / nr_running;
  1315. else
  1316. rq->avg_load_per_task = 0;
  1317. return rq->avg_load_per_task;
  1318. }
  1319. #ifdef CONFIG_FAIR_GROUP_SCHED
  1320. /*
  1321. * Compute the cpu's hierarchical load factor for each task group.
  1322. * This needs to be done in a top-down fashion because the load of a child
  1323. * group is a fraction of its parents load.
  1324. */
  1325. static int tg_load_down(struct task_group *tg, void *data)
  1326. {
  1327. unsigned long load;
  1328. long cpu = (long)data;
  1329. if (!tg->parent) {
  1330. load = cpu_rq(cpu)->load.weight;
  1331. } else {
  1332. load = tg->parent->cfs_rq[cpu]->h_load;
  1333. load *= tg->se[cpu]->load.weight;
  1334. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1335. }
  1336. tg->cfs_rq[cpu]->h_load = load;
  1337. return 0;
  1338. }
  1339. static void update_h_load(long cpu)
  1340. {
  1341. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1342. }
  1343. #endif
  1344. #ifdef CONFIG_PREEMPT
  1345. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1346. /*
  1347. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1348. * way at the expense of forcing extra atomic operations in all
  1349. * invocations. This assures that the double_lock is acquired using the
  1350. * same underlying policy as the spinlock_t on this architecture, which
  1351. * reduces latency compared to the unfair variant below. However, it
  1352. * also adds more overhead and therefore may reduce throughput.
  1353. */
  1354. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1355. __releases(this_rq->lock)
  1356. __acquires(busiest->lock)
  1357. __acquires(this_rq->lock)
  1358. {
  1359. raw_spin_unlock(&this_rq->lock);
  1360. double_rq_lock(this_rq, busiest);
  1361. return 1;
  1362. }
  1363. #else
  1364. /*
  1365. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1366. * latency by eliminating extra atomic operations when the locks are
  1367. * already in proper order on entry. This favors lower cpu-ids and will
  1368. * grant the double lock to lower cpus over higher ids under contention,
  1369. * regardless of entry order into the function.
  1370. */
  1371. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1372. __releases(this_rq->lock)
  1373. __acquires(busiest->lock)
  1374. __acquires(this_rq->lock)
  1375. {
  1376. int ret = 0;
  1377. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1378. if (busiest < this_rq) {
  1379. raw_spin_unlock(&this_rq->lock);
  1380. raw_spin_lock(&busiest->lock);
  1381. raw_spin_lock_nested(&this_rq->lock,
  1382. SINGLE_DEPTH_NESTING);
  1383. ret = 1;
  1384. } else
  1385. raw_spin_lock_nested(&busiest->lock,
  1386. SINGLE_DEPTH_NESTING);
  1387. }
  1388. return ret;
  1389. }
  1390. #endif /* CONFIG_PREEMPT */
  1391. /*
  1392. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1393. */
  1394. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1395. {
  1396. if (unlikely(!irqs_disabled())) {
  1397. /* printk() doesn't work good under rq->lock */
  1398. raw_spin_unlock(&this_rq->lock);
  1399. BUG_ON(1);
  1400. }
  1401. return _double_lock_balance(this_rq, busiest);
  1402. }
  1403. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1404. __releases(busiest->lock)
  1405. {
  1406. raw_spin_unlock(&busiest->lock);
  1407. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1408. }
  1409. /*
  1410. * double_rq_lock - safely lock two runqueues
  1411. *
  1412. * Note this does not disable interrupts like task_rq_lock,
  1413. * you need to do so manually before calling.
  1414. */
  1415. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1416. __acquires(rq1->lock)
  1417. __acquires(rq2->lock)
  1418. {
  1419. BUG_ON(!irqs_disabled());
  1420. if (rq1 == rq2) {
  1421. raw_spin_lock(&rq1->lock);
  1422. __acquire(rq2->lock); /* Fake it out ;) */
  1423. } else {
  1424. if (rq1 < rq2) {
  1425. raw_spin_lock(&rq1->lock);
  1426. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1427. } else {
  1428. raw_spin_lock(&rq2->lock);
  1429. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1430. }
  1431. }
  1432. }
  1433. /*
  1434. * double_rq_unlock - safely unlock two runqueues
  1435. *
  1436. * Note this does not restore interrupts like task_rq_unlock,
  1437. * you need to do so manually after calling.
  1438. */
  1439. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1440. __releases(rq1->lock)
  1441. __releases(rq2->lock)
  1442. {
  1443. raw_spin_unlock(&rq1->lock);
  1444. if (rq1 != rq2)
  1445. raw_spin_unlock(&rq2->lock);
  1446. else
  1447. __release(rq2->lock);
  1448. }
  1449. #else /* CONFIG_SMP */
  1450. /*
  1451. * double_rq_lock - safely lock two runqueues
  1452. *
  1453. * Note this does not disable interrupts like task_rq_lock,
  1454. * you need to do so manually before calling.
  1455. */
  1456. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1457. __acquires(rq1->lock)
  1458. __acquires(rq2->lock)
  1459. {
  1460. BUG_ON(!irqs_disabled());
  1461. BUG_ON(rq1 != rq2);
  1462. raw_spin_lock(&rq1->lock);
  1463. __acquire(rq2->lock); /* Fake it out ;) */
  1464. }
  1465. /*
  1466. * double_rq_unlock - safely unlock two runqueues
  1467. *
  1468. * Note this does not restore interrupts like task_rq_unlock,
  1469. * you need to do so manually after calling.
  1470. */
  1471. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1472. __releases(rq1->lock)
  1473. __releases(rq2->lock)
  1474. {
  1475. BUG_ON(rq1 != rq2);
  1476. raw_spin_unlock(&rq1->lock);
  1477. __release(rq2->lock);
  1478. }
  1479. #endif
  1480. static void calc_load_account_idle(struct rq *this_rq);
  1481. static void update_sysctl(void);
  1482. static int get_update_sysctl_factor(void);
  1483. static void update_cpu_load(struct rq *this_rq);
  1484. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1485. {
  1486. set_task_rq(p, cpu);
  1487. #ifdef CONFIG_SMP
  1488. /*
  1489. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1490. * successfuly executed on another CPU. We must ensure that updates of
  1491. * per-task data have been completed by this moment.
  1492. */
  1493. smp_wmb();
  1494. task_thread_info(p)->cpu = cpu;
  1495. #endif
  1496. }
  1497. static const struct sched_class rt_sched_class;
  1498. #define sched_class_highest (&stop_sched_class)
  1499. #define for_each_class(class) \
  1500. for (class = sched_class_highest; class; class = class->next)
  1501. #include "sched_stats.h"
  1502. static void inc_nr_running(struct rq *rq)
  1503. {
  1504. rq->nr_running++;
  1505. }
  1506. static void dec_nr_running(struct rq *rq)
  1507. {
  1508. rq->nr_running--;
  1509. }
  1510. static void set_load_weight(struct task_struct *p)
  1511. {
  1512. int prio = p->static_prio - MAX_RT_PRIO;
  1513. struct load_weight *load = &p->se.load;
  1514. /*
  1515. * SCHED_IDLE tasks get minimal weight:
  1516. */
  1517. if (p->policy == SCHED_IDLE) {
  1518. load->weight = scale_load(WEIGHT_IDLEPRIO);
  1519. load->inv_weight = WMULT_IDLEPRIO;
  1520. return;
  1521. }
  1522. load->weight = scale_load(prio_to_weight[prio]);
  1523. load->inv_weight = prio_to_wmult[prio];
  1524. }
  1525. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1526. {
  1527. update_rq_clock(rq);
  1528. sched_info_queued(p);
  1529. p->sched_class->enqueue_task(rq, p, flags);
  1530. }
  1531. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1532. {
  1533. update_rq_clock(rq);
  1534. sched_info_dequeued(p);
  1535. p->sched_class->dequeue_task(rq, p, flags);
  1536. }
  1537. /*
  1538. * activate_task - move a task to the runqueue.
  1539. */
  1540. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1541. {
  1542. if (task_contributes_to_load(p))
  1543. rq->nr_uninterruptible--;
  1544. enqueue_task(rq, p, flags);
  1545. inc_nr_running(rq);
  1546. }
  1547. /*
  1548. * deactivate_task - remove a task from the runqueue.
  1549. */
  1550. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1551. {
  1552. if (task_contributes_to_load(p))
  1553. rq->nr_uninterruptible++;
  1554. dequeue_task(rq, p, flags);
  1555. dec_nr_running(rq);
  1556. }
  1557. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1558. /*
  1559. * There are no locks covering percpu hardirq/softirq time.
  1560. * They are only modified in account_system_vtime, on corresponding CPU
  1561. * with interrupts disabled. So, writes are safe.
  1562. * They are read and saved off onto struct rq in update_rq_clock().
  1563. * This may result in other CPU reading this CPU's irq time and can
  1564. * race with irq/account_system_vtime on this CPU. We would either get old
  1565. * or new value with a side effect of accounting a slice of irq time to wrong
  1566. * task when irq is in progress while we read rq->clock. That is a worthy
  1567. * compromise in place of having locks on each irq in account_system_time.
  1568. */
  1569. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1570. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1571. static DEFINE_PER_CPU(u64, irq_start_time);
  1572. static int sched_clock_irqtime;
  1573. void enable_sched_clock_irqtime(void)
  1574. {
  1575. sched_clock_irqtime = 1;
  1576. }
  1577. void disable_sched_clock_irqtime(void)
  1578. {
  1579. sched_clock_irqtime = 0;
  1580. }
  1581. #ifndef CONFIG_64BIT
  1582. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1583. static inline void irq_time_write_begin(void)
  1584. {
  1585. __this_cpu_inc(irq_time_seq.sequence);
  1586. smp_wmb();
  1587. }
  1588. static inline void irq_time_write_end(void)
  1589. {
  1590. smp_wmb();
  1591. __this_cpu_inc(irq_time_seq.sequence);
  1592. }
  1593. static inline u64 irq_time_read(int cpu)
  1594. {
  1595. u64 irq_time;
  1596. unsigned seq;
  1597. do {
  1598. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1599. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1600. per_cpu(cpu_hardirq_time, cpu);
  1601. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1602. return irq_time;
  1603. }
  1604. #else /* CONFIG_64BIT */
  1605. static inline void irq_time_write_begin(void)
  1606. {
  1607. }
  1608. static inline void irq_time_write_end(void)
  1609. {
  1610. }
  1611. static inline u64 irq_time_read(int cpu)
  1612. {
  1613. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1614. }
  1615. #endif /* CONFIG_64BIT */
  1616. /*
  1617. * Called before incrementing preempt_count on {soft,}irq_enter
  1618. * and before decrementing preempt_count on {soft,}irq_exit.
  1619. */
  1620. void account_system_vtime(struct task_struct *curr)
  1621. {
  1622. unsigned long flags;
  1623. s64 delta;
  1624. int cpu;
  1625. if (!sched_clock_irqtime)
  1626. return;
  1627. local_irq_save(flags);
  1628. cpu = smp_processor_id();
  1629. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1630. __this_cpu_add(irq_start_time, delta);
  1631. irq_time_write_begin();
  1632. /*
  1633. * We do not account for softirq time from ksoftirqd here.
  1634. * We want to continue accounting softirq time to ksoftirqd thread
  1635. * in that case, so as not to confuse scheduler with a special task
  1636. * that do not consume any time, but still wants to run.
  1637. */
  1638. if (hardirq_count())
  1639. __this_cpu_add(cpu_hardirq_time, delta);
  1640. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1641. __this_cpu_add(cpu_softirq_time, delta);
  1642. irq_time_write_end();
  1643. local_irq_restore(flags);
  1644. }
  1645. EXPORT_SYMBOL_GPL(account_system_vtime);
  1646. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1647. #ifdef CONFIG_PARAVIRT
  1648. static inline u64 steal_ticks(u64 steal)
  1649. {
  1650. if (unlikely(steal > NSEC_PER_SEC))
  1651. return div_u64(steal, TICK_NSEC);
  1652. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  1653. }
  1654. #endif
  1655. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1656. {
  1657. s64 irq_delta;
  1658. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1659. /*
  1660. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1661. * this case when a previous update_rq_clock() happened inside a
  1662. * {soft,}irq region.
  1663. *
  1664. * When this happens, we stop ->clock_task and only update the
  1665. * prev_irq_time stamp to account for the part that fit, so that a next
  1666. * update will consume the rest. This ensures ->clock_task is
  1667. * monotonic.
  1668. *
  1669. * It does however cause some slight miss-attribution of {soft,}irq
  1670. * time, a more accurate solution would be to update the irq_time using
  1671. * the current rq->clock timestamp, except that would require using
  1672. * atomic ops.
  1673. */
  1674. if (irq_delta > delta)
  1675. irq_delta = delta;
  1676. rq->prev_irq_time += irq_delta;
  1677. delta -= irq_delta;
  1678. rq->clock_task += delta;
  1679. if (irq_delta && sched_feat(NONIRQ_POWER))
  1680. sched_rt_avg_update(rq, irq_delta);
  1681. }
  1682. static int irqtime_account_hi_update(void)
  1683. {
  1684. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1685. unsigned long flags;
  1686. u64 latest_ns;
  1687. int ret = 0;
  1688. local_irq_save(flags);
  1689. latest_ns = this_cpu_read(cpu_hardirq_time);
  1690. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1691. ret = 1;
  1692. local_irq_restore(flags);
  1693. return ret;
  1694. }
  1695. static int irqtime_account_si_update(void)
  1696. {
  1697. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1698. unsigned long flags;
  1699. u64 latest_ns;
  1700. int ret = 0;
  1701. local_irq_save(flags);
  1702. latest_ns = this_cpu_read(cpu_softirq_time);
  1703. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1704. ret = 1;
  1705. local_irq_restore(flags);
  1706. return ret;
  1707. }
  1708. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1709. #define sched_clock_irqtime (0)
  1710. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1711. {
  1712. rq->clock_task += delta;
  1713. }
  1714. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1715. #include "sched_idletask.c"
  1716. #include "sched_fair.c"
  1717. #include "sched_rt.c"
  1718. #include "sched_autogroup.c"
  1719. #include "sched_stoptask.c"
  1720. #ifdef CONFIG_SCHED_DEBUG
  1721. # include "sched_debug.c"
  1722. #endif
  1723. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1724. {
  1725. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1726. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1727. if (stop) {
  1728. /*
  1729. * Make it appear like a SCHED_FIFO task, its something
  1730. * userspace knows about and won't get confused about.
  1731. *
  1732. * Also, it will make PI more or less work without too
  1733. * much confusion -- but then, stop work should not
  1734. * rely on PI working anyway.
  1735. */
  1736. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1737. stop->sched_class = &stop_sched_class;
  1738. }
  1739. cpu_rq(cpu)->stop = stop;
  1740. if (old_stop) {
  1741. /*
  1742. * Reset it back to a normal scheduling class so that
  1743. * it can die in pieces.
  1744. */
  1745. old_stop->sched_class = &rt_sched_class;
  1746. }
  1747. }
  1748. /*
  1749. * __normal_prio - return the priority that is based on the static prio
  1750. */
  1751. static inline int __normal_prio(struct task_struct *p)
  1752. {
  1753. return p->static_prio;
  1754. }
  1755. /*
  1756. * Calculate the expected normal priority: i.e. priority
  1757. * without taking RT-inheritance into account. Might be
  1758. * boosted by interactivity modifiers. Changes upon fork,
  1759. * setprio syscalls, and whenever the interactivity
  1760. * estimator recalculates.
  1761. */
  1762. static inline int normal_prio(struct task_struct *p)
  1763. {
  1764. int prio;
  1765. if (task_has_rt_policy(p))
  1766. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1767. else
  1768. prio = __normal_prio(p);
  1769. return prio;
  1770. }
  1771. /*
  1772. * Calculate the current priority, i.e. the priority
  1773. * taken into account by the scheduler. This value might
  1774. * be boosted by RT tasks, or might be boosted by
  1775. * interactivity modifiers. Will be RT if the task got
  1776. * RT-boosted. If not then it returns p->normal_prio.
  1777. */
  1778. static int effective_prio(struct task_struct *p)
  1779. {
  1780. p->normal_prio = normal_prio(p);
  1781. /*
  1782. * If we are RT tasks or we were boosted to RT priority,
  1783. * keep the priority unchanged. Otherwise, update priority
  1784. * to the normal priority:
  1785. */
  1786. if (!rt_prio(p->prio))
  1787. return p->normal_prio;
  1788. return p->prio;
  1789. }
  1790. /**
  1791. * task_curr - is this task currently executing on a CPU?
  1792. * @p: the task in question.
  1793. */
  1794. inline int task_curr(const struct task_struct *p)
  1795. {
  1796. return cpu_curr(task_cpu(p)) == p;
  1797. }
  1798. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1799. const struct sched_class *prev_class,
  1800. int oldprio)
  1801. {
  1802. if (prev_class != p->sched_class) {
  1803. if (prev_class->switched_from)
  1804. prev_class->switched_from(rq, p);
  1805. p->sched_class->switched_to(rq, p);
  1806. } else if (oldprio != p->prio)
  1807. p->sched_class->prio_changed(rq, p, oldprio);
  1808. }
  1809. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1810. {
  1811. const struct sched_class *class;
  1812. if (p->sched_class == rq->curr->sched_class) {
  1813. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1814. } else {
  1815. for_each_class(class) {
  1816. if (class == rq->curr->sched_class)
  1817. break;
  1818. if (class == p->sched_class) {
  1819. resched_task(rq->curr);
  1820. break;
  1821. }
  1822. }
  1823. }
  1824. /*
  1825. * A queue event has occurred, and we're going to schedule. In
  1826. * this case, we can save a useless back to back clock update.
  1827. */
  1828. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1829. rq->skip_clock_update = 1;
  1830. }
  1831. #ifdef CONFIG_SMP
  1832. /*
  1833. * Is this task likely cache-hot:
  1834. */
  1835. static int
  1836. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1837. {
  1838. s64 delta;
  1839. if (p->sched_class != &fair_sched_class)
  1840. return 0;
  1841. if (unlikely(p->policy == SCHED_IDLE))
  1842. return 0;
  1843. /*
  1844. * Buddy candidates are cache hot:
  1845. */
  1846. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1847. (&p->se == cfs_rq_of(&p->se)->next ||
  1848. &p->se == cfs_rq_of(&p->se)->last))
  1849. return 1;
  1850. if (sysctl_sched_migration_cost == -1)
  1851. return 1;
  1852. if (sysctl_sched_migration_cost == 0)
  1853. return 0;
  1854. delta = now - p->se.exec_start;
  1855. return delta < (s64)sysctl_sched_migration_cost;
  1856. }
  1857. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1858. {
  1859. #ifdef CONFIG_SCHED_DEBUG
  1860. /*
  1861. * We should never call set_task_cpu() on a blocked task,
  1862. * ttwu() will sort out the placement.
  1863. */
  1864. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1865. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1866. #ifdef CONFIG_LOCKDEP
  1867. /*
  1868. * The caller should hold either p->pi_lock or rq->lock, when changing
  1869. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1870. *
  1871. * sched_move_task() holds both and thus holding either pins the cgroup,
  1872. * see set_task_rq().
  1873. *
  1874. * Furthermore, all task_rq users should acquire both locks, see
  1875. * task_rq_lock().
  1876. */
  1877. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1878. lockdep_is_held(&task_rq(p)->lock)));
  1879. #endif
  1880. #endif
  1881. trace_sched_migrate_task(p, new_cpu);
  1882. if (task_cpu(p) != new_cpu) {
  1883. p->se.nr_migrations++;
  1884. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1885. }
  1886. __set_task_cpu(p, new_cpu);
  1887. }
  1888. struct migration_arg {
  1889. struct task_struct *task;
  1890. int dest_cpu;
  1891. };
  1892. static int migration_cpu_stop(void *data);
  1893. /*
  1894. * wait_task_inactive - wait for a thread to unschedule.
  1895. *
  1896. * If @match_state is nonzero, it's the @p->state value just checked and
  1897. * not expected to change. If it changes, i.e. @p might have woken up,
  1898. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1899. * we return a positive number (its total switch count). If a second call
  1900. * a short while later returns the same number, the caller can be sure that
  1901. * @p has remained unscheduled the whole time.
  1902. *
  1903. * The caller must ensure that the task *will* unschedule sometime soon,
  1904. * else this function might spin for a *long* time. This function can't
  1905. * be called with interrupts off, or it may introduce deadlock with
  1906. * smp_call_function() if an IPI is sent by the same process we are
  1907. * waiting to become inactive.
  1908. */
  1909. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1910. {
  1911. unsigned long flags;
  1912. int running, on_rq;
  1913. unsigned long ncsw;
  1914. struct rq *rq;
  1915. for (;;) {
  1916. /*
  1917. * We do the initial early heuristics without holding
  1918. * any task-queue locks at all. We'll only try to get
  1919. * the runqueue lock when things look like they will
  1920. * work out!
  1921. */
  1922. rq = task_rq(p);
  1923. /*
  1924. * If the task is actively running on another CPU
  1925. * still, just relax and busy-wait without holding
  1926. * any locks.
  1927. *
  1928. * NOTE! Since we don't hold any locks, it's not
  1929. * even sure that "rq" stays as the right runqueue!
  1930. * But we don't care, since "task_running()" will
  1931. * return false if the runqueue has changed and p
  1932. * is actually now running somewhere else!
  1933. */
  1934. while (task_running(rq, p)) {
  1935. if (match_state && unlikely(p->state != match_state))
  1936. return 0;
  1937. cpu_relax();
  1938. }
  1939. /*
  1940. * Ok, time to look more closely! We need the rq
  1941. * lock now, to be *sure*. If we're wrong, we'll
  1942. * just go back and repeat.
  1943. */
  1944. rq = task_rq_lock(p, &flags);
  1945. trace_sched_wait_task(p);
  1946. running = task_running(rq, p);
  1947. on_rq = p->on_rq;
  1948. ncsw = 0;
  1949. if (!match_state || p->state == match_state)
  1950. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1951. task_rq_unlock(rq, p, &flags);
  1952. /*
  1953. * If it changed from the expected state, bail out now.
  1954. */
  1955. if (unlikely(!ncsw))
  1956. break;
  1957. /*
  1958. * Was it really running after all now that we
  1959. * checked with the proper locks actually held?
  1960. *
  1961. * Oops. Go back and try again..
  1962. */
  1963. if (unlikely(running)) {
  1964. cpu_relax();
  1965. continue;
  1966. }
  1967. /*
  1968. * It's not enough that it's not actively running,
  1969. * it must be off the runqueue _entirely_, and not
  1970. * preempted!
  1971. *
  1972. * So if it was still runnable (but just not actively
  1973. * running right now), it's preempted, and we should
  1974. * yield - it could be a while.
  1975. */
  1976. if (unlikely(on_rq)) {
  1977. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1978. set_current_state(TASK_UNINTERRUPTIBLE);
  1979. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1980. continue;
  1981. }
  1982. /*
  1983. * Ahh, all good. It wasn't running, and it wasn't
  1984. * runnable, which means that it will never become
  1985. * running in the future either. We're all done!
  1986. */
  1987. break;
  1988. }
  1989. return ncsw;
  1990. }
  1991. /***
  1992. * kick_process - kick a running thread to enter/exit the kernel
  1993. * @p: the to-be-kicked thread
  1994. *
  1995. * Cause a process which is running on another CPU to enter
  1996. * kernel-mode, without any delay. (to get signals handled.)
  1997. *
  1998. * NOTE: this function doesn't have to take the runqueue lock,
  1999. * because all it wants to ensure is that the remote task enters
  2000. * the kernel. If the IPI races and the task has been migrated
  2001. * to another CPU then no harm is done and the purpose has been
  2002. * achieved as well.
  2003. */
  2004. void kick_process(struct task_struct *p)
  2005. {
  2006. int cpu;
  2007. preempt_disable();
  2008. cpu = task_cpu(p);
  2009. if ((cpu != smp_processor_id()) && task_curr(p))
  2010. smp_send_reschedule(cpu);
  2011. preempt_enable();
  2012. }
  2013. EXPORT_SYMBOL_GPL(kick_process);
  2014. #endif /* CONFIG_SMP */
  2015. #ifdef CONFIG_SMP
  2016. /*
  2017. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  2018. */
  2019. static int select_fallback_rq(int cpu, struct task_struct *p)
  2020. {
  2021. int dest_cpu;
  2022. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  2023. /* Look for allowed, online CPU in same node. */
  2024. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  2025. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  2026. return dest_cpu;
  2027. /* Any allowed, online CPU? */
  2028. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  2029. if (dest_cpu < nr_cpu_ids)
  2030. return dest_cpu;
  2031. /* No more Mr. Nice Guy. */
  2032. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2033. /*
  2034. * Don't tell them about moving exiting tasks or
  2035. * kernel threads (both mm NULL), since they never
  2036. * leave kernel.
  2037. */
  2038. if (p->mm && printk_ratelimit()) {
  2039. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2040. task_pid_nr(p), p->comm, cpu);
  2041. }
  2042. return dest_cpu;
  2043. }
  2044. /*
  2045. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2046. */
  2047. static inline
  2048. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2049. {
  2050. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2051. /*
  2052. * In order not to call set_task_cpu() on a blocking task we need
  2053. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2054. * cpu.
  2055. *
  2056. * Since this is common to all placement strategies, this lives here.
  2057. *
  2058. * [ this allows ->select_task() to simply return task_cpu(p) and
  2059. * not worry about this generic constraint ]
  2060. */
  2061. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2062. !cpu_online(cpu)))
  2063. cpu = select_fallback_rq(task_cpu(p), p);
  2064. return cpu;
  2065. }
  2066. static void update_avg(u64 *avg, u64 sample)
  2067. {
  2068. s64 diff = sample - *avg;
  2069. *avg += diff >> 3;
  2070. }
  2071. #endif
  2072. static void
  2073. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2074. {
  2075. #ifdef CONFIG_SCHEDSTATS
  2076. struct rq *rq = this_rq();
  2077. #ifdef CONFIG_SMP
  2078. int this_cpu = smp_processor_id();
  2079. if (cpu == this_cpu) {
  2080. schedstat_inc(rq, ttwu_local);
  2081. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2082. } else {
  2083. struct sched_domain *sd;
  2084. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2085. rcu_read_lock();
  2086. for_each_domain(this_cpu, sd) {
  2087. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2088. schedstat_inc(sd, ttwu_wake_remote);
  2089. break;
  2090. }
  2091. }
  2092. rcu_read_unlock();
  2093. }
  2094. if (wake_flags & WF_MIGRATED)
  2095. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2096. #endif /* CONFIG_SMP */
  2097. schedstat_inc(rq, ttwu_count);
  2098. schedstat_inc(p, se.statistics.nr_wakeups);
  2099. if (wake_flags & WF_SYNC)
  2100. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2101. #endif /* CONFIG_SCHEDSTATS */
  2102. }
  2103. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2104. {
  2105. activate_task(rq, p, en_flags);
  2106. p->on_rq = 1;
  2107. /* if a worker is waking up, notify workqueue */
  2108. if (p->flags & PF_WQ_WORKER)
  2109. wq_worker_waking_up(p, cpu_of(rq));
  2110. }
  2111. /*
  2112. * Mark the task runnable and perform wakeup-preemption.
  2113. */
  2114. static void
  2115. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2116. {
  2117. trace_sched_wakeup(p, true);
  2118. check_preempt_curr(rq, p, wake_flags);
  2119. p->state = TASK_RUNNING;
  2120. #ifdef CONFIG_SMP
  2121. if (p->sched_class->task_woken)
  2122. p->sched_class->task_woken(rq, p);
  2123. if (unlikely(rq->idle_stamp)) {
  2124. u64 delta = rq->clock - rq->idle_stamp;
  2125. u64 max = 2*sysctl_sched_migration_cost;
  2126. if (delta > max)
  2127. rq->avg_idle = max;
  2128. else
  2129. update_avg(&rq->avg_idle, delta);
  2130. rq->idle_stamp = 0;
  2131. }
  2132. #endif
  2133. }
  2134. static void
  2135. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2136. {
  2137. #ifdef CONFIG_SMP
  2138. if (p->sched_contributes_to_load)
  2139. rq->nr_uninterruptible--;
  2140. #endif
  2141. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2142. ttwu_do_wakeup(rq, p, wake_flags);
  2143. }
  2144. /*
  2145. * Called in case the task @p isn't fully descheduled from its runqueue,
  2146. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2147. * since all we need to do is flip p->state to TASK_RUNNING, since
  2148. * the task is still ->on_rq.
  2149. */
  2150. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2151. {
  2152. struct rq *rq;
  2153. int ret = 0;
  2154. rq = __task_rq_lock(p);
  2155. if (p->on_rq) {
  2156. ttwu_do_wakeup(rq, p, wake_flags);
  2157. ret = 1;
  2158. }
  2159. __task_rq_unlock(rq);
  2160. return ret;
  2161. }
  2162. #ifdef CONFIG_SMP
  2163. static void sched_ttwu_pending(void)
  2164. {
  2165. struct rq *rq = this_rq();
  2166. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2167. if (!list)
  2168. return;
  2169. raw_spin_lock(&rq->lock);
  2170. while (list) {
  2171. struct task_struct *p = list;
  2172. list = list->wake_entry;
  2173. ttwu_do_activate(rq, p, 0);
  2174. }
  2175. raw_spin_unlock(&rq->lock);
  2176. }
  2177. void scheduler_ipi(void)
  2178. {
  2179. sched_ttwu_pending();
  2180. }
  2181. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2182. {
  2183. struct rq *rq = cpu_rq(cpu);
  2184. struct task_struct *next = rq->wake_list;
  2185. for (;;) {
  2186. struct task_struct *old = next;
  2187. p->wake_entry = next;
  2188. next = cmpxchg(&rq->wake_list, old, p);
  2189. if (next == old)
  2190. break;
  2191. }
  2192. if (!next)
  2193. smp_send_reschedule(cpu);
  2194. }
  2195. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2196. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  2197. {
  2198. struct rq *rq;
  2199. int ret = 0;
  2200. rq = __task_rq_lock(p);
  2201. if (p->on_cpu) {
  2202. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2203. ttwu_do_wakeup(rq, p, wake_flags);
  2204. ret = 1;
  2205. }
  2206. __task_rq_unlock(rq);
  2207. return ret;
  2208. }
  2209. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2210. #endif /* CONFIG_SMP */
  2211. static void ttwu_queue(struct task_struct *p, int cpu)
  2212. {
  2213. struct rq *rq = cpu_rq(cpu);
  2214. #if defined(CONFIG_SMP)
  2215. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2216. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  2217. ttwu_queue_remote(p, cpu);
  2218. return;
  2219. }
  2220. #endif
  2221. raw_spin_lock(&rq->lock);
  2222. ttwu_do_activate(rq, p, 0);
  2223. raw_spin_unlock(&rq->lock);
  2224. }
  2225. /**
  2226. * try_to_wake_up - wake up a thread
  2227. * @p: the thread to be awakened
  2228. * @state: the mask of task states that can be woken
  2229. * @wake_flags: wake modifier flags (WF_*)
  2230. *
  2231. * Put it on the run-queue if it's not already there. The "current"
  2232. * thread is always on the run-queue (except when the actual
  2233. * re-schedule is in progress), and as such you're allowed to do
  2234. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2235. * runnable without the overhead of this.
  2236. *
  2237. * Returns %true if @p was woken up, %false if it was already running
  2238. * or @state didn't match @p's state.
  2239. */
  2240. static int
  2241. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2242. {
  2243. unsigned long flags;
  2244. int cpu, success = 0;
  2245. smp_wmb();
  2246. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2247. if (!(p->state & state))
  2248. goto out;
  2249. success = 1; /* we're going to change ->state */
  2250. cpu = task_cpu(p);
  2251. if (p->on_rq && ttwu_remote(p, wake_flags))
  2252. goto stat;
  2253. #ifdef CONFIG_SMP
  2254. /*
  2255. * If the owning (remote) cpu is still in the middle of schedule() with
  2256. * this task as prev, wait until its done referencing the task.
  2257. */
  2258. while (p->on_cpu) {
  2259. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2260. /*
  2261. * In case the architecture enables interrupts in
  2262. * context_switch(), we cannot busy wait, since that
  2263. * would lead to deadlocks when an interrupt hits and
  2264. * tries to wake up @prev. So bail and do a complete
  2265. * remote wakeup.
  2266. */
  2267. if (ttwu_activate_remote(p, wake_flags))
  2268. goto stat;
  2269. #else
  2270. cpu_relax();
  2271. #endif
  2272. }
  2273. /*
  2274. * Pairs with the smp_wmb() in finish_lock_switch().
  2275. */
  2276. smp_rmb();
  2277. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2278. p->state = TASK_WAKING;
  2279. if (p->sched_class->task_waking)
  2280. p->sched_class->task_waking(p);
  2281. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2282. if (task_cpu(p) != cpu) {
  2283. wake_flags |= WF_MIGRATED;
  2284. set_task_cpu(p, cpu);
  2285. }
  2286. #endif /* CONFIG_SMP */
  2287. ttwu_queue(p, cpu);
  2288. stat:
  2289. ttwu_stat(p, cpu, wake_flags);
  2290. out:
  2291. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2292. return success;
  2293. }
  2294. /**
  2295. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2296. * @p: the thread to be awakened
  2297. *
  2298. * Put @p on the run-queue if it's not already there. The caller must
  2299. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2300. * the current task.
  2301. */
  2302. static void try_to_wake_up_local(struct task_struct *p)
  2303. {
  2304. struct rq *rq = task_rq(p);
  2305. BUG_ON(rq != this_rq());
  2306. BUG_ON(p == current);
  2307. lockdep_assert_held(&rq->lock);
  2308. if (!raw_spin_trylock(&p->pi_lock)) {
  2309. raw_spin_unlock(&rq->lock);
  2310. raw_spin_lock(&p->pi_lock);
  2311. raw_spin_lock(&rq->lock);
  2312. }
  2313. if (!(p->state & TASK_NORMAL))
  2314. goto out;
  2315. if (!p->on_rq)
  2316. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2317. ttwu_do_wakeup(rq, p, 0);
  2318. ttwu_stat(p, smp_processor_id(), 0);
  2319. out:
  2320. raw_spin_unlock(&p->pi_lock);
  2321. }
  2322. /**
  2323. * wake_up_process - Wake up a specific process
  2324. * @p: The process to be woken up.
  2325. *
  2326. * Attempt to wake up the nominated process and move it to the set of runnable
  2327. * processes. Returns 1 if the process was woken up, 0 if it was already
  2328. * running.
  2329. *
  2330. * It may be assumed that this function implies a write memory barrier before
  2331. * changing the task state if and only if any tasks are woken up.
  2332. */
  2333. int wake_up_process(struct task_struct *p)
  2334. {
  2335. return try_to_wake_up(p, TASK_ALL, 0);
  2336. }
  2337. EXPORT_SYMBOL(wake_up_process);
  2338. int wake_up_state(struct task_struct *p, unsigned int state)
  2339. {
  2340. return try_to_wake_up(p, state, 0);
  2341. }
  2342. /*
  2343. * Perform scheduler related setup for a newly forked process p.
  2344. * p is forked by current.
  2345. *
  2346. * __sched_fork() is basic setup used by init_idle() too:
  2347. */
  2348. static void __sched_fork(struct task_struct *p)
  2349. {
  2350. p->on_rq = 0;
  2351. p->se.on_rq = 0;
  2352. p->se.exec_start = 0;
  2353. p->se.sum_exec_runtime = 0;
  2354. p->se.prev_sum_exec_runtime = 0;
  2355. p->se.nr_migrations = 0;
  2356. p->se.vruntime = 0;
  2357. INIT_LIST_HEAD(&p->se.group_node);
  2358. #ifdef CONFIG_SCHEDSTATS
  2359. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2360. #endif
  2361. INIT_LIST_HEAD(&p->rt.run_list);
  2362. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2363. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2364. #endif
  2365. }
  2366. /*
  2367. * fork()/clone()-time setup:
  2368. */
  2369. void sched_fork(struct task_struct *p)
  2370. {
  2371. unsigned long flags;
  2372. int cpu = get_cpu();
  2373. __sched_fork(p);
  2374. /*
  2375. * We mark the process as running here. This guarantees that
  2376. * nobody will actually run it, and a signal or other external
  2377. * event cannot wake it up and insert it on the runqueue either.
  2378. */
  2379. p->state = TASK_RUNNING;
  2380. /*
  2381. * Revert to default priority/policy on fork if requested.
  2382. */
  2383. if (unlikely(p->sched_reset_on_fork)) {
  2384. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2385. p->policy = SCHED_NORMAL;
  2386. p->normal_prio = p->static_prio;
  2387. }
  2388. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2389. p->static_prio = NICE_TO_PRIO(0);
  2390. p->normal_prio = p->static_prio;
  2391. set_load_weight(p);
  2392. }
  2393. /*
  2394. * We don't need the reset flag anymore after the fork. It has
  2395. * fulfilled its duty:
  2396. */
  2397. p->sched_reset_on_fork = 0;
  2398. }
  2399. /*
  2400. * Make sure we do not leak PI boosting priority to the child.
  2401. */
  2402. p->prio = current->normal_prio;
  2403. if (!rt_prio(p->prio))
  2404. p->sched_class = &fair_sched_class;
  2405. if (p->sched_class->task_fork)
  2406. p->sched_class->task_fork(p);
  2407. /*
  2408. * The child is not yet in the pid-hash so no cgroup attach races,
  2409. * and the cgroup is pinned to this child due to cgroup_fork()
  2410. * is ran before sched_fork().
  2411. *
  2412. * Silence PROVE_RCU.
  2413. */
  2414. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2415. set_task_cpu(p, cpu);
  2416. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2417. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2418. if (likely(sched_info_on()))
  2419. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2420. #endif
  2421. #if defined(CONFIG_SMP)
  2422. p->on_cpu = 0;
  2423. #endif
  2424. #ifdef CONFIG_PREEMPT
  2425. /* Want to start with kernel preemption disabled. */
  2426. task_thread_info(p)->preempt_count = 1;
  2427. #endif
  2428. #ifdef CONFIG_SMP
  2429. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2430. #endif
  2431. put_cpu();
  2432. }
  2433. /*
  2434. * wake_up_new_task - wake up a newly created task for the first time.
  2435. *
  2436. * This function will do some initial scheduler statistics housekeeping
  2437. * that must be done for every newly created context, then puts the task
  2438. * on the runqueue and wakes it.
  2439. */
  2440. void wake_up_new_task(struct task_struct *p)
  2441. {
  2442. unsigned long flags;
  2443. struct rq *rq;
  2444. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2445. #ifdef CONFIG_SMP
  2446. /*
  2447. * Fork balancing, do it here and not earlier because:
  2448. * - cpus_allowed can change in the fork path
  2449. * - any previously selected cpu might disappear through hotplug
  2450. */
  2451. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2452. #endif
  2453. rq = __task_rq_lock(p);
  2454. activate_task(rq, p, 0);
  2455. p->on_rq = 1;
  2456. trace_sched_wakeup_new(p, true);
  2457. check_preempt_curr(rq, p, WF_FORK);
  2458. #ifdef CONFIG_SMP
  2459. if (p->sched_class->task_woken)
  2460. p->sched_class->task_woken(rq, p);
  2461. #endif
  2462. task_rq_unlock(rq, p, &flags);
  2463. }
  2464. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2465. /**
  2466. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2467. * @notifier: notifier struct to register
  2468. */
  2469. void preempt_notifier_register(struct preempt_notifier *notifier)
  2470. {
  2471. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2472. }
  2473. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2474. /**
  2475. * preempt_notifier_unregister - no longer interested in preemption notifications
  2476. * @notifier: notifier struct to unregister
  2477. *
  2478. * This is safe to call from within a preemption notifier.
  2479. */
  2480. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2481. {
  2482. hlist_del(&notifier->link);
  2483. }
  2484. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2485. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2486. {
  2487. struct preempt_notifier *notifier;
  2488. struct hlist_node *node;
  2489. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2490. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2491. }
  2492. static void
  2493. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2494. struct task_struct *next)
  2495. {
  2496. struct preempt_notifier *notifier;
  2497. struct hlist_node *node;
  2498. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2499. notifier->ops->sched_out(notifier, next);
  2500. }
  2501. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2502. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2503. {
  2504. }
  2505. static void
  2506. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2507. struct task_struct *next)
  2508. {
  2509. }
  2510. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2511. /**
  2512. * prepare_task_switch - prepare to switch tasks
  2513. * @rq: the runqueue preparing to switch
  2514. * @prev: the current task that is being switched out
  2515. * @next: the task we are going to switch to.
  2516. *
  2517. * This is called with the rq lock held and interrupts off. It must
  2518. * be paired with a subsequent finish_task_switch after the context
  2519. * switch.
  2520. *
  2521. * prepare_task_switch sets up locking and calls architecture specific
  2522. * hooks.
  2523. */
  2524. static inline void
  2525. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2526. struct task_struct *next)
  2527. {
  2528. sched_info_switch(prev, next);
  2529. perf_event_task_sched_out(prev, next);
  2530. fire_sched_out_preempt_notifiers(prev, next);
  2531. prepare_lock_switch(rq, next);
  2532. prepare_arch_switch(next);
  2533. trace_sched_switch(prev, next);
  2534. }
  2535. /**
  2536. * finish_task_switch - clean up after a task-switch
  2537. * @rq: runqueue associated with task-switch
  2538. * @prev: the thread we just switched away from.
  2539. *
  2540. * finish_task_switch must be called after the context switch, paired
  2541. * with a prepare_task_switch call before the context switch.
  2542. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2543. * and do any other architecture-specific cleanup actions.
  2544. *
  2545. * Note that we may have delayed dropping an mm in context_switch(). If
  2546. * so, we finish that here outside of the runqueue lock. (Doing it
  2547. * with the lock held can cause deadlocks; see schedule() for
  2548. * details.)
  2549. */
  2550. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2551. __releases(rq->lock)
  2552. {
  2553. struct mm_struct *mm = rq->prev_mm;
  2554. long prev_state;
  2555. rq->prev_mm = NULL;
  2556. /*
  2557. * A task struct has one reference for the use as "current".
  2558. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2559. * schedule one last time. The schedule call will never return, and
  2560. * the scheduled task must drop that reference.
  2561. * The test for TASK_DEAD must occur while the runqueue locks are
  2562. * still held, otherwise prev could be scheduled on another cpu, die
  2563. * there before we look at prev->state, and then the reference would
  2564. * be dropped twice.
  2565. * Manfred Spraul <manfred@colorfullife.com>
  2566. */
  2567. prev_state = prev->state;
  2568. finish_arch_switch(prev);
  2569. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2570. local_irq_disable();
  2571. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2572. perf_event_task_sched_in(current);
  2573. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2574. local_irq_enable();
  2575. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2576. finish_lock_switch(rq, prev);
  2577. fire_sched_in_preempt_notifiers(current);
  2578. if (mm)
  2579. mmdrop(mm);
  2580. if (unlikely(prev_state == TASK_DEAD)) {
  2581. /*
  2582. * Remove function-return probe instances associated with this
  2583. * task and put them back on the free list.
  2584. */
  2585. kprobe_flush_task(prev);
  2586. put_task_struct(prev);
  2587. }
  2588. }
  2589. #ifdef CONFIG_SMP
  2590. /* assumes rq->lock is held */
  2591. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2592. {
  2593. if (prev->sched_class->pre_schedule)
  2594. prev->sched_class->pre_schedule(rq, prev);
  2595. }
  2596. /* rq->lock is NOT held, but preemption is disabled */
  2597. static inline void post_schedule(struct rq *rq)
  2598. {
  2599. if (rq->post_schedule) {
  2600. unsigned long flags;
  2601. raw_spin_lock_irqsave(&rq->lock, flags);
  2602. if (rq->curr->sched_class->post_schedule)
  2603. rq->curr->sched_class->post_schedule(rq);
  2604. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2605. rq->post_schedule = 0;
  2606. }
  2607. }
  2608. #else
  2609. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2610. {
  2611. }
  2612. static inline void post_schedule(struct rq *rq)
  2613. {
  2614. }
  2615. #endif
  2616. /**
  2617. * schedule_tail - first thing a freshly forked thread must call.
  2618. * @prev: the thread we just switched away from.
  2619. */
  2620. asmlinkage void schedule_tail(struct task_struct *prev)
  2621. __releases(rq->lock)
  2622. {
  2623. struct rq *rq = this_rq();
  2624. finish_task_switch(rq, prev);
  2625. /*
  2626. * FIXME: do we need to worry about rq being invalidated by the
  2627. * task_switch?
  2628. */
  2629. post_schedule(rq);
  2630. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2631. /* In this case, finish_task_switch does not reenable preemption */
  2632. preempt_enable();
  2633. #endif
  2634. if (current->set_child_tid)
  2635. put_user(task_pid_vnr(current), current->set_child_tid);
  2636. }
  2637. /*
  2638. * context_switch - switch to the new MM and the new
  2639. * thread's register state.
  2640. */
  2641. static inline void
  2642. context_switch(struct rq *rq, struct task_struct *prev,
  2643. struct task_struct *next)
  2644. {
  2645. struct mm_struct *mm, *oldmm;
  2646. prepare_task_switch(rq, prev, next);
  2647. mm = next->mm;
  2648. oldmm = prev->active_mm;
  2649. /*
  2650. * For paravirt, this is coupled with an exit in switch_to to
  2651. * combine the page table reload and the switch backend into
  2652. * one hypercall.
  2653. */
  2654. arch_start_context_switch(prev);
  2655. if (!mm) {
  2656. next->active_mm = oldmm;
  2657. atomic_inc(&oldmm->mm_count);
  2658. enter_lazy_tlb(oldmm, next);
  2659. } else
  2660. switch_mm(oldmm, mm, next);
  2661. if (!prev->mm) {
  2662. prev->active_mm = NULL;
  2663. rq->prev_mm = oldmm;
  2664. }
  2665. /*
  2666. * Since the runqueue lock will be released by the next
  2667. * task (which is an invalid locking op but in the case
  2668. * of the scheduler it's an obvious special-case), so we
  2669. * do an early lockdep release here:
  2670. */
  2671. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2672. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2673. #endif
  2674. /* Here we just switch the register state and the stack. */
  2675. switch_to(prev, next, prev);
  2676. barrier();
  2677. /*
  2678. * this_rq must be evaluated again because prev may have moved
  2679. * CPUs since it called schedule(), thus the 'rq' on its stack
  2680. * frame will be invalid.
  2681. */
  2682. finish_task_switch(this_rq(), prev);
  2683. }
  2684. /*
  2685. * nr_running, nr_uninterruptible and nr_context_switches:
  2686. *
  2687. * externally visible scheduler statistics: current number of runnable
  2688. * threads, current number of uninterruptible-sleeping threads, total
  2689. * number of context switches performed since bootup.
  2690. */
  2691. unsigned long nr_running(void)
  2692. {
  2693. unsigned long i, sum = 0;
  2694. for_each_online_cpu(i)
  2695. sum += cpu_rq(i)->nr_running;
  2696. return sum;
  2697. }
  2698. unsigned long nr_uninterruptible(void)
  2699. {
  2700. unsigned long i, sum = 0;
  2701. for_each_possible_cpu(i)
  2702. sum += cpu_rq(i)->nr_uninterruptible;
  2703. /*
  2704. * Since we read the counters lockless, it might be slightly
  2705. * inaccurate. Do not allow it to go below zero though:
  2706. */
  2707. if (unlikely((long)sum < 0))
  2708. sum = 0;
  2709. return sum;
  2710. }
  2711. unsigned long long nr_context_switches(void)
  2712. {
  2713. int i;
  2714. unsigned long long sum = 0;
  2715. for_each_possible_cpu(i)
  2716. sum += cpu_rq(i)->nr_switches;
  2717. return sum;
  2718. }
  2719. unsigned long nr_iowait(void)
  2720. {
  2721. unsigned long i, sum = 0;
  2722. for_each_possible_cpu(i)
  2723. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2724. return sum;
  2725. }
  2726. unsigned long nr_iowait_cpu(int cpu)
  2727. {
  2728. struct rq *this = cpu_rq(cpu);
  2729. return atomic_read(&this->nr_iowait);
  2730. }
  2731. unsigned long this_cpu_load(void)
  2732. {
  2733. struct rq *this = this_rq();
  2734. return this->cpu_load[0];
  2735. }
  2736. /* Variables and functions for calc_load */
  2737. static atomic_long_t calc_load_tasks;
  2738. static unsigned long calc_load_update;
  2739. unsigned long avenrun[3];
  2740. EXPORT_SYMBOL(avenrun);
  2741. static long calc_load_fold_active(struct rq *this_rq)
  2742. {
  2743. long nr_active, delta = 0;
  2744. nr_active = this_rq->nr_running;
  2745. nr_active += (long) this_rq->nr_uninterruptible;
  2746. if (nr_active != this_rq->calc_load_active) {
  2747. delta = nr_active - this_rq->calc_load_active;
  2748. this_rq->calc_load_active = nr_active;
  2749. }
  2750. return delta;
  2751. }
  2752. static unsigned long
  2753. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2754. {
  2755. load *= exp;
  2756. load += active * (FIXED_1 - exp);
  2757. load += 1UL << (FSHIFT - 1);
  2758. return load >> FSHIFT;
  2759. }
  2760. #ifdef CONFIG_NO_HZ
  2761. /*
  2762. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2763. *
  2764. * When making the ILB scale, we should try to pull this in as well.
  2765. */
  2766. static atomic_long_t calc_load_tasks_idle;
  2767. static void calc_load_account_idle(struct rq *this_rq)
  2768. {
  2769. long delta;
  2770. delta = calc_load_fold_active(this_rq);
  2771. if (delta)
  2772. atomic_long_add(delta, &calc_load_tasks_idle);
  2773. }
  2774. static long calc_load_fold_idle(void)
  2775. {
  2776. long delta = 0;
  2777. /*
  2778. * Its got a race, we don't care...
  2779. */
  2780. if (atomic_long_read(&calc_load_tasks_idle))
  2781. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2782. return delta;
  2783. }
  2784. /**
  2785. * fixed_power_int - compute: x^n, in O(log n) time
  2786. *
  2787. * @x: base of the power
  2788. * @frac_bits: fractional bits of @x
  2789. * @n: power to raise @x to.
  2790. *
  2791. * By exploiting the relation between the definition of the natural power
  2792. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2793. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2794. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2795. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2796. * of course trivially computable in O(log_2 n), the length of our binary
  2797. * vector.
  2798. */
  2799. static unsigned long
  2800. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2801. {
  2802. unsigned long result = 1UL << frac_bits;
  2803. if (n) for (;;) {
  2804. if (n & 1) {
  2805. result *= x;
  2806. result += 1UL << (frac_bits - 1);
  2807. result >>= frac_bits;
  2808. }
  2809. n >>= 1;
  2810. if (!n)
  2811. break;
  2812. x *= x;
  2813. x += 1UL << (frac_bits - 1);
  2814. x >>= frac_bits;
  2815. }
  2816. return result;
  2817. }
  2818. /*
  2819. * a1 = a0 * e + a * (1 - e)
  2820. *
  2821. * a2 = a1 * e + a * (1 - e)
  2822. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2823. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2824. *
  2825. * a3 = a2 * e + a * (1 - e)
  2826. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2827. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2828. *
  2829. * ...
  2830. *
  2831. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2832. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2833. * = a0 * e^n + a * (1 - e^n)
  2834. *
  2835. * [1] application of the geometric series:
  2836. *
  2837. * n 1 - x^(n+1)
  2838. * S_n := \Sum x^i = -------------
  2839. * i=0 1 - x
  2840. */
  2841. static unsigned long
  2842. calc_load_n(unsigned long load, unsigned long exp,
  2843. unsigned long active, unsigned int n)
  2844. {
  2845. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2846. }
  2847. /*
  2848. * NO_HZ can leave us missing all per-cpu ticks calling
  2849. * calc_load_account_active(), but since an idle CPU folds its delta into
  2850. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2851. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2852. *
  2853. * Once we've updated the global active value, we need to apply the exponential
  2854. * weights adjusted to the number of cycles missed.
  2855. */
  2856. static void calc_global_nohz(unsigned long ticks)
  2857. {
  2858. long delta, active, n;
  2859. if (time_before(jiffies, calc_load_update))
  2860. return;
  2861. /*
  2862. * If we crossed a calc_load_update boundary, make sure to fold
  2863. * any pending idle changes, the respective CPUs might have
  2864. * missed the tick driven calc_load_account_active() update
  2865. * due to NO_HZ.
  2866. */
  2867. delta = calc_load_fold_idle();
  2868. if (delta)
  2869. atomic_long_add(delta, &calc_load_tasks);
  2870. /*
  2871. * If we were idle for multiple load cycles, apply them.
  2872. */
  2873. if (ticks >= LOAD_FREQ) {
  2874. n = ticks / LOAD_FREQ;
  2875. active = atomic_long_read(&calc_load_tasks);
  2876. active = active > 0 ? active * FIXED_1 : 0;
  2877. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2878. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2879. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2880. calc_load_update += n * LOAD_FREQ;
  2881. }
  2882. /*
  2883. * Its possible the remainder of the above division also crosses
  2884. * a LOAD_FREQ period, the regular check in calc_global_load()
  2885. * which comes after this will take care of that.
  2886. *
  2887. * Consider us being 11 ticks before a cycle completion, and us
  2888. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2889. * age us 4 cycles, and the test in calc_global_load() will
  2890. * pick up the final one.
  2891. */
  2892. }
  2893. #else
  2894. static void calc_load_account_idle(struct rq *this_rq)
  2895. {
  2896. }
  2897. static inline long calc_load_fold_idle(void)
  2898. {
  2899. return 0;
  2900. }
  2901. static void calc_global_nohz(unsigned long ticks)
  2902. {
  2903. }
  2904. #endif
  2905. /**
  2906. * get_avenrun - get the load average array
  2907. * @loads: pointer to dest load array
  2908. * @offset: offset to add
  2909. * @shift: shift count to shift the result left
  2910. *
  2911. * These values are estimates at best, so no need for locking.
  2912. */
  2913. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2914. {
  2915. loads[0] = (avenrun[0] + offset) << shift;
  2916. loads[1] = (avenrun[1] + offset) << shift;
  2917. loads[2] = (avenrun[2] + offset) << shift;
  2918. }
  2919. /*
  2920. * calc_load - update the avenrun load estimates 10 ticks after the
  2921. * CPUs have updated calc_load_tasks.
  2922. */
  2923. void calc_global_load(unsigned long ticks)
  2924. {
  2925. long active;
  2926. calc_global_nohz(ticks);
  2927. if (time_before(jiffies, calc_load_update + 10))
  2928. return;
  2929. active = atomic_long_read(&calc_load_tasks);
  2930. active = active > 0 ? active * FIXED_1 : 0;
  2931. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2932. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2933. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2934. calc_load_update += LOAD_FREQ;
  2935. }
  2936. /*
  2937. * Called from update_cpu_load() to periodically update this CPU's
  2938. * active count.
  2939. */
  2940. static void calc_load_account_active(struct rq *this_rq)
  2941. {
  2942. long delta;
  2943. if (time_before(jiffies, this_rq->calc_load_update))
  2944. return;
  2945. delta = calc_load_fold_active(this_rq);
  2946. delta += calc_load_fold_idle();
  2947. if (delta)
  2948. atomic_long_add(delta, &calc_load_tasks);
  2949. this_rq->calc_load_update += LOAD_FREQ;
  2950. }
  2951. /*
  2952. * The exact cpuload at various idx values, calculated at every tick would be
  2953. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2954. *
  2955. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2956. * on nth tick when cpu may be busy, then we have:
  2957. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2958. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2959. *
  2960. * decay_load_missed() below does efficient calculation of
  2961. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2962. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2963. *
  2964. * The calculation is approximated on a 128 point scale.
  2965. * degrade_zero_ticks is the number of ticks after which load at any
  2966. * particular idx is approximated to be zero.
  2967. * degrade_factor is a precomputed table, a row for each load idx.
  2968. * Each column corresponds to degradation factor for a power of two ticks,
  2969. * based on 128 point scale.
  2970. * Example:
  2971. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2972. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2973. *
  2974. * With this power of 2 load factors, we can degrade the load n times
  2975. * by looking at 1 bits in n and doing as many mult/shift instead of
  2976. * n mult/shifts needed by the exact degradation.
  2977. */
  2978. #define DEGRADE_SHIFT 7
  2979. static const unsigned char
  2980. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2981. static const unsigned char
  2982. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2983. {0, 0, 0, 0, 0, 0, 0, 0},
  2984. {64, 32, 8, 0, 0, 0, 0, 0},
  2985. {96, 72, 40, 12, 1, 0, 0},
  2986. {112, 98, 75, 43, 15, 1, 0},
  2987. {120, 112, 98, 76, 45, 16, 2} };
  2988. /*
  2989. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2990. * would be when CPU is idle and so we just decay the old load without
  2991. * adding any new load.
  2992. */
  2993. static unsigned long
  2994. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2995. {
  2996. int j = 0;
  2997. if (!missed_updates)
  2998. return load;
  2999. if (missed_updates >= degrade_zero_ticks[idx])
  3000. return 0;
  3001. if (idx == 1)
  3002. return load >> missed_updates;
  3003. while (missed_updates) {
  3004. if (missed_updates % 2)
  3005. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  3006. missed_updates >>= 1;
  3007. j++;
  3008. }
  3009. return load;
  3010. }
  3011. /*
  3012. * Update rq->cpu_load[] statistics. This function is usually called every
  3013. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  3014. * every tick. We fix it up based on jiffies.
  3015. */
  3016. static void update_cpu_load(struct rq *this_rq)
  3017. {
  3018. unsigned long this_load = this_rq->load.weight;
  3019. unsigned long curr_jiffies = jiffies;
  3020. unsigned long pending_updates;
  3021. int i, scale;
  3022. this_rq->nr_load_updates++;
  3023. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  3024. if (curr_jiffies == this_rq->last_load_update_tick)
  3025. return;
  3026. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3027. this_rq->last_load_update_tick = curr_jiffies;
  3028. /* Update our load: */
  3029. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3030. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3031. unsigned long old_load, new_load;
  3032. /* scale is effectively 1 << i now, and >> i divides by scale */
  3033. old_load = this_rq->cpu_load[i];
  3034. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3035. new_load = this_load;
  3036. /*
  3037. * Round up the averaging division if load is increasing. This
  3038. * prevents us from getting stuck on 9 if the load is 10, for
  3039. * example.
  3040. */
  3041. if (new_load > old_load)
  3042. new_load += scale - 1;
  3043. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3044. }
  3045. sched_avg_update(this_rq);
  3046. }
  3047. static void update_cpu_load_active(struct rq *this_rq)
  3048. {
  3049. update_cpu_load(this_rq);
  3050. calc_load_account_active(this_rq);
  3051. }
  3052. #ifdef CONFIG_SMP
  3053. /*
  3054. * sched_exec - execve() is a valuable balancing opportunity, because at
  3055. * this point the task has the smallest effective memory and cache footprint.
  3056. */
  3057. void sched_exec(void)
  3058. {
  3059. struct task_struct *p = current;
  3060. unsigned long flags;
  3061. int dest_cpu;
  3062. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3063. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3064. if (dest_cpu == smp_processor_id())
  3065. goto unlock;
  3066. if (likely(cpu_active(dest_cpu))) {
  3067. struct migration_arg arg = { p, dest_cpu };
  3068. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3069. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3070. return;
  3071. }
  3072. unlock:
  3073. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3074. }
  3075. #endif
  3076. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3077. EXPORT_PER_CPU_SYMBOL(kstat);
  3078. /*
  3079. * Return any ns on the sched_clock that have not yet been accounted in
  3080. * @p in case that task is currently running.
  3081. *
  3082. * Called with task_rq_lock() held on @rq.
  3083. */
  3084. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3085. {
  3086. u64 ns = 0;
  3087. if (task_current(rq, p)) {
  3088. update_rq_clock(rq);
  3089. ns = rq->clock_task - p->se.exec_start;
  3090. if ((s64)ns < 0)
  3091. ns = 0;
  3092. }
  3093. return ns;
  3094. }
  3095. unsigned long long task_delta_exec(struct task_struct *p)
  3096. {
  3097. unsigned long flags;
  3098. struct rq *rq;
  3099. u64 ns = 0;
  3100. rq = task_rq_lock(p, &flags);
  3101. ns = do_task_delta_exec(p, rq);
  3102. task_rq_unlock(rq, p, &flags);
  3103. return ns;
  3104. }
  3105. /*
  3106. * Return accounted runtime for the task.
  3107. * In case the task is currently running, return the runtime plus current's
  3108. * pending runtime that have not been accounted yet.
  3109. */
  3110. unsigned long long task_sched_runtime(struct task_struct *p)
  3111. {
  3112. unsigned long flags;
  3113. struct rq *rq;
  3114. u64 ns = 0;
  3115. rq = task_rq_lock(p, &flags);
  3116. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3117. task_rq_unlock(rq, p, &flags);
  3118. return ns;
  3119. }
  3120. /*
  3121. * Return sum_exec_runtime for the thread group.
  3122. * In case the task is currently running, return the sum plus current's
  3123. * pending runtime that have not been accounted yet.
  3124. *
  3125. * Note that the thread group might have other running tasks as well,
  3126. * so the return value not includes other pending runtime that other
  3127. * running tasks might have.
  3128. */
  3129. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3130. {
  3131. struct task_cputime totals;
  3132. unsigned long flags;
  3133. struct rq *rq;
  3134. u64 ns;
  3135. rq = task_rq_lock(p, &flags);
  3136. thread_group_cputime(p, &totals);
  3137. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3138. task_rq_unlock(rq, p, &flags);
  3139. return ns;
  3140. }
  3141. /*
  3142. * Account user cpu time to a process.
  3143. * @p: the process that the cpu time gets accounted to
  3144. * @cputime: the cpu time spent in user space since the last update
  3145. * @cputime_scaled: cputime scaled by cpu frequency
  3146. */
  3147. void account_user_time(struct task_struct *p, cputime_t cputime,
  3148. cputime_t cputime_scaled)
  3149. {
  3150. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3151. cputime64_t tmp;
  3152. /* Add user time to process. */
  3153. p->utime = cputime_add(p->utime, cputime);
  3154. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3155. account_group_user_time(p, cputime);
  3156. /* Add user time to cpustat. */
  3157. tmp = cputime_to_cputime64(cputime);
  3158. if (TASK_NICE(p) > 0)
  3159. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3160. else
  3161. cpustat->user = cputime64_add(cpustat->user, tmp);
  3162. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3163. /* Account for user time used */
  3164. acct_update_integrals(p);
  3165. }
  3166. /*
  3167. * Account guest cpu time to a process.
  3168. * @p: the process that the cpu time gets accounted to
  3169. * @cputime: the cpu time spent in virtual machine since the last update
  3170. * @cputime_scaled: cputime scaled by cpu frequency
  3171. */
  3172. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3173. cputime_t cputime_scaled)
  3174. {
  3175. cputime64_t tmp;
  3176. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3177. tmp = cputime_to_cputime64(cputime);
  3178. /* Add guest time to process. */
  3179. p->utime = cputime_add(p->utime, cputime);
  3180. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3181. account_group_user_time(p, cputime);
  3182. p->gtime = cputime_add(p->gtime, cputime);
  3183. /* Add guest time to cpustat. */
  3184. if (TASK_NICE(p) > 0) {
  3185. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3186. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3187. } else {
  3188. cpustat->user = cputime64_add(cpustat->user, tmp);
  3189. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3190. }
  3191. }
  3192. /*
  3193. * Account system cpu time to a process and desired cpustat field
  3194. * @p: the process that the cpu time gets accounted to
  3195. * @cputime: the cpu time spent in kernel space since the last update
  3196. * @cputime_scaled: cputime scaled by cpu frequency
  3197. * @target_cputime64: pointer to cpustat field that has to be updated
  3198. */
  3199. static inline
  3200. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3201. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3202. {
  3203. cputime64_t tmp = cputime_to_cputime64(cputime);
  3204. /* Add system time to process. */
  3205. p->stime = cputime_add(p->stime, cputime);
  3206. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3207. account_group_system_time(p, cputime);
  3208. /* Add system time to cpustat. */
  3209. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3210. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3211. /* Account for system time used */
  3212. acct_update_integrals(p);
  3213. }
  3214. /*
  3215. * Account system cpu time to a process.
  3216. * @p: the process that the cpu time gets accounted to
  3217. * @hardirq_offset: the offset to subtract from hardirq_count()
  3218. * @cputime: the cpu time spent in kernel space since the last update
  3219. * @cputime_scaled: cputime scaled by cpu frequency
  3220. */
  3221. void account_system_time(struct task_struct *p, int hardirq_offset,
  3222. cputime_t cputime, cputime_t cputime_scaled)
  3223. {
  3224. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3225. cputime64_t *target_cputime64;
  3226. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3227. account_guest_time(p, cputime, cputime_scaled);
  3228. return;
  3229. }
  3230. if (hardirq_count() - hardirq_offset)
  3231. target_cputime64 = &cpustat->irq;
  3232. else if (in_serving_softirq())
  3233. target_cputime64 = &cpustat->softirq;
  3234. else
  3235. target_cputime64 = &cpustat->system;
  3236. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3237. }
  3238. /*
  3239. * Account for involuntary wait time.
  3240. * @cputime: the cpu time spent in involuntary wait
  3241. */
  3242. void account_steal_time(cputime_t cputime)
  3243. {
  3244. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3245. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3246. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3247. }
  3248. /*
  3249. * Account for idle time.
  3250. * @cputime: the cpu time spent in idle wait
  3251. */
  3252. void account_idle_time(cputime_t cputime)
  3253. {
  3254. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3255. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3256. struct rq *rq = this_rq();
  3257. if (atomic_read(&rq->nr_iowait) > 0)
  3258. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3259. else
  3260. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3261. }
  3262. static __always_inline bool steal_account_process_tick(void)
  3263. {
  3264. #ifdef CONFIG_PARAVIRT
  3265. if (static_branch(&paravirt_steal_enabled)) {
  3266. u64 steal, st = 0;
  3267. steal = paravirt_steal_clock(smp_processor_id());
  3268. steal -= this_rq()->prev_steal_time;
  3269. st = steal_ticks(steal);
  3270. this_rq()->prev_steal_time += st * TICK_NSEC;
  3271. account_steal_time(st);
  3272. return st;
  3273. }
  3274. #endif
  3275. return false;
  3276. }
  3277. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3278. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3279. /*
  3280. * Account a tick to a process and cpustat
  3281. * @p: the process that the cpu time gets accounted to
  3282. * @user_tick: is the tick from userspace
  3283. * @rq: the pointer to rq
  3284. *
  3285. * Tick demultiplexing follows the order
  3286. * - pending hardirq update
  3287. * - pending softirq update
  3288. * - user_time
  3289. * - idle_time
  3290. * - system time
  3291. * - check for guest_time
  3292. * - else account as system_time
  3293. *
  3294. * Check for hardirq is done both for system and user time as there is
  3295. * no timer going off while we are on hardirq and hence we may never get an
  3296. * opportunity to update it solely in system time.
  3297. * p->stime and friends are only updated on system time and not on irq
  3298. * softirq as those do not count in task exec_runtime any more.
  3299. */
  3300. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3301. struct rq *rq)
  3302. {
  3303. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3304. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3305. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3306. if (steal_account_process_tick())
  3307. return;
  3308. if (irqtime_account_hi_update()) {
  3309. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3310. } else if (irqtime_account_si_update()) {
  3311. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3312. } else if (this_cpu_ksoftirqd() == p) {
  3313. /*
  3314. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3315. * So, we have to handle it separately here.
  3316. * Also, p->stime needs to be updated for ksoftirqd.
  3317. */
  3318. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3319. &cpustat->softirq);
  3320. } else if (user_tick) {
  3321. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3322. } else if (p == rq->idle) {
  3323. account_idle_time(cputime_one_jiffy);
  3324. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3325. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3326. } else {
  3327. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3328. &cpustat->system);
  3329. }
  3330. }
  3331. static void irqtime_account_idle_ticks(int ticks)
  3332. {
  3333. int i;
  3334. struct rq *rq = this_rq();
  3335. for (i = 0; i < ticks; i++)
  3336. irqtime_account_process_tick(current, 0, rq);
  3337. }
  3338. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3339. static void irqtime_account_idle_ticks(int ticks) {}
  3340. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3341. struct rq *rq) {}
  3342. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3343. /*
  3344. * Account a single tick of cpu time.
  3345. * @p: the process that the cpu time gets accounted to
  3346. * @user_tick: indicates if the tick is a user or a system tick
  3347. */
  3348. void account_process_tick(struct task_struct *p, int user_tick)
  3349. {
  3350. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3351. struct rq *rq = this_rq();
  3352. if (sched_clock_irqtime) {
  3353. irqtime_account_process_tick(p, user_tick, rq);
  3354. return;
  3355. }
  3356. if (steal_account_process_tick())
  3357. return;
  3358. if (user_tick)
  3359. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3360. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3361. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3362. one_jiffy_scaled);
  3363. else
  3364. account_idle_time(cputime_one_jiffy);
  3365. }
  3366. /*
  3367. * Account multiple ticks of steal time.
  3368. * @p: the process from which the cpu time has been stolen
  3369. * @ticks: number of stolen ticks
  3370. */
  3371. void account_steal_ticks(unsigned long ticks)
  3372. {
  3373. account_steal_time(jiffies_to_cputime(ticks));
  3374. }
  3375. /*
  3376. * Account multiple ticks of idle time.
  3377. * @ticks: number of stolen ticks
  3378. */
  3379. void account_idle_ticks(unsigned long ticks)
  3380. {
  3381. if (sched_clock_irqtime) {
  3382. irqtime_account_idle_ticks(ticks);
  3383. return;
  3384. }
  3385. account_idle_time(jiffies_to_cputime(ticks));
  3386. }
  3387. #endif
  3388. /*
  3389. * Use precise platform statistics if available:
  3390. */
  3391. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3392. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3393. {
  3394. *ut = p->utime;
  3395. *st = p->stime;
  3396. }
  3397. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3398. {
  3399. struct task_cputime cputime;
  3400. thread_group_cputime(p, &cputime);
  3401. *ut = cputime.utime;
  3402. *st = cputime.stime;
  3403. }
  3404. #else
  3405. #ifndef nsecs_to_cputime
  3406. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3407. #endif
  3408. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3409. {
  3410. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3411. /*
  3412. * Use CFS's precise accounting:
  3413. */
  3414. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3415. if (total) {
  3416. u64 temp = rtime;
  3417. temp *= utime;
  3418. do_div(temp, total);
  3419. utime = (cputime_t)temp;
  3420. } else
  3421. utime = rtime;
  3422. /*
  3423. * Compare with previous values, to keep monotonicity:
  3424. */
  3425. p->prev_utime = max(p->prev_utime, utime);
  3426. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3427. *ut = p->prev_utime;
  3428. *st = p->prev_stime;
  3429. }
  3430. /*
  3431. * Must be called with siglock held.
  3432. */
  3433. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3434. {
  3435. struct signal_struct *sig = p->signal;
  3436. struct task_cputime cputime;
  3437. cputime_t rtime, utime, total;
  3438. thread_group_cputime(p, &cputime);
  3439. total = cputime_add(cputime.utime, cputime.stime);
  3440. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3441. if (total) {
  3442. u64 temp = rtime;
  3443. temp *= cputime.utime;
  3444. do_div(temp, total);
  3445. utime = (cputime_t)temp;
  3446. } else
  3447. utime = rtime;
  3448. sig->prev_utime = max(sig->prev_utime, utime);
  3449. sig->prev_stime = max(sig->prev_stime,
  3450. cputime_sub(rtime, sig->prev_utime));
  3451. *ut = sig->prev_utime;
  3452. *st = sig->prev_stime;
  3453. }
  3454. #endif
  3455. /*
  3456. * This function gets called by the timer code, with HZ frequency.
  3457. * We call it with interrupts disabled.
  3458. */
  3459. void scheduler_tick(void)
  3460. {
  3461. int cpu = smp_processor_id();
  3462. struct rq *rq = cpu_rq(cpu);
  3463. struct task_struct *curr = rq->curr;
  3464. sched_clock_tick();
  3465. raw_spin_lock(&rq->lock);
  3466. update_rq_clock(rq);
  3467. update_cpu_load_active(rq);
  3468. curr->sched_class->task_tick(rq, curr, 0);
  3469. raw_spin_unlock(&rq->lock);
  3470. perf_event_task_tick();
  3471. #ifdef CONFIG_SMP
  3472. rq->idle_at_tick = idle_cpu(cpu);
  3473. trigger_load_balance(rq, cpu);
  3474. #endif
  3475. }
  3476. notrace unsigned long get_parent_ip(unsigned long addr)
  3477. {
  3478. if (in_lock_functions(addr)) {
  3479. addr = CALLER_ADDR2;
  3480. if (in_lock_functions(addr))
  3481. addr = CALLER_ADDR3;
  3482. }
  3483. return addr;
  3484. }
  3485. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3486. defined(CONFIG_PREEMPT_TRACER))
  3487. void __kprobes add_preempt_count(int val)
  3488. {
  3489. #ifdef CONFIG_DEBUG_PREEMPT
  3490. /*
  3491. * Underflow?
  3492. */
  3493. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3494. return;
  3495. #endif
  3496. preempt_count() += val;
  3497. #ifdef CONFIG_DEBUG_PREEMPT
  3498. /*
  3499. * Spinlock count overflowing soon?
  3500. */
  3501. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3502. PREEMPT_MASK - 10);
  3503. #endif
  3504. if (preempt_count() == val)
  3505. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3506. }
  3507. EXPORT_SYMBOL(add_preempt_count);
  3508. void __kprobes sub_preempt_count(int val)
  3509. {
  3510. #ifdef CONFIG_DEBUG_PREEMPT
  3511. /*
  3512. * Underflow?
  3513. */
  3514. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3515. return;
  3516. /*
  3517. * Is the spinlock portion underflowing?
  3518. */
  3519. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3520. !(preempt_count() & PREEMPT_MASK)))
  3521. return;
  3522. #endif
  3523. if (preempt_count() == val)
  3524. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3525. preempt_count() -= val;
  3526. }
  3527. EXPORT_SYMBOL(sub_preempt_count);
  3528. #endif
  3529. /*
  3530. * Print scheduling while atomic bug:
  3531. */
  3532. static noinline void __schedule_bug(struct task_struct *prev)
  3533. {
  3534. struct pt_regs *regs = get_irq_regs();
  3535. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3536. prev->comm, prev->pid, preempt_count());
  3537. debug_show_held_locks(prev);
  3538. print_modules();
  3539. if (irqs_disabled())
  3540. print_irqtrace_events(prev);
  3541. if (regs)
  3542. show_regs(regs);
  3543. else
  3544. dump_stack();
  3545. }
  3546. /*
  3547. * Various schedule()-time debugging checks and statistics:
  3548. */
  3549. static inline void schedule_debug(struct task_struct *prev)
  3550. {
  3551. /*
  3552. * Test if we are atomic. Since do_exit() needs to call into
  3553. * schedule() atomically, we ignore that path for now.
  3554. * Otherwise, whine if we are scheduling when we should not be.
  3555. */
  3556. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3557. __schedule_bug(prev);
  3558. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3559. schedstat_inc(this_rq(), sched_count);
  3560. }
  3561. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3562. {
  3563. if (prev->on_rq || rq->skip_clock_update < 0)
  3564. update_rq_clock(rq);
  3565. prev->sched_class->put_prev_task(rq, prev);
  3566. }
  3567. /*
  3568. * Pick up the highest-prio task:
  3569. */
  3570. static inline struct task_struct *
  3571. pick_next_task(struct rq *rq)
  3572. {
  3573. const struct sched_class *class;
  3574. struct task_struct *p;
  3575. /*
  3576. * Optimization: we know that if all tasks are in
  3577. * the fair class we can call that function directly:
  3578. */
  3579. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3580. p = fair_sched_class.pick_next_task(rq);
  3581. if (likely(p))
  3582. return p;
  3583. }
  3584. for_each_class(class) {
  3585. p = class->pick_next_task(rq);
  3586. if (p)
  3587. return p;
  3588. }
  3589. BUG(); /* the idle class will always have a runnable task */
  3590. }
  3591. /*
  3592. * schedule() is the main scheduler function.
  3593. */
  3594. asmlinkage void __sched schedule(void)
  3595. {
  3596. struct task_struct *prev, *next;
  3597. unsigned long *switch_count;
  3598. struct rq *rq;
  3599. int cpu;
  3600. need_resched:
  3601. preempt_disable();
  3602. cpu = smp_processor_id();
  3603. rq = cpu_rq(cpu);
  3604. rcu_note_context_switch(cpu);
  3605. prev = rq->curr;
  3606. schedule_debug(prev);
  3607. if (sched_feat(HRTICK))
  3608. hrtick_clear(rq);
  3609. raw_spin_lock_irq(&rq->lock);
  3610. switch_count = &prev->nivcsw;
  3611. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3612. if (unlikely(signal_pending_state(prev->state, prev))) {
  3613. prev->state = TASK_RUNNING;
  3614. } else {
  3615. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3616. prev->on_rq = 0;
  3617. /*
  3618. * If a worker went to sleep, notify and ask workqueue
  3619. * whether it wants to wake up a task to maintain
  3620. * concurrency.
  3621. */
  3622. if (prev->flags & PF_WQ_WORKER) {
  3623. struct task_struct *to_wakeup;
  3624. to_wakeup = wq_worker_sleeping(prev, cpu);
  3625. if (to_wakeup)
  3626. try_to_wake_up_local(to_wakeup);
  3627. }
  3628. /*
  3629. * If we are going to sleep and we have plugged IO
  3630. * queued, make sure to submit it to avoid deadlocks.
  3631. */
  3632. if (blk_needs_flush_plug(prev)) {
  3633. raw_spin_unlock(&rq->lock);
  3634. blk_schedule_flush_plug(prev);
  3635. raw_spin_lock(&rq->lock);
  3636. }
  3637. }
  3638. switch_count = &prev->nvcsw;
  3639. }
  3640. pre_schedule(rq, prev);
  3641. if (unlikely(!rq->nr_running))
  3642. idle_balance(cpu, rq);
  3643. put_prev_task(rq, prev);
  3644. next = pick_next_task(rq);
  3645. clear_tsk_need_resched(prev);
  3646. rq->skip_clock_update = 0;
  3647. if (likely(prev != next)) {
  3648. rq->nr_switches++;
  3649. rq->curr = next;
  3650. ++*switch_count;
  3651. context_switch(rq, prev, next); /* unlocks the rq */
  3652. /*
  3653. * The context switch have flipped the stack from under us
  3654. * and restored the local variables which were saved when
  3655. * this task called schedule() in the past. prev == current
  3656. * is still correct, but it can be moved to another cpu/rq.
  3657. */
  3658. cpu = smp_processor_id();
  3659. rq = cpu_rq(cpu);
  3660. } else
  3661. raw_spin_unlock_irq(&rq->lock);
  3662. post_schedule(rq);
  3663. preempt_enable_no_resched();
  3664. if (need_resched())
  3665. goto need_resched;
  3666. }
  3667. EXPORT_SYMBOL(schedule);
  3668. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3669. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3670. {
  3671. bool ret = false;
  3672. rcu_read_lock();
  3673. if (lock->owner != owner)
  3674. goto fail;
  3675. /*
  3676. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3677. * lock->owner still matches owner, if that fails, owner might
  3678. * point to free()d memory, if it still matches, the rcu_read_lock()
  3679. * ensures the memory stays valid.
  3680. */
  3681. barrier();
  3682. ret = owner->on_cpu;
  3683. fail:
  3684. rcu_read_unlock();
  3685. return ret;
  3686. }
  3687. /*
  3688. * Look out! "owner" is an entirely speculative pointer
  3689. * access and not reliable.
  3690. */
  3691. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3692. {
  3693. if (!sched_feat(OWNER_SPIN))
  3694. return 0;
  3695. while (owner_running(lock, owner)) {
  3696. if (need_resched())
  3697. return 0;
  3698. arch_mutex_cpu_relax();
  3699. }
  3700. /*
  3701. * If the owner changed to another task there is likely
  3702. * heavy contention, stop spinning.
  3703. */
  3704. if (lock->owner)
  3705. return 0;
  3706. return 1;
  3707. }
  3708. #endif
  3709. #ifdef CONFIG_PREEMPT
  3710. /*
  3711. * this is the entry point to schedule() from in-kernel preemption
  3712. * off of preempt_enable. Kernel preemptions off return from interrupt
  3713. * occur there and call schedule directly.
  3714. */
  3715. asmlinkage void __sched notrace preempt_schedule(void)
  3716. {
  3717. struct thread_info *ti = current_thread_info();
  3718. /*
  3719. * If there is a non-zero preempt_count or interrupts are disabled,
  3720. * we do not want to preempt the current task. Just return..
  3721. */
  3722. if (likely(ti->preempt_count || irqs_disabled()))
  3723. return;
  3724. do {
  3725. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3726. schedule();
  3727. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3728. /*
  3729. * Check again in case we missed a preemption opportunity
  3730. * between schedule and now.
  3731. */
  3732. barrier();
  3733. } while (need_resched());
  3734. }
  3735. EXPORT_SYMBOL(preempt_schedule);
  3736. /*
  3737. * this is the entry point to schedule() from kernel preemption
  3738. * off of irq context.
  3739. * Note, that this is called and return with irqs disabled. This will
  3740. * protect us against recursive calling from irq.
  3741. */
  3742. asmlinkage void __sched preempt_schedule_irq(void)
  3743. {
  3744. struct thread_info *ti = current_thread_info();
  3745. /* Catch callers which need to be fixed */
  3746. BUG_ON(ti->preempt_count || !irqs_disabled());
  3747. do {
  3748. add_preempt_count(PREEMPT_ACTIVE);
  3749. local_irq_enable();
  3750. schedule();
  3751. local_irq_disable();
  3752. sub_preempt_count(PREEMPT_ACTIVE);
  3753. /*
  3754. * Check again in case we missed a preemption opportunity
  3755. * between schedule and now.
  3756. */
  3757. barrier();
  3758. } while (need_resched());
  3759. }
  3760. #endif /* CONFIG_PREEMPT */
  3761. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3762. void *key)
  3763. {
  3764. return try_to_wake_up(curr->private, mode, wake_flags);
  3765. }
  3766. EXPORT_SYMBOL(default_wake_function);
  3767. /*
  3768. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3769. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3770. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3771. *
  3772. * There are circumstances in which we can try to wake a task which has already
  3773. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3774. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3775. */
  3776. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3777. int nr_exclusive, int wake_flags, void *key)
  3778. {
  3779. wait_queue_t *curr, *next;
  3780. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3781. unsigned flags = curr->flags;
  3782. if (curr->func(curr, mode, wake_flags, key) &&
  3783. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3784. break;
  3785. }
  3786. }
  3787. /**
  3788. * __wake_up - wake up threads blocked on a waitqueue.
  3789. * @q: the waitqueue
  3790. * @mode: which threads
  3791. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3792. * @key: is directly passed to the wakeup function
  3793. *
  3794. * It may be assumed that this function implies a write memory barrier before
  3795. * changing the task state if and only if any tasks are woken up.
  3796. */
  3797. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3798. int nr_exclusive, void *key)
  3799. {
  3800. unsigned long flags;
  3801. spin_lock_irqsave(&q->lock, flags);
  3802. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3803. spin_unlock_irqrestore(&q->lock, flags);
  3804. }
  3805. EXPORT_SYMBOL(__wake_up);
  3806. /*
  3807. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3808. */
  3809. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3810. {
  3811. __wake_up_common(q, mode, 1, 0, NULL);
  3812. }
  3813. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3814. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3815. {
  3816. __wake_up_common(q, mode, 1, 0, key);
  3817. }
  3818. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3819. /**
  3820. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3821. * @q: the waitqueue
  3822. * @mode: which threads
  3823. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3824. * @key: opaque value to be passed to wakeup targets
  3825. *
  3826. * The sync wakeup differs that the waker knows that it will schedule
  3827. * away soon, so while the target thread will be woken up, it will not
  3828. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3829. * with each other. This can prevent needless bouncing between CPUs.
  3830. *
  3831. * On UP it can prevent extra preemption.
  3832. *
  3833. * It may be assumed that this function implies a write memory barrier before
  3834. * changing the task state if and only if any tasks are woken up.
  3835. */
  3836. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3837. int nr_exclusive, void *key)
  3838. {
  3839. unsigned long flags;
  3840. int wake_flags = WF_SYNC;
  3841. if (unlikely(!q))
  3842. return;
  3843. if (unlikely(!nr_exclusive))
  3844. wake_flags = 0;
  3845. spin_lock_irqsave(&q->lock, flags);
  3846. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3847. spin_unlock_irqrestore(&q->lock, flags);
  3848. }
  3849. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3850. /*
  3851. * __wake_up_sync - see __wake_up_sync_key()
  3852. */
  3853. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3854. {
  3855. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3856. }
  3857. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3858. /**
  3859. * complete: - signals a single thread waiting on this completion
  3860. * @x: holds the state of this particular completion
  3861. *
  3862. * This will wake up a single thread waiting on this completion. Threads will be
  3863. * awakened in the same order in which they were queued.
  3864. *
  3865. * See also complete_all(), wait_for_completion() and related routines.
  3866. *
  3867. * It may be assumed that this function implies a write memory barrier before
  3868. * changing the task state if and only if any tasks are woken up.
  3869. */
  3870. void complete(struct completion *x)
  3871. {
  3872. unsigned long flags;
  3873. spin_lock_irqsave(&x->wait.lock, flags);
  3874. x->done++;
  3875. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3876. spin_unlock_irqrestore(&x->wait.lock, flags);
  3877. }
  3878. EXPORT_SYMBOL(complete);
  3879. /**
  3880. * complete_all: - signals all threads waiting on this completion
  3881. * @x: holds the state of this particular completion
  3882. *
  3883. * This will wake up all threads waiting on this particular completion event.
  3884. *
  3885. * It may be assumed that this function implies a write memory barrier before
  3886. * changing the task state if and only if any tasks are woken up.
  3887. */
  3888. void complete_all(struct completion *x)
  3889. {
  3890. unsigned long flags;
  3891. spin_lock_irqsave(&x->wait.lock, flags);
  3892. x->done += UINT_MAX/2;
  3893. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3894. spin_unlock_irqrestore(&x->wait.lock, flags);
  3895. }
  3896. EXPORT_SYMBOL(complete_all);
  3897. static inline long __sched
  3898. do_wait_for_common(struct completion *x, long timeout, int state)
  3899. {
  3900. if (!x->done) {
  3901. DECLARE_WAITQUEUE(wait, current);
  3902. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3903. do {
  3904. if (signal_pending_state(state, current)) {
  3905. timeout = -ERESTARTSYS;
  3906. break;
  3907. }
  3908. __set_current_state(state);
  3909. spin_unlock_irq(&x->wait.lock);
  3910. timeout = schedule_timeout(timeout);
  3911. spin_lock_irq(&x->wait.lock);
  3912. } while (!x->done && timeout);
  3913. __remove_wait_queue(&x->wait, &wait);
  3914. if (!x->done)
  3915. return timeout;
  3916. }
  3917. x->done--;
  3918. return timeout ?: 1;
  3919. }
  3920. static long __sched
  3921. wait_for_common(struct completion *x, long timeout, int state)
  3922. {
  3923. might_sleep();
  3924. spin_lock_irq(&x->wait.lock);
  3925. timeout = do_wait_for_common(x, timeout, state);
  3926. spin_unlock_irq(&x->wait.lock);
  3927. return timeout;
  3928. }
  3929. /**
  3930. * wait_for_completion: - waits for completion of a task
  3931. * @x: holds the state of this particular completion
  3932. *
  3933. * This waits to be signaled for completion of a specific task. It is NOT
  3934. * interruptible and there is no timeout.
  3935. *
  3936. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3937. * and interrupt capability. Also see complete().
  3938. */
  3939. void __sched wait_for_completion(struct completion *x)
  3940. {
  3941. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3942. }
  3943. EXPORT_SYMBOL(wait_for_completion);
  3944. /**
  3945. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3946. * @x: holds the state of this particular completion
  3947. * @timeout: timeout value in jiffies
  3948. *
  3949. * This waits for either a completion of a specific task to be signaled or for a
  3950. * specified timeout to expire. The timeout is in jiffies. It is not
  3951. * interruptible.
  3952. */
  3953. unsigned long __sched
  3954. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3955. {
  3956. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3957. }
  3958. EXPORT_SYMBOL(wait_for_completion_timeout);
  3959. /**
  3960. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3961. * @x: holds the state of this particular completion
  3962. *
  3963. * This waits for completion of a specific task to be signaled. It is
  3964. * interruptible.
  3965. */
  3966. int __sched wait_for_completion_interruptible(struct completion *x)
  3967. {
  3968. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3969. if (t == -ERESTARTSYS)
  3970. return t;
  3971. return 0;
  3972. }
  3973. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3974. /**
  3975. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3976. * @x: holds the state of this particular completion
  3977. * @timeout: timeout value in jiffies
  3978. *
  3979. * This waits for either a completion of a specific task to be signaled or for a
  3980. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3981. */
  3982. long __sched
  3983. wait_for_completion_interruptible_timeout(struct completion *x,
  3984. unsigned long timeout)
  3985. {
  3986. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3987. }
  3988. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3989. /**
  3990. * wait_for_completion_killable: - waits for completion of a task (killable)
  3991. * @x: holds the state of this particular completion
  3992. *
  3993. * This waits to be signaled for completion of a specific task. It can be
  3994. * interrupted by a kill signal.
  3995. */
  3996. int __sched wait_for_completion_killable(struct completion *x)
  3997. {
  3998. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3999. if (t == -ERESTARTSYS)
  4000. return t;
  4001. return 0;
  4002. }
  4003. EXPORT_SYMBOL(wait_for_completion_killable);
  4004. /**
  4005. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  4006. * @x: holds the state of this particular completion
  4007. * @timeout: timeout value in jiffies
  4008. *
  4009. * This waits for either a completion of a specific task to be
  4010. * signaled or for a specified timeout to expire. It can be
  4011. * interrupted by a kill signal. The timeout is in jiffies.
  4012. */
  4013. long __sched
  4014. wait_for_completion_killable_timeout(struct completion *x,
  4015. unsigned long timeout)
  4016. {
  4017. return wait_for_common(x, timeout, TASK_KILLABLE);
  4018. }
  4019. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  4020. /**
  4021. * try_wait_for_completion - try to decrement a completion without blocking
  4022. * @x: completion structure
  4023. *
  4024. * Returns: 0 if a decrement cannot be done without blocking
  4025. * 1 if a decrement succeeded.
  4026. *
  4027. * If a completion is being used as a counting completion,
  4028. * attempt to decrement the counter without blocking. This
  4029. * enables us to avoid waiting if the resource the completion
  4030. * is protecting is not available.
  4031. */
  4032. bool try_wait_for_completion(struct completion *x)
  4033. {
  4034. unsigned long flags;
  4035. int ret = 1;
  4036. spin_lock_irqsave(&x->wait.lock, flags);
  4037. if (!x->done)
  4038. ret = 0;
  4039. else
  4040. x->done--;
  4041. spin_unlock_irqrestore(&x->wait.lock, flags);
  4042. return ret;
  4043. }
  4044. EXPORT_SYMBOL(try_wait_for_completion);
  4045. /**
  4046. * completion_done - Test to see if a completion has any waiters
  4047. * @x: completion structure
  4048. *
  4049. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4050. * 1 if there are no waiters.
  4051. *
  4052. */
  4053. bool completion_done(struct completion *x)
  4054. {
  4055. unsigned long flags;
  4056. int ret = 1;
  4057. spin_lock_irqsave(&x->wait.lock, flags);
  4058. if (!x->done)
  4059. ret = 0;
  4060. spin_unlock_irqrestore(&x->wait.lock, flags);
  4061. return ret;
  4062. }
  4063. EXPORT_SYMBOL(completion_done);
  4064. static long __sched
  4065. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4066. {
  4067. unsigned long flags;
  4068. wait_queue_t wait;
  4069. init_waitqueue_entry(&wait, current);
  4070. __set_current_state(state);
  4071. spin_lock_irqsave(&q->lock, flags);
  4072. __add_wait_queue(q, &wait);
  4073. spin_unlock(&q->lock);
  4074. timeout = schedule_timeout(timeout);
  4075. spin_lock_irq(&q->lock);
  4076. __remove_wait_queue(q, &wait);
  4077. spin_unlock_irqrestore(&q->lock, flags);
  4078. return timeout;
  4079. }
  4080. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4081. {
  4082. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4083. }
  4084. EXPORT_SYMBOL(interruptible_sleep_on);
  4085. long __sched
  4086. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4087. {
  4088. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4089. }
  4090. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4091. void __sched sleep_on(wait_queue_head_t *q)
  4092. {
  4093. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4094. }
  4095. EXPORT_SYMBOL(sleep_on);
  4096. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4097. {
  4098. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4099. }
  4100. EXPORT_SYMBOL(sleep_on_timeout);
  4101. #ifdef CONFIG_RT_MUTEXES
  4102. /*
  4103. * rt_mutex_setprio - set the current priority of a task
  4104. * @p: task
  4105. * @prio: prio value (kernel-internal form)
  4106. *
  4107. * This function changes the 'effective' priority of a task. It does
  4108. * not touch ->normal_prio like __setscheduler().
  4109. *
  4110. * Used by the rt_mutex code to implement priority inheritance logic.
  4111. */
  4112. void rt_mutex_setprio(struct task_struct *p, int prio)
  4113. {
  4114. int oldprio, on_rq, running;
  4115. struct rq *rq;
  4116. const struct sched_class *prev_class;
  4117. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4118. rq = __task_rq_lock(p);
  4119. trace_sched_pi_setprio(p, prio);
  4120. oldprio = p->prio;
  4121. prev_class = p->sched_class;
  4122. on_rq = p->on_rq;
  4123. running = task_current(rq, p);
  4124. if (on_rq)
  4125. dequeue_task(rq, p, 0);
  4126. if (running)
  4127. p->sched_class->put_prev_task(rq, p);
  4128. if (rt_prio(prio))
  4129. p->sched_class = &rt_sched_class;
  4130. else
  4131. p->sched_class = &fair_sched_class;
  4132. p->prio = prio;
  4133. if (running)
  4134. p->sched_class->set_curr_task(rq);
  4135. if (on_rq)
  4136. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4137. check_class_changed(rq, p, prev_class, oldprio);
  4138. __task_rq_unlock(rq);
  4139. }
  4140. #endif
  4141. void set_user_nice(struct task_struct *p, long nice)
  4142. {
  4143. int old_prio, delta, on_rq;
  4144. unsigned long flags;
  4145. struct rq *rq;
  4146. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4147. return;
  4148. /*
  4149. * We have to be careful, if called from sys_setpriority(),
  4150. * the task might be in the middle of scheduling on another CPU.
  4151. */
  4152. rq = task_rq_lock(p, &flags);
  4153. /*
  4154. * The RT priorities are set via sched_setscheduler(), but we still
  4155. * allow the 'normal' nice value to be set - but as expected
  4156. * it wont have any effect on scheduling until the task is
  4157. * SCHED_FIFO/SCHED_RR:
  4158. */
  4159. if (task_has_rt_policy(p)) {
  4160. p->static_prio = NICE_TO_PRIO(nice);
  4161. goto out_unlock;
  4162. }
  4163. on_rq = p->on_rq;
  4164. if (on_rq)
  4165. dequeue_task(rq, p, 0);
  4166. p->static_prio = NICE_TO_PRIO(nice);
  4167. set_load_weight(p);
  4168. old_prio = p->prio;
  4169. p->prio = effective_prio(p);
  4170. delta = p->prio - old_prio;
  4171. if (on_rq) {
  4172. enqueue_task(rq, p, 0);
  4173. /*
  4174. * If the task increased its priority or is running and
  4175. * lowered its priority, then reschedule its CPU:
  4176. */
  4177. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4178. resched_task(rq->curr);
  4179. }
  4180. out_unlock:
  4181. task_rq_unlock(rq, p, &flags);
  4182. }
  4183. EXPORT_SYMBOL(set_user_nice);
  4184. /*
  4185. * can_nice - check if a task can reduce its nice value
  4186. * @p: task
  4187. * @nice: nice value
  4188. */
  4189. int can_nice(const struct task_struct *p, const int nice)
  4190. {
  4191. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4192. int nice_rlim = 20 - nice;
  4193. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4194. capable(CAP_SYS_NICE));
  4195. }
  4196. #ifdef __ARCH_WANT_SYS_NICE
  4197. /*
  4198. * sys_nice - change the priority of the current process.
  4199. * @increment: priority increment
  4200. *
  4201. * sys_setpriority is a more generic, but much slower function that
  4202. * does similar things.
  4203. */
  4204. SYSCALL_DEFINE1(nice, int, increment)
  4205. {
  4206. long nice, retval;
  4207. /*
  4208. * Setpriority might change our priority at the same moment.
  4209. * We don't have to worry. Conceptually one call occurs first
  4210. * and we have a single winner.
  4211. */
  4212. if (increment < -40)
  4213. increment = -40;
  4214. if (increment > 40)
  4215. increment = 40;
  4216. nice = TASK_NICE(current) + increment;
  4217. if (nice < -20)
  4218. nice = -20;
  4219. if (nice > 19)
  4220. nice = 19;
  4221. if (increment < 0 && !can_nice(current, nice))
  4222. return -EPERM;
  4223. retval = security_task_setnice(current, nice);
  4224. if (retval)
  4225. return retval;
  4226. set_user_nice(current, nice);
  4227. return 0;
  4228. }
  4229. #endif
  4230. /**
  4231. * task_prio - return the priority value of a given task.
  4232. * @p: the task in question.
  4233. *
  4234. * This is the priority value as seen by users in /proc.
  4235. * RT tasks are offset by -200. Normal tasks are centered
  4236. * around 0, value goes from -16 to +15.
  4237. */
  4238. int task_prio(const struct task_struct *p)
  4239. {
  4240. return p->prio - MAX_RT_PRIO;
  4241. }
  4242. /**
  4243. * task_nice - return the nice value of a given task.
  4244. * @p: the task in question.
  4245. */
  4246. int task_nice(const struct task_struct *p)
  4247. {
  4248. return TASK_NICE(p);
  4249. }
  4250. EXPORT_SYMBOL(task_nice);
  4251. /**
  4252. * idle_cpu - is a given cpu idle currently?
  4253. * @cpu: the processor in question.
  4254. */
  4255. int idle_cpu(int cpu)
  4256. {
  4257. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4258. }
  4259. /**
  4260. * idle_task - return the idle task for a given cpu.
  4261. * @cpu: the processor in question.
  4262. */
  4263. struct task_struct *idle_task(int cpu)
  4264. {
  4265. return cpu_rq(cpu)->idle;
  4266. }
  4267. /**
  4268. * find_process_by_pid - find a process with a matching PID value.
  4269. * @pid: the pid in question.
  4270. */
  4271. static struct task_struct *find_process_by_pid(pid_t pid)
  4272. {
  4273. return pid ? find_task_by_vpid(pid) : current;
  4274. }
  4275. /* Actually do priority change: must hold rq lock. */
  4276. static void
  4277. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4278. {
  4279. p->policy = policy;
  4280. p->rt_priority = prio;
  4281. p->normal_prio = normal_prio(p);
  4282. /* we are holding p->pi_lock already */
  4283. p->prio = rt_mutex_getprio(p);
  4284. if (rt_prio(p->prio))
  4285. p->sched_class = &rt_sched_class;
  4286. else
  4287. p->sched_class = &fair_sched_class;
  4288. set_load_weight(p);
  4289. }
  4290. /*
  4291. * check the target process has a UID that matches the current process's
  4292. */
  4293. static bool check_same_owner(struct task_struct *p)
  4294. {
  4295. const struct cred *cred = current_cred(), *pcred;
  4296. bool match;
  4297. rcu_read_lock();
  4298. pcred = __task_cred(p);
  4299. if (cred->user->user_ns == pcred->user->user_ns)
  4300. match = (cred->euid == pcred->euid ||
  4301. cred->euid == pcred->uid);
  4302. else
  4303. match = false;
  4304. rcu_read_unlock();
  4305. return match;
  4306. }
  4307. static int __sched_setscheduler(struct task_struct *p, int policy,
  4308. const struct sched_param *param, bool user)
  4309. {
  4310. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4311. unsigned long flags;
  4312. const struct sched_class *prev_class;
  4313. struct rq *rq;
  4314. int reset_on_fork;
  4315. /* may grab non-irq protected spin_locks */
  4316. BUG_ON(in_interrupt());
  4317. recheck:
  4318. /* double check policy once rq lock held */
  4319. if (policy < 0) {
  4320. reset_on_fork = p->sched_reset_on_fork;
  4321. policy = oldpolicy = p->policy;
  4322. } else {
  4323. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4324. policy &= ~SCHED_RESET_ON_FORK;
  4325. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4326. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4327. policy != SCHED_IDLE)
  4328. return -EINVAL;
  4329. }
  4330. /*
  4331. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4332. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4333. * SCHED_BATCH and SCHED_IDLE is 0.
  4334. */
  4335. if (param->sched_priority < 0 ||
  4336. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4337. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4338. return -EINVAL;
  4339. if (rt_policy(policy) != (param->sched_priority != 0))
  4340. return -EINVAL;
  4341. /*
  4342. * Allow unprivileged RT tasks to decrease priority:
  4343. */
  4344. if (user && !capable(CAP_SYS_NICE)) {
  4345. if (rt_policy(policy)) {
  4346. unsigned long rlim_rtprio =
  4347. task_rlimit(p, RLIMIT_RTPRIO);
  4348. /* can't set/change the rt policy */
  4349. if (policy != p->policy && !rlim_rtprio)
  4350. return -EPERM;
  4351. /* can't increase priority */
  4352. if (param->sched_priority > p->rt_priority &&
  4353. param->sched_priority > rlim_rtprio)
  4354. return -EPERM;
  4355. }
  4356. /*
  4357. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4358. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4359. */
  4360. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4361. if (!can_nice(p, TASK_NICE(p)))
  4362. return -EPERM;
  4363. }
  4364. /* can't change other user's priorities */
  4365. if (!check_same_owner(p))
  4366. return -EPERM;
  4367. /* Normal users shall not reset the sched_reset_on_fork flag */
  4368. if (p->sched_reset_on_fork && !reset_on_fork)
  4369. return -EPERM;
  4370. }
  4371. if (user) {
  4372. retval = security_task_setscheduler(p);
  4373. if (retval)
  4374. return retval;
  4375. }
  4376. /*
  4377. * make sure no PI-waiters arrive (or leave) while we are
  4378. * changing the priority of the task:
  4379. *
  4380. * To be able to change p->policy safely, the appropriate
  4381. * runqueue lock must be held.
  4382. */
  4383. rq = task_rq_lock(p, &flags);
  4384. /*
  4385. * Changing the policy of the stop threads its a very bad idea
  4386. */
  4387. if (p == rq->stop) {
  4388. task_rq_unlock(rq, p, &flags);
  4389. return -EINVAL;
  4390. }
  4391. /*
  4392. * If not changing anything there's no need to proceed further:
  4393. */
  4394. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4395. param->sched_priority == p->rt_priority))) {
  4396. __task_rq_unlock(rq);
  4397. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4398. return 0;
  4399. }
  4400. #ifdef CONFIG_RT_GROUP_SCHED
  4401. if (user) {
  4402. /*
  4403. * Do not allow realtime tasks into groups that have no runtime
  4404. * assigned.
  4405. */
  4406. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4407. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4408. !task_group_is_autogroup(task_group(p))) {
  4409. task_rq_unlock(rq, p, &flags);
  4410. return -EPERM;
  4411. }
  4412. }
  4413. #endif
  4414. /* recheck policy now with rq lock held */
  4415. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4416. policy = oldpolicy = -1;
  4417. task_rq_unlock(rq, p, &flags);
  4418. goto recheck;
  4419. }
  4420. on_rq = p->on_rq;
  4421. running = task_current(rq, p);
  4422. if (on_rq)
  4423. deactivate_task(rq, p, 0);
  4424. if (running)
  4425. p->sched_class->put_prev_task(rq, p);
  4426. p->sched_reset_on_fork = reset_on_fork;
  4427. oldprio = p->prio;
  4428. prev_class = p->sched_class;
  4429. __setscheduler(rq, p, policy, param->sched_priority);
  4430. if (running)
  4431. p->sched_class->set_curr_task(rq);
  4432. if (on_rq)
  4433. activate_task(rq, p, 0);
  4434. check_class_changed(rq, p, prev_class, oldprio);
  4435. task_rq_unlock(rq, p, &flags);
  4436. rt_mutex_adjust_pi(p);
  4437. return 0;
  4438. }
  4439. /**
  4440. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4441. * @p: the task in question.
  4442. * @policy: new policy.
  4443. * @param: structure containing the new RT priority.
  4444. *
  4445. * NOTE that the task may be already dead.
  4446. */
  4447. int sched_setscheduler(struct task_struct *p, int policy,
  4448. const struct sched_param *param)
  4449. {
  4450. return __sched_setscheduler(p, policy, param, true);
  4451. }
  4452. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4453. /**
  4454. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4455. * @p: the task in question.
  4456. * @policy: new policy.
  4457. * @param: structure containing the new RT priority.
  4458. *
  4459. * Just like sched_setscheduler, only don't bother checking if the
  4460. * current context has permission. For example, this is needed in
  4461. * stop_machine(): we create temporary high priority worker threads,
  4462. * but our caller might not have that capability.
  4463. */
  4464. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4465. const struct sched_param *param)
  4466. {
  4467. return __sched_setscheduler(p, policy, param, false);
  4468. }
  4469. static int
  4470. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4471. {
  4472. struct sched_param lparam;
  4473. struct task_struct *p;
  4474. int retval;
  4475. if (!param || pid < 0)
  4476. return -EINVAL;
  4477. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4478. return -EFAULT;
  4479. rcu_read_lock();
  4480. retval = -ESRCH;
  4481. p = find_process_by_pid(pid);
  4482. if (p != NULL)
  4483. retval = sched_setscheduler(p, policy, &lparam);
  4484. rcu_read_unlock();
  4485. return retval;
  4486. }
  4487. /**
  4488. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4489. * @pid: the pid in question.
  4490. * @policy: new policy.
  4491. * @param: structure containing the new RT priority.
  4492. */
  4493. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4494. struct sched_param __user *, param)
  4495. {
  4496. /* negative values for policy are not valid */
  4497. if (policy < 0)
  4498. return -EINVAL;
  4499. return do_sched_setscheduler(pid, policy, param);
  4500. }
  4501. /**
  4502. * sys_sched_setparam - set/change the RT priority of a thread
  4503. * @pid: the pid in question.
  4504. * @param: structure containing the new RT priority.
  4505. */
  4506. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4507. {
  4508. return do_sched_setscheduler(pid, -1, param);
  4509. }
  4510. /**
  4511. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4512. * @pid: the pid in question.
  4513. */
  4514. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4515. {
  4516. struct task_struct *p;
  4517. int retval;
  4518. if (pid < 0)
  4519. return -EINVAL;
  4520. retval = -ESRCH;
  4521. rcu_read_lock();
  4522. p = find_process_by_pid(pid);
  4523. if (p) {
  4524. retval = security_task_getscheduler(p);
  4525. if (!retval)
  4526. retval = p->policy
  4527. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4528. }
  4529. rcu_read_unlock();
  4530. return retval;
  4531. }
  4532. /**
  4533. * sys_sched_getparam - get the RT priority of a thread
  4534. * @pid: the pid in question.
  4535. * @param: structure containing the RT priority.
  4536. */
  4537. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4538. {
  4539. struct sched_param lp;
  4540. struct task_struct *p;
  4541. int retval;
  4542. if (!param || pid < 0)
  4543. return -EINVAL;
  4544. rcu_read_lock();
  4545. p = find_process_by_pid(pid);
  4546. retval = -ESRCH;
  4547. if (!p)
  4548. goto out_unlock;
  4549. retval = security_task_getscheduler(p);
  4550. if (retval)
  4551. goto out_unlock;
  4552. lp.sched_priority = p->rt_priority;
  4553. rcu_read_unlock();
  4554. /*
  4555. * This one might sleep, we cannot do it with a spinlock held ...
  4556. */
  4557. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4558. return retval;
  4559. out_unlock:
  4560. rcu_read_unlock();
  4561. return retval;
  4562. }
  4563. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4564. {
  4565. cpumask_var_t cpus_allowed, new_mask;
  4566. struct task_struct *p;
  4567. int retval;
  4568. get_online_cpus();
  4569. rcu_read_lock();
  4570. p = find_process_by_pid(pid);
  4571. if (!p) {
  4572. rcu_read_unlock();
  4573. put_online_cpus();
  4574. return -ESRCH;
  4575. }
  4576. /* Prevent p going away */
  4577. get_task_struct(p);
  4578. rcu_read_unlock();
  4579. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4580. retval = -ENOMEM;
  4581. goto out_put_task;
  4582. }
  4583. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4584. retval = -ENOMEM;
  4585. goto out_free_cpus_allowed;
  4586. }
  4587. retval = -EPERM;
  4588. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4589. goto out_unlock;
  4590. retval = security_task_setscheduler(p);
  4591. if (retval)
  4592. goto out_unlock;
  4593. cpuset_cpus_allowed(p, cpus_allowed);
  4594. cpumask_and(new_mask, in_mask, cpus_allowed);
  4595. again:
  4596. retval = set_cpus_allowed_ptr(p, new_mask);
  4597. if (!retval) {
  4598. cpuset_cpus_allowed(p, cpus_allowed);
  4599. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4600. /*
  4601. * We must have raced with a concurrent cpuset
  4602. * update. Just reset the cpus_allowed to the
  4603. * cpuset's cpus_allowed
  4604. */
  4605. cpumask_copy(new_mask, cpus_allowed);
  4606. goto again;
  4607. }
  4608. }
  4609. out_unlock:
  4610. free_cpumask_var(new_mask);
  4611. out_free_cpus_allowed:
  4612. free_cpumask_var(cpus_allowed);
  4613. out_put_task:
  4614. put_task_struct(p);
  4615. put_online_cpus();
  4616. return retval;
  4617. }
  4618. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4619. struct cpumask *new_mask)
  4620. {
  4621. if (len < cpumask_size())
  4622. cpumask_clear(new_mask);
  4623. else if (len > cpumask_size())
  4624. len = cpumask_size();
  4625. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4626. }
  4627. /**
  4628. * sys_sched_setaffinity - set the cpu affinity of a process
  4629. * @pid: pid of the process
  4630. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4631. * @user_mask_ptr: user-space pointer to the new cpu mask
  4632. */
  4633. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4634. unsigned long __user *, user_mask_ptr)
  4635. {
  4636. cpumask_var_t new_mask;
  4637. int retval;
  4638. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4639. return -ENOMEM;
  4640. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4641. if (retval == 0)
  4642. retval = sched_setaffinity(pid, new_mask);
  4643. free_cpumask_var(new_mask);
  4644. return retval;
  4645. }
  4646. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4647. {
  4648. struct task_struct *p;
  4649. unsigned long flags;
  4650. int retval;
  4651. get_online_cpus();
  4652. rcu_read_lock();
  4653. retval = -ESRCH;
  4654. p = find_process_by_pid(pid);
  4655. if (!p)
  4656. goto out_unlock;
  4657. retval = security_task_getscheduler(p);
  4658. if (retval)
  4659. goto out_unlock;
  4660. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4661. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4662. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4663. out_unlock:
  4664. rcu_read_unlock();
  4665. put_online_cpus();
  4666. return retval;
  4667. }
  4668. /**
  4669. * sys_sched_getaffinity - get the cpu affinity of a process
  4670. * @pid: pid of the process
  4671. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4672. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4673. */
  4674. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4675. unsigned long __user *, user_mask_ptr)
  4676. {
  4677. int ret;
  4678. cpumask_var_t mask;
  4679. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4680. return -EINVAL;
  4681. if (len & (sizeof(unsigned long)-1))
  4682. return -EINVAL;
  4683. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4684. return -ENOMEM;
  4685. ret = sched_getaffinity(pid, mask);
  4686. if (ret == 0) {
  4687. size_t retlen = min_t(size_t, len, cpumask_size());
  4688. if (copy_to_user(user_mask_ptr, mask, retlen))
  4689. ret = -EFAULT;
  4690. else
  4691. ret = retlen;
  4692. }
  4693. free_cpumask_var(mask);
  4694. return ret;
  4695. }
  4696. /**
  4697. * sys_sched_yield - yield the current processor to other threads.
  4698. *
  4699. * This function yields the current CPU to other tasks. If there are no
  4700. * other threads running on this CPU then this function will return.
  4701. */
  4702. SYSCALL_DEFINE0(sched_yield)
  4703. {
  4704. struct rq *rq = this_rq_lock();
  4705. schedstat_inc(rq, yld_count);
  4706. current->sched_class->yield_task(rq);
  4707. /*
  4708. * Since we are going to call schedule() anyway, there's
  4709. * no need to preempt or enable interrupts:
  4710. */
  4711. __release(rq->lock);
  4712. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4713. do_raw_spin_unlock(&rq->lock);
  4714. preempt_enable_no_resched();
  4715. schedule();
  4716. return 0;
  4717. }
  4718. static inline int should_resched(void)
  4719. {
  4720. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4721. }
  4722. static void __cond_resched(void)
  4723. {
  4724. add_preempt_count(PREEMPT_ACTIVE);
  4725. schedule();
  4726. sub_preempt_count(PREEMPT_ACTIVE);
  4727. }
  4728. int __sched _cond_resched(void)
  4729. {
  4730. if (should_resched()) {
  4731. __cond_resched();
  4732. return 1;
  4733. }
  4734. return 0;
  4735. }
  4736. EXPORT_SYMBOL(_cond_resched);
  4737. /*
  4738. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4739. * call schedule, and on return reacquire the lock.
  4740. *
  4741. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4742. * operations here to prevent schedule() from being called twice (once via
  4743. * spin_unlock(), once by hand).
  4744. */
  4745. int __cond_resched_lock(spinlock_t *lock)
  4746. {
  4747. int resched = should_resched();
  4748. int ret = 0;
  4749. lockdep_assert_held(lock);
  4750. if (spin_needbreak(lock) || resched) {
  4751. spin_unlock(lock);
  4752. if (resched)
  4753. __cond_resched();
  4754. else
  4755. cpu_relax();
  4756. ret = 1;
  4757. spin_lock(lock);
  4758. }
  4759. return ret;
  4760. }
  4761. EXPORT_SYMBOL(__cond_resched_lock);
  4762. int __sched __cond_resched_softirq(void)
  4763. {
  4764. BUG_ON(!in_softirq());
  4765. if (should_resched()) {
  4766. local_bh_enable();
  4767. __cond_resched();
  4768. local_bh_disable();
  4769. return 1;
  4770. }
  4771. return 0;
  4772. }
  4773. EXPORT_SYMBOL(__cond_resched_softirq);
  4774. /**
  4775. * yield - yield the current processor to other threads.
  4776. *
  4777. * This is a shortcut for kernel-space yielding - it marks the
  4778. * thread runnable and calls sys_sched_yield().
  4779. */
  4780. void __sched yield(void)
  4781. {
  4782. set_current_state(TASK_RUNNING);
  4783. sys_sched_yield();
  4784. }
  4785. EXPORT_SYMBOL(yield);
  4786. /**
  4787. * yield_to - yield the current processor to another thread in
  4788. * your thread group, or accelerate that thread toward the
  4789. * processor it's on.
  4790. * @p: target task
  4791. * @preempt: whether task preemption is allowed or not
  4792. *
  4793. * It's the caller's job to ensure that the target task struct
  4794. * can't go away on us before we can do any checks.
  4795. *
  4796. * Returns true if we indeed boosted the target task.
  4797. */
  4798. bool __sched yield_to(struct task_struct *p, bool preempt)
  4799. {
  4800. struct task_struct *curr = current;
  4801. struct rq *rq, *p_rq;
  4802. unsigned long flags;
  4803. bool yielded = 0;
  4804. local_irq_save(flags);
  4805. rq = this_rq();
  4806. again:
  4807. p_rq = task_rq(p);
  4808. double_rq_lock(rq, p_rq);
  4809. while (task_rq(p) != p_rq) {
  4810. double_rq_unlock(rq, p_rq);
  4811. goto again;
  4812. }
  4813. if (!curr->sched_class->yield_to_task)
  4814. goto out;
  4815. if (curr->sched_class != p->sched_class)
  4816. goto out;
  4817. if (task_running(p_rq, p) || p->state)
  4818. goto out;
  4819. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4820. if (yielded) {
  4821. schedstat_inc(rq, yld_count);
  4822. /*
  4823. * Make p's CPU reschedule; pick_next_entity takes care of
  4824. * fairness.
  4825. */
  4826. if (preempt && rq != p_rq)
  4827. resched_task(p_rq->curr);
  4828. }
  4829. out:
  4830. double_rq_unlock(rq, p_rq);
  4831. local_irq_restore(flags);
  4832. if (yielded)
  4833. schedule();
  4834. return yielded;
  4835. }
  4836. EXPORT_SYMBOL_GPL(yield_to);
  4837. /*
  4838. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4839. * that process accounting knows that this is a task in IO wait state.
  4840. */
  4841. void __sched io_schedule(void)
  4842. {
  4843. struct rq *rq = raw_rq();
  4844. delayacct_blkio_start();
  4845. atomic_inc(&rq->nr_iowait);
  4846. blk_flush_plug(current);
  4847. current->in_iowait = 1;
  4848. schedule();
  4849. current->in_iowait = 0;
  4850. atomic_dec(&rq->nr_iowait);
  4851. delayacct_blkio_end();
  4852. }
  4853. EXPORT_SYMBOL(io_schedule);
  4854. long __sched io_schedule_timeout(long timeout)
  4855. {
  4856. struct rq *rq = raw_rq();
  4857. long ret;
  4858. delayacct_blkio_start();
  4859. atomic_inc(&rq->nr_iowait);
  4860. blk_flush_plug(current);
  4861. current->in_iowait = 1;
  4862. ret = schedule_timeout(timeout);
  4863. current->in_iowait = 0;
  4864. atomic_dec(&rq->nr_iowait);
  4865. delayacct_blkio_end();
  4866. return ret;
  4867. }
  4868. /**
  4869. * sys_sched_get_priority_max - return maximum RT priority.
  4870. * @policy: scheduling class.
  4871. *
  4872. * this syscall returns the maximum rt_priority that can be used
  4873. * by a given scheduling class.
  4874. */
  4875. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4876. {
  4877. int ret = -EINVAL;
  4878. switch (policy) {
  4879. case SCHED_FIFO:
  4880. case SCHED_RR:
  4881. ret = MAX_USER_RT_PRIO-1;
  4882. break;
  4883. case SCHED_NORMAL:
  4884. case SCHED_BATCH:
  4885. case SCHED_IDLE:
  4886. ret = 0;
  4887. break;
  4888. }
  4889. return ret;
  4890. }
  4891. /**
  4892. * sys_sched_get_priority_min - return minimum RT priority.
  4893. * @policy: scheduling class.
  4894. *
  4895. * this syscall returns the minimum rt_priority that can be used
  4896. * by a given scheduling class.
  4897. */
  4898. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4899. {
  4900. int ret = -EINVAL;
  4901. switch (policy) {
  4902. case SCHED_FIFO:
  4903. case SCHED_RR:
  4904. ret = 1;
  4905. break;
  4906. case SCHED_NORMAL:
  4907. case SCHED_BATCH:
  4908. case SCHED_IDLE:
  4909. ret = 0;
  4910. }
  4911. return ret;
  4912. }
  4913. /**
  4914. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4915. * @pid: pid of the process.
  4916. * @interval: userspace pointer to the timeslice value.
  4917. *
  4918. * this syscall writes the default timeslice value of a given process
  4919. * into the user-space timespec buffer. A value of '0' means infinity.
  4920. */
  4921. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4922. struct timespec __user *, interval)
  4923. {
  4924. struct task_struct *p;
  4925. unsigned int time_slice;
  4926. unsigned long flags;
  4927. struct rq *rq;
  4928. int retval;
  4929. struct timespec t;
  4930. if (pid < 0)
  4931. return -EINVAL;
  4932. retval = -ESRCH;
  4933. rcu_read_lock();
  4934. p = find_process_by_pid(pid);
  4935. if (!p)
  4936. goto out_unlock;
  4937. retval = security_task_getscheduler(p);
  4938. if (retval)
  4939. goto out_unlock;
  4940. rq = task_rq_lock(p, &flags);
  4941. time_slice = p->sched_class->get_rr_interval(rq, p);
  4942. task_rq_unlock(rq, p, &flags);
  4943. rcu_read_unlock();
  4944. jiffies_to_timespec(time_slice, &t);
  4945. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4946. return retval;
  4947. out_unlock:
  4948. rcu_read_unlock();
  4949. return retval;
  4950. }
  4951. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4952. void sched_show_task(struct task_struct *p)
  4953. {
  4954. unsigned long free = 0;
  4955. unsigned state;
  4956. state = p->state ? __ffs(p->state) + 1 : 0;
  4957. printk(KERN_INFO "%-15.15s %c", p->comm,
  4958. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4959. #if BITS_PER_LONG == 32
  4960. if (state == TASK_RUNNING)
  4961. printk(KERN_CONT " running ");
  4962. else
  4963. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4964. #else
  4965. if (state == TASK_RUNNING)
  4966. printk(KERN_CONT " running task ");
  4967. else
  4968. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4969. #endif
  4970. #ifdef CONFIG_DEBUG_STACK_USAGE
  4971. free = stack_not_used(p);
  4972. #endif
  4973. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4974. task_pid_nr(p), task_pid_nr(p->real_parent),
  4975. (unsigned long)task_thread_info(p)->flags);
  4976. show_stack(p, NULL);
  4977. }
  4978. void show_state_filter(unsigned long state_filter)
  4979. {
  4980. struct task_struct *g, *p;
  4981. #if BITS_PER_LONG == 32
  4982. printk(KERN_INFO
  4983. " task PC stack pid father\n");
  4984. #else
  4985. printk(KERN_INFO
  4986. " task PC stack pid father\n");
  4987. #endif
  4988. read_lock(&tasklist_lock);
  4989. do_each_thread(g, p) {
  4990. /*
  4991. * reset the NMI-timeout, listing all files on a slow
  4992. * console might take a lot of time:
  4993. */
  4994. touch_nmi_watchdog();
  4995. if (!state_filter || (p->state & state_filter))
  4996. sched_show_task(p);
  4997. } while_each_thread(g, p);
  4998. touch_all_softlockup_watchdogs();
  4999. #ifdef CONFIG_SCHED_DEBUG
  5000. sysrq_sched_debug_show();
  5001. #endif
  5002. read_unlock(&tasklist_lock);
  5003. /*
  5004. * Only show locks if all tasks are dumped:
  5005. */
  5006. if (!state_filter)
  5007. debug_show_all_locks();
  5008. }
  5009. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5010. {
  5011. idle->sched_class = &idle_sched_class;
  5012. }
  5013. /**
  5014. * init_idle - set up an idle thread for a given CPU
  5015. * @idle: task in question
  5016. * @cpu: cpu the idle task belongs to
  5017. *
  5018. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5019. * flag, to make booting more robust.
  5020. */
  5021. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5022. {
  5023. struct rq *rq = cpu_rq(cpu);
  5024. unsigned long flags;
  5025. raw_spin_lock_irqsave(&rq->lock, flags);
  5026. __sched_fork(idle);
  5027. idle->state = TASK_RUNNING;
  5028. idle->se.exec_start = sched_clock();
  5029. do_set_cpus_allowed(idle, cpumask_of(cpu));
  5030. /*
  5031. * We're having a chicken and egg problem, even though we are
  5032. * holding rq->lock, the cpu isn't yet set to this cpu so the
  5033. * lockdep check in task_group() will fail.
  5034. *
  5035. * Similar case to sched_fork(). / Alternatively we could
  5036. * use task_rq_lock() here and obtain the other rq->lock.
  5037. *
  5038. * Silence PROVE_RCU
  5039. */
  5040. rcu_read_lock();
  5041. __set_task_cpu(idle, cpu);
  5042. rcu_read_unlock();
  5043. rq->curr = rq->idle = idle;
  5044. #if defined(CONFIG_SMP)
  5045. idle->on_cpu = 1;
  5046. #endif
  5047. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5048. /* Set the preempt count _outside_ the spinlocks! */
  5049. task_thread_info(idle)->preempt_count = 0;
  5050. /*
  5051. * The idle tasks have their own, simple scheduling class:
  5052. */
  5053. idle->sched_class = &idle_sched_class;
  5054. ftrace_graph_init_idle_task(idle, cpu);
  5055. }
  5056. /*
  5057. * In a system that switches off the HZ timer nohz_cpu_mask
  5058. * indicates which cpus entered this state. This is used
  5059. * in the rcu update to wait only for active cpus. For system
  5060. * which do not switch off the HZ timer nohz_cpu_mask should
  5061. * always be CPU_BITS_NONE.
  5062. */
  5063. cpumask_var_t nohz_cpu_mask;
  5064. /*
  5065. * Increase the granularity value when there are more CPUs,
  5066. * because with more CPUs the 'effective latency' as visible
  5067. * to users decreases. But the relationship is not linear,
  5068. * so pick a second-best guess by going with the log2 of the
  5069. * number of CPUs.
  5070. *
  5071. * This idea comes from the SD scheduler of Con Kolivas:
  5072. */
  5073. static int get_update_sysctl_factor(void)
  5074. {
  5075. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5076. unsigned int factor;
  5077. switch (sysctl_sched_tunable_scaling) {
  5078. case SCHED_TUNABLESCALING_NONE:
  5079. factor = 1;
  5080. break;
  5081. case SCHED_TUNABLESCALING_LINEAR:
  5082. factor = cpus;
  5083. break;
  5084. case SCHED_TUNABLESCALING_LOG:
  5085. default:
  5086. factor = 1 + ilog2(cpus);
  5087. break;
  5088. }
  5089. return factor;
  5090. }
  5091. static void update_sysctl(void)
  5092. {
  5093. unsigned int factor = get_update_sysctl_factor();
  5094. #define SET_SYSCTL(name) \
  5095. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5096. SET_SYSCTL(sched_min_granularity);
  5097. SET_SYSCTL(sched_latency);
  5098. SET_SYSCTL(sched_wakeup_granularity);
  5099. #undef SET_SYSCTL
  5100. }
  5101. static inline void sched_init_granularity(void)
  5102. {
  5103. update_sysctl();
  5104. }
  5105. #ifdef CONFIG_SMP
  5106. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  5107. {
  5108. if (p->sched_class && p->sched_class->set_cpus_allowed)
  5109. p->sched_class->set_cpus_allowed(p, new_mask);
  5110. else {
  5111. cpumask_copy(&p->cpus_allowed, new_mask);
  5112. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5113. }
  5114. }
  5115. /*
  5116. * This is how migration works:
  5117. *
  5118. * 1) we invoke migration_cpu_stop() on the target CPU using
  5119. * stop_one_cpu().
  5120. * 2) stopper starts to run (implicitly forcing the migrated thread
  5121. * off the CPU)
  5122. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5123. * 4) if it's in the wrong runqueue then the migration thread removes
  5124. * it and puts it into the right queue.
  5125. * 5) stopper completes and stop_one_cpu() returns and the migration
  5126. * is done.
  5127. */
  5128. /*
  5129. * Change a given task's CPU affinity. Migrate the thread to a
  5130. * proper CPU and schedule it away if the CPU it's executing on
  5131. * is removed from the allowed bitmask.
  5132. *
  5133. * NOTE: the caller must have a valid reference to the task, the
  5134. * task must not exit() & deallocate itself prematurely. The
  5135. * call is not atomic; no spinlocks may be held.
  5136. */
  5137. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5138. {
  5139. unsigned long flags;
  5140. struct rq *rq;
  5141. unsigned int dest_cpu;
  5142. int ret = 0;
  5143. rq = task_rq_lock(p, &flags);
  5144. if (cpumask_equal(&p->cpus_allowed, new_mask))
  5145. goto out;
  5146. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5147. ret = -EINVAL;
  5148. goto out;
  5149. }
  5150. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  5151. ret = -EINVAL;
  5152. goto out;
  5153. }
  5154. do_set_cpus_allowed(p, new_mask);
  5155. /* Can the task run on the task's current CPU? If so, we're done */
  5156. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5157. goto out;
  5158. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5159. if (p->on_rq) {
  5160. struct migration_arg arg = { p, dest_cpu };
  5161. /* Need help from migration thread: drop lock and wait. */
  5162. task_rq_unlock(rq, p, &flags);
  5163. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5164. tlb_migrate_finish(p->mm);
  5165. return 0;
  5166. }
  5167. out:
  5168. task_rq_unlock(rq, p, &flags);
  5169. return ret;
  5170. }
  5171. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5172. /*
  5173. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5174. * this because either it can't run here any more (set_cpus_allowed()
  5175. * away from this CPU, or CPU going down), or because we're
  5176. * attempting to rebalance this task on exec (sched_exec).
  5177. *
  5178. * So we race with normal scheduler movements, but that's OK, as long
  5179. * as the task is no longer on this CPU.
  5180. *
  5181. * Returns non-zero if task was successfully migrated.
  5182. */
  5183. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5184. {
  5185. struct rq *rq_dest, *rq_src;
  5186. int ret = 0;
  5187. if (unlikely(!cpu_active(dest_cpu)))
  5188. return ret;
  5189. rq_src = cpu_rq(src_cpu);
  5190. rq_dest = cpu_rq(dest_cpu);
  5191. raw_spin_lock(&p->pi_lock);
  5192. double_rq_lock(rq_src, rq_dest);
  5193. /* Already moved. */
  5194. if (task_cpu(p) != src_cpu)
  5195. goto done;
  5196. /* Affinity changed (again). */
  5197. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5198. goto fail;
  5199. /*
  5200. * If we're not on a rq, the next wake-up will ensure we're
  5201. * placed properly.
  5202. */
  5203. if (p->on_rq) {
  5204. deactivate_task(rq_src, p, 0);
  5205. set_task_cpu(p, dest_cpu);
  5206. activate_task(rq_dest, p, 0);
  5207. check_preempt_curr(rq_dest, p, 0);
  5208. }
  5209. done:
  5210. ret = 1;
  5211. fail:
  5212. double_rq_unlock(rq_src, rq_dest);
  5213. raw_spin_unlock(&p->pi_lock);
  5214. return ret;
  5215. }
  5216. /*
  5217. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5218. * and performs thread migration by bumping thread off CPU then
  5219. * 'pushing' onto another runqueue.
  5220. */
  5221. static int migration_cpu_stop(void *data)
  5222. {
  5223. struct migration_arg *arg = data;
  5224. /*
  5225. * The original target cpu might have gone down and we might
  5226. * be on another cpu but it doesn't matter.
  5227. */
  5228. local_irq_disable();
  5229. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5230. local_irq_enable();
  5231. return 0;
  5232. }
  5233. #ifdef CONFIG_HOTPLUG_CPU
  5234. /*
  5235. * Ensures that the idle task is using init_mm right before its cpu goes
  5236. * offline.
  5237. */
  5238. void idle_task_exit(void)
  5239. {
  5240. struct mm_struct *mm = current->active_mm;
  5241. BUG_ON(cpu_online(smp_processor_id()));
  5242. if (mm != &init_mm)
  5243. switch_mm(mm, &init_mm, current);
  5244. mmdrop(mm);
  5245. }
  5246. /*
  5247. * While a dead CPU has no uninterruptible tasks queued at this point,
  5248. * it might still have a nonzero ->nr_uninterruptible counter, because
  5249. * for performance reasons the counter is not stricly tracking tasks to
  5250. * their home CPUs. So we just add the counter to another CPU's counter,
  5251. * to keep the global sum constant after CPU-down:
  5252. */
  5253. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5254. {
  5255. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5256. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5257. rq_src->nr_uninterruptible = 0;
  5258. }
  5259. /*
  5260. * remove the tasks which were accounted by rq from calc_load_tasks.
  5261. */
  5262. static void calc_global_load_remove(struct rq *rq)
  5263. {
  5264. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5265. rq->calc_load_active = 0;
  5266. }
  5267. /*
  5268. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5269. * try_to_wake_up()->select_task_rq().
  5270. *
  5271. * Called with rq->lock held even though we'er in stop_machine() and
  5272. * there's no concurrency possible, we hold the required locks anyway
  5273. * because of lock validation efforts.
  5274. */
  5275. static void migrate_tasks(unsigned int dead_cpu)
  5276. {
  5277. struct rq *rq = cpu_rq(dead_cpu);
  5278. struct task_struct *next, *stop = rq->stop;
  5279. int dest_cpu;
  5280. /*
  5281. * Fudge the rq selection such that the below task selection loop
  5282. * doesn't get stuck on the currently eligible stop task.
  5283. *
  5284. * We're currently inside stop_machine() and the rq is either stuck
  5285. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5286. * either way we should never end up calling schedule() until we're
  5287. * done here.
  5288. */
  5289. rq->stop = NULL;
  5290. for ( ; ; ) {
  5291. /*
  5292. * There's this thread running, bail when that's the only
  5293. * remaining thread.
  5294. */
  5295. if (rq->nr_running == 1)
  5296. break;
  5297. next = pick_next_task(rq);
  5298. BUG_ON(!next);
  5299. next->sched_class->put_prev_task(rq, next);
  5300. /* Find suitable destination for @next, with force if needed. */
  5301. dest_cpu = select_fallback_rq(dead_cpu, next);
  5302. raw_spin_unlock(&rq->lock);
  5303. __migrate_task(next, dead_cpu, dest_cpu);
  5304. raw_spin_lock(&rq->lock);
  5305. }
  5306. rq->stop = stop;
  5307. }
  5308. #endif /* CONFIG_HOTPLUG_CPU */
  5309. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5310. static struct ctl_table sd_ctl_dir[] = {
  5311. {
  5312. .procname = "sched_domain",
  5313. .mode = 0555,
  5314. },
  5315. {}
  5316. };
  5317. static struct ctl_table sd_ctl_root[] = {
  5318. {
  5319. .procname = "kernel",
  5320. .mode = 0555,
  5321. .child = sd_ctl_dir,
  5322. },
  5323. {}
  5324. };
  5325. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5326. {
  5327. struct ctl_table *entry =
  5328. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5329. return entry;
  5330. }
  5331. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5332. {
  5333. struct ctl_table *entry;
  5334. /*
  5335. * In the intermediate directories, both the child directory and
  5336. * procname are dynamically allocated and could fail but the mode
  5337. * will always be set. In the lowest directory the names are
  5338. * static strings and all have proc handlers.
  5339. */
  5340. for (entry = *tablep; entry->mode; entry++) {
  5341. if (entry->child)
  5342. sd_free_ctl_entry(&entry->child);
  5343. if (entry->proc_handler == NULL)
  5344. kfree(entry->procname);
  5345. }
  5346. kfree(*tablep);
  5347. *tablep = NULL;
  5348. }
  5349. static void
  5350. set_table_entry(struct ctl_table *entry,
  5351. const char *procname, void *data, int maxlen,
  5352. mode_t mode, proc_handler *proc_handler)
  5353. {
  5354. entry->procname = procname;
  5355. entry->data = data;
  5356. entry->maxlen = maxlen;
  5357. entry->mode = mode;
  5358. entry->proc_handler = proc_handler;
  5359. }
  5360. static struct ctl_table *
  5361. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5362. {
  5363. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5364. if (table == NULL)
  5365. return NULL;
  5366. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5367. sizeof(long), 0644, proc_doulongvec_minmax);
  5368. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5369. sizeof(long), 0644, proc_doulongvec_minmax);
  5370. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5371. sizeof(int), 0644, proc_dointvec_minmax);
  5372. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5373. sizeof(int), 0644, proc_dointvec_minmax);
  5374. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5375. sizeof(int), 0644, proc_dointvec_minmax);
  5376. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5377. sizeof(int), 0644, proc_dointvec_minmax);
  5378. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5379. sizeof(int), 0644, proc_dointvec_minmax);
  5380. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5381. sizeof(int), 0644, proc_dointvec_minmax);
  5382. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5383. sizeof(int), 0644, proc_dointvec_minmax);
  5384. set_table_entry(&table[9], "cache_nice_tries",
  5385. &sd->cache_nice_tries,
  5386. sizeof(int), 0644, proc_dointvec_minmax);
  5387. set_table_entry(&table[10], "flags", &sd->flags,
  5388. sizeof(int), 0644, proc_dointvec_minmax);
  5389. set_table_entry(&table[11], "name", sd->name,
  5390. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5391. /* &table[12] is terminator */
  5392. return table;
  5393. }
  5394. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5395. {
  5396. struct ctl_table *entry, *table;
  5397. struct sched_domain *sd;
  5398. int domain_num = 0, i;
  5399. char buf[32];
  5400. for_each_domain(cpu, sd)
  5401. domain_num++;
  5402. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5403. if (table == NULL)
  5404. return NULL;
  5405. i = 0;
  5406. for_each_domain(cpu, sd) {
  5407. snprintf(buf, 32, "domain%d", i);
  5408. entry->procname = kstrdup(buf, GFP_KERNEL);
  5409. entry->mode = 0555;
  5410. entry->child = sd_alloc_ctl_domain_table(sd);
  5411. entry++;
  5412. i++;
  5413. }
  5414. return table;
  5415. }
  5416. static struct ctl_table_header *sd_sysctl_header;
  5417. static void register_sched_domain_sysctl(void)
  5418. {
  5419. int i, cpu_num = num_possible_cpus();
  5420. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5421. char buf[32];
  5422. WARN_ON(sd_ctl_dir[0].child);
  5423. sd_ctl_dir[0].child = entry;
  5424. if (entry == NULL)
  5425. return;
  5426. for_each_possible_cpu(i) {
  5427. snprintf(buf, 32, "cpu%d", i);
  5428. entry->procname = kstrdup(buf, GFP_KERNEL);
  5429. entry->mode = 0555;
  5430. entry->child = sd_alloc_ctl_cpu_table(i);
  5431. entry++;
  5432. }
  5433. WARN_ON(sd_sysctl_header);
  5434. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5435. }
  5436. /* may be called multiple times per register */
  5437. static void unregister_sched_domain_sysctl(void)
  5438. {
  5439. if (sd_sysctl_header)
  5440. unregister_sysctl_table(sd_sysctl_header);
  5441. sd_sysctl_header = NULL;
  5442. if (sd_ctl_dir[0].child)
  5443. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5444. }
  5445. #else
  5446. static void register_sched_domain_sysctl(void)
  5447. {
  5448. }
  5449. static void unregister_sched_domain_sysctl(void)
  5450. {
  5451. }
  5452. #endif
  5453. static void set_rq_online(struct rq *rq)
  5454. {
  5455. if (!rq->online) {
  5456. const struct sched_class *class;
  5457. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5458. rq->online = 1;
  5459. for_each_class(class) {
  5460. if (class->rq_online)
  5461. class->rq_online(rq);
  5462. }
  5463. }
  5464. }
  5465. static void set_rq_offline(struct rq *rq)
  5466. {
  5467. if (rq->online) {
  5468. const struct sched_class *class;
  5469. for_each_class(class) {
  5470. if (class->rq_offline)
  5471. class->rq_offline(rq);
  5472. }
  5473. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5474. rq->online = 0;
  5475. }
  5476. }
  5477. /*
  5478. * migration_call - callback that gets triggered when a CPU is added.
  5479. * Here we can start up the necessary migration thread for the new CPU.
  5480. */
  5481. static int __cpuinit
  5482. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5483. {
  5484. int cpu = (long)hcpu;
  5485. unsigned long flags;
  5486. struct rq *rq = cpu_rq(cpu);
  5487. switch (action & ~CPU_TASKS_FROZEN) {
  5488. case CPU_UP_PREPARE:
  5489. rq->calc_load_update = calc_load_update;
  5490. break;
  5491. case CPU_ONLINE:
  5492. /* Update our root-domain */
  5493. raw_spin_lock_irqsave(&rq->lock, flags);
  5494. if (rq->rd) {
  5495. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5496. set_rq_online(rq);
  5497. }
  5498. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5499. break;
  5500. #ifdef CONFIG_HOTPLUG_CPU
  5501. case CPU_DYING:
  5502. sched_ttwu_pending();
  5503. /* Update our root-domain */
  5504. raw_spin_lock_irqsave(&rq->lock, flags);
  5505. if (rq->rd) {
  5506. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5507. set_rq_offline(rq);
  5508. }
  5509. migrate_tasks(cpu);
  5510. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5511. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5512. migrate_nr_uninterruptible(rq);
  5513. calc_global_load_remove(rq);
  5514. break;
  5515. #endif
  5516. }
  5517. update_max_interval();
  5518. return NOTIFY_OK;
  5519. }
  5520. /*
  5521. * Register at high priority so that task migration (migrate_all_tasks)
  5522. * happens before everything else. This has to be lower priority than
  5523. * the notifier in the perf_event subsystem, though.
  5524. */
  5525. static struct notifier_block __cpuinitdata migration_notifier = {
  5526. .notifier_call = migration_call,
  5527. .priority = CPU_PRI_MIGRATION,
  5528. };
  5529. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5530. unsigned long action, void *hcpu)
  5531. {
  5532. switch (action & ~CPU_TASKS_FROZEN) {
  5533. case CPU_ONLINE:
  5534. case CPU_DOWN_FAILED:
  5535. set_cpu_active((long)hcpu, true);
  5536. return NOTIFY_OK;
  5537. default:
  5538. return NOTIFY_DONE;
  5539. }
  5540. }
  5541. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5542. unsigned long action, void *hcpu)
  5543. {
  5544. switch (action & ~CPU_TASKS_FROZEN) {
  5545. case CPU_DOWN_PREPARE:
  5546. set_cpu_active((long)hcpu, false);
  5547. return NOTIFY_OK;
  5548. default:
  5549. return NOTIFY_DONE;
  5550. }
  5551. }
  5552. static int __init migration_init(void)
  5553. {
  5554. void *cpu = (void *)(long)smp_processor_id();
  5555. int err;
  5556. /* Initialize migration for the boot CPU */
  5557. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5558. BUG_ON(err == NOTIFY_BAD);
  5559. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5560. register_cpu_notifier(&migration_notifier);
  5561. /* Register cpu active notifiers */
  5562. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5563. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5564. return 0;
  5565. }
  5566. early_initcall(migration_init);
  5567. #endif
  5568. #ifdef CONFIG_SMP
  5569. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5570. #ifdef CONFIG_SCHED_DEBUG
  5571. static __read_mostly int sched_domain_debug_enabled;
  5572. static int __init sched_domain_debug_setup(char *str)
  5573. {
  5574. sched_domain_debug_enabled = 1;
  5575. return 0;
  5576. }
  5577. early_param("sched_debug", sched_domain_debug_setup);
  5578. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5579. struct cpumask *groupmask)
  5580. {
  5581. struct sched_group *group = sd->groups;
  5582. char str[256];
  5583. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5584. cpumask_clear(groupmask);
  5585. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5586. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5587. printk("does not load-balance\n");
  5588. if (sd->parent)
  5589. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5590. " has parent");
  5591. return -1;
  5592. }
  5593. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5594. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5595. printk(KERN_ERR "ERROR: domain->span does not contain "
  5596. "CPU%d\n", cpu);
  5597. }
  5598. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5599. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5600. " CPU%d\n", cpu);
  5601. }
  5602. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5603. do {
  5604. if (!group) {
  5605. printk("\n");
  5606. printk(KERN_ERR "ERROR: group is NULL\n");
  5607. break;
  5608. }
  5609. if (!group->cpu_power) {
  5610. printk(KERN_CONT "\n");
  5611. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5612. "set\n");
  5613. break;
  5614. }
  5615. if (!cpumask_weight(sched_group_cpus(group))) {
  5616. printk(KERN_CONT "\n");
  5617. printk(KERN_ERR "ERROR: empty group\n");
  5618. break;
  5619. }
  5620. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5621. printk(KERN_CONT "\n");
  5622. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5623. break;
  5624. }
  5625. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5626. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5627. printk(KERN_CONT " %s", str);
  5628. if (group->cpu_power != SCHED_POWER_SCALE) {
  5629. printk(KERN_CONT " (cpu_power = %d)",
  5630. group->cpu_power);
  5631. }
  5632. group = group->next;
  5633. } while (group != sd->groups);
  5634. printk(KERN_CONT "\n");
  5635. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5636. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5637. if (sd->parent &&
  5638. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5639. printk(KERN_ERR "ERROR: parent span is not a superset "
  5640. "of domain->span\n");
  5641. return 0;
  5642. }
  5643. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5644. {
  5645. int level = 0;
  5646. if (!sched_domain_debug_enabled)
  5647. return;
  5648. if (!sd) {
  5649. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5650. return;
  5651. }
  5652. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5653. for (;;) {
  5654. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5655. break;
  5656. level++;
  5657. sd = sd->parent;
  5658. if (!sd)
  5659. break;
  5660. }
  5661. }
  5662. #else /* !CONFIG_SCHED_DEBUG */
  5663. # define sched_domain_debug(sd, cpu) do { } while (0)
  5664. #endif /* CONFIG_SCHED_DEBUG */
  5665. static int sd_degenerate(struct sched_domain *sd)
  5666. {
  5667. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5668. return 1;
  5669. /* Following flags need at least 2 groups */
  5670. if (sd->flags & (SD_LOAD_BALANCE |
  5671. SD_BALANCE_NEWIDLE |
  5672. SD_BALANCE_FORK |
  5673. SD_BALANCE_EXEC |
  5674. SD_SHARE_CPUPOWER |
  5675. SD_SHARE_PKG_RESOURCES)) {
  5676. if (sd->groups != sd->groups->next)
  5677. return 0;
  5678. }
  5679. /* Following flags don't use groups */
  5680. if (sd->flags & (SD_WAKE_AFFINE))
  5681. return 0;
  5682. return 1;
  5683. }
  5684. static int
  5685. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5686. {
  5687. unsigned long cflags = sd->flags, pflags = parent->flags;
  5688. if (sd_degenerate(parent))
  5689. return 1;
  5690. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5691. return 0;
  5692. /* Flags needing groups don't count if only 1 group in parent */
  5693. if (parent->groups == parent->groups->next) {
  5694. pflags &= ~(SD_LOAD_BALANCE |
  5695. SD_BALANCE_NEWIDLE |
  5696. SD_BALANCE_FORK |
  5697. SD_BALANCE_EXEC |
  5698. SD_SHARE_CPUPOWER |
  5699. SD_SHARE_PKG_RESOURCES);
  5700. if (nr_node_ids == 1)
  5701. pflags &= ~SD_SERIALIZE;
  5702. }
  5703. if (~cflags & pflags)
  5704. return 0;
  5705. return 1;
  5706. }
  5707. static void free_rootdomain(struct rcu_head *rcu)
  5708. {
  5709. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5710. cpupri_cleanup(&rd->cpupri);
  5711. free_cpumask_var(rd->rto_mask);
  5712. free_cpumask_var(rd->online);
  5713. free_cpumask_var(rd->span);
  5714. kfree(rd);
  5715. }
  5716. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5717. {
  5718. struct root_domain *old_rd = NULL;
  5719. unsigned long flags;
  5720. raw_spin_lock_irqsave(&rq->lock, flags);
  5721. if (rq->rd) {
  5722. old_rd = rq->rd;
  5723. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5724. set_rq_offline(rq);
  5725. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5726. /*
  5727. * If we dont want to free the old_rt yet then
  5728. * set old_rd to NULL to skip the freeing later
  5729. * in this function:
  5730. */
  5731. if (!atomic_dec_and_test(&old_rd->refcount))
  5732. old_rd = NULL;
  5733. }
  5734. atomic_inc(&rd->refcount);
  5735. rq->rd = rd;
  5736. cpumask_set_cpu(rq->cpu, rd->span);
  5737. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5738. set_rq_online(rq);
  5739. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5740. if (old_rd)
  5741. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5742. }
  5743. static int init_rootdomain(struct root_domain *rd)
  5744. {
  5745. memset(rd, 0, sizeof(*rd));
  5746. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5747. goto out;
  5748. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5749. goto free_span;
  5750. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5751. goto free_online;
  5752. if (cpupri_init(&rd->cpupri) != 0)
  5753. goto free_rto_mask;
  5754. return 0;
  5755. free_rto_mask:
  5756. free_cpumask_var(rd->rto_mask);
  5757. free_online:
  5758. free_cpumask_var(rd->online);
  5759. free_span:
  5760. free_cpumask_var(rd->span);
  5761. out:
  5762. return -ENOMEM;
  5763. }
  5764. static void init_defrootdomain(void)
  5765. {
  5766. init_rootdomain(&def_root_domain);
  5767. atomic_set(&def_root_domain.refcount, 1);
  5768. }
  5769. static struct root_domain *alloc_rootdomain(void)
  5770. {
  5771. struct root_domain *rd;
  5772. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5773. if (!rd)
  5774. return NULL;
  5775. if (init_rootdomain(rd) != 0) {
  5776. kfree(rd);
  5777. return NULL;
  5778. }
  5779. return rd;
  5780. }
  5781. static void free_sched_domain(struct rcu_head *rcu)
  5782. {
  5783. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5784. if (atomic_dec_and_test(&sd->groups->ref))
  5785. kfree(sd->groups);
  5786. kfree(sd);
  5787. }
  5788. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5789. {
  5790. call_rcu(&sd->rcu, free_sched_domain);
  5791. }
  5792. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5793. {
  5794. for (; sd; sd = sd->parent)
  5795. destroy_sched_domain(sd, cpu);
  5796. }
  5797. /*
  5798. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5799. * hold the hotplug lock.
  5800. */
  5801. static void
  5802. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5803. {
  5804. struct rq *rq = cpu_rq(cpu);
  5805. struct sched_domain *tmp;
  5806. /* Remove the sched domains which do not contribute to scheduling. */
  5807. for (tmp = sd; tmp; ) {
  5808. struct sched_domain *parent = tmp->parent;
  5809. if (!parent)
  5810. break;
  5811. if (sd_parent_degenerate(tmp, parent)) {
  5812. tmp->parent = parent->parent;
  5813. if (parent->parent)
  5814. parent->parent->child = tmp;
  5815. destroy_sched_domain(parent, cpu);
  5816. } else
  5817. tmp = tmp->parent;
  5818. }
  5819. if (sd && sd_degenerate(sd)) {
  5820. tmp = sd;
  5821. sd = sd->parent;
  5822. destroy_sched_domain(tmp, cpu);
  5823. if (sd)
  5824. sd->child = NULL;
  5825. }
  5826. sched_domain_debug(sd, cpu);
  5827. rq_attach_root(rq, rd);
  5828. tmp = rq->sd;
  5829. rcu_assign_pointer(rq->sd, sd);
  5830. destroy_sched_domains(tmp, cpu);
  5831. }
  5832. /* cpus with isolated domains */
  5833. static cpumask_var_t cpu_isolated_map;
  5834. /* Setup the mask of cpus configured for isolated domains */
  5835. static int __init isolated_cpu_setup(char *str)
  5836. {
  5837. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5838. cpulist_parse(str, cpu_isolated_map);
  5839. return 1;
  5840. }
  5841. __setup("isolcpus=", isolated_cpu_setup);
  5842. #define SD_NODES_PER_DOMAIN 16
  5843. #ifdef CONFIG_NUMA
  5844. /**
  5845. * find_next_best_node - find the next node to include in a sched_domain
  5846. * @node: node whose sched_domain we're building
  5847. * @used_nodes: nodes already in the sched_domain
  5848. *
  5849. * Find the next node to include in a given scheduling domain. Simply
  5850. * finds the closest node not already in the @used_nodes map.
  5851. *
  5852. * Should use nodemask_t.
  5853. */
  5854. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5855. {
  5856. int i, n, val, min_val, best_node = -1;
  5857. min_val = INT_MAX;
  5858. for (i = 0; i < nr_node_ids; i++) {
  5859. /* Start at @node */
  5860. n = (node + i) % nr_node_ids;
  5861. if (!nr_cpus_node(n))
  5862. continue;
  5863. /* Skip already used nodes */
  5864. if (node_isset(n, *used_nodes))
  5865. continue;
  5866. /* Simple min distance search */
  5867. val = node_distance(node, n);
  5868. if (val < min_val) {
  5869. min_val = val;
  5870. best_node = n;
  5871. }
  5872. }
  5873. if (best_node != -1)
  5874. node_set(best_node, *used_nodes);
  5875. return best_node;
  5876. }
  5877. /**
  5878. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5879. * @node: node whose cpumask we're constructing
  5880. * @span: resulting cpumask
  5881. *
  5882. * Given a node, construct a good cpumask for its sched_domain to span. It
  5883. * should be one that prevents unnecessary balancing, but also spreads tasks
  5884. * out optimally.
  5885. */
  5886. static void sched_domain_node_span(int node, struct cpumask *span)
  5887. {
  5888. nodemask_t used_nodes;
  5889. int i;
  5890. cpumask_clear(span);
  5891. nodes_clear(used_nodes);
  5892. cpumask_or(span, span, cpumask_of_node(node));
  5893. node_set(node, used_nodes);
  5894. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5895. int next_node = find_next_best_node(node, &used_nodes);
  5896. if (next_node < 0)
  5897. break;
  5898. cpumask_or(span, span, cpumask_of_node(next_node));
  5899. }
  5900. }
  5901. static const struct cpumask *cpu_node_mask(int cpu)
  5902. {
  5903. lockdep_assert_held(&sched_domains_mutex);
  5904. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5905. return sched_domains_tmpmask;
  5906. }
  5907. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5908. {
  5909. return cpu_possible_mask;
  5910. }
  5911. #endif /* CONFIG_NUMA */
  5912. static const struct cpumask *cpu_cpu_mask(int cpu)
  5913. {
  5914. return cpumask_of_node(cpu_to_node(cpu));
  5915. }
  5916. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5917. struct sd_data {
  5918. struct sched_domain **__percpu sd;
  5919. struct sched_group **__percpu sg;
  5920. };
  5921. struct s_data {
  5922. struct sched_domain ** __percpu sd;
  5923. struct root_domain *rd;
  5924. };
  5925. enum s_alloc {
  5926. sa_rootdomain,
  5927. sa_sd,
  5928. sa_sd_storage,
  5929. sa_none,
  5930. };
  5931. struct sched_domain_topology_level;
  5932. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5933. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5934. struct sched_domain_topology_level {
  5935. sched_domain_init_f init;
  5936. sched_domain_mask_f mask;
  5937. struct sd_data data;
  5938. };
  5939. /*
  5940. * Assumes the sched_domain tree is fully constructed
  5941. */
  5942. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5943. {
  5944. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5945. struct sched_domain *child = sd->child;
  5946. if (child)
  5947. cpu = cpumask_first(sched_domain_span(child));
  5948. if (sg)
  5949. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5950. return cpu;
  5951. }
  5952. /*
  5953. * build_sched_groups takes the cpumask we wish to span, and a pointer
  5954. * to a function which identifies what group(along with sched group) a CPU
  5955. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5956. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5957. *
  5958. * build_sched_groups will build a circular linked list of the groups
  5959. * covered by the given span, and will set each group's ->cpumask correctly,
  5960. * and ->cpu_power to 0.
  5961. */
  5962. static void
  5963. build_sched_groups(struct sched_domain *sd)
  5964. {
  5965. struct sched_group *first = NULL, *last = NULL;
  5966. struct sd_data *sdd = sd->private;
  5967. const struct cpumask *span = sched_domain_span(sd);
  5968. struct cpumask *covered;
  5969. int i;
  5970. lockdep_assert_held(&sched_domains_mutex);
  5971. covered = sched_domains_tmpmask;
  5972. cpumask_clear(covered);
  5973. for_each_cpu(i, span) {
  5974. struct sched_group *sg;
  5975. int group = get_group(i, sdd, &sg);
  5976. int j;
  5977. if (cpumask_test_cpu(i, covered))
  5978. continue;
  5979. cpumask_clear(sched_group_cpus(sg));
  5980. sg->cpu_power = 0;
  5981. for_each_cpu(j, span) {
  5982. if (get_group(j, sdd, NULL) != group)
  5983. continue;
  5984. cpumask_set_cpu(j, covered);
  5985. cpumask_set_cpu(j, sched_group_cpus(sg));
  5986. }
  5987. if (!first)
  5988. first = sg;
  5989. if (last)
  5990. last->next = sg;
  5991. last = sg;
  5992. }
  5993. last->next = first;
  5994. }
  5995. /*
  5996. * Initialize sched groups cpu_power.
  5997. *
  5998. * cpu_power indicates the capacity of sched group, which is used while
  5999. * distributing the load between different sched groups in a sched domain.
  6000. * Typically cpu_power for all the groups in a sched domain will be same unless
  6001. * there are asymmetries in the topology. If there are asymmetries, group
  6002. * having more cpu_power will pickup more load compared to the group having
  6003. * less cpu_power.
  6004. */
  6005. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6006. {
  6007. WARN_ON(!sd || !sd->groups);
  6008. if (cpu != group_first_cpu(sd->groups))
  6009. return;
  6010. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6011. update_group_power(sd, cpu);
  6012. }
  6013. /*
  6014. * Initializers for schedule domains
  6015. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6016. */
  6017. #ifdef CONFIG_SCHED_DEBUG
  6018. # define SD_INIT_NAME(sd, type) sd->name = #type
  6019. #else
  6020. # define SD_INIT_NAME(sd, type) do { } while (0)
  6021. #endif
  6022. #define SD_INIT_FUNC(type) \
  6023. static noinline struct sched_domain * \
  6024. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  6025. { \
  6026. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  6027. *sd = SD_##type##_INIT; \
  6028. SD_INIT_NAME(sd, type); \
  6029. sd->private = &tl->data; \
  6030. return sd; \
  6031. }
  6032. SD_INIT_FUNC(CPU)
  6033. #ifdef CONFIG_NUMA
  6034. SD_INIT_FUNC(ALLNODES)
  6035. SD_INIT_FUNC(NODE)
  6036. #endif
  6037. #ifdef CONFIG_SCHED_SMT
  6038. SD_INIT_FUNC(SIBLING)
  6039. #endif
  6040. #ifdef CONFIG_SCHED_MC
  6041. SD_INIT_FUNC(MC)
  6042. #endif
  6043. #ifdef CONFIG_SCHED_BOOK
  6044. SD_INIT_FUNC(BOOK)
  6045. #endif
  6046. static int default_relax_domain_level = -1;
  6047. int sched_domain_level_max;
  6048. static int __init setup_relax_domain_level(char *str)
  6049. {
  6050. unsigned long val;
  6051. val = simple_strtoul(str, NULL, 0);
  6052. if (val < sched_domain_level_max)
  6053. default_relax_domain_level = val;
  6054. return 1;
  6055. }
  6056. __setup("relax_domain_level=", setup_relax_domain_level);
  6057. static void set_domain_attribute(struct sched_domain *sd,
  6058. struct sched_domain_attr *attr)
  6059. {
  6060. int request;
  6061. if (!attr || attr->relax_domain_level < 0) {
  6062. if (default_relax_domain_level < 0)
  6063. return;
  6064. else
  6065. request = default_relax_domain_level;
  6066. } else
  6067. request = attr->relax_domain_level;
  6068. if (request < sd->level) {
  6069. /* turn off idle balance on this domain */
  6070. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6071. } else {
  6072. /* turn on idle balance on this domain */
  6073. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6074. }
  6075. }
  6076. static void __sdt_free(const struct cpumask *cpu_map);
  6077. static int __sdt_alloc(const struct cpumask *cpu_map);
  6078. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6079. const struct cpumask *cpu_map)
  6080. {
  6081. switch (what) {
  6082. case sa_rootdomain:
  6083. if (!atomic_read(&d->rd->refcount))
  6084. free_rootdomain(&d->rd->rcu); /* fall through */
  6085. case sa_sd:
  6086. free_percpu(d->sd); /* fall through */
  6087. case sa_sd_storage:
  6088. __sdt_free(cpu_map); /* fall through */
  6089. case sa_none:
  6090. break;
  6091. }
  6092. }
  6093. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6094. const struct cpumask *cpu_map)
  6095. {
  6096. memset(d, 0, sizeof(*d));
  6097. if (__sdt_alloc(cpu_map))
  6098. return sa_sd_storage;
  6099. d->sd = alloc_percpu(struct sched_domain *);
  6100. if (!d->sd)
  6101. return sa_sd_storage;
  6102. d->rd = alloc_rootdomain();
  6103. if (!d->rd)
  6104. return sa_sd;
  6105. return sa_rootdomain;
  6106. }
  6107. /*
  6108. * NULL the sd_data elements we've used to build the sched_domain and
  6109. * sched_group structure so that the subsequent __free_domain_allocs()
  6110. * will not free the data we're using.
  6111. */
  6112. static void claim_allocations(int cpu, struct sched_domain *sd)
  6113. {
  6114. struct sd_data *sdd = sd->private;
  6115. struct sched_group *sg = sd->groups;
  6116. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6117. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6118. if (cpu == cpumask_first(sched_group_cpus(sg))) {
  6119. WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
  6120. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6121. }
  6122. }
  6123. #ifdef CONFIG_SCHED_SMT
  6124. static const struct cpumask *cpu_smt_mask(int cpu)
  6125. {
  6126. return topology_thread_cpumask(cpu);
  6127. }
  6128. #endif
  6129. /*
  6130. * Topology list, bottom-up.
  6131. */
  6132. static struct sched_domain_topology_level default_topology[] = {
  6133. #ifdef CONFIG_SCHED_SMT
  6134. { sd_init_SIBLING, cpu_smt_mask, },
  6135. #endif
  6136. #ifdef CONFIG_SCHED_MC
  6137. { sd_init_MC, cpu_coregroup_mask, },
  6138. #endif
  6139. #ifdef CONFIG_SCHED_BOOK
  6140. { sd_init_BOOK, cpu_book_mask, },
  6141. #endif
  6142. { sd_init_CPU, cpu_cpu_mask, },
  6143. #ifdef CONFIG_NUMA
  6144. { sd_init_NODE, cpu_node_mask, },
  6145. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6146. #endif
  6147. { NULL, },
  6148. };
  6149. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6150. static int __sdt_alloc(const struct cpumask *cpu_map)
  6151. {
  6152. struct sched_domain_topology_level *tl;
  6153. int j;
  6154. for (tl = sched_domain_topology; tl->init; tl++) {
  6155. struct sd_data *sdd = &tl->data;
  6156. sdd->sd = alloc_percpu(struct sched_domain *);
  6157. if (!sdd->sd)
  6158. return -ENOMEM;
  6159. sdd->sg = alloc_percpu(struct sched_group *);
  6160. if (!sdd->sg)
  6161. return -ENOMEM;
  6162. for_each_cpu(j, cpu_map) {
  6163. struct sched_domain *sd;
  6164. struct sched_group *sg;
  6165. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6166. GFP_KERNEL, cpu_to_node(j));
  6167. if (!sd)
  6168. return -ENOMEM;
  6169. *per_cpu_ptr(sdd->sd, j) = sd;
  6170. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6171. GFP_KERNEL, cpu_to_node(j));
  6172. if (!sg)
  6173. return -ENOMEM;
  6174. *per_cpu_ptr(sdd->sg, j) = sg;
  6175. }
  6176. }
  6177. return 0;
  6178. }
  6179. static void __sdt_free(const struct cpumask *cpu_map)
  6180. {
  6181. struct sched_domain_topology_level *tl;
  6182. int j;
  6183. for (tl = sched_domain_topology; tl->init; tl++) {
  6184. struct sd_data *sdd = &tl->data;
  6185. for_each_cpu(j, cpu_map) {
  6186. kfree(*per_cpu_ptr(sdd->sd, j));
  6187. kfree(*per_cpu_ptr(sdd->sg, j));
  6188. }
  6189. free_percpu(sdd->sd);
  6190. free_percpu(sdd->sg);
  6191. }
  6192. }
  6193. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6194. struct s_data *d, const struct cpumask *cpu_map,
  6195. struct sched_domain_attr *attr, struct sched_domain *child,
  6196. int cpu)
  6197. {
  6198. struct sched_domain *sd = tl->init(tl, cpu);
  6199. if (!sd)
  6200. return child;
  6201. set_domain_attribute(sd, attr);
  6202. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6203. if (child) {
  6204. sd->level = child->level + 1;
  6205. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6206. child->parent = sd;
  6207. }
  6208. sd->child = child;
  6209. return sd;
  6210. }
  6211. /*
  6212. * Build sched domains for a given set of cpus and attach the sched domains
  6213. * to the individual cpus
  6214. */
  6215. static int build_sched_domains(const struct cpumask *cpu_map,
  6216. struct sched_domain_attr *attr)
  6217. {
  6218. enum s_alloc alloc_state = sa_none;
  6219. struct sched_domain *sd;
  6220. struct s_data d;
  6221. int i, ret = -ENOMEM;
  6222. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6223. if (alloc_state != sa_rootdomain)
  6224. goto error;
  6225. /* Set up domains for cpus specified by the cpu_map. */
  6226. for_each_cpu(i, cpu_map) {
  6227. struct sched_domain_topology_level *tl;
  6228. sd = NULL;
  6229. for (tl = sched_domain_topology; tl->init; tl++)
  6230. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6231. while (sd->child)
  6232. sd = sd->child;
  6233. *per_cpu_ptr(d.sd, i) = sd;
  6234. }
  6235. /* Build the groups for the domains */
  6236. for_each_cpu(i, cpu_map) {
  6237. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6238. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6239. get_group(i, sd->private, &sd->groups);
  6240. atomic_inc(&sd->groups->ref);
  6241. if (i != cpumask_first(sched_domain_span(sd)))
  6242. continue;
  6243. build_sched_groups(sd);
  6244. }
  6245. }
  6246. /* Calculate CPU power for physical packages and nodes */
  6247. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6248. if (!cpumask_test_cpu(i, cpu_map))
  6249. continue;
  6250. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6251. claim_allocations(i, sd);
  6252. init_sched_groups_power(i, sd);
  6253. }
  6254. }
  6255. /* Attach the domains */
  6256. rcu_read_lock();
  6257. for_each_cpu(i, cpu_map) {
  6258. sd = *per_cpu_ptr(d.sd, i);
  6259. cpu_attach_domain(sd, d.rd, i);
  6260. }
  6261. rcu_read_unlock();
  6262. ret = 0;
  6263. error:
  6264. __free_domain_allocs(&d, alloc_state, cpu_map);
  6265. return ret;
  6266. }
  6267. static cpumask_var_t *doms_cur; /* current sched domains */
  6268. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6269. static struct sched_domain_attr *dattr_cur;
  6270. /* attribues of custom domains in 'doms_cur' */
  6271. /*
  6272. * Special case: If a kmalloc of a doms_cur partition (array of
  6273. * cpumask) fails, then fallback to a single sched domain,
  6274. * as determined by the single cpumask fallback_doms.
  6275. */
  6276. static cpumask_var_t fallback_doms;
  6277. /*
  6278. * arch_update_cpu_topology lets virtualized architectures update the
  6279. * cpu core maps. It is supposed to return 1 if the topology changed
  6280. * or 0 if it stayed the same.
  6281. */
  6282. int __attribute__((weak)) arch_update_cpu_topology(void)
  6283. {
  6284. return 0;
  6285. }
  6286. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6287. {
  6288. int i;
  6289. cpumask_var_t *doms;
  6290. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6291. if (!doms)
  6292. return NULL;
  6293. for (i = 0; i < ndoms; i++) {
  6294. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6295. free_sched_domains(doms, i);
  6296. return NULL;
  6297. }
  6298. }
  6299. return doms;
  6300. }
  6301. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6302. {
  6303. unsigned int i;
  6304. for (i = 0; i < ndoms; i++)
  6305. free_cpumask_var(doms[i]);
  6306. kfree(doms);
  6307. }
  6308. /*
  6309. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6310. * For now this just excludes isolated cpus, but could be used to
  6311. * exclude other special cases in the future.
  6312. */
  6313. static int init_sched_domains(const struct cpumask *cpu_map)
  6314. {
  6315. int err;
  6316. arch_update_cpu_topology();
  6317. ndoms_cur = 1;
  6318. doms_cur = alloc_sched_domains(ndoms_cur);
  6319. if (!doms_cur)
  6320. doms_cur = &fallback_doms;
  6321. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6322. dattr_cur = NULL;
  6323. err = build_sched_domains(doms_cur[0], NULL);
  6324. register_sched_domain_sysctl();
  6325. return err;
  6326. }
  6327. /*
  6328. * Detach sched domains from a group of cpus specified in cpu_map
  6329. * These cpus will now be attached to the NULL domain
  6330. */
  6331. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6332. {
  6333. int i;
  6334. rcu_read_lock();
  6335. for_each_cpu(i, cpu_map)
  6336. cpu_attach_domain(NULL, &def_root_domain, i);
  6337. rcu_read_unlock();
  6338. }
  6339. /* handle null as "default" */
  6340. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6341. struct sched_domain_attr *new, int idx_new)
  6342. {
  6343. struct sched_domain_attr tmp;
  6344. /* fast path */
  6345. if (!new && !cur)
  6346. return 1;
  6347. tmp = SD_ATTR_INIT;
  6348. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6349. new ? (new + idx_new) : &tmp,
  6350. sizeof(struct sched_domain_attr));
  6351. }
  6352. /*
  6353. * Partition sched domains as specified by the 'ndoms_new'
  6354. * cpumasks in the array doms_new[] of cpumasks. This compares
  6355. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6356. * It destroys each deleted domain and builds each new domain.
  6357. *
  6358. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6359. * The masks don't intersect (don't overlap.) We should setup one
  6360. * sched domain for each mask. CPUs not in any of the cpumasks will
  6361. * not be load balanced. If the same cpumask appears both in the
  6362. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6363. * it as it is.
  6364. *
  6365. * The passed in 'doms_new' should be allocated using
  6366. * alloc_sched_domains. This routine takes ownership of it and will
  6367. * free_sched_domains it when done with it. If the caller failed the
  6368. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6369. * and partition_sched_domains() will fallback to the single partition
  6370. * 'fallback_doms', it also forces the domains to be rebuilt.
  6371. *
  6372. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6373. * ndoms_new == 0 is a special case for destroying existing domains,
  6374. * and it will not create the default domain.
  6375. *
  6376. * Call with hotplug lock held
  6377. */
  6378. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6379. struct sched_domain_attr *dattr_new)
  6380. {
  6381. int i, j, n;
  6382. int new_topology;
  6383. mutex_lock(&sched_domains_mutex);
  6384. /* always unregister in case we don't destroy any domains */
  6385. unregister_sched_domain_sysctl();
  6386. /* Let architecture update cpu core mappings. */
  6387. new_topology = arch_update_cpu_topology();
  6388. n = doms_new ? ndoms_new : 0;
  6389. /* Destroy deleted domains */
  6390. for (i = 0; i < ndoms_cur; i++) {
  6391. for (j = 0; j < n && !new_topology; j++) {
  6392. if (cpumask_equal(doms_cur[i], doms_new[j])
  6393. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6394. goto match1;
  6395. }
  6396. /* no match - a current sched domain not in new doms_new[] */
  6397. detach_destroy_domains(doms_cur[i]);
  6398. match1:
  6399. ;
  6400. }
  6401. if (doms_new == NULL) {
  6402. ndoms_cur = 0;
  6403. doms_new = &fallback_doms;
  6404. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6405. WARN_ON_ONCE(dattr_new);
  6406. }
  6407. /* Build new domains */
  6408. for (i = 0; i < ndoms_new; i++) {
  6409. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6410. if (cpumask_equal(doms_new[i], doms_cur[j])
  6411. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6412. goto match2;
  6413. }
  6414. /* no match - add a new doms_new */
  6415. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6416. match2:
  6417. ;
  6418. }
  6419. /* Remember the new sched domains */
  6420. if (doms_cur != &fallback_doms)
  6421. free_sched_domains(doms_cur, ndoms_cur);
  6422. kfree(dattr_cur); /* kfree(NULL) is safe */
  6423. doms_cur = doms_new;
  6424. dattr_cur = dattr_new;
  6425. ndoms_cur = ndoms_new;
  6426. register_sched_domain_sysctl();
  6427. mutex_unlock(&sched_domains_mutex);
  6428. }
  6429. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6430. static void reinit_sched_domains(void)
  6431. {
  6432. get_online_cpus();
  6433. /* Destroy domains first to force the rebuild */
  6434. partition_sched_domains(0, NULL, NULL);
  6435. rebuild_sched_domains();
  6436. put_online_cpus();
  6437. }
  6438. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6439. {
  6440. unsigned int level = 0;
  6441. if (sscanf(buf, "%u", &level) != 1)
  6442. return -EINVAL;
  6443. /*
  6444. * level is always be positive so don't check for
  6445. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6446. * What happens on 0 or 1 byte write,
  6447. * need to check for count as well?
  6448. */
  6449. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6450. return -EINVAL;
  6451. if (smt)
  6452. sched_smt_power_savings = level;
  6453. else
  6454. sched_mc_power_savings = level;
  6455. reinit_sched_domains();
  6456. return count;
  6457. }
  6458. #ifdef CONFIG_SCHED_MC
  6459. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6460. struct sysdev_class_attribute *attr,
  6461. char *page)
  6462. {
  6463. return sprintf(page, "%u\n", sched_mc_power_savings);
  6464. }
  6465. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6466. struct sysdev_class_attribute *attr,
  6467. const char *buf, size_t count)
  6468. {
  6469. return sched_power_savings_store(buf, count, 0);
  6470. }
  6471. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6472. sched_mc_power_savings_show,
  6473. sched_mc_power_savings_store);
  6474. #endif
  6475. #ifdef CONFIG_SCHED_SMT
  6476. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6477. struct sysdev_class_attribute *attr,
  6478. char *page)
  6479. {
  6480. return sprintf(page, "%u\n", sched_smt_power_savings);
  6481. }
  6482. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6483. struct sysdev_class_attribute *attr,
  6484. const char *buf, size_t count)
  6485. {
  6486. return sched_power_savings_store(buf, count, 1);
  6487. }
  6488. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6489. sched_smt_power_savings_show,
  6490. sched_smt_power_savings_store);
  6491. #endif
  6492. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6493. {
  6494. int err = 0;
  6495. #ifdef CONFIG_SCHED_SMT
  6496. if (smt_capable())
  6497. err = sysfs_create_file(&cls->kset.kobj,
  6498. &attr_sched_smt_power_savings.attr);
  6499. #endif
  6500. #ifdef CONFIG_SCHED_MC
  6501. if (!err && mc_capable())
  6502. err = sysfs_create_file(&cls->kset.kobj,
  6503. &attr_sched_mc_power_savings.attr);
  6504. #endif
  6505. return err;
  6506. }
  6507. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6508. /*
  6509. * Update cpusets according to cpu_active mask. If cpusets are
  6510. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6511. * around partition_sched_domains().
  6512. */
  6513. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6514. void *hcpu)
  6515. {
  6516. switch (action & ~CPU_TASKS_FROZEN) {
  6517. case CPU_ONLINE:
  6518. case CPU_DOWN_FAILED:
  6519. cpuset_update_active_cpus();
  6520. return NOTIFY_OK;
  6521. default:
  6522. return NOTIFY_DONE;
  6523. }
  6524. }
  6525. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6526. void *hcpu)
  6527. {
  6528. switch (action & ~CPU_TASKS_FROZEN) {
  6529. case CPU_DOWN_PREPARE:
  6530. cpuset_update_active_cpus();
  6531. return NOTIFY_OK;
  6532. default:
  6533. return NOTIFY_DONE;
  6534. }
  6535. }
  6536. static int update_runtime(struct notifier_block *nfb,
  6537. unsigned long action, void *hcpu)
  6538. {
  6539. int cpu = (int)(long)hcpu;
  6540. switch (action) {
  6541. case CPU_DOWN_PREPARE:
  6542. case CPU_DOWN_PREPARE_FROZEN:
  6543. disable_runtime(cpu_rq(cpu));
  6544. return NOTIFY_OK;
  6545. case CPU_DOWN_FAILED:
  6546. case CPU_DOWN_FAILED_FROZEN:
  6547. case CPU_ONLINE:
  6548. case CPU_ONLINE_FROZEN:
  6549. enable_runtime(cpu_rq(cpu));
  6550. return NOTIFY_OK;
  6551. default:
  6552. return NOTIFY_DONE;
  6553. }
  6554. }
  6555. void __init sched_init_smp(void)
  6556. {
  6557. cpumask_var_t non_isolated_cpus;
  6558. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6559. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6560. get_online_cpus();
  6561. mutex_lock(&sched_domains_mutex);
  6562. init_sched_domains(cpu_active_mask);
  6563. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6564. if (cpumask_empty(non_isolated_cpus))
  6565. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6566. mutex_unlock(&sched_domains_mutex);
  6567. put_online_cpus();
  6568. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6569. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6570. /* RT runtime code needs to handle some hotplug events */
  6571. hotcpu_notifier(update_runtime, 0);
  6572. init_hrtick();
  6573. /* Move init over to a non-isolated CPU */
  6574. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6575. BUG();
  6576. sched_init_granularity();
  6577. free_cpumask_var(non_isolated_cpus);
  6578. init_sched_rt_class();
  6579. }
  6580. #else
  6581. void __init sched_init_smp(void)
  6582. {
  6583. sched_init_granularity();
  6584. }
  6585. #endif /* CONFIG_SMP */
  6586. const_debug unsigned int sysctl_timer_migration = 1;
  6587. int in_sched_functions(unsigned long addr)
  6588. {
  6589. return in_lock_functions(addr) ||
  6590. (addr >= (unsigned long)__sched_text_start
  6591. && addr < (unsigned long)__sched_text_end);
  6592. }
  6593. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6594. {
  6595. cfs_rq->tasks_timeline = RB_ROOT;
  6596. INIT_LIST_HEAD(&cfs_rq->tasks);
  6597. #ifdef CONFIG_FAIR_GROUP_SCHED
  6598. cfs_rq->rq = rq;
  6599. /* allow initial update_cfs_load() to truncate */
  6600. #ifdef CONFIG_SMP
  6601. cfs_rq->load_stamp = 1;
  6602. #endif
  6603. #endif
  6604. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6605. }
  6606. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6607. {
  6608. struct rt_prio_array *array;
  6609. int i;
  6610. array = &rt_rq->active;
  6611. for (i = 0; i < MAX_RT_PRIO; i++) {
  6612. INIT_LIST_HEAD(array->queue + i);
  6613. __clear_bit(i, array->bitmap);
  6614. }
  6615. /* delimiter for bitsearch: */
  6616. __set_bit(MAX_RT_PRIO, array->bitmap);
  6617. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6618. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6619. #ifdef CONFIG_SMP
  6620. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6621. #endif
  6622. #endif
  6623. #ifdef CONFIG_SMP
  6624. rt_rq->rt_nr_migratory = 0;
  6625. rt_rq->overloaded = 0;
  6626. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6627. #endif
  6628. rt_rq->rt_time = 0;
  6629. rt_rq->rt_throttled = 0;
  6630. rt_rq->rt_runtime = 0;
  6631. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6632. #ifdef CONFIG_RT_GROUP_SCHED
  6633. rt_rq->rt_nr_boosted = 0;
  6634. rt_rq->rq = rq;
  6635. #endif
  6636. }
  6637. #ifdef CONFIG_FAIR_GROUP_SCHED
  6638. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6639. struct sched_entity *se, int cpu,
  6640. struct sched_entity *parent)
  6641. {
  6642. struct rq *rq = cpu_rq(cpu);
  6643. tg->cfs_rq[cpu] = cfs_rq;
  6644. init_cfs_rq(cfs_rq, rq);
  6645. cfs_rq->tg = tg;
  6646. tg->se[cpu] = se;
  6647. /* se could be NULL for root_task_group */
  6648. if (!se)
  6649. return;
  6650. if (!parent)
  6651. se->cfs_rq = &rq->cfs;
  6652. else
  6653. se->cfs_rq = parent->my_q;
  6654. se->my_q = cfs_rq;
  6655. update_load_set(&se->load, 0);
  6656. se->parent = parent;
  6657. }
  6658. #endif
  6659. #ifdef CONFIG_RT_GROUP_SCHED
  6660. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6661. struct sched_rt_entity *rt_se, int cpu,
  6662. struct sched_rt_entity *parent)
  6663. {
  6664. struct rq *rq = cpu_rq(cpu);
  6665. tg->rt_rq[cpu] = rt_rq;
  6666. init_rt_rq(rt_rq, rq);
  6667. rt_rq->tg = tg;
  6668. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6669. tg->rt_se[cpu] = rt_se;
  6670. if (!rt_se)
  6671. return;
  6672. if (!parent)
  6673. rt_se->rt_rq = &rq->rt;
  6674. else
  6675. rt_se->rt_rq = parent->my_q;
  6676. rt_se->my_q = rt_rq;
  6677. rt_se->parent = parent;
  6678. INIT_LIST_HEAD(&rt_se->run_list);
  6679. }
  6680. #endif
  6681. void __init sched_init(void)
  6682. {
  6683. int i, j;
  6684. unsigned long alloc_size = 0, ptr;
  6685. #ifdef CONFIG_FAIR_GROUP_SCHED
  6686. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6687. #endif
  6688. #ifdef CONFIG_RT_GROUP_SCHED
  6689. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6690. #endif
  6691. #ifdef CONFIG_CPUMASK_OFFSTACK
  6692. alloc_size += num_possible_cpus() * cpumask_size();
  6693. #endif
  6694. if (alloc_size) {
  6695. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6696. #ifdef CONFIG_FAIR_GROUP_SCHED
  6697. root_task_group.se = (struct sched_entity **)ptr;
  6698. ptr += nr_cpu_ids * sizeof(void **);
  6699. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6700. ptr += nr_cpu_ids * sizeof(void **);
  6701. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6702. #ifdef CONFIG_RT_GROUP_SCHED
  6703. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6704. ptr += nr_cpu_ids * sizeof(void **);
  6705. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6706. ptr += nr_cpu_ids * sizeof(void **);
  6707. #endif /* CONFIG_RT_GROUP_SCHED */
  6708. #ifdef CONFIG_CPUMASK_OFFSTACK
  6709. for_each_possible_cpu(i) {
  6710. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6711. ptr += cpumask_size();
  6712. }
  6713. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6714. }
  6715. #ifdef CONFIG_SMP
  6716. init_defrootdomain();
  6717. #endif
  6718. init_rt_bandwidth(&def_rt_bandwidth,
  6719. global_rt_period(), global_rt_runtime());
  6720. #ifdef CONFIG_RT_GROUP_SCHED
  6721. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6722. global_rt_period(), global_rt_runtime());
  6723. #endif /* CONFIG_RT_GROUP_SCHED */
  6724. #ifdef CONFIG_CGROUP_SCHED
  6725. list_add(&root_task_group.list, &task_groups);
  6726. INIT_LIST_HEAD(&root_task_group.children);
  6727. autogroup_init(&init_task);
  6728. #endif /* CONFIG_CGROUP_SCHED */
  6729. for_each_possible_cpu(i) {
  6730. struct rq *rq;
  6731. rq = cpu_rq(i);
  6732. raw_spin_lock_init(&rq->lock);
  6733. rq->nr_running = 0;
  6734. rq->calc_load_active = 0;
  6735. rq->calc_load_update = jiffies + LOAD_FREQ;
  6736. init_cfs_rq(&rq->cfs, rq);
  6737. init_rt_rq(&rq->rt, rq);
  6738. #ifdef CONFIG_FAIR_GROUP_SCHED
  6739. root_task_group.shares = root_task_group_load;
  6740. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6741. /*
  6742. * How much cpu bandwidth does root_task_group get?
  6743. *
  6744. * In case of task-groups formed thr' the cgroup filesystem, it
  6745. * gets 100% of the cpu resources in the system. This overall
  6746. * system cpu resource is divided among the tasks of
  6747. * root_task_group and its child task-groups in a fair manner,
  6748. * based on each entity's (task or task-group's) weight
  6749. * (se->load.weight).
  6750. *
  6751. * In other words, if root_task_group has 10 tasks of weight
  6752. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6753. * then A0's share of the cpu resource is:
  6754. *
  6755. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6756. *
  6757. * We achieve this by letting root_task_group's tasks sit
  6758. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6759. */
  6760. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6761. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6762. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6763. #ifdef CONFIG_RT_GROUP_SCHED
  6764. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6765. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6766. #endif
  6767. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6768. rq->cpu_load[j] = 0;
  6769. rq->last_load_update_tick = jiffies;
  6770. #ifdef CONFIG_SMP
  6771. rq->sd = NULL;
  6772. rq->rd = NULL;
  6773. rq->cpu_power = SCHED_POWER_SCALE;
  6774. rq->post_schedule = 0;
  6775. rq->active_balance = 0;
  6776. rq->next_balance = jiffies;
  6777. rq->push_cpu = 0;
  6778. rq->cpu = i;
  6779. rq->online = 0;
  6780. rq->idle_stamp = 0;
  6781. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6782. rq_attach_root(rq, &def_root_domain);
  6783. #ifdef CONFIG_NO_HZ
  6784. rq->nohz_balance_kick = 0;
  6785. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6786. #endif
  6787. #endif
  6788. init_rq_hrtick(rq);
  6789. atomic_set(&rq->nr_iowait, 0);
  6790. }
  6791. set_load_weight(&init_task);
  6792. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6793. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6794. #endif
  6795. #ifdef CONFIG_SMP
  6796. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6797. #endif
  6798. #ifdef CONFIG_RT_MUTEXES
  6799. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6800. #endif
  6801. /*
  6802. * The boot idle thread does lazy MMU switching as well:
  6803. */
  6804. atomic_inc(&init_mm.mm_count);
  6805. enter_lazy_tlb(&init_mm, current);
  6806. /*
  6807. * Make us the idle thread. Technically, schedule() should not be
  6808. * called from this thread, however somewhere below it might be,
  6809. * but because we are the idle thread, we just pick up running again
  6810. * when this runqueue becomes "idle".
  6811. */
  6812. init_idle(current, smp_processor_id());
  6813. calc_load_update = jiffies + LOAD_FREQ;
  6814. /*
  6815. * During early bootup we pretend to be a normal task:
  6816. */
  6817. current->sched_class = &fair_sched_class;
  6818. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6819. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6820. #ifdef CONFIG_SMP
  6821. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6822. #ifdef CONFIG_NO_HZ
  6823. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6824. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6825. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6826. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6827. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6828. #endif
  6829. /* May be allocated at isolcpus cmdline parse time */
  6830. if (cpu_isolated_map == NULL)
  6831. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6832. #endif /* SMP */
  6833. scheduler_running = 1;
  6834. }
  6835. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6836. static inline int preempt_count_equals(int preempt_offset)
  6837. {
  6838. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6839. return (nested == preempt_offset);
  6840. }
  6841. void __might_sleep(const char *file, int line, int preempt_offset)
  6842. {
  6843. #ifdef in_atomic
  6844. static unsigned long prev_jiffy; /* ratelimiting */
  6845. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6846. system_state != SYSTEM_RUNNING || oops_in_progress)
  6847. return;
  6848. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6849. return;
  6850. prev_jiffy = jiffies;
  6851. printk(KERN_ERR
  6852. "BUG: sleeping function called from invalid context at %s:%d\n",
  6853. file, line);
  6854. printk(KERN_ERR
  6855. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6856. in_atomic(), irqs_disabled(),
  6857. current->pid, current->comm);
  6858. debug_show_held_locks(current);
  6859. if (irqs_disabled())
  6860. print_irqtrace_events(current);
  6861. dump_stack();
  6862. #endif
  6863. }
  6864. EXPORT_SYMBOL(__might_sleep);
  6865. #endif
  6866. #ifdef CONFIG_MAGIC_SYSRQ
  6867. static void normalize_task(struct rq *rq, struct task_struct *p)
  6868. {
  6869. const struct sched_class *prev_class = p->sched_class;
  6870. int old_prio = p->prio;
  6871. int on_rq;
  6872. on_rq = p->on_rq;
  6873. if (on_rq)
  6874. deactivate_task(rq, p, 0);
  6875. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6876. if (on_rq) {
  6877. activate_task(rq, p, 0);
  6878. resched_task(rq->curr);
  6879. }
  6880. check_class_changed(rq, p, prev_class, old_prio);
  6881. }
  6882. void normalize_rt_tasks(void)
  6883. {
  6884. struct task_struct *g, *p;
  6885. unsigned long flags;
  6886. struct rq *rq;
  6887. read_lock_irqsave(&tasklist_lock, flags);
  6888. do_each_thread(g, p) {
  6889. /*
  6890. * Only normalize user tasks:
  6891. */
  6892. if (!p->mm)
  6893. continue;
  6894. p->se.exec_start = 0;
  6895. #ifdef CONFIG_SCHEDSTATS
  6896. p->se.statistics.wait_start = 0;
  6897. p->se.statistics.sleep_start = 0;
  6898. p->se.statistics.block_start = 0;
  6899. #endif
  6900. if (!rt_task(p)) {
  6901. /*
  6902. * Renice negative nice level userspace
  6903. * tasks back to 0:
  6904. */
  6905. if (TASK_NICE(p) < 0 && p->mm)
  6906. set_user_nice(p, 0);
  6907. continue;
  6908. }
  6909. raw_spin_lock(&p->pi_lock);
  6910. rq = __task_rq_lock(p);
  6911. normalize_task(rq, p);
  6912. __task_rq_unlock(rq);
  6913. raw_spin_unlock(&p->pi_lock);
  6914. } while_each_thread(g, p);
  6915. read_unlock_irqrestore(&tasklist_lock, flags);
  6916. }
  6917. #endif /* CONFIG_MAGIC_SYSRQ */
  6918. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6919. /*
  6920. * These functions are only useful for the IA64 MCA handling, or kdb.
  6921. *
  6922. * They can only be called when the whole system has been
  6923. * stopped - every CPU needs to be quiescent, and no scheduling
  6924. * activity can take place. Using them for anything else would
  6925. * be a serious bug, and as a result, they aren't even visible
  6926. * under any other configuration.
  6927. */
  6928. /**
  6929. * curr_task - return the current task for a given cpu.
  6930. * @cpu: the processor in question.
  6931. *
  6932. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6933. */
  6934. struct task_struct *curr_task(int cpu)
  6935. {
  6936. return cpu_curr(cpu);
  6937. }
  6938. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6939. #ifdef CONFIG_IA64
  6940. /**
  6941. * set_curr_task - set the current task for a given cpu.
  6942. * @cpu: the processor in question.
  6943. * @p: the task pointer to set.
  6944. *
  6945. * Description: This function must only be used when non-maskable interrupts
  6946. * are serviced on a separate stack. It allows the architecture to switch the
  6947. * notion of the current task on a cpu in a non-blocking manner. This function
  6948. * must be called with all CPU's synchronized, and interrupts disabled, the
  6949. * and caller must save the original value of the current task (see
  6950. * curr_task() above) and restore that value before reenabling interrupts and
  6951. * re-starting the system.
  6952. *
  6953. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6954. */
  6955. void set_curr_task(int cpu, struct task_struct *p)
  6956. {
  6957. cpu_curr(cpu) = p;
  6958. }
  6959. #endif
  6960. #ifdef CONFIG_FAIR_GROUP_SCHED
  6961. static void free_fair_sched_group(struct task_group *tg)
  6962. {
  6963. int i;
  6964. for_each_possible_cpu(i) {
  6965. if (tg->cfs_rq)
  6966. kfree(tg->cfs_rq[i]);
  6967. if (tg->se)
  6968. kfree(tg->se[i]);
  6969. }
  6970. kfree(tg->cfs_rq);
  6971. kfree(tg->se);
  6972. }
  6973. static
  6974. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6975. {
  6976. struct cfs_rq *cfs_rq;
  6977. struct sched_entity *se;
  6978. int i;
  6979. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6980. if (!tg->cfs_rq)
  6981. goto err;
  6982. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6983. if (!tg->se)
  6984. goto err;
  6985. tg->shares = NICE_0_LOAD;
  6986. for_each_possible_cpu(i) {
  6987. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6988. GFP_KERNEL, cpu_to_node(i));
  6989. if (!cfs_rq)
  6990. goto err;
  6991. se = kzalloc_node(sizeof(struct sched_entity),
  6992. GFP_KERNEL, cpu_to_node(i));
  6993. if (!se)
  6994. goto err_free_rq;
  6995. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6996. }
  6997. return 1;
  6998. err_free_rq:
  6999. kfree(cfs_rq);
  7000. err:
  7001. return 0;
  7002. }
  7003. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7004. {
  7005. struct rq *rq = cpu_rq(cpu);
  7006. unsigned long flags;
  7007. /*
  7008. * Only empty task groups can be destroyed; so we can speculatively
  7009. * check on_list without danger of it being re-added.
  7010. */
  7011. if (!tg->cfs_rq[cpu]->on_list)
  7012. return;
  7013. raw_spin_lock_irqsave(&rq->lock, flags);
  7014. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7015. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7016. }
  7017. #else /* !CONFG_FAIR_GROUP_SCHED */
  7018. static inline void free_fair_sched_group(struct task_group *tg)
  7019. {
  7020. }
  7021. static inline
  7022. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7023. {
  7024. return 1;
  7025. }
  7026. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7027. {
  7028. }
  7029. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7030. #ifdef CONFIG_RT_GROUP_SCHED
  7031. static void free_rt_sched_group(struct task_group *tg)
  7032. {
  7033. int i;
  7034. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7035. for_each_possible_cpu(i) {
  7036. if (tg->rt_rq)
  7037. kfree(tg->rt_rq[i]);
  7038. if (tg->rt_se)
  7039. kfree(tg->rt_se[i]);
  7040. }
  7041. kfree(tg->rt_rq);
  7042. kfree(tg->rt_se);
  7043. }
  7044. static
  7045. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7046. {
  7047. struct rt_rq *rt_rq;
  7048. struct sched_rt_entity *rt_se;
  7049. int i;
  7050. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7051. if (!tg->rt_rq)
  7052. goto err;
  7053. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7054. if (!tg->rt_se)
  7055. goto err;
  7056. init_rt_bandwidth(&tg->rt_bandwidth,
  7057. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7058. for_each_possible_cpu(i) {
  7059. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7060. GFP_KERNEL, cpu_to_node(i));
  7061. if (!rt_rq)
  7062. goto err;
  7063. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7064. GFP_KERNEL, cpu_to_node(i));
  7065. if (!rt_se)
  7066. goto err_free_rq;
  7067. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7068. }
  7069. return 1;
  7070. err_free_rq:
  7071. kfree(rt_rq);
  7072. err:
  7073. return 0;
  7074. }
  7075. #else /* !CONFIG_RT_GROUP_SCHED */
  7076. static inline void free_rt_sched_group(struct task_group *tg)
  7077. {
  7078. }
  7079. static inline
  7080. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7081. {
  7082. return 1;
  7083. }
  7084. #endif /* CONFIG_RT_GROUP_SCHED */
  7085. #ifdef CONFIG_CGROUP_SCHED
  7086. static void free_sched_group(struct task_group *tg)
  7087. {
  7088. free_fair_sched_group(tg);
  7089. free_rt_sched_group(tg);
  7090. autogroup_free(tg);
  7091. kfree(tg);
  7092. }
  7093. /* allocate runqueue etc for a new task group */
  7094. struct task_group *sched_create_group(struct task_group *parent)
  7095. {
  7096. struct task_group *tg;
  7097. unsigned long flags;
  7098. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7099. if (!tg)
  7100. return ERR_PTR(-ENOMEM);
  7101. if (!alloc_fair_sched_group(tg, parent))
  7102. goto err;
  7103. if (!alloc_rt_sched_group(tg, parent))
  7104. goto err;
  7105. spin_lock_irqsave(&task_group_lock, flags);
  7106. list_add_rcu(&tg->list, &task_groups);
  7107. WARN_ON(!parent); /* root should already exist */
  7108. tg->parent = parent;
  7109. INIT_LIST_HEAD(&tg->children);
  7110. list_add_rcu(&tg->siblings, &parent->children);
  7111. spin_unlock_irqrestore(&task_group_lock, flags);
  7112. return tg;
  7113. err:
  7114. free_sched_group(tg);
  7115. return ERR_PTR(-ENOMEM);
  7116. }
  7117. /* rcu callback to free various structures associated with a task group */
  7118. static void free_sched_group_rcu(struct rcu_head *rhp)
  7119. {
  7120. /* now it should be safe to free those cfs_rqs */
  7121. free_sched_group(container_of(rhp, struct task_group, rcu));
  7122. }
  7123. /* Destroy runqueue etc associated with a task group */
  7124. void sched_destroy_group(struct task_group *tg)
  7125. {
  7126. unsigned long flags;
  7127. int i;
  7128. /* end participation in shares distribution */
  7129. for_each_possible_cpu(i)
  7130. unregister_fair_sched_group(tg, i);
  7131. spin_lock_irqsave(&task_group_lock, flags);
  7132. list_del_rcu(&tg->list);
  7133. list_del_rcu(&tg->siblings);
  7134. spin_unlock_irqrestore(&task_group_lock, flags);
  7135. /* wait for possible concurrent references to cfs_rqs complete */
  7136. call_rcu(&tg->rcu, free_sched_group_rcu);
  7137. }
  7138. /* change task's runqueue when it moves between groups.
  7139. * The caller of this function should have put the task in its new group
  7140. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7141. * reflect its new group.
  7142. */
  7143. void sched_move_task(struct task_struct *tsk)
  7144. {
  7145. int on_rq, running;
  7146. unsigned long flags;
  7147. struct rq *rq;
  7148. rq = task_rq_lock(tsk, &flags);
  7149. running = task_current(rq, tsk);
  7150. on_rq = tsk->on_rq;
  7151. if (on_rq)
  7152. dequeue_task(rq, tsk, 0);
  7153. if (unlikely(running))
  7154. tsk->sched_class->put_prev_task(rq, tsk);
  7155. #ifdef CONFIG_FAIR_GROUP_SCHED
  7156. if (tsk->sched_class->task_move_group)
  7157. tsk->sched_class->task_move_group(tsk, on_rq);
  7158. else
  7159. #endif
  7160. set_task_rq(tsk, task_cpu(tsk));
  7161. if (unlikely(running))
  7162. tsk->sched_class->set_curr_task(rq);
  7163. if (on_rq)
  7164. enqueue_task(rq, tsk, 0);
  7165. task_rq_unlock(rq, tsk, &flags);
  7166. }
  7167. #endif /* CONFIG_CGROUP_SCHED */
  7168. #ifdef CONFIG_FAIR_GROUP_SCHED
  7169. static DEFINE_MUTEX(shares_mutex);
  7170. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7171. {
  7172. int i;
  7173. unsigned long flags;
  7174. /*
  7175. * We can't change the weight of the root cgroup.
  7176. */
  7177. if (!tg->se[0])
  7178. return -EINVAL;
  7179. if (shares < MIN_SHARES)
  7180. shares = MIN_SHARES;
  7181. else if (shares > MAX_SHARES)
  7182. shares = MAX_SHARES;
  7183. mutex_lock(&shares_mutex);
  7184. if (tg->shares == shares)
  7185. goto done;
  7186. tg->shares = shares;
  7187. for_each_possible_cpu(i) {
  7188. struct rq *rq = cpu_rq(i);
  7189. struct sched_entity *se;
  7190. se = tg->se[i];
  7191. /* Propagate contribution to hierarchy */
  7192. raw_spin_lock_irqsave(&rq->lock, flags);
  7193. for_each_sched_entity(se)
  7194. update_cfs_shares(group_cfs_rq(se));
  7195. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7196. }
  7197. done:
  7198. mutex_unlock(&shares_mutex);
  7199. return 0;
  7200. }
  7201. unsigned long sched_group_shares(struct task_group *tg)
  7202. {
  7203. return tg->shares;
  7204. }
  7205. #endif
  7206. #ifdef CONFIG_RT_GROUP_SCHED
  7207. /*
  7208. * Ensure that the real time constraints are schedulable.
  7209. */
  7210. static DEFINE_MUTEX(rt_constraints_mutex);
  7211. static unsigned long to_ratio(u64 period, u64 runtime)
  7212. {
  7213. if (runtime == RUNTIME_INF)
  7214. return 1ULL << 20;
  7215. return div64_u64(runtime << 20, period);
  7216. }
  7217. /* Must be called with tasklist_lock held */
  7218. static inline int tg_has_rt_tasks(struct task_group *tg)
  7219. {
  7220. struct task_struct *g, *p;
  7221. do_each_thread(g, p) {
  7222. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7223. return 1;
  7224. } while_each_thread(g, p);
  7225. return 0;
  7226. }
  7227. struct rt_schedulable_data {
  7228. struct task_group *tg;
  7229. u64 rt_period;
  7230. u64 rt_runtime;
  7231. };
  7232. static int tg_schedulable(struct task_group *tg, void *data)
  7233. {
  7234. struct rt_schedulable_data *d = data;
  7235. struct task_group *child;
  7236. unsigned long total, sum = 0;
  7237. u64 period, runtime;
  7238. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7239. runtime = tg->rt_bandwidth.rt_runtime;
  7240. if (tg == d->tg) {
  7241. period = d->rt_period;
  7242. runtime = d->rt_runtime;
  7243. }
  7244. /*
  7245. * Cannot have more runtime than the period.
  7246. */
  7247. if (runtime > period && runtime != RUNTIME_INF)
  7248. return -EINVAL;
  7249. /*
  7250. * Ensure we don't starve existing RT tasks.
  7251. */
  7252. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7253. return -EBUSY;
  7254. total = to_ratio(period, runtime);
  7255. /*
  7256. * Nobody can have more than the global setting allows.
  7257. */
  7258. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7259. return -EINVAL;
  7260. /*
  7261. * The sum of our children's runtime should not exceed our own.
  7262. */
  7263. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7264. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7265. runtime = child->rt_bandwidth.rt_runtime;
  7266. if (child == d->tg) {
  7267. period = d->rt_period;
  7268. runtime = d->rt_runtime;
  7269. }
  7270. sum += to_ratio(period, runtime);
  7271. }
  7272. if (sum > total)
  7273. return -EINVAL;
  7274. return 0;
  7275. }
  7276. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7277. {
  7278. struct rt_schedulable_data data = {
  7279. .tg = tg,
  7280. .rt_period = period,
  7281. .rt_runtime = runtime,
  7282. };
  7283. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7284. }
  7285. static int tg_set_bandwidth(struct task_group *tg,
  7286. u64 rt_period, u64 rt_runtime)
  7287. {
  7288. int i, err = 0;
  7289. mutex_lock(&rt_constraints_mutex);
  7290. read_lock(&tasklist_lock);
  7291. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7292. if (err)
  7293. goto unlock;
  7294. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7295. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7296. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7297. for_each_possible_cpu(i) {
  7298. struct rt_rq *rt_rq = tg->rt_rq[i];
  7299. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7300. rt_rq->rt_runtime = rt_runtime;
  7301. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7302. }
  7303. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7304. unlock:
  7305. read_unlock(&tasklist_lock);
  7306. mutex_unlock(&rt_constraints_mutex);
  7307. return err;
  7308. }
  7309. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7310. {
  7311. u64 rt_runtime, rt_period;
  7312. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7313. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7314. if (rt_runtime_us < 0)
  7315. rt_runtime = RUNTIME_INF;
  7316. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7317. }
  7318. long sched_group_rt_runtime(struct task_group *tg)
  7319. {
  7320. u64 rt_runtime_us;
  7321. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7322. return -1;
  7323. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7324. do_div(rt_runtime_us, NSEC_PER_USEC);
  7325. return rt_runtime_us;
  7326. }
  7327. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7328. {
  7329. u64 rt_runtime, rt_period;
  7330. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7331. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7332. if (rt_period == 0)
  7333. return -EINVAL;
  7334. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7335. }
  7336. long sched_group_rt_period(struct task_group *tg)
  7337. {
  7338. u64 rt_period_us;
  7339. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7340. do_div(rt_period_us, NSEC_PER_USEC);
  7341. return rt_period_us;
  7342. }
  7343. static int sched_rt_global_constraints(void)
  7344. {
  7345. u64 runtime, period;
  7346. int ret = 0;
  7347. if (sysctl_sched_rt_period <= 0)
  7348. return -EINVAL;
  7349. runtime = global_rt_runtime();
  7350. period = global_rt_period();
  7351. /*
  7352. * Sanity check on the sysctl variables.
  7353. */
  7354. if (runtime > period && runtime != RUNTIME_INF)
  7355. return -EINVAL;
  7356. mutex_lock(&rt_constraints_mutex);
  7357. read_lock(&tasklist_lock);
  7358. ret = __rt_schedulable(NULL, 0, 0);
  7359. read_unlock(&tasklist_lock);
  7360. mutex_unlock(&rt_constraints_mutex);
  7361. return ret;
  7362. }
  7363. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7364. {
  7365. /* Don't accept realtime tasks when there is no way for them to run */
  7366. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7367. return 0;
  7368. return 1;
  7369. }
  7370. #else /* !CONFIG_RT_GROUP_SCHED */
  7371. static int sched_rt_global_constraints(void)
  7372. {
  7373. unsigned long flags;
  7374. int i;
  7375. if (sysctl_sched_rt_period <= 0)
  7376. return -EINVAL;
  7377. /*
  7378. * There's always some RT tasks in the root group
  7379. * -- migration, kstopmachine etc..
  7380. */
  7381. if (sysctl_sched_rt_runtime == 0)
  7382. return -EBUSY;
  7383. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7384. for_each_possible_cpu(i) {
  7385. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7386. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7387. rt_rq->rt_runtime = global_rt_runtime();
  7388. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7389. }
  7390. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7391. return 0;
  7392. }
  7393. #endif /* CONFIG_RT_GROUP_SCHED */
  7394. int sched_rt_handler(struct ctl_table *table, int write,
  7395. void __user *buffer, size_t *lenp,
  7396. loff_t *ppos)
  7397. {
  7398. int ret;
  7399. int old_period, old_runtime;
  7400. static DEFINE_MUTEX(mutex);
  7401. mutex_lock(&mutex);
  7402. old_period = sysctl_sched_rt_period;
  7403. old_runtime = sysctl_sched_rt_runtime;
  7404. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7405. if (!ret && write) {
  7406. ret = sched_rt_global_constraints();
  7407. if (ret) {
  7408. sysctl_sched_rt_period = old_period;
  7409. sysctl_sched_rt_runtime = old_runtime;
  7410. } else {
  7411. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7412. def_rt_bandwidth.rt_period =
  7413. ns_to_ktime(global_rt_period());
  7414. }
  7415. }
  7416. mutex_unlock(&mutex);
  7417. return ret;
  7418. }
  7419. #ifdef CONFIG_CGROUP_SCHED
  7420. /* return corresponding task_group object of a cgroup */
  7421. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7422. {
  7423. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7424. struct task_group, css);
  7425. }
  7426. static struct cgroup_subsys_state *
  7427. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7428. {
  7429. struct task_group *tg, *parent;
  7430. if (!cgrp->parent) {
  7431. /* This is early initialization for the top cgroup */
  7432. return &root_task_group.css;
  7433. }
  7434. parent = cgroup_tg(cgrp->parent);
  7435. tg = sched_create_group(parent);
  7436. if (IS_ERR(tg))
  7437. return ERR_PTR(-ENOMEM);
  7438. return &tg->css;
  7439. }
  7440. static void
  7441. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7442. {
  7443. struct task_group *tg = cgroup_tg(cgrp);
  7444. sched_destroy_group(tg);
  7445. }
  7446. static int
  7447. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7448. {
  7449. #ifdef CONFIG_RT_GROUP_SCHED
  7450. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7451. return -EINVAL;
  7452. #else
  7453. /* We don't support RT-tasks being in separate groups */
  7454. if (tsk->sched_class != &fair_sched_class)
  7455. return -EINVAL;
  7456. #endif
  7457. return 0;
  7458. }
  7459. static void
  7460. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7461. {
  7462. sched_move_task(tsk);
  7463. }
  7464. static void
  7465. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7466. struct cgroup *old_cgrp, struct task_struct *task)
  7467. {
  7468. /*
  7469. * cgroup_exit() is called in the copy_process() failure path.
  7470. * Ignore this case since the task hasn't ran yet, this avoids
  7471. * trying to poke a half freed task state from generic code.
  7472. */
  7473. if (!(task->flags & PF_EXITING))
  7474. return;
  7475. sched_move_task(task);
  7476. }
  7477. #ifdef CONFIG_FAIR_GROUP_SCHED
  7478. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7479. u64 shareval)
  7480. {
  7481. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  7482. }
  7483. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7484. {
  7485. struct task_group *tg = cgroup_tg(cgrp);
  7486. return (u64) scale_load_down(tg->shares);
  7487. }
  7488. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7489. #ifdef CONFIG_RT_GROUP_SCHED
  7490. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7491. s64 val)
  7492. {
  7493. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7494. }
  7495. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7496. {
  7497. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7498. }
  7499. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7500. u64 rt_period_us)
  7501. {
  7502. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7503. }
  7504. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7505. {
  7506. return sched_group_rt_period(cgroup_tg(cgrp));
  7507. }
  7508. #endif /* CONFIG_RT_GROUP_SCHED */
  7509. static struct cftype cpu_files[] = {
  7510. #ifdef CONFIG_FAIR_GROUP_SCHED
  7511. {
  7512. .name = "shares",
  7513. .read_u64 = cpu_shares_read_u64,
  7514. .write_u64 = cpu_shares_write_u64,
  7515. },
  7516. #endif
  7517. #ifdef CONFIG_RT_GROUP_SCHED
  7518. {
  7519. .name = "rt_runtime_us",
  7520. .read_s64 = cpu_rt_runtime_read,
  7521. .write_s64 = cpu_rt_runtime_write,
  7522. },
  7523. {
  7524. .name = "rt_period_us",
  7525. .read_u64 = cpu_rt_period_read_uint,
  7526. .write_u64 = cpu_rt_period_write_uint,
  7527. },
  7528. #endif
  7529. };
  7530. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7531. {
  7532. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7533. }
  7534. struct cgroup_subsys cpu_cgroup_subsys = {
  7535. .name = "cpu",
  7536. .create = cpu_cgroup_create,
  7537. .destroy = cpu_cgroup_destroy,
  7538. .can_attach_task = cpu_cgroup_can_attach_task,
  7539. .attach_task = cpu_cgroup_attach_task,
  7540. .exit = cpu_cgroup_exit,
  7541. .populate = cpu_cgroup_populate,
  7542. .subsys_id = cpu_cgroup_subsys_id,
  7543. .early_init = 1,
  7544. };
  7545. #endif /* CONFIG_CGROUP_SCHED */
  7546. #ifdef CONFIG_CGROUP_CPUACCT
  7547. /*
  7548. * CPU accounting code for task groups.
  7549. *
  7550. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7551. * (balbir@in.ibm.com).
  7552. */
  7553. /* track cpu usage of a group of tasks and its child groups */
  7554. struct cpuacct {
  7555. struct cgroup_subsys_state css;
  7556. /* cpuusage holds pointer to a u64-type object on every cpu */
  7557. u64 __percpu *cpuusage;
  7558. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7559. struct cpuacct *parent;
  7560. };
  7561. struct cgroup_subsys cpuacct_subsys;
  7562. /* return cpu accounting group corresponding to this container */
  7563. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7564. {
  7565. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7566. struct cpuacct, css);
  7567. }
  7568. /* return cpu accounting group to which this task belongs */
  7569. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7570. {
  7571. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7572. struct cpuacct, css);
  7573. }
  7574. /* create a new cpu accounting group */
  7575. static struct cgroup_subsys_state *cpuacct_create(
  7576. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7577. {
  7578. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7579. int i;
  7580. if (!ca)
  7581. goto out;
  7582. ca->cpuusage = alloc_percpu(u64);
  7583. if (!ca->cpuusage)
  7584. goto out_free_ca;
  7585. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7586. if (percpu_counter_init(&ca->cpustat[i], 0))
  7587. goto out_free_counters;
  7588. if (cgrp->parent)
  7589. ca->parent = cgroup_ca(cgrp->parent);
  7590. return &ca->css;
  7591. out_free_counters:
  7592. while (--i >= 0)
  7593. percpu_counter_destroy(&ca->cpustat[i]);
  7594. free_percpu(ca->cpuusage);
  7595. out_free_ca:
  7596. kfree(ca);
  7597. out:
  7598. return ERR_PTR(-ENOMEM);
  7599. }
  7600. /* destroy an existing cpu accounting group */
  7601. static void
  7602. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7603. {
  7604. struct cpuacct *ca = cgroup_ca(cgrp);
  7605. int i;
  7606. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7607. percpu_counter_destroy(&ca->cpustat[i]);
  7608. free_percpu(ca->cpuusage);
  7609. kfree(ca);
  7610. }
  7611. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7612. {
  7613. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7614. u64 data;
  7615. #ifndef CONFIG_64BIT
  7616. /*
  7617. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7618. */
  7619. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7620. data = *cpuusage;
  7621. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7622. #else
  7623. data = *cpuusage;
  7624. #endif
  7625. return data;
  7626. }
  7627. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7628. {
  7629. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7630. #ifndef CONFIG_64BIT
  7631. /*
  7632. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7633. */
  7634. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7635. *cpuusage = val;
  7636. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7637. #else
  7638. *cpuusage = val;
  7639. #endif
  7640. }
  7641. /* return total cpu usage (in nanoseconds) of a group */
  7642. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7643. {
  7644. struct cpuacct *ca = cgroup_ca(cgrp);
  7645. u64 totalcpuusage = 0;
  7646. int i;
  7647. for_each_present_cpu(i)
  7648. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7649. return totalcpuusage;
  7650. }
  7651. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7652. u64 reset)
  7653. {
  7654. struct cpuacct *ca = cgroup_ca(cgrp);
  7655. int err = 0;
  7656. int i;
  7657. if (reset) {
  7658. err = -EINVAL;
  7659. goto out;
  7660. }
  7661. for_each_present_cpu(i)
  7662. cpuacct_cpuusage_write(ca, i, 0);
  7663. out:
  7664. return err;
  7665. }
  7666. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7667. struct seq_file *m)
  7668. {
  7669. struct cpuacct *ca = cgroup_ca(cgroup);
  7670. u64 percpu;
  7671. int i;
  7672. for_each_present_cpu(i) {
  7673. percpu = cpuacct_cpuusage_read(ca, i);
  7674. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7675. }
  7676. seq_printf(m, "\n");
  7677. return 0;
  7678. }
  7679. static const char *cpuacct_stat_desc[] = {
  7680. [CPUACCT_STAT_USER] = "user",
  7681. [CPUACCT_STAT_SYSTEM] = "system",
  7682. };
  7683. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7684. struct cgroup_map_cb *cb)
  7685. {
  7686. struct cpuacct *ca = cgroup_ca(cgrp);
  7687. int i;
  7688. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7689. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7690. val = cputime64_to_clock_t(val);
  7691. cb->fill(cb, cpuacct_stat_desc[i], val);
  7692. }
  7693. return 0;
  7694. }
  7695. static struct cftype files[] = {
  7696. {
  7697. .name = "usage",
  7698. .read_u64 = cpuusage_read,
  7699. .write_u64 = cpuusage_write,
  7700. },
  7701. {
  7702. .name = "usage_percpu",
  7703. .read_seq_string = cpuacct_percpu_seq_read,
  7704. },
  7705. {
  7706. .name = "stat",
  7707. .read_map = cpuacct_stats_show,
  7708. },
  7709. };
  7710. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7711. {
  7712. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7713. }
  7714. /*
  7715. * charge this task's execution time to its accounting group.
  7716. *
  7717. * called with rq->lock held.
  7718. */
  7719. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7720. {
  7721. struct cpuacct *ca;
  7722. int cpu;
  7723. if (unlikely(!cpuacct_subsys.active))
  7724. return;
  7725. cpu = task_cpu(tsk);
  7726. rcu_read_lock();
  7727. ca = task_ca(tsk);
  7728. for (; ca; ca = ca->parent) {
  7729. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7730. *cpuusage += cputime;
  7731. }
  7732. rcu_read_unlock();
  7733. }
  7734. /*
  7735. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7736. * in cputime_t units. As a result, cpuacct_update_stats calls
  7737. * percpu_counter_add with values large enough to always overflow the
  7738. * per cpu batch limit causing bad SMP scalability.
  7739. *
  7740. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7741. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7742. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7743. */
  7744. #ifdef CONFIG_SMP
  7745. #define CPUACCT_BATCH \
  7746. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7747. #else
  7748. #define CPUACCT_BATCH 0
  7749. #endif
  7750. /*
  7751. * Charge the system/user time to the task's accounting group.
  7752. */
  7753. static void cpuacct_update_stats(struct task_struct *tsk,
  7754. enum cpuacct_stat_index idx, cputime_t val)
  7755. {
  7756. struct cpuacct *ca;
  7757. int batch = CPUACCT_BATCH;
  7758. if (unlikely(!cpuacct_subsys.active))
  7759. return;
  7760. rcu_read_lock();
  7761. ca = task_ca(tsk);
  7762. do {
  7763. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7764. ca = ca->parent;
  7765. } while (ca);
  7766. rcu_read_unlock();
  7767. }
  7768. struct cgroup_subsys cpuacct_subsys = {
  7769. .name = "cpuacct",
  7770. .create = cpuacct_create,
  7771. .destroy = cpuacct_destroy,
  7772. .populate = cpuacct_populate,
  7773. .subsys_id = cpuacct_subsys_id,
  7774. };
  7775. #endif /* CONFIG_CGROUP_CPUACCT */