intel_cacheinfo.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /*
  2. * Routines to indentify caches on Intel CPU.
  3. *
  4. * Changes:
  5. * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
  6. * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
  7. */
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/device.h>
  11. #include <linux/compiler.h>
  12. #include <linux/cpu.h>
  13. #include <linux/sched.h>
  14. #include <asm/processor.h>
  15. #include <asm/smp.h>
  16. #define LVL_1_INST 1
  17. #define LVL_1_DATA 2
  18. #define LVL_2 3
  19. #define LVL_3 4
  20. #define LVL_TRACE 5
  21. struct _cache_table
  22. {
  23. unsigned char descriptor;
  24. char cache_type;
  25. short size;
  26. };
  27. /* all the cache descriptor types we care about (no TLB or trace cache entries) */
  28. static struct _cache_table cache_table[] __cpuinitdata =
  29. {
  30. { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
  31. { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
  32. { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
  33. { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
  34. { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  35. { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  36. { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  37. { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  38. { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
  39. { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
  40. { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  41. { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  42. { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
  43. { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  44. { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  45. { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  46. { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
  47. { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
  48. { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
  49. { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
  50. { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
  51. { 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
  52. { 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
  53. { 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
  54. { 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
  55. { 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
  56. { 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
  57. { 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
  58. { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  59. { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  60. { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  61. { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  62. { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
  63. { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
  64. { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
  65. { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
  66. { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
  67. { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  68. { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  69. { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  70. { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  71. { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
  72. { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
  73. { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
  74. { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
  75. { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
  76. { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
  77. { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
  78. { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
  79. { 0x00, 0, 0}
  80. };
  81. enum _cache_type
  82. {
  83. CACHE_TYPE_NULL = 0,
  84. CACHE_TYPE_DATA = 1,
  85. CACHE_TYPE_INST = 2,
  86. CACHE_TYPE_UNIFIED = 3
  87. };
  88. union _cpuid4_leaf_eax {
  89. struct {
  90. enum _cache_type type:5;
  91. unsigned int level:3;
  92. unsigned int is_self_initializing:1;
  93. unsigned int is_fully_associative:1;
  94. unsigned int reserved:4;
  95. unsigned int num_threads_sharing:12;
  96. unsigned int num_cores_on_die:6;
  97. } split;
  98. u32 full;
  99. };
  100. union _cpuid4_leaf_ebx {
  101. struct {
  102. unsigned int coherency_line_size:12;
  103. unsigned int physical_line_partition:10;
  104. unsigned int ways_of_associativity:10;
  105. } split;
  106. u32 full;
  107. };
  108. union _cpuid4_leaf_ecx {
  109. struct {
  110. unsigned int number_of_sets:32;
  111. } split;
  112. u32 full;
  113. };
  114. struct _cpuid4_info {
  115. union _cpuid4_leaf_eax eax;
  116. union _cpuid4_leaf_ebx ebx;
  117. union _cpuid4_leaf_ecx ecx;
  118. unsigned long size;
  119. cpumask_t shared_cpu_map;
  120. };
  121. static unsigned short num_cache_leaves;
  122. static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
  123. {
  124. unsigned int eax, ebx, ecx, edx;
  125. union _cpuid4_leaf_eax cache_eax;
  126. cpuid_count(4, index, &eax, &ebx, &ecx, &edx);
  127. cache_eax.full = eax;
  128. if (cache_eax.split.type == CACHE_TYPE_NULL)
  129. return -EIO; /* better error ? */
  130. this_leaf->eax.full = eax;
  131. this_leaf->ebx.full = ebx;
  132. this_leaf->ecx.full = ecx;
  133. this_leaf->size = (this_leaf->ecx.split.number_of_sets + 1) *
  134. (this_leaf->ebx.split.coherency_line_size + 1) *
  135. (this_leaf->ebx.split.physical_line_partition + 1) *
  136. (this_leaf->ebx.split.ways_of_associativity + 1);
  137. return 0;
  138. }
  139. static int __init find_num_cache_leaves(void)
  140. {
  141. unsigned int eax, ebx, ecx, edx;
  142. union _cpuid4_leaf_eax cache_eax;
  143. int i = -1;
  144. do {
  145. ++i;
  146. /* Do cpuid(4) loop to find out num_cache_leaves */
  147. cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
  148. cache_eax.full = eax;
  149. } while (cache_eax.split.type != CACHE_TYPE_NULL);
  150. return i;
  151. }
  152. unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
  153. {
  154. unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
  155. unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
  156. unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
  157. if (c->cpuid_level > 4) {
  158. static int is_initialized;
  159. if (is_initialized == 0) {
  160. /* Init num_cache_leaves from boot CPU */
  161. num_cache_leaves = find_num_cache_leaves();
  162. is_initialized++;
  163. }
  164. /*
  165. * Whenever possible use cpuid(4), deterministic cache
  166. * parameters cpuid leaf to find the cache details
  167. */
  168. for (i = 0; i < num_cache_leaves; i++) {
  169. struct _cpuid4_info this_leaf;
  170. int retval;
  171. retval = cpuid4_cache_lookup(i, &this_leaf);
  172. if (retval >= 0) {
  173. switch(this_leaf.eax.split.level) {
  174. case 1:
  175. if (this_leaf.eax.split.type ==
  176. CACHE_TYPE_DATA)
  177. new_l1d = this_leaf.size/1024;
  178. else if (this_leaf.eax.split.type ==
  179. CACHE_TYPE_INST)
  180. new_l1i = this_leaf.size/1024;
  181. break;
  182. case 2:
  183. new_l2 = this_leaf.size/1024;
  184. break;
  185. case 3:
  186. new_l3 = this_leaf.size/1024;
  187. break;
  188. default:
  189. break;
  190. }
  191. }
  192. }
  193. }
  194. if (c->cpuid_level > 1) {
  195. /* supports eax=2 call */
  196. int i, j, n;
  197. int regs[4];
  198. unsigned char *dp = (unsigned char *)regs;
  199. /* Number of times to iterate */
  200. n = cpuid_eax(2) & 0xFF;
  201. for ( i = 0 ; i < n ; i++ ) {
  202. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  203. /* If bit 31 is set, this is an unknown format */
  204. for ( j = 0 ; j < 3 ; j++ ) {
  205. if ( regs[j] < 0 ) regs[j] = 0;
  206. }
  207. /* Byte 0 is level count, not a descriptor */
  208. for ( j = 1 ; j < 16 ; j++ ) {
  209. unsigned char des = dp[j];
  210. unsigned char k = 0;
  211. /* look up this descriptor in the table */
  212. while (cache_table[k].descriptor != 0)
  213. {
  214. if (cache_table[k].descriptor == des) {
  215. switch (cache_table[k].cache_type) {
  216. case LVL_1_INST:
  217. l1i += cache_table[k].size;
  218. break;
  219. case LVL_1_DATA:
  220. l1d += cache_table[k].size;
  221. break;
  222. case LVL_2:
  223. l2 += cache_table[k].size;
  224. break;
  225. case LVL_3:
  226. l3 += cache_table[k].size;
  227. break;
  228. case LVL_TRACE:
  229. trace += cache_table[k].size;
  230. break;
  231. }
  232. break;
  233. }
  234. k++;
  235. }
  236. }
  237. }
  238. if (new_l1d)
  239. l1d = new_l1d;
  240. if (new_l1i)
  241. l1i = new_l1i;
  242. if (new_l2)
  243. l2 = new_l2;
  244. if (new_l3)
  245. l3 = new_l3;
  246. if ( trace )
  247. printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
  248. else if ( l1i )
  249. printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
  250. if ( l1d )
  251. printk(", L1 D cache: %dK\n", l1d);
  252. else
  253. printk("\n");
  254. if ( l2 )
  255. printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
  256. if ( l3 )
  257. printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
  258. c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
  259. }
  260. return l2;
  261. }
  262. /* pointer to _cpuid4_info array (for each cache leaf) */
  263. static struct _cpuid4_info *cpuid4_info[NR_CPUS];
  264. #define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
  265. #ifdef CONFIG_SMP
  266. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  267. {
  268. struct _cpuid4_info *this_leaf, *sibling_leaf;
  269. unsigned long num_threads_sharing;
  270. int index_msb, i;
  271. struct cpuinfo_x86 *c = cpu_data;
  272. this_leaf = CPUID4_INFO_IDX(cpu, index);
  273. num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
  274. if (num_threads_sharing == 1)
  275. cpu_set(cpu, this_leaf->shared_cpu_map);
  276. else {
  277. index_msb = get_count_order(num_threads_sharing);
  278. for_each_online_cpu(i) {
  279. if (c[i].apicid >> index_msb ==
  280. c[cpu].apicid >> index_msb) {
  281. cpu_set(i, this_leaf->shared_cpu_map);
  282. if (i != cpu && cpuid4_info[i]) {
  283. sibling_leaf = CPUID4_INFO_IDX(i, index);
  284. cpu_set(cpu, sibling_leaf->shared_cpu_map);
  285. }
  286. }
  287. }
  288. }
  289. }
  290. static void __devinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  291. {
  292. struct _cpuid4_info *this_leaf, *sibling_leaf;
  293. int sibling;
  294. this_leaf = CPUID4_INFO_IDX(cpu, index);
  295. for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) {
  296. sibling_leaf = CPUID4_INFO_IDX(sibling, index);
  297. cpu_clear(cpu, sibling_leaf->shared_cpu_map);
  298. }
  299. }
  300. #else
  301. static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
  302. static void __init cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
  303. #endif
  304. static void free_cache_attributes(unsigned int cpu)
  305. {
  306. kfree(cpuid4_info[cpu]);
  307. cpuid4_info[cpu] = NULL;
  308. }
  309. static int __cpuinit detect_cache_attributes(unsigned int cpu)
  310. {
  311. struct _cpuid4_info *this_leaf;
  312. unsigned long j;
  313. int retval;
  314. cpumask_t oldmask;
  315. if (num_cache_leaves == 0)
  316. return -ENOENT;
  317. cpuid4_info[cpu] = kmalloc(
  318. sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
  319. if (unlikely(cpuid4_info[cpu] == NULL))
  320. return -ENOMEM;
  321. memset(cpuid4_info[cpu], 0,
  322. sizeof(struct _cpuid4_info) * num_cache_leaves);
  323. oldmask = current->cpus_allowed;
  324. retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
  325. if (retval)
  326. goto out;
  327. /* Do cpuid and store the results */
  328. retval = 0;
  329. for (j = 0; j < num_cache_leaves; j++) {
  330. this_leaf = CPUID4_INFO_IDX(cpu, j);
  331. retval = cpuid4_cache_lookup(j, this_leaf);
  332. if (unlikely(retval < 0))
  333. break;
  334. cache_shared_cpu_map_setup(cpu, j);
  335. }
  336. set_cpus_allowed(current, oldmask);
  337. out:
  338. if (retval)
  339. free_cache_attributes(cpu);
  340. return retval;
  341. }
  342. #ifdef CONFIG_SYSFS
  343. #include <linux/kobject.h>
  344. #include <linux/sysfs.h>
  345. extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
  346. /* pointer to kobject for cpuX/cache */
  347. static struct kobject * cache_kobject[NR_CPUS];
  348. struct _index_kobject {
  349. struct kobject kobj;
  350. unsigned int cpu;
  351. unsigned short index;
  352. };
  353. /* pointer to array of kobjects for cpuX/cache/indexY */
  354. static struct _index_kobject *index_kobject[NR_CPUS];
  355. #define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
  356. #define show_one_plus(file_name, object, val) \
  357. static ssize_t show_##file_name \
  358. (struct _cpuid4_info *this_leaf, char *buf) \
  359. { \
  360. return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
  361. }
  362. show_one_plus(level, eax.split.level, 0);
  363. show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
  364. show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
  365. show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
  366. show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
  367. static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
  368. {
  369. return sprintf (buf, "%luK\n", this_leaf->size / 1024);
  370. }
  371. static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
  372. {
  373. char mask_str[NR_CPUS];
  374. cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
  375. return sprintf(buf, "%s\n", mask_str);
  376. }
  377. static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
  378. switch(this_leaf->eax.split.type) {
  379. case CACHE_TYPE_DATA:
  380. return sprintf(buf, "Data\n");
  381. break;
  382. case CACHE_TYPE_INST:
  383. return sprintf(buf, "Instruction\n");
  384. break;
  385. case CACHE_TYPE_UNIFIED:
  386. return sprintf(buf, "Unified\n");
  387. break;
  388. default:
  389. return sprintf(buf, "Unknown\n");
  390. break;
  391. }
  392. }
  393. struct _cache_attr {
  394. struct attribute attr;
  395. ssize_t (*show)(struct _cpuid4_info *, char *);
  396. ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
  397. };
  398. #define define_one_ro(_name) \
  399. static struct _cache_attr _name = \
  400. __ATTR(_name, 0444, show_##_name, NULL)
  401. define_one_ro(level);
  402. define_one_ro(type);
  403. define_one_ro(coherency_line_size);
  404. define_one_ro(physical_line_partition);
  405. define_one_ro(ways_of_associativity);
  406. define_one_ro(number_of_sets);
  407. define_one_ro(size);
  408. define_one_ro(shared_cpu_map);
  409. static struct attribute * default_attrs[] = {
  410. &type.attr,
  411. &level.attr,
  412. &coherency_line_size.attr,
  413. &physical_line_partition.attr,
  414. &ways_of_associativity.attr,
  415. &number_of_sets.attr,
  416. &size.attr,
  417. &shared_cpu_map.attr,
  418. NULL
  419. };
  420. #define to_object(k) container_of(k, struct _index_kobject, kobj)
  421. #define to_attr(a) container_of(a, struct _cache_attr, attr)
  422. static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
  423. {
  424. struct _cache_attr *fattr = to_attr(attr);
  425. struct _index_kobject *this_leaf = to_object(kobj);
  426. ssize_t ret;
  427. ret = fattr->show ?
  428. fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  429. buf) :
  430. 0;
  431. return ret;
  432. }
  433. static ssize_t store(struct kobject * kobj, struct attribute * attr,
  434. const char * buf, size_t count)
  435. {
  436. return 0;
  437. }
  438. static struct sysfs_ops sysfs_ops = {
  439. .show = show,
  440. .store = store,
  441. };
  442. static struct kobj_type ktype_cache = {
  443. .sysfs_ops = &sysfs_ops,
  444. .default_attrs = default_attrs,
  445. };
  446. static struct kobj_type ktype_percpu_entry = {
  447. .sysfs_ops = &sysfs_ops,
  448. };
  449. static void cpuid4_cache_sysfs_exit(unsigned int cpu)
  450. {
  451. kfree(cache_kobject[cpu]);
  452. kfree(index_kobject[cpu]);
  453. cache_kobject[cpu] = NULL;
  454. index_kobject[cpu] = NULL;
  455. free_cache_attributes(cpu);
  456. }
  457. static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
  458. {
  459. if (num_cache_leaves == 0)
  460. return -ENOENT;
  461. detect_cache_attributes(cpu);
  462. if (cpuid4_info[cpu] == NULL)
  463. return -ENOENT;
  464. /* Allocate all required memory */
  465. cache_kobject[cpu] = kmalloc(sizeof(struct kobject), GFP_KERNEL);
  466. if (unlikely(cache_kobject[cpu] == NULL))
  467. goto err_out;
  468. memset(cache_kobject[cpu], 0, sizeof(struct kobject));
  469. index_kobject[cpu] = kmalloc(
  470. sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
  471. if (unlikely(index_kobject[cpu] == NULL))
  472. goto err_out;
  473. memset(index_kobject[cpu], 0,
  474. sizeof(struct _index_kobject) * num_cache_leaves);
  475. return 0;
  476. err_out:
  477. cpuid4_cache_sysfs_exit(cpu);
  478. return -ENOMEM;
  479. }
  480. /* Add/Remove cache interface for CPU device */
  481. static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
  482. {
  483. unsigned int cpu = sys_dev->id;
  484. unsigned long i, j;
  485. struct _index_kobject *this_object;
  486. int retval = 0;
  487. retval = cpuid4_cache_sysfs_init(cpu);
  488. if (unlikely(retval < 0))
  489. return retval;
  490. cache_kobject[cpu]->parent = &sys_dev->kobj;
  491. kobject_set_name(cache_kobject[cpu], "%s", "cache");
  492. cache_kobject[cpu]->ktype = &ktype_percpu_entry;
  493. retval = kobject_register(cache_kobject[cpu]);
  494. for (i = 0; i < num_cache_leaves; i++) {
  495. this_object = INDEX_KOBJECT_PTR(cpu,i);
  496. this_object->cpu = cpu;
  497. this_object->index = i;
  498. this_object->kobj.parent = cache_kobject[cpu];
  499. kobject_set_name(&(this_object->kobj), "index%1lu", i);
  500. this_object->kobj.ktype = &ktype_cache;
  501. retval = kobject_register(&(this_object->kobj));
  502. if (unlikely(retval)) {
  503. for (j = 0; j < i; j++) {
  504. kobject_unregister(
  505. &(INDEX_KOBJECT_PTR(cpu,j)->kobj));
  506. }
  507. kobject_unregister(cache_kobject[cpu]);
  508. cpuid4_cache_sysfs_exit(cpu);
  509. break;
  510. }
  511. }
  512. return retval;
  513. }
  514. static void __cpuexit cache_remove_dev(struct sys_device * sys_dev)
  515. {
  516. unsigned int cpu = sys_dev->id;
  517. unsigned long i;
  518. for (i = 0; i < num_cache_leaves; i++) {
  519. cache_remove_shared_cpu_map(cpu, i);
  520. kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
  521. }
  522. kobject_unregister(cache_kobject[cpu]);
  523. cpuid4_cache_sysfs_exit(cpu);
  524. return;
  525. }
  526. static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
  527. unsigned long action, void *hcpu)
  528. {
  529. unsigned int cpu = (unsigned long)hcpu;
  530. struct sys_device *sys_dev;
  531. sys_dev = get_cpu_sysdev(cpu);
  532. switch (action) {
  533. case CPU_ONLINE:
  534. cache_add_dev(sys_dev);
  535. break;
  536. case CPU_DEAD:
  537. cache_remove_dev(sys_dev);
  538. break;
  539. }
  540. return NOTIFY_OK;
  541. }
  542. static struct notifier_block cacheinfo_cpu_notifier =
  543. {
  544. .notifier_call = cacheinfo_cpu_callback,
  545. };
  546. static int __cpuinit cache_sysfs_init(void)
  547. {
  548. int i;
  549. if (num_cache_leaves == 0)
  550. return 0;
  551. register_cpu_notifier(&cacheinfo_cpu_notifier);
  552. for_each_online_cpu(i) {
  553. cacheinfo_cpu_callback(&cacheinfo_cpu_notifier, CPU_ONLINE,
  554. (void *)(long)i);
  555. }
  556. return 0;
  557. }
  558. device_initcall(cache_sysfs_init);
  559. #endif