adma.c 126 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678
  1. /*
  2. * Copyright (C) 2006-2009 DENX Software Engineering.
  3. *
  4. * Author: Yuri Tikhonov <yur@emcraft.com>
  5. *
  6. * Further porting to arch/powerpc by
  7. * Anatolij Gustschin <agust@denx.de>
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the Free
  11. * Software Foundation; either version 2 of the License, or (at your option)
  12. * any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program; if not, write to the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22. *
  23. * The full GNU General Public License is included in this distribution in the
  24. * file called COPYING.
  25. */
  26. /*
  27. * This driver supports the asynchrounous DMA copy and RAID engines available
  28. * on the AMCC PPC440SPe Processors.
  29. * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  30. * ADMA driver written by D.Williams.
  31. */
  32. #include <linux/init.h>
  33. #include <linux/module.h>
  34. #include <linux/async_tx.h>
  35. #include <linux/delay.h>
  36. #include <linux/dma-mapping.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/slab.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/proc_fs.h>
  42. #include <linux/of.h>
  43. #include <linux/of_address.h>
  44. #include <linux/of_irq.h>
  45. #include <linux/of_platform.h>
  46. #include <asm/dcr.h>
  47. #include <asm/dcr-regs.h>
  48. #include "adma.h"
  49. #include "../dmaengine.h"
  50. enum ppc_adma_init_code {
  51. PPC_ADMA_INIT_OK = 0,
  52. PPC_ADMA_INIT_MEMRES,
  53. PPC_ADMA_INIT_MEMREG,
  54. PPC_ADMA_INIT_ALLOC,
  55. PPC_ADMA_INIT_COHERENT,
  56. PPC_ADMA_INIT_CHANNEL,
  57. PPC_ADMA_INIT_IRQ1,
  58. PPC_ADMA_INIT_IRQ2,
  59. PPC_ADMA_INIT_REGISTER
  60. };
  61. static char *ppc_adma_errors[] = {
  62. [PPC_ADMA_INIT_OK] = "ok",
  63. [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
  64. [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
  65. [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
  66. "structure",
  67. [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
  68. "hardware descriptors",
  69. [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
  70. [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
  71. [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
  72. [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
  73. };
  74. static enum ppc_adma_init_code
  75. ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
  76. struct ppc_dma_chan_ref {
  77. struct dma_chan *chan;
  78. struct list_head node;
  79. };
  80. /* The list of channels exported by ppc440spe ADMA */
  81. struct list_head
  82. ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
  83. /* This flag is set when want to refetch the xor chain in the interrupt
  84. * handler
  85. */
  86. static u32 do_xor_refetch;
  87. /* Pointer to DMA0, DMA1 CP/CS FIFO */
  88. static void *ppc440spe_dma_fifo_buf;
  89. /* Pointers to last submitted to DMA0, DMA1 CDBs */
  90. static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
  91. static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
  92. /* Pointer to last linked and submitted xor CB */
  93. static struct ppc440spe_adma_desc_slot *xor_last_linked;
  94. static struct ppc440spe_adma_desc_slot *xor_last_submit;
  95. /* This array is used in data-check operations for storing a pattern */
  96. static char ppc440spe_qword[16];
  97. static atomic_t ppc440spe_adma_err_irq_ref;
  98. static dcr_host_t ppc440spe_mq_dcr_host;
  99. static unsigned int ppc440spe_mq_dcr_len;
  100. /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
  101. * the block size in transactions, then we do not allow to activate more than
  102. * only one RXOR transactions simultaneously. So use this var to store
  103. * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
  104. * set) or not (PPC440SPE_RXOR_RUN is clear).
  105. */
  106. static unsigned long ppc440spe_rxor_state;
  107. /* These are used in enable & check routines
  108. */
  109. static u32 ppc440spe_r6_enabled;
  110. static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
  111. static struct completion ppc440spe_r6_test_comp;
  112. static int ppc440spe_adma_dma2rxor_prep_src(
  113. struct ppc440spe_adma_desc_slot *desc,
  114. struct ppc440spe_rxor *cursor, int index,
  115. int src_cnt, u32 addr);
  116. static void ppc440spe_adma_dma2rxor_set_src(
  117. struct ppc440spe_adma_desc_slot *desc,
  118. int index, dma_addr_t addr);
  119. static void ppc440spe_adma_dma2rxor_set_mult(
  120. struct ppc440spe_adma_desc_slot *desc,
  121. int index, u8 mult);
  122. #ifdef ADMA_LL_DEBUG
  123. #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
  124. #else
  125. #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
  126. #endif
  127. static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
  128. {
  129. struct dma_cdb *cdb;
  130. struct xor_cb *cb;
  131. int i;
  132. switch (chan->device->id) {
  133. case 0:
  134. case 1:
  135. cdb = block;
  136. pr_debug("CDB at %p [%d]:\n"
  137. "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
  138. "\t sg1u 0x%08x sg1l 0x%08x\n"
  139. "\t sg2u 0x%08x sg2l 0x%08x\n"
  140. "\t sg3u 0x%08x sg3l 0x%08x\n",
  141. cdb, chan->device->id,
  142. cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
  143. le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
  144. le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
  145. le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
  146. );
  147. break;
  148. case 2:
  149. cb = block;
  150. pr_debug("CB at %p [%d]:\n"
  151. "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
  152. "\t cbtah 0x%08x cbtal 0x%08x\n"
  153. "\t cblah 0x%08x cblal 0x%08x\n",
  154. cb, chan->device->id,
  155. cb->cbc, cb->cbbc, cb->cbs,
  156. cb->cbtah, cb->cbtal,
  157. cb->cblah, cb->cblal);
  158. for (i = 0; i < 16; i++) {
  159. if (i && !cb->ops[i].h && !cb->ops[i].l)
  160. continue;
  161. pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
  162. i, cb->ops[i].h, cb->ops[i].l);
  163. }
  164. break;
  165. }
  166. }
  167. static void print_cb_list(struct ppc440spe_adma_chan *chan,
  168. struct ppc440spe_adma_desc_slot *iter)
  169. {
  170. for (; iter; iter = iter->hw_next)
  171. print_cb(chan, iter->hw_desc);
  172. }
  173. static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
  174. unsigned int src_cnt)
  175. {
  176. int i;
  177. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  178. for (i = 0; i < src_cnt; i++)
  179. pr_debug("\t0x%016llx ", src[i]);
  180. pr_debug("dst:\n\t0x%016llx\n", dst);
  181. }
  182. static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
  183. unsigned int src_cnt)
  184. {
  185. int i;
  186. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  187. for (i = 0; i < src_cnt; i++)
  188. pr_debug("\t0x%016llx ", src[i]);
  189. pr_debug("dst: ");
  190. for (i = 0; i < 2; i++)
  191. pr_debug("\t0x%016llx ", dst[i]);
  192. }
  193. static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
  194. unsigned int src_cnt,
  195. const unsigned char *scf)
  196. {
  197. int i;
  198. pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
  199. if (scf) {
  200. for (i = 0; i < src_cnt; i++)
  201. pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
  202. } else {
  203. for (i = 0; i < src_cnt; i++)
  204. pr_debug("\t0x%016llx(no) ", src[i]);
  205. }
  206. pr_debug("dst: ");
  207. for (i = 0; i < 2; i++)
  208. pr_debug("\t0x%016llx ", src[src_cnt + i]);
  209. }
  210. /******************************************************************************
  211. * Command (Descriptor) Blocks low-level routines
  212. ******************************************************************************/
  213. /**
  214. * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
  215. * pseudo operation
  216. */
  217. static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
  218. struct ppc440spe_adma_chan *chan)
  219. {
  220. struct xor_cb *p;
  221. switch (chan->device->id) {
  222. case PPC440SPE_XOR_ID:
  223. p = desc->hw_desc;
  224. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  225. /* NOP with Command Block Complete Enable */
  226. p->cbc = XOR_CBCR_CBCE_BIT;
  227. break;
  228. case PPC440SPE_DMA0_ID:
  229. case PPC440SPE_DMA1_ID:
  230. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  231. /* NOP with interrupt */
  232. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  233. break;
  234. default:
  235. printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
  236. __func__);
  237. break;
  238. }
  239. }
  240. /**
  241. * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
  242. * pseudo operation
  243. */
  244. static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
  245. {
  246. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  247. desc->hw_next = NULL;
  248. desc->src_cnt = 0;
  249. desc->dst_cnt = 1;
  250. }
  251. /**
  252. * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
  253. */
  254. static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
  255. int src_cnt, unsigned long flags)
  256. {
  257. struct xor_cb *hw_desc = desc->hw_desc;
  258. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  259. desc->hw_next = NULL;
  260. desc->src_cnt = src_cnt;
  261. desc->dst_cnt = 1;
  262. hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
  263. if (flags & DMA_PREP_INTERRUPT)
  264. /* Enable interrupt on completion */
  265. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  266. }
  267. /**
  268. * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
  269. * operation in DMA2 controller
  270. */
  271. static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
  272. int dst_cnt, int src_cnt, unsigned long flags)
  273. {
  274. struct xor_cb *hw_desc = desc->hw_desc;
  275. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  276. desc->hw_next = NULL;
  277. desc->src_cnt = src_cnt;
  278. desc->dst_cnt = dst_cnt;
  279. memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
  280. desc->descs_per_op = 0;
  281. hw_desc->cbc = XOR_CBCR_TGT_BIT;
  282. if (flags & DMA_PREP_INTERRUPT)
  283. /* Enable interrupt on completion */
  284. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  285. }
  286. #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
  287. #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
  288. #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
  289. /**
  290. * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
  291. * with DMA0/1
  292. */
  293. static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
  294. int dst_cnt, int src_cnt, unsigned long flags,
  295. unsigned long op)
  296. {
  297. struct dma_cdb *hw_desc;
  298. struct ppc440spe_adma_desc_slot *iter;
  299. u8 dopc;
  300. /* Common initialization of a PQ descriptors chain */
  301. set_bits(op, &desc->flags);
  302. desc->src_cnt = src_cnt;
  303. desc->dst_cnt = dst_cnt;
  304. /* WXOR MULTICAST if both P and Q are being computed
  305. * MV_SG1_SG2 if Q only
  306. */
  307. dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
  308. DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
  309. list_for_each_entry(iter, &desc->group_list, chain_node) {
  310. hw_desc = iter->hw_desc;
  311. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  312. if (likely(!list_is_last(&iter->chain_node,
  313. &desc->group_list))) {
  314. /* set 'next' pointer */
  315. iter->hw_next = list_entry(iter->chain_node.next,
  316. struct ppc440spe_adma_desc_slot, chain_node);
  317. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  318. } else {
  319. /* this is the last descriptor.
  320. * this slot will be pasted from ADMA level
  321. * each time it wants to configure parameters
  322. * of the transaction (src, dst, ...)
  323. */
  324. iter->hw_next = NULL;
  325. if (flags & DMA_PREP_INTERRUPT)
  326. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  327. else
  328. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  329. }
  330. }
  331. /* Set OPS depending on WXOR/RXOR type of operation */
  332. if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
  333. /* This is a WXOR only chain:
  334. * - first descriptors are for zeroing destinations
  335. * if PPC440SPE_ZERO_P/Q set;
  336. * - descriptors remained are for GF-XOR operations.
  337. */
  338. iter = list_first_entry(&desc->group_list,
  339. struct ppc440spe_adma_desc_slot,
  340. chain_node);
  341. if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
  342. hw_desc = iter->hw_desc;
  343. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  344. iter = list_first_entry(&iter->chain_node,
  345. struct ppc440spe_adma_desc_slot,
  346. chain_node);
  347. }
  348. if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
  349. hw_desc = iter->hw_desc;
  350. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  351. iter = list_first_entry(&iter->chain_node,
  352. struct ppc440spe_adma_desc_slot,
  353. chain_node);
  354. }
  355. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  356. hw_desc = iter->hw_desc;
  357. hw_desc->opc = dopc;
  358. }
  359. } else {
  360. /* This is either RXOR-only or mixed RXOR/WXOR */
  361. /* The first 1 or 2 slots in chain are always RXOR,
  362. * if need to calculate P & Q, then there are two
  363. * RXOR slots; if only P or only Q, then there is one
  364. */
  365. iter = list_first_entry(&desc->group_list,
  366. struct ppc440spe_adma_desc_slot,
  367. chain_node);
  368. hw_desc = iter->hw_desc;
  369. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  370. if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
  371. iter = list_first_entry(&iter->chain_node,
  372. struct ppc440spe_adma_desc_slot,
  373. chain_node);
  374. hw_desc = iter->hw_desc;
  375. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  376. }
  377. /* The remaining descs (if any) are WXORs */
  378. if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
  379. iter = list_first_entry(&iter->chain_node,
  380. struct ppc440spe_adma_desc_slot,
  381. chain_node);
  382. list_for_each_entry_from(iter, &desc->group_list,
  383. chain_node) {
  384. hw_desc = iter->hw_desc;
  385. hw_desc->opc = dopc;
  386. }
  387. }
  388. }
  389. }
  390. /**
  391. * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
  392. * for PQ_ZERO_SUM operation
  393. */
  394. static void ppc440spe_desc_init_dma01pqzero_sum(
  395. struct ppc440spe_adma_desc_slot *desc,
  396. int dst_cnt, int src_cnt)
  397. {
  398. struct dma_cdb *hw_desc;
  399. struct ppc440spe_adma_desc_slot *iter;
  400. int i = 0;
  401. u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
  402. DMA_CDB_OPC_MV_SG1_SG2;
  403. /*
  404. * Initialize starting from 2nd or 3rd descriptor dependent
  405. * on dst_cnt. First one or two slots are for cloning P
  406. * and/or Q to chan->pdest and/or chan->qdest as we have
  407. * to preserve original P/Q.
  408. */
  409. iter = list_first_entry(&desc->group_list,
  410. struct ppc440spe_adma_desc_slot, chain_node);
  411. iter = list_entry(iter->chain_node.next,
  412. struct ppc440spe_adma_desc_slot, chain_node);
  413. if (dst_cnt > 1) {
  414. iter = list_entry(iter->chain_node.next,
  415. struct ppc440spe_adma_desc_slot, chain_node);
  416. }
  417. /* initialize each source descriptor in chain */
  418. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  419. hw_desc = iter->hw_desc;
  420. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  421. iter->src_cnt = 0;
  422. iter->dst_cnt = 0;
  423. /* This is a ZERO_SUM operation:
  424. * - <src_cnt> descriptors starting from 2nd or 3rd
  425. * descriptor are for GF-XOR operations;
  426. * - remaining <dst_cnt> descriptors are for checking the result
  427. */
  428. if (i++ < src_cnt)
  429. /* MV_SG1_SG2 if only Q is being verified
  430. * MULTICAST if both P and Q are being verified
  431. */
  432. hw_desc->opc = dopc;
  433. else
  434. /* DMA_CDB_OPC_DCHECK128 operation */
  435. hw_desc->opc = DMA_CDB_OPC_DCHECK128;
  436. if (likely(!list_is_last(&iter->chain_node,
  437. &desc->group_list))) {
  438. /* set 'next' pointer */
  439. iter->hw_next = list_entry(iter->chain_node.next,
  440. struct ppc440spe_adma_desc_slot,
  441. chain_node);
  442. } else {
  443. /* this is the last descriptor.
  444. * this slot will be pasted from ADMA level
  445. * each time it wants to configure parameters
  446. * of the transaction (src, dst, ...)
  447. */
  448. iter->hw_next = NULL;
  449. /* always enable interrupt generation since we get
  450. * the status of pqzero from the handler
  451. */
  452. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  453. }
  454. }
  455. desc->src_cnt = src_cnt;
  456. desc->dst_cnt = dst_cnt;
  457. }
  458. /**
  459. * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
  460. */
  461. static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
  462. unsigned long flags)
  463. {
  464. struct dma_cdb *hw_desc = desc->hw_desc;
  465. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  466. desc->hw_next = NULL;
  467. desc->src_cnt = 1;
  468. desc->dst_cnt = 1;
  469. if (flags & DMA_PREP_INTERRUPT)
  470. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  471. else
  472. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  473. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  474. }
  475. /**
  476. * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
  477. */
  478. static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
  479. int value, unsigned long flags)
  480. {
  481. struct dma_cdb *hw_desc = desc->hw_desc;
  482. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  483. desc->hw_next = NULL;
  484. desc->src_cnt = 1;
  485. desc->dst_cnt = 1;
  486. if (flags & DMA_PREP_INTERRUPT)
  487. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  488. else
  489. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  490. hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
  491. hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
  492. hw_desc->opc = DMA_CDB_OPC_DFILL128;
  493. }
  494. /**
  495. * ppc440spe_desc_set_src_addr - set source address into the descriptor
  496. */
  497. static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
  498. struct ppc440spe_adma_chan *chan,
  499. int src_idx, dma_addr_t addrh,
  500. dma_addr_t addrl)
  501. {
  502. struct dma_cdb *dma_hw_desc;
  503. struct xor_cb *xor_hw_desc;
  504. phys_addr_t addr64, tmplow, tmphi;
  505. switch (chan->device->id) {
  506. case PPC440SPE_DMA0_ID:
  507. case PPC440SPE_DMA1_ID:
  508. if (!addrh) {
  509. addr64 = addrl;
  510. tmphi = (addr64 >> 32);
  511. tmplow = (addr64 & 0xFFFFFFFF);
  512. } else {
  513. tmphi = addrh;
  514. tmplow = addrl;
  515. }
  516. dma_hw_desc = desc->hw_desc;
  517. dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
  518. dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
  519. break;
  520. case PPC440SPE_XOR_ID:
  521. xor_hw_desc = desc->hw_desc;
  522. xor_hw_desc->ops[src_idx].l = addrl;
  523. xor_hw_desc->ops[src_idx].h |= addrh;
  524. break;
  525. }
  526. }
  527. /**
  528. * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
  529. */
  530. static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
  531. struct ppc440spe_adma_chan *chan, u32 mult_index,
  532. int sg_index, unsigned char mult_value)
  533. {
  534. struct dma_cdb *dma_hw_desc;
  535. struct xor_cb *xor_hw_desc;
  536. u32 *psgu;
  537. switch (chan->device->id) {
  538. case PPC440SPE_DMA0_ID:
  539. case PPC440SPE_DMA1_ID:
  540. dma_hw_desc = desc->hw_desc;
  541. switch (sg_index) {
  542. /* for RXOR operations set multiplier
  543. * into source cued address
  544. */
  545. case DMA_CDB_SG_SRC:
  546. psgu = &dma_hw_desc->sg1u;
  547. break;
  548. /* for WXOR operations set multiplier
  549. * into destination cued address(es)
  550. */
  551. case DMA_CDB_SG_DST1:
  552. psgu = &dma_hw_desc->sg2u;
  553. break;
  554. case DMA_CDB_SG_DST2:
  555. psgu = &dma_hw_desc->sg3u;
  556. break;
  557. default:
  558. BUG();
  559. }
  560. *psgu |= cpu_to_le32(mult_value << mult_index);
  561. break;
  562. case PPC440SPE_XOR_ID:
  563. xor_hw_desc = desc->hw_desc;
  564. break;
  565. default:
  566. BUG();
  567. }
  568. }
  569. /**
  570. * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
  571. */
  572. static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
  573. struct ppc440spe_adma_chan *chan,
  574. dma_addr_t addrh, dma_addr_t addrl,
  575. u32 dst_idx)
  576. {
  577. struct dma_cdb *dma_hw_desc;
  578. struct xor_cb *xor_hw_desc;
  579. phys_addr_t addr64, tmphi, tmplow;
  580. u32 *psgu, *psgl;
  581. switch (chan->device->id) {
  582. case PPC440SPE_DMA0_ID:
  583. case PPC440SPE_DMA1_ID:
  584. if (!addrh) {
  585. addr64 = addrl;
  586. tmphi = (addr64 >> 32);
  587. tmplow = (addr64 & 0xFFFFFFFF);
  588. } else {
  589. tmphi = addrh;
  590. tmplow = addrl;
  591. }
  592. dma_hw_desc = desc->hw_desc;
  593. psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
  594. psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
  595. *psgl = cpu_to_le32((u32)tmplow);
  596. *psgu |= cpu_to_le32((u32)tmphi);
  597. break;
  598. case PPC440SPE_XOR_ID:
  599. xor_hw_desc = desc->hw_desc;
  600. xor_hw_desc->cbtal = addrl;
  601. xor_hw_desc->cbtah |= addrh;
  602. break;
  603. }
  604. }
  605. /**
  606. * ppc440spe_desc_set_byte_count - set number of data bytes involved
  607. * into the operation
  608. */
  609. static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
  610. struct ppc440spe_adma_chan *chan,
  611. u32 byte_count)
  612. {
  613. struct dma_cdb *dma_hw_desc;
  614. struct xor_cb *xor_hw_desc;
  615. switch (chan->device->id) {
  616. case PPC440SPE_DMA0_ID:
  617. case PPC440SPE_DMA1_ID:
  618. dma_hw_desc = desc->hw_desc;
  619. dma_hw_desc->cnt = cpu_to_le32(byte_count);
  620. break;
  621. case PPC440SPE_XOR_ID:
  622. xor_hw_desc = desc->hw_desc;
  623. xor_hw_desc->cbbc = byte_count;
  624. break;
  625. }
  626. }
  627. /**
  628. * ppc440spe_desc_set_rxor_block_size - set RXOR block size
  629. */
  630. static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
  631. {
  632. /* assume that byte_count is aligned on the 512-boundary;
  633. * thus write it directly to the register (bits 23:31 are
  634. * reserved there).
  635. */
  636. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
  637. }
  638. /**
  639. * ppc440spe_desc_set_dcheck - set CHECK pattern
  640. */
  641. static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
  642. struct ppc440spe_adma_chan *chan, u8 *qword)
  643. {
  644. struct dma_cdb *dma_hw_desc;
  645. switch (chan->device->id) {
  646. case PPC440SPE_DMA0_ID:
  647. case PPC440SPE_DMA1_ID:
  648. dma_hw_desc = desc->hw_desc;
  649. iowrite32(qword[0], &dma_hw_desc->sg3l);
  650. iowrite32(qword[4], &dma_hw_desc->sg3u);
  651. iowrite32(qword[8], &dma_hw_desc->sg2l);
  652. iowrite32(qword[12], &dma_hw_desc->sg2u);
  653. break;
  654. default:
  655. BUG();
  656. }
  657. }
  658. /**
  659. * ppc440spe_xor_set_link - set link address in xor CB
  660. */
  661. static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
  662. struct ppc440spe_adma_desc_slot *next_desc)
  663. {
  664. struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
  665. if (unlikely(!next_desc || !(next_desc->phys))) {
  666. printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
  667. __func__, next_desc,
  668. next_desc ? next_desc->phys : 0);
  669. BUG();
  670. }
  671. xor_hw_desc->cbs = 0;
  672. xor_hw_desc->cblal = next_desc->phys;
  673. xor_hw_desc->cblah = 0;
  674. xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
  675. }
  676. /**
  677. * ppc440spe_desc_set_link - set the address of descriptor following this
  678. * descriptor in chain
  679. */
  680. static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
  681. struct ppc440spe_adma_desc_slot *prev_desc,
  682. struct ppc440spe_adma_desc_slot *next_desc)
  683. {
  684. unsigned long flags;
  685. struct ppc440spe_adma_desc_slot *tail = next_desc;
  686. if (unlikely(!prev_desc || !next_desc ||
  687. (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
  688. /* If previous next is overwritten something is wrong.
  689. * though we may refetch from append to initiate list
  690. * processing; in this case - it's ok.
  691. */
  692. printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
  693. "prev->hw_next=0x%p\n", __func__, prev_desc,
  694. next_desc, prev_desc ? prev_desc->hw_next : 0);
  695. BUG();
  696. }
  697. local_irq_save(flags);
  698. /* do s/w chaining both for DMA and XOR descriptors */
  699. prev_desc->hw_next = next_desc;
  700. switch (chan->device->id) {
  701. case PPC440SPE_DMA0_ID:
  702. case PPC440SPE_DMA1_ID:
  703. break;
  704. case PPC440SPE_XOR_ID:
  705. /* bind descriptor to the chain */
  706. while (tail->hw_next)
  707. tail = tail->hw_next;
  708. xor_last_linked = tail;
  709. if (prev_desc == xor_last_submit)
  710. /* do not link to the last submitted CB */
  711. break;
  712. ppc440spe_xor_set_link(prev_desc, next_desc);
  713. break;
  714. }
  715. local_irq_restore(flags);
  716. }
  717. /**
  718. * ppc440spe_desc_get_link - get the address of the descriptor that
  719. * follows this one
  720. */
  721. static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
  722. struct ppc440spe_adma_chan *chan)
  723. {
  724. if (!desc->hw_next)
  725. return 0;
  726. return desc->hw_next->phys;
  727. }
  728. /**
  729. * ppc440spe_desc_is_aligned - check alignment
  730. */
  731. static inline int ppc440spe_desc_is_aligned(
  732. struct ppc440spe_adma_desc_slot *desc, int num_slots)
  733. {
  734. return (desc->idx & (num_slots - 1)) ? 0 : 1;
  735. }
  736. /**
  737. * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
  738. * XOR operation
  739. */
  740. static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
  741. int *slots_per_op)
  742. {
  743. int slot_cnt;
  744. /* each XOR descriptor provides up to 16 source operands */
  745. slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
  746. if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
  747. return slot_cnt;
  748. printk(KERN_ERR "%s: len %d > max %d !!\n",
  749. __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  750. BUG();
  751. return slot_cnt;
  752. }
  753. /**
  754. * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
  755. * DMA2 PQ operation
  756. */
  757. static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
  758. int src_cnt, size_t len)
  759. {
  760. signed long long order = 0;
  761. int state = 0;
  762. int addr_count = 0;
  763. int i;
  764. for (i = 1; i < src_cnt; i++) {
  765. dma_addr_t cur_addr = srcs[i];
  766. dma_addr_t old_addr = srcs[i-1];
  767. switch (state) {
  768. case 0:
  769. if (cur_addr == old_addr + len) {
  770. /* direct RXOR */
  771. order = 1;
  772. state = 1;
  773. if (i == src_cnt-1)
  774. addr_count++;
  775. } else if (old_addr == cur_addr + len) {
  776. /* reverse RXOR */
  777. order = -1;
  778. state = 1;
  779. if (i == src_cnt-1)
  780. addr_count++;
  781. } else {
  782. state = 3;
  783. }
  784. break;
  785. case 1:
  786. if (i == src_cnt-2 || (order == -1
  787. && cur_addr != old_addr - len)) {
  788. order = 0;
  789. state = 0;
  790. addr_count++;
  791. } else if (cur_addr == old_addr + len*order) {
  792. state = 2;
  793. if (i == src_cnt-1)
  794. addr_count++;
  795. } else if (cur_addr == old_addr + 2*len) {
  796. state = 2;
  797. if (i == src_cnt-1)
  798. addr_count++;
  799. } else if (cur_addr == old_addr + 3*len) {
  800. state = 2;
  801. if (i == src_cnt-1)
  802. addr_count++;
  803. } else {
  804. order = 0;
  805. state = 0;
  806. addr_count++;
  807. }
  808. break;
  809. case 2:
  810. order = 0;
  811. state = 0;
  812. addr_count++;
  813. break;
  814. }
  815. if (state == 3)
  816. break;
  817. }
  818. if (src_cnt <= 1 || (state != 1 && state != 2)) {
  819. pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
  820. __func__, src_cnt, state, addr_count, order);
  821. for (i = 0; i < src_cnt; i++)
  822. pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
  823. BUG();
  824. }
  825. return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
  826. }
  827. /******************************************************************************
  828. * ADMA channel low-level routines
  829. ******************************************************************************/
  830. static u32
  831. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
  832. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
  833. /**
  834. * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
  835. */
  836. static void ppc440spe_adma_device_clear_eot_status(
  837. struct ppc440spe_adma_chan *chan)
  838. {
  839. struct dma_regs *dma_reg;
  840. struct xor_regs *xor_reg;
  841. u8 *p = chan->device->dma_desc_pool_virt;
  842. struct dma_cdb *cdb;
  843. u32 rv, i;
  844. switch (chan->device->id) {
  845. case PPC440SPE_DMA0_ID:
  846. case PPC440SPE_DMA1_ID:
  847. /* read FIFO to ack */
  848. dma_reg = chan->device->dma_reg;
  849. while ((rv = ioread32(&dma_reg->csfpl))) {
  850. i = rv & DMA_CDB_ADDR_MSK;
  851. cdb = (struct dma_cdb *)&p[i -
  852. (u32)chan->device->dma_desc_pool];
  853. /* Clear opcode to ack. This is necessary for
  854. * ZeroSum operations only
  855. */
  856. cdb->opc = 0;
  857. if (test_bit(PPC440SPE_RXOR_RUN,
  858. &ppc440spe_rxor_state)) {
  859. /* probably this is a completed RXOR op,
  860. * get pointer to CDB using the fact that
  861. * physical and virtual addresses of CDB
  862. * in pools have the same offsets
  863. */
  864. if (le32_to_cpu(cdb->sg1u) &
  865. DMA_CUED_XOR_BASE) {
  866. /* this is a RXOR */
  867. clear_bit(PPC440SPE_RXOR_RUN,
  868. &ppc440spe_rxor_state);
  869. }
  870. }
  871. if (rv & DMA_CDB_STATUS_MSK) {
  872. /* ZeroSum check failed
  873. */
  874. struct ppc440spe_adma_desc_slot *iter;
  875. dma_addr_t phys = rv & ~DMA_CDB_MSK;
  876. /*
  877. * Update the status of corresponding
  878. * descriptor.
  879. */
  880. list_for_each_entry(iter, &chan->chain,
  881. chain_node) {
  882. if (iter->phys == phys)
  883. break;
  884. }
  885. /*
  886. * if cannot find the corresponding
  887. * slot it's a bug
  888. */
  889. BUG_ON(&iter->chain_node == &chan->chain);
  890. if (iter->xor_check_result) {
  891. if (test_bit(PPC440SPE_DESC_PCHECK,
  892. &iter->flags)) {
  893. *iter->xor_check_result |=
  894. SUM_CHECK_P_RESULT;
  895. } else
  896. if (test_bit(PPC440SPE_DESC_QCHECK,
  897. &iter->flags)) {
  898. *iter->xor_check_result |=
  899. SUM_CHECK_Q_RESULT;
  900. } else
  901. BUG();
  902. }
  903. }
  904. }
  905. rv = ioread32(&dma_reg->dsts);
  906. if (rv) {
  907. pr_err("DMA%d err status: 0x%x\n",
  908. chan->device->id, rv);
  909. /* write back to clear */
  910. iowrite32(rv, &dma_reg->dsts);
  911. }
  912. break;
  913. case PPC440SPE_XOR_ID:
  914. /* reset status bits to ack */
  915. xor_reg = chan->device->xor_reg;
  916. rv = ioread32be(&xor_reg->sr);
  917. iowrite32be(rv, &xor_reg->sr);
  918. if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
  919. if (rv & XOR_IE_RPTIE_BIT) {
  920. /* Read PLB Timeout Error.
  921. * Try to resubmit the CB
  922. */
  923. u32 val = ioread32be(&xor_reg->ccbalr);
  924. iowrite32be(val, &xor_reg->cblalr);
  925. val = ioread32be(&xor_reg->crsr);
  926. iowrite32be(val | XOR_CRSR_XAE_BIT,
  927. &xor_reg->crsr);
  928. } else
  929. pr_err("XOR ERR 0x%x status\n", rv);
  930. break;
  931. }
  932. /* if the XORcore is idle, but there are unprocessed CBs
  933. * then refetch the s/w chain here
  934. */
  935. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
  936. do_xor_refetch)
  937. ppc440spe_chan_append(chan);
  938. break;
  939. }
  940. }
  941. /**
  942. * ppc440spe_chan_is_busy - get the channel status
  943. */
  944. static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
  945. {
  946. struct dma_regs *dma_reg;
  947. struct xor_regs *xor_reg;
  948. int busy = 0;
  949. switch (chan->device->id) {
  950. case PPC440SPE_DMA0_ID:
  951. case PPC440SPE_DMA1_ID:
  952. dma_reg = chan->device->dma_reg;
  953. /* if command FIFO's head and tail pointers are equal and
  954. * status tail is the same as command, then channel is free
  955. */
  956. if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
  957. ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
  958. busy = 1;
  959. break;
  960. case PPC440SPE_XOR_ID:
  961. /* use the special status bit for the XORcore
  962. */
  963. xor_reg = chan->device->xor_reg;
  964. busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
  965. break;
  966. }
  967. return busy;
  968. }
  969. /**
  970. * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
  971. */
  972. static void ppc440spe_chan_set_first_xor_descriptor(
  973. struct ppc440spe_adma_chan *chan,
  974. struct ppc440spe_adma_desc_slot *next_desc)
  975. {
  976. struct xor_regs *xor_reg = chan->device->xor_reg;
  977. if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
  978. printk(KERN_INFO "%s: Warn: XORcore is running "
  979. "when try to set the first CDB!\n",
  980. __func__);
  981. xor_last_submit = xor_last_linked = next_desc;
  982. iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
  983. iowrite32be(next_desc->phys, &xor_reg->cblalr);
  984. iowrite32be(0, &xor_reg->cblahr);
  985. iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
  986. &xor_reg->cbcr);
  987. chan->hw_chain_inited = 1;
  988. }
  989. /**
  990. * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
  991. * called with irqs disabled
  992. */
  993. static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
  994. struct ppc440spe_adma_desc_slot *desc)
  995. {
  996. u32 pcdb;
  997. struct dma_regs *dma_reg = chan->device->dma_reg;
  998. pcdb = desc->phys;
  999. if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
  1000. pcdb |= DMA_CDB_NO_INT;
  1001. chan_last_sub[chan->device->id] = desc;
  1002. ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
  1003. iowrite32(pcdb, &dma_reg->cpfpl);
  1004. }
  1005. /**
  1006. * ppc440spe_chan_append - update the h/w chain in the channel
  1007. */
  1008. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
  1009. {
  1010. struct xor_regs *xor_reg;
  1011. struct ppc440spe_adma_desc_slot *iter;
  1012. struct xor_cb *xcb;
  1013. u32 cur_desc;
  1014. unsigned long flags;
  1015. local_irq_save(flags);
  1016. switch (chan->device->id) {
  1017. case PPC440SPE_DMA0_ID:
  1018. case PPC440SPE_DMA1_ID:
  1019. cur_desc = ppc440spe_chan_get_current_descriptor(chan);
  1020. if (likely(cur_desc)) {
  1021. iter = chan_last_sub[chan->device->id];
  1022. BUG_ON(!iter);
  1023. } else {
  1024. /* first peer */
  1025. iter = chan_first_cdb[chan->device->id];
  1026. BUG_ON(!iter);
  1027. ppc440spe_dma_put_desc(chan, iter);
  1028. chan->hw_chain_inited = 1;
  1029. }
  1030. /* is there something new to append */
  1031. if (!iter->hw_next)
  1032. break;
  1033. /* flush descriptors from the s/w queue to fifo */
  1034. list_for_each_entry_continue(iter, &chan->chain, chain_node) {
  1035. ppc440spe_dma_put_desc(chan, iter);
  1036. if (!iter->hw_next)
  1037. break;
  1038. }
  1039. break;
  1040. case PPC440SPE_XOR_ID:
  1041. /* update h/w links and refetch */
  1042. if (!xor_last_submit->hw_next)
  1043. break;
  1044. xor_reg = chan->device->xor_reg;
  1045. /* the last linked CDB has to generate an interrupt
  1046. * that we'd be able to append the next lists to h/w
  1047. * regardless of the XOR engine state at the moment of
  1048. * appending of these next lists
  1049. */
  1050. xcb = xor_last_linked->hw_desc;
  1051. xcb->cbc |= XOR_CBCR_CBCE_BIT;
  1052. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
  1053. /* XORcore is idle. Refetch now */
  1054. do_xor_refetch = 0;
  1055. ppc440spe_xor_set_link(xor_last_submit,
  1056. xor_last_submit->hw_next);
  1057. ADMA_LL_DBG(print_cb_list(chan,
  1058. xor_last_submit->hw_next));
  1059. xor_last_submit = xor_last_linked;
  1060. iowrite32be(ioread32be(&xor_reg->crsr) |
  1061. XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
  1062. &xor_reg->crsr);
  1063. } else {
  1064. /* XORcore is running. Refetch later in the handler */
  1065. do_xor_refetch = 1;
  1066. }
  1067. break;
  1068. }
  1069. local_irq_restore(flags);
  1070. }
  1071. /**
  1072. * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
  1073. */
  1074. static u32
  1075. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
  1076. {
  1077. struct dma_regs *dma_reg;
  1078. struct xor_regs *xor_reg;
  1079. if (unlikely(!chan->hw_chain_inited))
  1080. /* h/w descriptor chain is not initialized yet */
  1081. return 0;
  1082. switch (chan->device->id) {
  1083. case PPC440SPE_DMA0_ID:
  1084. case PPC440SPE_DMA1_ID:
  1085. dma_reg = chan->device->dma_reg;
  1086. return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
  1087. case PPC440SPE_XOR_ID:
  1088. xor_reg = chan->device->xor_reg;
  1089. return ioread32be(&xor_reg->ccbalr);
  1090. }
  1091. return 0;
  1092. }
  1093. /**
  1094. * ppc440spe_chan_run - enable the channel
  1095. */
  1096. static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
  1097. {
  1098. struct xor_regs *xor_reg;
  1099. switch (chan->device->id) {
  1100. case PPC440SPE_DMA0_ID:
  1101. case PPC440SPE_DMA1_ID:
  1102. /* DMAs are always enabled, do nothing */
  1103. break;
  1104. case PPC440SPE_XOR_ID:
  1105. /* drain write buffer */
  1106. xor_reg = chan->device->xor_reg;
  1107. /* fetch descriptor pointed to in <link> */
  1108. iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
  1109. &xor_reg->crsr);
  1110. break;
  1111. }
  1112. }
  1113. /******************************************************************************
  1114. * ADMA device level
  1115. ******************************************************************************/
  1116. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
  1117. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
  1118. static dma_cookie_t
  1119. ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
  1120. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1121. dma_addr_t addr, int index);
  1122. static void
  1123. ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
  1124. dma_addr_t addr, int index);
  1125. static void
  1126. ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1127. dma_addr_t *paddr, unsigned long flags);
  1128. static void
  1129. ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
  1130. dma_addr_t addr, int index);
  1131. static void
  1132. ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
  1133. unsigned char mult, int index, int dst_pos);
  1134. static void
  1135. ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1136. dma_addr_t paddr, dma_addr_t qaddr);
  1137. static struct page *ppc440spe_rxor_srcs[32];
  1138. /**
  1139. * ppc440spe_can_rxor - check if the operands may be processed with RXOR
  1140. */
  1141. static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
  1142. {
  1143. int i, order = 0, state = 0;
  1144. int idx = 0;
  1145. if (unlikely(!(src_cnt > 1)))
  1146. return 0;
  1147. BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
  1148. /* Skip holes in the source list before checking */
  1149. for (i = 0; i < src_cnt; i++) {
  1150. if (!srcs[i])
  1151. continue;
  1152. ppc440spe_rxor_srcs[idx++] = srcs[i];
  1153. }
  1154. src_cnt = idx;
  1155. for (i = 1; i < src_cnt; i++) {
  1156. char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
  1157. char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
  1158. switch (state) {
  1159. case 0:
  1160. if (cur_addr == old_addr + len) {
  1161. /* direct RXOR */
  1162. order = 1;
  1163. state = 1;
  1164. } else if (old_addr == cur_addr + len) {
  1165. /* reverse RXOR */
  1166. order = -1;
  1167. state = 1;
  1168. } else
  1169. goto out;
  1170. break;
  1171. case 1:
  1172. if ((i == src_cnt - 2) ||
  1173. (order == -1 && cur_addr != old_addr - len)) {
  1174. order = 0;
  1175. state = 0;
  1176. } else if ((cur_addr == old_addr + len * order) ||
  1177. (cur_addr == old_addr + 2 * len) ||
  1178. (cur_addr == old_addr + 3 * len)) {
  1179. state = 2;
  1180. } else {
  1181. order = 0;
  1182. state = 0;
  1183. }
  1184. break;
  1185. case 2:
  1186. order = 0;
  1187. state = 0;
  1188. break;
  1189. }
  1190. }
  1191. out:
  1192. if (state == 1 || state == 2)
  1193. return 1;
  1194. return 0;
  1195. }
  1196. /**
  1197. * ppc440spe_adma_device_estimate - estimate the efficiency of processing
  1198. * the operation given on this channel. It's assumed that 'chan' is
  1199. * capable to process 'cap' type of operation.
  1200. * @chan: channel to use
  1201. * @cap: type of transaction
  1202. * @dst_lst: array of destination pointers
  1203. * @dst_cnt: number of destination operands
  1204. * @src_lst: array of source pointers
  1205. * @src_cnt: number of source operands
  1206. * @src_sz: size of each source operand
  1207. */
  1208. static int ppc440spe_adma_estimate(struct dma_chan *chan,
  1209. enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
  1210. struct page **src_lst, int src_cnt, size_t src_sz)
  1211. {
  1212. int ef = 1;
  1213. if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
  1214. /* If RAID-6 capabilities were not activated don't try
  1215. * to use them
  1216. */
  1217. if (unlikely(!ppc440spe_r6_enabled))
  1218. return -1;
  1219. }
  1220. /* In the current implementation of ppc440spe ADMA driver it
  1221. * makes sense to pick out only pq case, because it may be
  1222. * processed:
  1223. * (1) either using Biskup method on DMA2;
  1224. * (2) or on DMA0/1.
  1225. * Thus we give a favour to (1) if the sources are suitable;
  1226. * else let it be processed on one of the DMA0/1 engines.
  1227. * In the sum_product case where destination is also the
  1228. * source process it on DMA0/1 only.
  1229. */
  1230. if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
  1231. if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
  1232. ef = 0; /* sum_product case, process on DMA0/1 */
  1233. else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
  1234. ef = 3; /* override (DMA0/1 + idle) */
  1235. else
  1236. ef = 0; /* can't process on DMA2 if !rxor */
  1237. }
  1238. /* channel idleness increases the priority */
  1239. if (likely(ef) &&
  1240. !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
  1241. ef++;
  1242. return ef;
  1243. }
  1244. struct dma_chan *
  1245. ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
  1246. struct page **dst_lst, int dst_cnt, struct page **src_lst,
  1247. int src_cnt, size_t src_sz)
  1248. {
  1249. struct dma_chan *best_chan = NULL;
  1250. struct ppc_dma_chan_ref *ref;
  1251. int best_rank = -1;
  1252. if (unlikely(!src_sz))
  1253. return NULL;
  1254. if (src_sz > PAGE_SIZE) {
  1255. /*
  1256. * should a user of the api ever pass > PAGE_SIZE requests
  1257. * we sort out cases where temporary page-sized buffers
  1258. * are used.
  1259. */
  1260. switch (cap) {
  1261. case DMA_PQ:
  1262. if (src_cnt == 1 && dst_lst[1] == src_lst[0])
  1263. return NULL;
  1264. if (src_cnt == 2 && dst_lst[1] == src_lst[1])
  1265. return NULL;
  1266. break;
  1267. case DMA_PQ_VAL:
  1268. case DMA_XOR_VAL:
  1269. return NULL;
  1270. default:
  1271. break;
  1272. }
  1273. }
  1274. list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
  1275. if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
  1276. int rank;
  1277. rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
  1278. dst_cnt, src_lst, src_cnt, src_sz);
  1279. if (rank > best_rank) {
  1280. best_rank = rank;
  1281. best_chan = ref->chan;
  1282. }
  1283. }
  1284. }
  1285. return best_chan;
  1286. }
  1287. EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
  1288. /**
  1289. * ppc440spe_get_group_entry - get group entry with index idx
  1290. * @tdesc: is the last allocated slot in the group.
  1291. */
  1292. static struct ppc440spe_adma_desc_slot *
  1293. ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
  1294. {
  1295. struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
  1296. int i = 0;
  1297. if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
  1298. printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
  1299. __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
  1300. BUG();
  1301. }
  1302. list_for_each_entry(iter, &tdesc->group_list, chain_node) {
  1303. if (i++ == entry_idx)
  1304. break;
  1305. }
  1306. return iter;
  1307. }
  1308. /**
  1309. * ppc440spe_adma_free_slots - flags descriptor slots for reuse
  1310. * @slot: Slot to free
  1311. * Caller must hold &ppc440spe_chan->lock while calling this function
  1312. */
  1313. static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
  1314. struct ppc440spe_adma_chan *chan)
  1315. {
  1316. int stride = slot->slots_per_op;
  1317. while (stride--) {
  1318. slot->slots_per_op = 0;
  1319. slot = list_entry(slot->slot_node.next,
  1320. struct ppc440spe_adma_desc_slot,
  1321. slot_node);
  1322. }
  1323. }
  1324. /**
  1325. * ppc440spe_adma_run_tx_complete_actions - call functions to be called
  1326. * upon completion
  1327. */
  1328. static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
  1329. struct ppc440spe_adma_desc_slot *desc,
  1330. struct ppc440spe_adma_chan *chan,
  1331. dma_cookie_t cookie)
  1332. {
  1333. int i;
  1334. BUG_ON(desc->async_tx.cookie < 0);
  1335. if (desc->async_tx.cookie > 0) {
  1336. cookie = desc->async_tx.cookie;
  1337. desc->async_tx.cookie = 0;
  1338. /* call the callback (must not sleep or submit new
  1339. * operations to this channel)
  1340. */
  1341. if (desc->async_tx.callback)
  1342. desc->async_tx.callback(
  1343. desc->async_tx.callback_param);
  1344. dma_descriptor_unmap(&desc->async_tx);
  1345. }
  1346. /* run dependent operations */
  1347. dma_run_dependencies(&desc->async_tx);
  1348. return cookie;
  1349. }
  1350. /**
  1351. * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
  1352. */
  1353. static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
  1354. struct ppc440spe_adma_chan *chan)
  1355. {
  1356. /* the client is allowed to attach dependent operations
  1357. * until 'ack' is set
  1358. */
  1359. if (!async_tx_test_ack(&desc->async_tx))
  1360. return 0;
  1361. /* leave the last descriptor in the chain
  1362. * so we can append to it
  1363. */
  1364. if (list_is_last(&desc->chain_node, &chan->chain) ||
  1365. desc->phys == ppc440spe_chan_get_current_descriptor(chan))
  1366. return 1;
  1367. if (chan->device->id != PPC440SPE_XOR_ID) {
  1368. /* our DMA interrupt handler clears opc field of
  1369. * each processed descriptor. For all types of
  1370. * operations except for ZeroSum we do not actually
  1371. * need ack from the interrupt handler. ZeroSum is a
  1372. * special case since the result of this operation
  1373. * is available from the handler only, so if we see
  1374. * such type of descriptor (which is unprocessed yet)
  1375. * then leave it in chain.
  1376. */
  1377. struct dma_cdb *cdb = desc->hw_desc;
  1378. if (cdb->opc == DMA_CDB_OPC_DCHECK128)
  1379. return 1;
  1380. }
  1381. dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
  1382. desc->phys, desc->idx, desc->slots_per_op);
  1383. list_del(&desc->chain_node);
  1384. ppc440spe_adma_free_slots(desc, chan);
  1385. return 0;
  1386. }
  1387. /**
  1388. * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
  1389. * which runs through the channel CDBs list until reach the descriptor
  1390. * currently processed. When routine determines that all CDBs of group
  1391. * are completed then corresponding callbacks (if any) are called and slots
  1392. * are freed.
  1393. */
  1394. static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1395. {
  1396. struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
  1397. dma_cookie_t cookie = 0;
  1398. u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
  1399. int busy = ppc440spe_chan_is_busy(chan);
  1400. int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
  1401. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
  1402. chan->device->id, __func__);
  1403. if (!current_desc) {
  1404. /* There were no transactions yet, so
  1405. * nothing to clean
  1406. */
  1407. return;
  1408. }
  1409. /* free completed slots from the chain starting with
  1410. * the oldest descriptor
  1411. */
  1412. list_for_each_entry_safe(iter, _iter, &chan->chain,
  1413. chain_node) {
  1414. dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
  1415. "busy: %d this_desc: %#llx next_desc: %#x "
  1416. "cur: %#x ack: %d\n",
  1417. iter->async_tx.cookie, iter->idx, busy, iter->phys,
  1418. ppc440spe_desc_get_link(iter, chan), current_desc,
  1419. async_tx_test_ack(&iter->async_tx));
  1420. prefetch(_iter);
  1421. prefetch(&_iter->async_tx);
  1422. /* do not advance past the current descriptor loaded into the
  1423. * hardware channel,subsequent descriptors are either in process
  1424. * or have not been submitted
  1425. */
  1426. if (seen_current)
  1427. break;
  1428. /* stop the search if we reach the current descriptor and the
  1429. * channel is busy, or if it appears that the current descriptor
  1430. * needs to be re-read (i.e. has been appended to)
  1431. */
  1432. if (iter->phys == current_desc) {
  1433. BUG_ON(seen_current++);
  1434. if (busy || ppc440spe_desc_get_link(iter, chan)) {
  1435. /* not all descriptors of the group have
  1436. * been completed; exit.
  1437. */
  1438. break;
  1439. }
  1440. }
  1441. /* detect the start of a group transaction */
  1442. if (!slot_cnt && !slots_per_op) {
  1443. slot_cnt = iter->slot_cnt;
  1444. slots_per_op = iter->slots_per_op;
  1445. if (slot_cnt <= slots_per_op) {
  1446. slot_cnt = 0;
  1447. slots_per_op = 0;
  1448. }
  1449. }
  1450. if (slot_cnt) {
  1451. if (!group_start)
  1452. group_start = iter;
  1453. slot_cnt -= slots_per_op;
  1454. }
  1455. /* all the members of a group are complete */
  1456. if (slots_per_op != 0 && slot_cnt == 0) {
  1457. struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
  1458. int end_of_chain = 0;
  1459. /* clean up the group */
  1460. slot_cnt = group_start->slot_cnt;
  1461. grp_iter = group_start;
  1462. list_for_each_entry_safe_from(grp_iter, _grp_iter,
  1463. &chan->chain, chain_node) {
  1464. cookie = ppc440spe_adma_run_tx_complete_actions(
  1465. grp_iter, chan, cookie);
  1466. slot_cnt -= slots_per_op;
  1467. end_of_chain = ppc440spe_adma_clean_slot(
  1468. grp_iter, chan);
  1469. if (end_of_chain && slot_cnt) {
  1470. /* Should wait for ZeroSum completion */
  1471. if (cookie > 0)
  1472. chan->common.completed_cookie = cookie;
  1473. return;
  1474. }
  1475. if (slot_cnt == 0 || end_of_chain)
  1476. break;
  1477. }
  1478. /* the group should be complete at this point */
  1479. BUG_ON(slot_cnt);
  1480. slots_per_op = 0;
  1481. group_start = NULL;
  1482. if (end_of_chain)
  1483. break;
  1484. else
  1485. continue;
  1486. } else if (slots_per_op) /* wait for group completion */
  1487. continue;
  1488. cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
  1489. cookie);
  1490. if (ppc440spe_adma_clean_slot(iter, chan))
  1491. break;
  1492. }
  1493. BUG_ON(!seen_current);
  1494. if (cookie > 0) {
  1495. chan->common.completed_cookie = cookie;
  1496. pr_debug("\tcompleted cookie %d\n", cookie);
  1497. }
  1498. }
  1499. /**
  1500. * ppc440spe_adma_tasklet - clean up watch-dog initiator
  1501. */
  1502. static void ppc440spe_adma_tasklet(unsigned long data)
  1503. {
  1504. struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
  1505. spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
  1506. __ppc440spe_adma_slot_cleanup(chan);
  1507. spin_unlock(&chan->lock);
  1508. }
  1509. /**
  1510. * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
  1511. */
  1512. static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1513. {
  1514. spin_lock_bh(&chan->lock);
  1515. __ppc440spe_adma_slot_cleanup(chan);
  1516. spin_unlock_bh(&chan->lock);
  1517. }
  1518. /**
  1519. * ppc440spe_adma_alloc_slots - allocate free slots (if any)
  1520. */
  1521. static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
  1522. struct ppc440spe_adma_chan *chan, int num_slots,
  1523. int slots_per_op)
  1524. {
  1525. struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
  1526. struct ppc440spe_adma_desc_slot *alloc_start = NULL;
  1527. struct list_head chain = LIST_HEAD_INIT(chain);
  1528. int slots_found, retry = 0;
  1529. BUG_ON(!num_slots || !slots_per_op);
  1530. /* start search from the last allocated descrtiptor
  1531. * if a contiguous allocation can not be found start searching
  1532. * from the beginning of the list
  1533. */
  1534. retry:
  1535. slots_found = 0;
  1536. if (retry == 0)
  1537. iter = chan->last_used;
  1538. else
  1539. iter = list_entry(&chan->all_slots,
  1540. struct ppc440spe_adma_desc_slot,
  1541. slot_node);
  1542. list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
  1543. slot_node) {
  1544. prefetch(_iter);
  1545. prefetch(&_iter->async_tx);
  1546. if (iter->slots_per_op) {
  1547. slots_found = 0;
  1548. continue;
  1549. }
  1550. /* start the allocation if the slot is correctly aligned */
  1551. if (!slots_found++)
  1552. alloc_start = iter;
  1553. if (slots_found == num_slots) {
  1554. struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
  1555. struct ppc440spe_adma_desc_slot *last_used = NULL;
  1556. iter = alloc_start;
  1557. while (num_slots) {
  1558. int i;
  1559. /* pre-ack all but the last descriptor */
  1560. if (num_slots != slots_per_op)
  1561. async_tx_ack(&iter->async_tx);
  1562. list_add_tail(&iter->chain_node, &chain);
  1563. alloc_tail = iter;
  1564. iter->async_tx.cookie = 0;
  1565. iter->hw_next = NULL;
  1566. iter->flags = 0;
  1567. iter->slot_cnt = num_slots;
  1568. iter->xor_check_result = NULL;
  1569. for (i = 0; i < slots_per_op; i++) {
  1570. iter->slots_per_op = slots_per_op - i;
  1571. last_used = iter;
  1572. iter = list_entry(iter->slot_node.next,
  1573. struct ppc440spe_adma_desc_slot,
  1574. slot_node);
  1575. }
  1576. num_slots -= slots_per_op;
  1577. }
  1578. alloc_tail->group_head = alloc_start;
  1579. alloc_tail->async_tx.cookie = -EBUSY;
  1580. list_splice(&chain, &alloc_tail->group_list);
  1581. chan->last_used = last_used;
  1582. return alloc_tail;
  1583. }
  1584. }
  1585. if (!retry++)
  1586. goto retry;
  1587. /* try to free some slots if the allocation fails */
  1588. tasklet_schedule(&chan->irq_tasklet);
  1589. return NULL;
  1590. }
  1591. /**
  1592. * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
  1593. */
  1594. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
  1595. {
  1596. struct ppc440spe_adma_chan *ppc440spe_chan;
  1597. struct ppc440spe_adma_desc_slot *slot = NULL;
  1598. char *hw_desc;
  1599. int i, db_sz;
  1600. int init;
  1601. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1602. init = ppc440spe_chan->slots_allocated ? 0 : 1;
  1603. chan->chan_id = ppc440spe_chan->device->id;
  1604. /* Allocate descriptor slots */
  1605. i = ppc440spe_chan->slots_allocated;
  1606. if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
  1607. db_sz = sizeof(struct dma_cdb);
  1608. else
  1609. db_sz = sizeof(struct xor_cb);
  1610. for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
  1611. slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
  1612. GFP_KERNEL);
  1613. if (!slot) {
  1614. printk(KERN_INFO "SPE ADMA Channel only initialized"
  1615. " %d descriptor slots", i--);
  1616. break;
  1617. }
  1618. hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
  1619. slot->hw_desc = (void *) &hw_desc[i * db_sz];
  1620. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  1621. slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
  1622. INIT_LIST_HEAD(&slot->chain_node);
  1623. INIT_LIST_HEAD(&slot->slot_node);
  1624. INIT_LIST_HEAD(&slot->group_list);
  1625. slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
  1626. slot->idx = i;
  1627. spin_lock_bh(&ppc440spe_chan->lock);
  1628. ppc440spe_chan->slots_allocated++;
  1629. list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
  1630. spin_unlock_bh(&ppc440spe_chan->lock);
  1631. }
  1632. if (i && !ppc440spe_chan->last_used) {
  1633. ppc440spe_chan->last_used =
  1634. list_entry(ppc440spe_chan->all_slots.next,
  1635. struct ppc440spe_adma_desc_slot,
  1636. slot_node);
  1637. }
  1638. dev_dbg(ppc440spe_chan->device->common.dev,
  1639. "ppc440spe adma%d: allocated %d descriptor slots\n",
  1640. ppc440spe_chan->device->id, i);
  1641. /* initialize the channel and the chain with a null operation */
  1642. if (init) {
  1643. switch (ppc440spe_chan->device->id) {
  1644. case PPC440SPE_DMA0_ID:
  1645. case PPC440SPE_DMA1_ID:
  1646. ppc440spe_chan->hw_chain_inited = 0;
  1647. /* Use WXOR for self-testing */
  1648. if (!ppc440spe_r6_tchan)
  1649. ppc440spe_r6_tchan = ppc440spe_chan;
  1650. break;
  1651. case PPC440SPE_XOR_ID:
  1652. ppc440spe_chan_start_null_xor(ppc440spe_chan);
  1653. break;
  1654. default:
  1655. BUG();
  1656. }
  1657. ppc440spe_chan->needs_unmap = 1;
  1658. }
  1659. return (i > 0) ? i : -ENOMEM;
  1660. }
  1661. /**
  1662. * ppc440spe_rxor_set_region_data -
  1663. */
  1664. static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
  1665. u8 xor_arg_no, u32 mask)
  1666. {
  1667. struct xor_cb *xcb = desc->hw_desc;
  1668. xcb->ops[xor_arg_no].h |= mask;
  1669. }
  1670. /**
  1671. * ppc440spe_rxor_set_src -
  1672. */
  1673. static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
  1674. u8 xor_arg_no, dma_addr_t addr)
  1675. {
  1676. struct xor_cb *xcb = desc->hw_desc;
  1677. xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
  1678. xcb->ops[xor_arg_no].l = addr;
  1679. }
  1680. /**
  1681. * ppc440spe_rxor_set_mult -
  1682. */
  1683. static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
  1684. u8 xor_arg_no, u8 idx, u8 mult)
  1685. {
  1686. struct xor_cb *xcb = desc->hw_desc;
  1687. xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
  1688. }
  1689. /**
  1690. * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
  1691. * has been achieved
  1692. */
  1693. static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
  1694. {
  1695. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
  1696. chan->device->id, chan->pending);
  1697. if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
  1698. chan->pending = 0;
  1699. ppc440spe_chan_append(chan);
  1700. }
  1701. }
  1702. /**
  1703. * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
  1704. * (it's not necessary that descriptors will be submitted to the h/w
  1705. * chains too right now)
  1706. */
  1707. static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
  1708. {
  1709. struct ppc440spe_adma_desc_slot *sw_desc;
  1710. struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
  1711. struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
  1712. int slot_cnt;
  1713. int slots_per_op;
  1714. dma_cookie_t cookie;
  1715. sw_desc = tx_to_ppc440spe_adma_slot(tx);
  1716. group_start = sw_desc->group_head;
  1717. slot_cnt = group_start->slot_cnt;
  1718. slots_per_op = group_start->slots_per_op;
  1719. spin_lock_bh(&chan->lock);
  1720. cookie = dma_cookie_assign(tx);
  1721. if (unlikely(list_empty(&chan->chain))) {
  1722. /* first peer */
  1723. list_splice_init(&sw_desc->group_list, &chan->chain);
  1724. chan_first_cdb[chan->device->id] = group_start;
  1725. } else {
  1726. /* isn't first peer, bind CDBs to chain */
  1727. old_chain_tail = list_entry(chan->chain.prev,
  1728. struct ppc440spe_adma_desc_slot,
  1729. chain_node);
  1730. list_splice_init(&sw_desc->group_list,
  1731. &old_chain_tail->chain_node);
  1732. /* fix up the hardware chain */
  1733. ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
  1734. }
  1735. /* increment the pending count by the number of operations */
  1736. chan->pending += slot_cnt / slots_per_op;
  1737. ppc440spe_adma_check_threshold(chan);
  1738. spin_unlock_bh(&chan->lock);
  1739. dev_dbg(chan->device->common.dev,
  1740. "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
  1741. chan->device->id, __func__,
  1742. sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
  1743. return cookie;
  1744. }
  1745. /**
  1746. * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
  1747. */
  1748. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
  1749. struct dma_chan *chan, unsigned long flags)
  1750. {
  1751. struct ppc440spe_adma_chan *ppc440spe_chan;
  1752. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  1753. int slot_cnt, slots_per_op;
  1754. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1755. dev_dbg(ppc440spe_chan->device->common.dev,
  1756. "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
  1757. __func__);
  1758. spin_lock_bh(&ppc440spe_chan->lock);
  1759. slot_cnt = slots_per_op = 1;
  1760. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  1761. slots_per_op);
  1762. if (sw_desc) {
  1763. group_start = sw_desc->group_head;
  1764. ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
  1765. group_start->unmap_len = 0;
  1766. sw_desc->async_tx.flags = flags;
  1767. }
  1768. spin_unlock_bh(&ppc440spe_chan->lock);
  1769. return sw_desc ? &sw_desc->async_tx : NULL;
  1770. }
  1771. /**
  1772. * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
  1773. */
  1774. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
  1775. struct dma_chan *chan, dma_addr_t dma_dest,
  1776. dma_addr_t dma_src, size_t len, unsigned long flags)
  1777. {
  1778. struct ppc440spe_adma_chan *ppc440spe_chan;
  1779. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  1780. int slot_cnt, slots_per_op;
  1781. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1782. if (unlikely(!len))
  1783. return NULL;
  1784. BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
  1785. spin_lock_bh(&ppc440spe_chan->lock);
  1786. dev_dbg(ppc440spe_chan->device->common.dev,
  1787. "ppc440spe adma%d: %s len: %u int_en %d\n",
  1788. ppc440spe_chan->device->id, __func__, len,
  1789. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  1790. slot_cnt = slots_per_op = 1;
  1791. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  1792. slots_per_op);
  1793. if (sw_desc) {
  1794. group_start = sw_desc->group_head;
  1795. ppc440spe_desc_init_memcpy(group_start, flags);
  1796. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  1797. ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
  1798. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  1799. sw_desc->unmap_len = len;
  1800. sw_desc->async_tx.flags = flags;
  1801. }
  1802. spin_unlock_bh(&ppc440spe_chan->lock);
  1803. return sw_desc ? &sw_desc->async_tx : NULL;
  1804. }
  1805. /**
  1806. * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
  1807. */
  1808. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
  1809. struct dma_chan *chan, dma_addr_t dma_dest,
  1810. dma_addr_t *dma_src, u32 src_cnt, size_t len,
  1811. unsigned long flags)
  1812. {
  1813. struct ppc440spe_adma_chan *ppc440spe_chan;
  1814. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  1815. int slot_cnt, slots_per_op;
  1816. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1817. ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
  1818. dma_dest, dma_src, src_cnt));
  1819. if (unlikely(!len))
  1820. return NULL;
  1821. BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  1822. dev_dbg(ppc440spe_chan->device->common.dev,
  1823. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  1824. ppc440spe_chan->device->id, __func__, src_cnt, len,
  1825. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  1826. spin_lock_bh(&ppc440spe_chan->lock);
  1827. slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
  1828. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  1829. slots_per_op);
  1830. if (sw_desc) {
  1831. group_start = sw_desc->group_head;
  1832. ppc440spe_desc_init_xor(group_start, src_cnt, flags);
  1833. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  1834. while (src_cnt--)
  1835. ppc440spe_adma_memcpy_xor_set_src(group_start,
  1836. dma_src[src_cnt], src_cnt);
  1837. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  1838. sw_desc->unmap_len = len;
  1839. sw_desc->async_tx.flags = flags;
  1840. }
  1841. spin_unlock_bh(&ppc440spe_chan->lock);
  1842. return sw_desc ? &sw_desc->async_tx : NULL;
  1843. }
  1844. static inline void
  1845. ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
  1846. int src_cnt);
  1847. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
  1848. /**
  1849. * ppc440spe_adma_init_dma2rxor_slot -
  1850. */
  1851. static void ppc440spe_adma_init_dma2rxor_slot(
  1852. struct ppc440spe_adma_desc_slot *desc,
  1853. dma_addr_t *src, int src_cnt)
  1854. {
  1855. int i;
  1856. /* initialize CDB */
  1857. for (i = 0; i < src_cnt; i++) {
  1858. ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
  1859. desc->src_cnt, (u32)src[i]);
  1860. }
  1861. }
  1862. /**
  1863. * ppc440spe_dma01_prep_mult -
  1864. * for Q operation where destination is also the source
  1865. */
  1866. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
  1867. struct ppc440spe_adma_chan *ppc440spe_chan,
  1868. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  1869. const unsigned char *scf, size_t len, unsigned long flags)
  1870. {
  1871. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  1872. unsigned long op = 0;
  1873. int slot_cnt;
  1874. set_bit(PPC440SPE_DESC_WXOR, &op);
  1875. slot_cnt = 2;
  1876. spin_lock_bh(&ppc440spe_chan->lock);
  1877. /* use WXOR, each descriptor occupies one slot */
  1878. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  1879. if (sw_desc) {
  1880. struct ppc440spe_adma_chan *chan;
  1881. struct ppc440spe_adma_desc_slot *iter;
  1882. struct dma_cdb *hw_desc;
  1883. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  1884. set_bits(op, &sw_desc->flags);
  1885. sw_desc->src_cnt = src_cnt;
  1886. sw_desc->dst_cnt = dst_cnt;
  1887. /* First descriptor, zero data in the destination and copy it
  1888. * to q page using MULTICAST transfer.
  1889. */
  1890. iter = list_first_entry(&sw_desc->group_list,
  1891. struct ppc440spe_adma_desc_slot,
  1892. chain_node);
  1893. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1894. /* set 'next' pointer */
  1895. iter->hw_next = list_entry(iter->chain_node.next,
  1896. struct ppc440spe_adma_desc_slot,
  1897. chain_node);
  1898. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1899. hw_desc = iter->hw_desc;
  1900. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  1901. ppc440spe_desc_set_dest_addr(iter, chan,
  1902. DMA_CUED_XOR_BASE, dst[0], 0);
  1903. ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
  1904. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  1905. src[0]);
  1906. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1907. iter->unmap_len = len;
  1908. /*
  1909. * Second descriptor, multiply data from the q page
  1910. * and store the result in real destination.
  1911. */
  1912. iter = list_first_entry(&iter->chain_node,
  1913. struct ppc440spe_adma_desc_slot,
  1914. chain_node);
  1915. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1916. iter->hw_next = NULL;
  1917. if (flags & DMA_PREP_INTERRUPT)
  1918. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  1919. else
  1920. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1921. hw_desc = iter->hw_desc;
  1922. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  1923. ppc440spe_desc_set_src_addr(iter, chan, 0,
  1924. DMA_CUED_XOR_HB, dst[1]);
  1925. ppc440spe_desc_set_dest_addr(iter, chan,
  1926. DMA_CUED_XOR_BASE, dst[0], 0);
  1927. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  1928. DMA_CDB_SG_DST1, scf[0]);
  1929. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1930. iter->unmap_len = len;
  1931. sw_desc->async_tx.flags = flags;
  1932. }
  1933. spin_unlock_bh(&ppc440spe_chan->lock);
  1934. return sw_desc;
  1935. }
  1936. /**
  1937. * ppc440spe_dma01_prep_sum_product -
  1938. * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
  1939. * the source.
  1940. */
  1941. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
  1942. struct ppc440spe_adma_chan *ppc440spe_chan,
  1943. dma_addr_t *dst, dma_addr_t *src, int src_cnt,
  1944. const unsigned char *scf, size_t len, unsigned long flags)
  1945. {
  1946. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  1947. unsigned long op = 0;
  1948. int slot_cnt;
  1949. set_bit(PPC440SPE_DESC_WXOR, &op);
  1950. slot_cnt = 3;
  1951. spin_lock_bh(&ppc440spe_chan->lock);
  1952. /* WXOR, each descriptor occupies one slot */
  1953. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  1954. if (sw_desc) {
  1955. struct ppc440spe_adma_chan *chan;
  1956. struct ppc440spe_adma_desc_slot *iter;
  1957. struct dma_cdb *hw_desc;
  1958. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  1959. set_bits(op, &sw_desc->flags);
  1960. sw_desc->src_cnt = src_cnt;
  1961. sw_desc->dst_cnt = 1;
  1962. /* 1st descriptor, src[1] data to q page and zero destination */
  1963. iter = list_first_entry(&sw_desc->group_list,
  1964. struct ppc440spe_adma_desc_slot,
  1965. chain_node);
  1966. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1967. iter->hw_next = list_entry(iter->chain_node.next,
  1968. struct ppc440spe_adma_desc_slot,
  1969. chain_node);
  1970. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1971. hw_desc = iter->hw_desc;
  1972. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  1973. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  1974. *dst, 0);
  1975. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  1976. ppc440spe_chan->qdest, 1);
  1977. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  1978. src[1]);
  1979. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  1980. iter->unmap_len = len;
  1981. /* 2nd descriptor, multiply src[1] data and store the
  1982. * result in destination */
  1983. iter = list_first_entry(&iter->chain_node,
  1984. struct ppc440spe_adma_desc_slot,
  1985. chain_node);
  1986. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  1987. /* set 'next' pointer */
  1988. iter->hw_next = list_entry(iter->chain_node.next,
  1989. struct ppc440spe_adma_desc_slot,
  1990. chain_node);
  1991. if (flags & DMA_PREP_INTERRUPT)
  1992. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  1993. else
  1994. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  1995. hw_desc = iter->hw_desc;
  1996. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  1997. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  1998. ppc440spe_chan->qdest);
  1999. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2000. *dst, 0);
  2001. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2002. DMA_CDB_SG_DST1, scf[1]);
  2003. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2004. iter->unmap_len = len;
  2005. /*
  2006. * 3rd descriptor, multiply src[0] data and xor it
  2007. * with destination
  2008. */
  2009. iter = list_first_entry(&iter->chain_node,
  2010. struct ppc440spe_adma_desc_slot,
  2011. chain_node);
  2012. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2013. iter->hw_next = NULL;
  2014. if (flags & DMA_PREP_INTERRUPT)
  2015. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2016. else
  2017. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2018. hw_desc = iter->hw_desc;
  2019. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2020. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2021. src[0]);
  2022. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2023. *dst, 0);
  2024. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2025. DMA_CDB_SG_DST1, scf[0]);
  2026. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2027. iter->unmap_len = len;
  2028. sw_desc->async_tx.flags = flags;
  2029. }
  2030. spin_unlock_bh(&ppc440spe_chan->lock);
  2031. return sw_desc;
  2032. }
  2033. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
  2034. struct ppc440spe_adma_chan *ppc440spe_chan,
  2035. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2036. const unsigned char *scf, size_t len, unsigned long flags)
  2037. {
  2038. int slot_cnt;
  2039. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2040. unsigned long op = 0;
  2041. unsigned char mult = 1;
  2042. pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2043. __func__, dst_cnt, src_cnt, len);
  2044. /* select operations WXOR/RXOR depending on the
  2045. * source addresses of operators and the number
  2046. * of destinations (RXOR support only Q-parity calculations)
  2047. */
  2048. set_bit(PPC440SPE_DESC_WXOR, &op);
  2049. if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
  2050. /* no active RXOR;
  2051. * do RXOR if:
  2052. * - there are more than 1 source,
  2053. * - len is aligned on 512-byte boundary,
  2054. * - source addresses fit to one of 4 possible regions.
  2055. */
  2056. if (src_cnt > 1 &&
  2057. !(len & MQ0_CF2H_RXOR_BS_MASK) &&
  2058. (src[0] + len) == src[1]) {
  2059. /* may do RXOR R1 R2 */
  2060. set_bit(PPC440SPE_DESC_RXOR, &op);
  2061. if (src_cnt != 2) {
  2062. /* may try to enhance region of RXOR */
  2063. if ((src[1] + len) == src[2]) {
  2064. /* do RXOR R1 R2 R3 */
  2065. set_bit(PPC440SPE_DESC_RXOR123,
  2066. &op);
  2067. } else if ((src[1] + len * 2) == src[2]) {
  2068. /* do RXOR R1 R2 R4 */
  2069. set_bit(PPC440SPE_DESC_RXOR124, &op);
  2070. } else if ((src[1] + len * 3) == src[2]) {
  2071. /* do RXOR R1 R2 R5 */
  2072. set_bit(PPC440SPE_DESC_RXOR125,
  2073. &op);
  2074. } else {
  2075. /* do RXOR R1 R2 */
  2076. set_bit(PPC440SPE_DESC_RXOR12,
  2077. &op);
  2078. }
  2079. } else {
  2080. /* do RXOR R1 R2 */
  2081. set_bit(PPC440SPE_DESC_RXOR12, &op);
  2082. }
  2083. }
  2084. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2085. /* can not do this operation with RXOR */
  2086. clear_bit(PPC440SPE_RXOR_RUN,
  2087. &ppc440spe_rxor_state);
  2088. } else {
  2089. /* can do; set block size right now */
  2090. ppc440spe_desc_set_rxor_block_size(len);
  2091. }
  2092. }
  2093. /* Number of necessary slots depends on operation type selected */
  2094. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2095. /* This is a WXOR only chain. Need descriptors for each
  2096. * source to GF-XOR them with WXOR, and need descriptors
  2097. * for each destination to zero them with WXOR
  2098. */
  2099. slot_cnt = src_cnt;
  2100. if (flags & DMA_PREP_ZERO_P) {
  2101. slot_cnt++;
  2102. set_bit(PPC440SPE_ZERO_P, &op);
  2103. }
  2104. if (flags & DMA_PREP_ZERO_Q) {
  2105. slot_cnt++;
  2106. set_bit(PPC440SPE_ZERO_Q, &op);
  2107. }
  2108. } else {
  2109. /* Need 1/2 descriptor for RXOR operation, and
  2110. * need (src_cnt - (2 or 3)) for WXOR of sources
  2111. * remained (if any)
  2112. */
  2113. slot_cnt = dst_cnt;
  2114. if (flags & DMA_PREP_ZERO_P)
  2115. set_bit(PPC440SPE_ZERO_P, &op);
  2116. if (flags & DMA_PREP_ZERO_Q)
  2117. set_bit(PPC440SPE_ZERO_Q, &op);
  2118. if (test_bit(PPC440SPE_DESC_RXOR12, &op))
  2119. slot_cnt += src_cnt - 2;
  2120. else
  2121. slot_cnt += src_cnt - 3;
  2122. /* Thus we have either RXOR only chain or
  2123. * mixed RXOR/WXOR
  2124. */
  2125. if (slot_cnt == dst_cnt)
  2126. /* RXOR only chain */
  2127. clear_bit(PPC440SPE_DESC_WXOR, &op);
  2128. }
  2129. spin_lock_bh(&ppc440spe_chan->lock);
  2130. /* for both RXOR/WXOR each descriptor occupies one slot */
  2131. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2132. if (sw_desc) {
  2133. ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
  2134. flags, op);
  2135. /* setup dst/src/mult */
  2136. pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
  2137. __func__, dst[0], dst[1]);
  2138. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2139. while (src_cnt--) {
  2140. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2141. src_cnt);
  2142. /* NOTE: "Multi = 0 is equivalent to = 1" as it
  2143. * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
  2144. * doesn't work for RXOR with DMA0/1! Instead, multi=0
  2145. * leads to zeroing source data after RXOR.
  2146. * So, for P case set-up mult=1 explicitly.
  2147. */
  2148. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2149. mult = scf[src_cnt];
  2150. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2151. mult, src_cnt, dst_cnt - 1);
  2152. }
  2153. /* Setup byte count foreach slot just allocated */
  2154. sw_desc->async_tx.flags = flags;
  2155. list_for_each_entry(iter, &sw_desc->group_list,
  2156. chain_node) {
  2157. ppc440spe_desc_set_byte_count(iter,
  2158. ppc440spe_chan, len);
  2159. iter->unmap_len = len;
  2160. }
  2161. }
  2162. spin_unlock_bh(&ppc440spe_chan->lock);
  2163. return sw_desc;
  2164. }
  2165. static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
  2166. struct ppc440spe_adma_chan *ppc440spe_chan,
  2167. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2168. const unsigned char *scf, size_t len, unsigned long flags)
  2169. {
  2170. int slot_cnt, descs_per_op;
  2171. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2172. unsigned long op = 0;
  2173. unsigned char mult = 1;
  2174. BUG_ON(!dst_cnt);
  2175. /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2176. __func__, dst_cnt, src_cnt, len);*/
  2177. spin_lock_bh(&ppc440spe_chan->lock);
  2178. descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
  2179. if (descs_per_op < 0) {
  2180. spin_unlock_bh(&ppc440spe_chan->lock);
  2181. return NULL;
  2182. }
  2183. /* depending on number of sources we have 1 or 2 RXOR chains */
  2184. slot_cnt = descs_per_op * dst_cnt;
  2185. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2186. if (sw_desc) {
  2187. op = slot_cnt;
  2188. sw_desc->async_tx.flags = flags;
  2189. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2190. ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
  2191. --op ? 0 : flags);
  2192. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2193. len);
  2194. iter->unmap_len = len;
  2195. ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
  2196. iter->rxor_cursor.len = len;
  2197. iter->descs_per_op = descs_per_op;
  2198. }
  2199. op = 0;
  2200. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2201. op++;
  2202. if (op % descs_per_op == 0)
  2203. ppc440spe_adma_init_dma2rxor_slot(iter, src,
  2204. src_cnt);
  2205. if (likely(!list_is_last(&iter->chain_node,
  2206. &sw_desc->group_list))) {
  2207. /* set 'next' pointer */
  2208. iter->hw_next =
  2209. list_entry(iter->chain_node.next,
  2210. struct ppc440spe_adma_desc_slot,
  2211. chain_node);
  2212. ppc440spe_xor_set_link(iter, iter->hw_next);
  2213. } else {
  2214. /* this is the last descriptor. */
  2215. iter->hw_next = NULL;
  2216. }
  2217. }
  2218. /* fixup head descriptor */
  2219. sw_desc->dst_cnt = dst_cnt;
  2220. if (flags & DMA_PREP_ZERO_P)
  2221. set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
  2222. if (flags & DMA_PREP_ZERO_Q)
  2223. set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
  2224. /* setup dst/src/mult */
  2225. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2226. while (src_cnt--) {
  2227. /* handle descriptors (if dst_cnt == 2) inside
  2228. * the ppc440spe_adma_pq_set_srcxxx() functions
  2229. */
  2230. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2231. src_cnt);
  2232. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2233. mult = scf[src_cnt];
  2234. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2235. mult, src_cnt, dst_cnt - 1);
  2236. }
  2237. }
  2238. spin_unlock_bh(&ppc440spe_chan->lock);
  2239. ppc440spe_desc_set_rxor_block_size(len);
  2240. return sw_desc;
  2241. }
  2242. /**
  2243. * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
  2244. */
  2245. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
  2246. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  2247. unsigned int src_cnt, const unsigned char *scf,
  2248. size_t len, unsigned long flags)
  2249. {
  2250. struct ppc440spe_adma_chan *ppc440spe_chan;
  2251. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2252. int dst_cnt = 0;
  2253. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2254. ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
  2255. dst, src, src_cnt));
  2256. BUG_ON(!len);
  2257. BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  2258. BUG_ON(!src_cnt);
  2259. if (src_cnt == 1 && dst[1] == src[0]) {
  2260. dma_addr_t dest[2];
  2261. /* dst[1] is real destination (Q) */
  2262. dest[0] = dst[1];
  2263. /* this is the page to multicast source data to */
  2264. dest[1] = ppc440spe_chan->qdest;
  2265. sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
  2266. dest, 2, src, src_cnt, scf, len, flags);
  2267. return sw_desc ? &sw_desc->async_tx : NULL;
  2268. }
  2269. if (src_cnt == 2 && dst[1] == src[1]) {
  2270. sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
  2271. &dst[1], src, 2, scf, len, flags);
  2272. return sw_desc ? &sw_desc->async_tx : NULL;
  2273. }
  2274. if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
  2275. BUG_ON(!dst[0]);
  2276. dst_cnt++;
  2277. flags |= DMA_PREP_ZERO_P;
  2278. }
  2279. if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
  2280. BUG_ON(!dst[1]);
  2281. dst_cnt++;
  2282. flags |= DMA_PREP_ZERO_Q;
  2283. }
  2284. BUG_ON(!dst_cnt);
  2285. dev_dbg(ppc440spe_chan->device->common.dev,
  2286. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  2287. ppc440spe_chan->device->id, __func__, src_cnt, len,
  2288. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2289. switch (ppc440spe_chan->device->id) {
  2290. case PPC440SPE_DMA0_ID:
  2291. case PPC440SPE_DMA1_ID:
  2292. sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
  2293. dst, dst_cnt, src, src_cnt, scf,
  2294. len, flags);
  2295. break;
  2296. case PPC440SPE_XOR_ID:
  2297. sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
  2298. dst, dst_cnt, src, src_cnt, scf,
  2299. len, flags);
  2300. break;
  2301. }
  2302. return sw_desc ? &sw_desc->async_tx : NULL;
  2303. }
  2304. /**
  2305. * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
  2306. * a PQ_ZERO_SUM operation
  2307. */
  2308. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
  2309. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  2310. unsigned int src_cnt, const unsigned char *scf, size_t len,
  2311. enum sum_check_flags *pqres, unsigned long flags)
  2312. {
  2313. struct ppc440spe_adma_chan *ppc440spe_chan;
  2314. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  2315. dma_addr_t pdest, qdest;
  2316. int slot_cnt, slots_per_op, idst, dst_cnt;
  2317. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2318. if (flags & DMA_PREP_PQ_DISABLE_P)
  2319. pdest = 0;
  2320. else
  2321. pdest = pq[0];
  2322. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2323. qdest = 0;
  2324. else
  2325. qdest = pq[1];
  2326. ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
  2327. src, src_cnt, scf));
  2328. /* Always use WXOR for P/Q calculations (two destinations).
  2329. * Need 1 or 2 extra slots to verify results are zero.
  2330. */
  2331. idst = dst_cnt = (pdest && qdest) ? 2 : 1;
  2332. /* One additional slot per destination to clone P/Q
  2333. * before calculation (we have to preserve destinations).
  2334. */
  2335. slot_cnt = src_cnt + dst_cnt * 2;
  2336. slots_per_op = 1;
  2337. spin_lock_bh(&ppc440spe_chan->lock);
  2338. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2339. slots_per_op);
  2340. if (sw_desc) {
  2341. ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
  2342. /* Setup byte count for each slot just allocated */
  2343. sw_desc->async_tx.flags = flags;
  2344. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2345. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2346. len);
  2347. iter->unmap_len = len;
  2348. }
  2349. if (pdest) {
  2350. struct dma_cdb *hw_desc;
  2351. struct ppc440spe_adma_chan *chan;
  2352. iter = sw_desc->group_head;
  2353. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2354. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2355. iter->hw_next = list_entry(iter->chain_node.next,
  2356. struct ppc440spe_adma_desc_slot,
  2357. chain_node);
  2358. hw_desc = iter->hw_desc;
  2359. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2360. iter->src_cnt = 0;
  2361. iter->dst_cnt = 0;
  2362. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2363. ppc440spe_chan->pdest, 0);
  2364. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
  2365. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2366. len);
  2367. iter->unmap_len = 0;
  2368. /* override pdest to preserve original P */
  2369. pdest = ppc440spe_chan->pdest;
  2370. }
  2371. if (qdest) {
  2372. struct dma_cdb *hw_desc;
  2373. struct ppc440spe_adma_chan *chan;
  2374. iter = list_first_entry(&sw_desc->group_list,
  2375. struct ppc440spe_adma_desc_slot,
  2376. chain_node);
  2377. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2378. if (pdest) {
  2379. iter = list_entry(iter->chain_node.next,
  2380. struct ppc440spe_adma_desc_slot,
  2381. chain_node);
  2382. }
  2383. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2384. iter->hw_next = list_entry(iter->chain_node.next,
  2385. struct ppc440spe_adma_desc_slot,
  2386. chain_node);
  2387. hw_desc = iter->hw_desc;
  2388. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2389. iter->src_cnt = 0;
  2390. iter->dst_cnt = 0;
  2391. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2392. ppc440spe_chan->qdest, 0);
  2393. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
  2394. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2395. len);
  2396. iter->unmap_len = 0;
  2397. /* override qdest to preserve original Q */
  2398. qdest = ppc440spe_chan->qdest;
  2399. }
  2400. /* Setup destinations for P/Q ops */
  2401. ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
  2402. /* Setup zero QWORDs into DCHECK CDBs */
  2403. idst = dst_cnt;
  2404. list_for_each_entry_reverse(iter, &sw_desc->group_list,
  2405. chain_node) {
  2406. /*
  2407. * The last CDB corresponds to Q-parity check,
  2408. * the one before last CDB corresponds
  2409. * P-parity check
  2410. */
  2411. if (idst == DMA_DEST_MAX_NUM) {
  2412. if (idst == dst_cnt) {
  2413. set_bit(PPC440SPE_DESC_QCHECK,
  2414. &iter->flags);
  2415. } else {
  2416. set_bit(PPC440SPE_DESC_PCHECK,
  2417. &iter->flags);
  2418. }
  2419. } else {
  2420. if (qdest) {
  2421. set_bit(PPC440SPE_DESC_QCHECK,
  2422. &iter->flags);
  2423. } else {
  2424. set_bit(PPC440SPE_DESC_PCHECK,
  2425. &iter->flags);
  2426. }
  2427. }
  2428. iter->xor_check_result = pqres;
  2429. /*
  2430. * set it to zero, if check fail then result will
  2431. * be updated
  2432. */
  2433. *iter->xor_check_result = 0;
  2434. ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
  2435. ppc440spe_qword);
  2436. if (!(--dst_cnt))
  2437. break;
  2438. }
  2439. /* Setup sources and mults for P/Q ops */
  2440. list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
  2441. chain_node) {
  2442. struct ppc440spe_adma_chan *chan;
  2443. u32 mult_dst;
  2444. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2445. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2446. DMA_CUED_XOR_HB,
  2447. src[src_cnt - 1]);
  2448. if (qdest) {
  2449. mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
  2450. DMA_CDB_SG_DST1;
  2451. ppc440spe_desc_set_src_mult(iter, chan,
  2452. DMA_CUED_MULT1_OFF,
  2453. mult_dst,
  2454. scf[src_cnt - 1]);
  2455. }
  2456. if (!(--src_cnt))
  2457. break;
  2458. }
  2459. }
  2460. spin_unlock_bh(&ppc440spe_chan->lock);
  2461. return sw_desc ? &sw_desc->async_tx : NULL;
  2462. }
  2463. /**
  2464. * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
  2465. * XOR ZERO_SUM operation
  2466. */
  2467. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
  2468. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  2469. size_t len, enum sum_check_flags *result, unsigned long flags)
  2470. {
  2471. struct dma_async_tx_descriptor *tx;
  2472. dma_addr_t pq[2];
  2473. /* validate P, disable Q */
  2474. pq[0] = src[0];
  2475. pq[1] = 0;
  2476. flags |= DMA_PREP_PQ_DISABLE_Q;
  2477. tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
  2478. src_cnt - 1, 0, len,
  2479. result, flags);
  2480. return tx;
  2481. }
  2482. /**
  2483. * ppc440spe_adma_set_dest - set destination address into descriptor
  2484. */
  2485. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2486. dma_addr_t addr, int index)
  2487. {
  2488. struct ppc440spe_adma_chan *chan;
  2489. BUG_ON(index >= sw_desc->dst_cnt);
  2490. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2491. switch (chan->device->id) {
  2492. case PPC440SPE_DMA0_ID:
  2493. case PPC440SPE_DMA1_ID:
  2494. /* to do: support transfers lengths >
  2495. * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
  2496. */
  2497. ppc440spe_desc_set_dest_addr(sw_desc->group_head,
  2498. chan, 0, addr, index);
  2499. break;
  2500. case PPC440SPE_XOR_ID:
  2501. sw_desc = ppc440spe_get_group_entry(sw_desc, index);
  2502. ppc440spe_desc_set_dest_addr(sw_desc,
  2503. chan, 0, addr, index);
  2504. break;
  2505. }
  2506. }
  2507. static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
  2508. struct ppc440spe_adma_chan *chan, dma_addr_t addr)
  2509. {
  2510. /* To clear destinations update the descriptor
  2511. * (P or Q depending on index) as follows:
  2512. * addr is destination (0 corresponds to SG2):
  2513. */
  2514. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
  2515. /* ... and the addr is source: */
  2516. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
  2517. /* addr is always SG2 then the mult is always DST1 */
  2518. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2519. DMA_CDB_SG_DST1, 1);
  2520. }
  2521. /**
  2522. * ppc440spe_adma_pq_set_dest - set destination address into descriptor
  2523. * for the PQXOR operation
  2524. */
  2525. static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2526. dma_addr_t *addrs, unsigned long flags)
  2527. {
  2528. struct ppc440spe_adma_desc_slot *iter;
  2529. struct ppc440spe_adma_chan *chan;
  2530. dma_addr_t paddr, qaddr;
  2531. dma_addr_t addr = 0, ppath, qpath;
  2532. int index = 0, i;
  2533. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2534. if (flags & DMA_PREP_PQ_DISABLE_P)
  2535. paddr = 0;
  2536. else
  2537. paddr = addrs[0];
  2538. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2539. qaddr = 0;
  2540. else
  2541. qaddr = addrs[1];
  2542. if (!paddr || !qaddr)
  2543. addr = paddr ? paddr : qaddr;
  2544. switch (chan->device->id) {
  2545. case PPC440SPE_DMA0_ID:
  2546. case PPC440SPE_DMA1_ID:
  2547. /* walk through the WXOR source list and set P/Q-destinations
  2548. * for each slot:
  2549. */
  2550. if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  2551. /* This is WXOR-only chain; may have 1/2 zero descs */
  2552. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  2553. index++;
  2554. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  2555. index++;
  2556. iter = ppc440spe_get_group_entry(sw_desc, index);
  2557. if (addr) {
  2558. /* one destination */
  2559. list_for_each_entry_from(iter,
  2560. &sw_desc->group_list, chain_node)
  2561. ppc440spe_desc_set_dest_addr(iter, chan,
  2562. DMA_CUED_XOR_BASE, addr, 0);
  2563. } else {
  2564. /* two destinations */
  2565. list_for_each_entry_from(iter,
  2566. &sw_desc->group_list, chain_node) {
  2567. ppc440spe_desc_set_dest_addr(iter, chan,
  2568. DMA_CUED_XOR_BASE, paddr, 0);
  2569. ppc440spe_desc_set_dest_addr(iter, chan,
  2570. DMA_CUED_XOR_BASE, qaddr, 1);
  2571. }
  2572. }
  2573. if (index) {
  2574. /* To clear destinations update the descriptor
  2575. * (1st,2nd, or both depending on flags)
  2576. */
  2577. index = 0;
  2578. if (test_bit(PPC440SPE_ZERO_P,
  2579. &sw_desc->flags)) {
  2580. iter = ppc440spe_get_group_entry(
  2581. sw_desc, index++);
  2582. ppc440spe_adma_pq_zero_op(iter, chan,
  2583. paddr);
  2584. }
  2585. if (test_bit(PPC440SPE_ZERO_Q,
  2586. &sw_desc->flags)) {
  2587. iter = ppc440spe_get_group_entry(
  2588. sw_desc, index++);
  2589. ppc440spe_adma_pq_zero_op(iter, chan,
  2590. qaddr);
  2591. }
  2592. return;
  2593. }
  2594. } else {
  2595. /* This is RXOR-only or RXOR/WXOR mixed chain */
  2596. /* If we want to include destination into calculations,
  2597. * then make dest addresses cued with mult=1 (XOR).
  2598. */
  2599. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2600. DMA_CUED_XOR_HB :
  2601. DMA_CUED_XOR_BASE |
  2602. (1 << DMA_CUED_MULT1_OFF);
  2603. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2604. DMA_CUED_XOR_HB :
  2605. DMA_CUED_XOR_BASE |
  2606. (1 << DMA_CUED_MULT1_OFF);
  2607. /* Setup destination(s) in RXOR slot(s) */
  2608. iter = ppc440spe_get_group_entry(sw_desc, index++);
  2609. ppc440spe_desc_set_dest_addr(iter, chan,
  2610. paddr ? ppath : qpath,
  2611. paddr ? paddr : qaddr, 0);
  2612. if (!addr) {
  2613. /* two destinations */
  2614. iter = ppc440spe_get_group_entry(sw_desc,
  2615. index++);
  2616. ppc440spe_desc_set_dest_addr(iter, chan,
  2617. qpath, qaddr, 0);
  2618. }
  2619. if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
  2620. /* Setup destination(s) in remaining WXOR
  2621. * slots
  2622. */
  2623. iter = ppc440spe_get_group_entry(sw_desc,
  2624. index);
  2625. if (addr) {
  2626. /* one destination */
  2627. list_for_each_entry_from(iter,
  2628. &sw_desc->group_list,
  2629. chain_node)
  2630. ppc440spe_desc_set_dest_addr(
  2631. iter, chan,
  2632. DMA_CUED_XOR_BASE,
  2633. addr, 0);
  2634. } else {
  2635. /* two destinations */
  2636. list_for_each_entry_from(iter,
  2637. &sw_desc->group_list,
  2638. chain_node) {
  2639. ppc440spe_desc_set_dest_addr(
  2640. iter, chan,
  2641. DMA_CUED_XOR_BASE,
  2642. paddr, 0);
  2643. ppc440spe_desc_set_dest_addr(
  2644. iter, chan,
  2645. DMA_CUED_XOR_BASE,
  2646. qaddr, 1);
  2647. }
  2648. }
  2649. }
  2650. }
  2651. break;
  2652. case PPC440SPE_XOR_ID:
  2653. /* DMA2 descriptors have only 1 destination, so there are
  2654. * two chains - one for each dest.
  2655. * If we want to include destination into calculations,
  2656. * then make dest addresses cued with mult=1 (XOR).
  2657. */
  2658. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2659. DMA_CUED_XOR_HB :
  2660. DMA_CUED_XOR_BASE |
  2661. (1 << DMA_CUED_MULT1_OFF);
  2662. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2663. DMA_CUED_XOR_HB :
  2664. DMA_CUED_XOR_BASE |
  2665. (1 << DMA_CUED_MULT1_OFF);
  2666. iter = ppc440spe_get_group_entry(sw_desc, 0);
  2667. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2668. ppc440spe_desc_set_dest_addr(iter, chan,
  2669. paddr ? ppath : qpath,
  2670. paddr ? paddr : qaddr, 0);
  2671. iter = list_entry(iter->chain_node.next,
  2672. struct ppc440spe_adma_desc_slot,
  2673. chain_node);
  2674. }
  2675. if (!addr) {
  2676. /* Two destinations; setup Q here */
  2677. iter = ppc440spe_get_group_entry(sw_desc,
  2678. sw_desc->descs_per_op);
  2679. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2680. ppc440spe_desc_set_dest_addr(iter,
  2681. chan, qpath, qaddr, 0);
  2682. iter = list_entry(iter->chain_node.next,
  2683. struct ppc440spe_adma_desc_slot,
  2684. chain_node);
  2685. }
  2686. }
  2687. break;
  2688. }
  2689. }
  2690. /**
  2691. * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
  2692. * for the PQ_ZERO_SUM operation
  2693. */
  2694. static void ppc440spe_adma_pqzero_sum_set_dest(
  2695. struct ppc440spe_adma_desc_slot *sw_desc,
  2696. dma_addr_t paddr, dma_addr_t qaddr)
  2697. {
  2698. struct ppc440spe_adma_desc_slot *iter, *end;
  2699. struct ppc440spe_adma_chan *chan;
  2700. dma_addr_t addr = 0;
  2701. int idx;
  2702. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2703. /* walk through the WXOR source list and set P/Q-destinations
  2704. * for each slot
  2705. */
  2706. idx = (paddr && qaddr) ? 2 : 1;
  2707. /* set end */
  2708. list_for_each_entry_reverse(end, &sw_desc->group_list,
  2709. chain_node) {
  2710. if (!(--idx))
  2711. break;
  2712. }
  2713. /* set start */
  2714. idx = (paddr && qaddr) ? 2 : 1;
  2715. iter = ppc440spe_get_group_entry(sw_desc, idx);
  2716. if (paddr && qaddr) {
  2717. /* two destinations */
  2718. list_for_each_entry_from(iter, &sw_desc->group_list,
  2719. chain_node) {
  2720. if (unlikely(iter == end))
  2721. break;
  2722. ppc440spe_desc_set_dest_addr(iter, chan,
  2723. DMA_CUED_XOR_BASE, paddr, 0);
  2724. ppc440spe_desc_set_dest_addr(iter, chan,
  2725. DMA_CUED_XOR_BASE, qaddr, 1);
  2726. }
  2727. } else {
  2728. /* one destination */
  2729. addr = paddr ? paddr : qaddr;
  2730. list_for_each_entry_from(iter, &sw_desc->group_list,
  2731. chain_node) {
  2732. if (unlikely(iter == end))
  2733. break;
  2734. ppc440spe_desc_set_dest_addr(iter, chan,
  2735. DMA_CUED_XOR_BASE, addr, 0);
  2736. }
  2737. }
  2738. /* The remaining descriptors are DATACHECK. These have no need in
  2739. * destination. Actually, these destinations are used there
  2740. * as sources for check operation. So, set addr as source.
  2741. */
  2742. ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
  2743. if (!addr) {
  2744. end = list_entry(end->chain_node.next,
  2745. struct ppc440spe_adma_desc_slot, chain_node);
  2746. ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
  2747. }
  2748. }
  2749. /**
  2750. * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
  2751. */
  2752. static inline void ppc440spe_desc_set_xor_src_cnt(
  2753. struct ppc440spe_adma_desc_slot *desc,
  2754. int src_cnt)
  2755. {
  2756. struct xor_cb *hw_desc = desc->hw_desc;
  2757. hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
  2758. hw_desc->cbc |= src_cnt;
  2759. }
  2760. /**
  2761. * ppc440spe_adma_pq_set_src - set source address into descriptor
  2762. */
  2763. static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
  2764. dma_addr_t addr, int index)
  2765. {
  2766. struct ppc440spe_adma_chan *chan;
  2767. dma_addr_t haddr = 0;
  2768. struct ppc440spe_adma_desc_slot *iter = NULL;
  2769. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2770. switch (chan->device->id) {
  2771. case PPC440SPE_DMA0_ID:
  2772. case PPC440SPE_DMA1_ID:
  2773. /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
  2774. */
  2775. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  2776. /* RXOR-only or RXOR/WXOR operation */
  2777. int iskip = test_bit(PPC440SPE_DESC_RXOR12,
  2778. &sw_desc->flags) ? 2 : 3;
  2779. if (index == 0) {
  2780. /* 1st slot (RXOR) */
  2781. /* setup sources region (R1-2-3, R1-2-4,
  2782. * or R1-2-5)
  2783. */
  2784. if (test_bit(PPC440SPE_DESC_RXOR12,
  2785. &sw_desc->flags))
  2786. haddr = DMA_RXOR12 <<
  2787. DMA_CUED_REGION_OFF;
  2788. else if (test_bit(PPC440SPE_DESC_RXOR123,
  2789. &sw_desc->flags))
  2790. haddr = DMA_RXOR123 <<
  2791. DMA_CUED_REGION_OFF;
  2792. else if (test_bit(PPC440SPE_DESC_RXOR124,
  2793. &sw_desc->flags))
  2794. haddr = DMA_RXOR124 <<
  2795. DMA_CUED_REGION_OFF;
  2796. else if (test_bit(PPC440SPE_DESC_RXOR125,
  2797. &sw_desc->flags))
  2798. haddr = DMA_RXOR125 <<
  2799. DMA_CUED_REGION_OFF;
  2800. else
  2801. BUG();
  2802. haddr |= DMA_CUED_XOR_BASE;
  2803. iter = ppc440spe_get_group_entry(sw_desc, 0);
  2804. } else if (index < iskip) {
  2805. /* 1st slot (RXOR)
  2806. * shall actually set source address only once
  2807. * instead of first <iskip>
  2808. */
  2809. iter = NULL;
  2810. } else {
  2811. /* 2nd/3d and next slots (WXOR);
  2812. * skip first slot with RXOR
  2813. */
  2814. haddr = DMA_CUED_XOR_HB;
  2815. iter = ppc440spe_get_group_entry(sw_desc,
  2816. index - iskip + sw_desc->dst_cnt);
  2817. }
  2818. } else {
  2819. int znum = 0;
  2820. /* WXOR-only operation; skip first slots with
  2821. * zeroing destinations
  2822. */
  2823. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  2824. znum++;
  2825. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  2826. znum++;
  2827. haddr = DMA_CUED_XOR_HB;
  2828. iter = ppc440spe_get_group_entry(sw_desc,
  2829. index + znum);
  2830. }
  2831. if (likely(iter)) {
  2832. ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
  2833. if (!index &&
  2834. test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
  2835. sw_desc->dst_cnt == 2) {
  2836. /* if we have two destinations for RXOR, then
  2837. * setup source in the second descr too
  2838. */
  2839. iter = ppc440spe_get_group_entry(sw_desc, 1);
  2840. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2841. haddr, addr);
  2842. }
  2843. }
  2844. break;
  2845. case PPC440SPE_XOR_ID:
  2846. /* DMA2 may do Biskup */
  2847. iter = sw_desc->group_head;
  2848. if (iter->dst_cnt == 2) {
  2849. /* both P & Q calculations required; set P src here */
  2850. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  2851. /* this is for Q */
  2852. iter = ppc440spe_get_group_entry(sw_desc,
  2853. sw_desc->descs_per_op);
  2854. }
  2855. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  2856. break;
  2857. }
  2858. }
  2859. /**
  2860. * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
  2861. */
  2862. static void ppc440spe_adma_memcpy_xor_set_src(
  2863. struct ppc440spe_adma_desc_slot *sw_desc,
  2864. dma_addr_t addr, int index)
  2865. {
  2866. struct ppc440spe_adma_chan *chan;
  2867. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2868. sw_desc = sw_desc->group_head;
  2869. if (likely(sw_desc))
  2870. ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
  2871. }
  2872. /**
  2873. * ppc440spe_adma_dma2rxor_inc_addr -
  2874. */
  2875. static void ppc440spe_adma_dma2rxor_inc_addr(
  2876. struct ppc440spe_adma_desc_slot *desc,
  2877. struct ppc440spe_rxor *cursor, int index, int src_cnt)
  2878. {
  2879. cursor->addr_count++;
  2880. if (index == src_cnt - 1) {
  2881. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  2882. } else if (cursor->addr_count == XOR_MAX_OPS) {
  2883. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  2884. cursor->addr_count = 0;
  2885. cursor->desc_count++;
  2886. }
  2887. }
  2888. /**
  2889. * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
  2890. */
  2891. static int ppc440spe_adma_dma2rxor_prep_src(
  2892. struct ppc440spe_adma_desc_slot *hdesc,
  2893. struct ppc440spe_rxor *cursor, int index,
  2894. int src_cnt, u32 addr)
  2895. {
  2896. int rval = 0;
  2897. u32 sign;
  2898. struct ppc440spe_adma_desc_slot *desc = hdesc;
  2899. int i;
  2900. for (i = 0; i < cursor->desc_count; i++) {
  2901. desc = list_entry(hdesc->chain_node.next,
  2902. struct ppc440spe_adma_desc_slot,
  2903. chain_node);
  2904. }
  2905. switch (cursor->state) {
  2906. case 0:
  2907. if (addr == cursor->addrl + cursor->len) {
  2908. /* direct RXOR */
  2909. cursor->state = 1;
  2910. cursor->xor_count++;
  2911. if (index == src_cnt-1) {
  2912. ppc440spe_rxor_set_region(desc,
  2913. cursor->addr_count,
  2914. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2915. ppc440spe_adma_dma2rxor_inc_addr(
  2916. desc, cursor, index, src_cnt);
  2917. }
  2918. } else if (cursor->addrl == addr + cursor->len) {
  2919. /* reverse RXOR */
  2920. cursor->state = 1;
  2921. cursor->xor_count++;
  2922. set_bit(cursor->addr_count, &desc->reverse_flags[0]);
  2923. if (index == src_cnt-1) {
  2924. ppc440spe_rxor_set_region(desc,
  2925. cursor->addr_count,
  2926. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2927. ppc440spe_adma_dma2rxor_inc_addr(
  2928. desc, cursor, index, src_cnt);
  2929. }
  2930. } else {
  2931. printk(KERN_ERR "Cannot build "
  2932. "DMA2 RXOR command block.\n");
  2933. BUG();
  2934. }
  2935. break;
  2936. case 1:
  2937. sign = test_bit(cursor->addr_count,
  2938. desc->reverse_flags)
  2939. ? -1 : 1;
  2940. if (index == src_cnt-2 || (sign == -1
  2941. && addr != cursor->addrl - 2*cursor->len)) {
  2942. cursor->state = 0;
  2943. cursor->xor_count = 1;
  2944. cursor->addrl = addr;
  2945. ppc440spe_rxor_set_region(desc,
  2946. cursor->addr_count,
  2947. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2948. ppc440spe_adma_dma2rxor_inc_addr(
  2949. desc, cursor, index, src_cnt);
  2950. } else if (addr == cursor->addrl + 2*sign*cursor->len) {
  2951. cursor->state = 2;
  2952. cursor->xor_count = 0;
  2953. ppc440spe_rxor_set_region(desc,
  2954. cursor->addr_count,
  2955. DMA_RXOR123 << DMA_CUED_REGION_OFF);
  2956. if (index == src_cnt-1) {
  2957. ppc440spe_adma_dma2rxor_inc_addr(
  2958. desc, cursor, index, src_cnt);
  2959. }
  2960. } else if (addr == cursor->addrl + 3*cursor->len) {
  2961. cursor->state = 2;
  2962. cursor->xor_count = 0;
  2963. ppc440spe_rxor_set_region(desc,
  2964. cursor->addr_count,
  2965. DMA_RXOR124 << DMA_CUED_REGION_OFF);
  2966. if (index == src_cnt-1) {
  2967. ppc440spe_adma_dma2rxor_inc_addr(
  2968. desc, cursor, index, src_cnt);
  2969. }
  2970. } else if (addr == cursor->addrl + 4*cursor->len) {
  2971. cursor->state = 2;
  2972. cursor->xor_count = 0;
  2973. ppc440spe_rxor_set_region(desc,
  2974. cursor->addr_count,
  2975. DMA_RXOR125 << DMA_CUED_REGION_OFF);
  2976. if (index == src_cnt-1) {
  2977. ppc440spe_adma_dma2rxor_inc_addr(
  2978. desc, cursor, index, src_cnt);
  2979. }
  2980. } else {
  2981. cursor->state = 0;
  2982. cursor->xor_count = 1;
  2983. cursor->addrl = addr;
  2984. ppc440spe_rxor_set_region(desc,
  2985. cursor->addr_count,
  2986. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  2987. ppc440spe_adma_dma2rxor_inc_addr(
  2988. desc, cursor, index, src_cnt);
  2989. }
  2990. break;
  2991. case 2:
  2992. cursor->state = 0;
  2993. cursor->addrl = addr;
  2994. cursor->xor_count++;
  2995. if (index) {
  2996. ppc440spe_adma_dma2rxor_inc_addr(
  2997. desc, cursor, index, src_cnt);
  2998. }
  2999. break;
  3000. }
  3001. return rval;
  3002. }
  3003. /**
  3004. * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
  3005. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3006. */
  3007. static void ppc440spe_adma_dma2rxor_set_src(
  3008. struct ppc440spe_adma_desc_slot *desc,
  3009. int index, dma_addr_t addr)
  3010. {
  3011. struct xor_cb *xcb = desc->hw_desc;
  3012. int k = 0, op = 0, lop = 0;
  3013. /* get the RXOR operand which corresponds to index addr */
  3014. while (op <= index) {
  3015. lop = op;
  3016. if (k == XOR_MAX_OPS) {
  3017. k = 0;
  3018. desc = list_entry(desc->chain_node.next,
  3019. struct ppc440spe_adma_desc_slot, chain_node);
  3020. xcb = desc->hw_desc;
  3021. }
  3022. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3023. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3024. op += 2;
  3025. else
  3026. op += 3;
  3027. }
  3028. BUG_ON(k < 1);
  3029. if (test_bit(k-1, desc->reverse_flags)) {
  3030. /* reverse operand order; put last op in RXOR group */
  3031. if (index == op - 1)
  3032. ppc440spe_rxor_set_src(desc, k - 1, addr);
  3033. } else {
  3034. /* direct operand order; put first op in RXOR group */
  3035. if (index == lop)
  3036. ppc440spe_rxor_set_src(desc, k - 1, addr);
  3037. }
  3038. }
  3039. /**
  3040. * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
  3041. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3042. */
  3043. static void ppc440spe_adma_dma2rxor_set_mult(
  3044. struct ppc440spe_adma_desc_slot *desc,
  3045. int index, u8 mult)
  3046. {
  3047. struct xor_cb *xcb = desc->hw_desc;
  3048. int k = 0, op = 0, lop = 0;
  3049. /* get the RXOR operand which corresponds to index mult */
  3050. while (op <= index) {
  3051. lop = op;
  3052. if (k == XOR_MAX_OPS) {
  3053. k = 0;
  3054. desc = list_entry(desc->chain_node.next,
  3055. struct ppc440spe_adma_desc_slot,
  3056. chain_node);
  3057. xcb = desc->hw_desc;
  3058. }
  3059. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3060. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3061. op += 2;
  3062. else
  3063. op += 3;
  3064. }
  3065. BUG_ON(k < 1);
  3066. if (test_bit(k-1, desc->reverse_flags)) {
  3067. /* reverse order */
  3068. ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
  3069. } else {
  3070. /* direct order */
  3071. ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
  3072. }
  3073. }
  3074. /**
  3075. * ppc440spe_init_rxor_cursor -
  3076. */
  3077. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
  3078. {
  3079. memset(cursor, 0, sizeof(struct ppc440spe_rxor));
  3080. cursor->state = 2;
  3081. }
  3082. /**
  3083. * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
  3084. * descriptor for the PQXOR operation
  3085. */
  3086. static void ppc440spe_adma_pq_set_src_mult(
  3087. struct ppc440spe_adma_desc_slot *sw_desc,
  3088. unsigned char mult, int index, int dst_pos)
  3089. {
  3090. struct ppc440spe_adma_chan *chan;
  3091. u32 mult_idx, mult_dst;
  3092. struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
  3093. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3094. switch (chan->device->id) {
  3095. case PPC440SPE_DMA0_ID:
  3096. case PPC440SPE_DMA1_ID:
  3097. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  3098. int region = test_bit(PPC440SPE_DESC_RXOR12,
  3099. &sw_desc->flags) ? 2 : 3;
  3100. if (index < region) {
  3101. /* RXOR multipliers */
  3102. iter = ppc440spe_get_group_entry(sw_desc,
  3103. sw_desc->dst_cnt - 1);
  3104. if (sw_desc->dst_cnt == 2)
  3105. iter1 = ppc440spe_get_group_entry(
  3106. sw_desc, 0);
  3107. mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
  3108. mult_dst = DMA_CDB_SG_SRC;
  3109. } else {
  3110. /* WXOR multiplier */
  3111. iter = ppc440spe_get_group_entry(sw_desc,
  3112. index - region +
  3113. sw_desc->dst_cnt);
  3114. mult_idx = DMA_CUED_MULT1_OFF;
  3115. mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
  3116. DMA_CDB_SG_DST1;
  3117. }
  3118. } else {
  3119. int znum = 0;
  3120. /* WXOR-only;
  3121. * skip first slots with destinations (if ZERO_DST has
  3122. * place)
  3123. */
  3124. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  3125. znum++;
  3126. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  3127. znum++;
  3128. iter = ppc440spe_get_group_entry(sw_desc, index + znum);
  3129. mult_idx = DMA_CUED_MULT1_OFF;
  3130. mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
  3131. }
  3132. if (likely(iter)) {
  3133. ppc440spe_desc_set_src_mult(iter, chan,
  3134. mult_idx, mult_dst, mult);
  3135. if (unlikely(iter1)) {
  3136. /* if we have two destinations for RXOR, then
  3137. * we've just set Q mult. Set-up P now.
  3138. */
  3139. ppc440spe_desc_set_src_mult(iter1, chan,
  3140. mult_idx, mult_dst, 1);
  3141. }
  3142. }
  3143. break;
  3144. case PPC440SPE_XOR_ID:
  3145. iter = sw_desc->group_head;
  3146. if (sw_desc->dst_cnt == 2) {
  3147. /* both P & Q calculations required; set P mult here */
  3148. ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
  3149. /* and then set Q mult */
  3150. iter = ppc440spe_get_group_entry(sw_desc,
  3151. sw_desc->descs_per_op);
  3152. }
  3153. ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
  3154. break;
  3155. }
  3156. }
  3157. /**
  3158. * ppc440spe_adma_free_chan_resources - free the resources allocated
  3159. */
  3160. static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
  3161. {
  3162. struct ppc440spe_adma_chan *ppc440spe_chan;
  3163. struct ppc440spe_adma_desc_slot *iter, *_iter;
  3164. int in_use_descs = 0;
  3165. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3166. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3167. spin_lock_bh(&ppc440spe_chan->lock);
  3168. list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
  3169. chain_node) {
  3170. in_use_descs++;
  3171. list_del(&iter->chain_node);
  3172. }
  3173. list_for_each_entry_safe_reverse(iter, _iter,
  3174. &ppc440spe_chan->all_slots, slot_node) {
  3175. list_del(&iter->slot_node);
  3176. kfree(iter);
  3177. ppc440spe_chan->slots_allocated--;
  3178. }
  3179. ppc440spe_chan->last_used = NULL;
  3180. dev_dbg(ppc440spe_chan->device->common.dev,
  3181. "ppc440spe adma%d %s slots_allocated %d\n",
  3182. ppc440spe_chan->device->id,
  3183. __func__, ppc440spe_chan->slots_allocated);
  3184. spin_unlock_bh(&ppc440spe_chan->lock);
  3185. /* one is ok since we left it on there on purpose */
  3186. if (in_use_descs > 1)
  3187. printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
  3188. in_use_descs - 1);
  3189. }
  3190. /**
  3191. * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
  3192. * @chan: ADMA channel handle
  3193. * @cookie: ADMA transaction identifier
  3194. * @txstate: a holder for the current state of the channel
  3195. */
  3196. static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
  3197. dma_cookie_t cookie, struct dma_tx_state *txstate)
  3198. {
  3199. struct ppc440spe_adma_chan *ppc440spe_chan;
  3200. enum dma_status ret;
  3201. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3202. ret = dma_cookie_status(chan, cookie, txstate);
  3203. if (ret == DMA_COMPLETE)
  3204. return ret;
  3205. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3206. return dma_cookie_status(chan, cookie, txstate);
  3207. }
  3208. /**
  3209. * ppc440spe_adma_eot_handler - end of transfer interrupt handler
  3210. */
  3211. static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
  3212. {
  3213. struct ppc440spe_adma_chan *chan = data;
  3214. dev_dbg(chan->device->common.dev,
  3215. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3216. tasklet_schedule(&chan->irq_tasklet);
  3217. ppc440spe_adma_device_clear_eot_status(chan);
  3218. return IRQ_HANDLED;
  3219. }
  3220. /**
  3221. * ppc440spe_adma_err_handler - DMA error interrupt handler;
  3222. * do the same things as a eot handler
  3223. */
  3224. static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
  3225. {
  3226. struct ppc440spe_adma_chan *chan = data;
  3227. dev_dbg(chan->device->common.dev,
  3228. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3229. tasklet_schedule(&chan->irq_tasklet);
  3230. ppc440spe_adma_device_clear_eot_status(chan);
  3231. return IRQ_HANDLED;
  3232. }
  3233. /**
  3234. * ppc440spe_test_callback - called when test operation has been done
  3235. */
  3236. static void ppc440spe_test_callback(void *unused)
  3237. {
  3238. complete(&ppc440spe_r6_test_comp);
  3239. }
  3240. /**
  3241. * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
  3242. */
  3243. static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
  3244. {
  3245. struct ppc440spe_adma_chan *ppc440spe_chan;
  3246. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3247. dev_dbg(ppc440spe_chan->device->common.dev,
  3248. "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
  3249. __func__, ppc440spe_chan->pending);
  3250. if (ppc440spe_chan->pending) {
  3251. ppc440spe_chan->pending = 0;
  3252. ppc440spe_chan_append(ppc440spe_chan);
  3253. }
  3254. }
  3255. /**
  3256. * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
  3257. * use FIFOs (as opposite to chains used in XOR) so this is a XOR
  3258. * specific operation)
  3259. */
  3260. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
  3261. {
  3262. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  3263. dma_cookie_t cookie;
  3264. int slot_cnt, slots_per_op;
  3265. dev_dbg(chan->device->common.dev,
  3266. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3267. spin_lock_bh(&chan->lock);
  3268. slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
  3269. sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
  3270. if (sw_desc) {
  3271. group_start = sw_desc->group_head;
  3272. list_splice_init(&sw_desc->group_list, &chan->chain);
  3273. async_tx_ack(&sw_desc->async_tx);
  3274. ppc440spe_desc_init_null_xor(group_start);
  3275. cookie = dma_cookie_assign(&sw_desc->async_tx);
  3276. /* initialize the completed cookie to be less than
  3277. * the most recently used cookie
  3278. */
  3279. chan->common.completed_cookie = cookie - 1;
  3280. /* channel should not be busy */
  3281. BUG_ON(ppc440spe_chan_is_busy(chan));
  3282. /* set the descriptor address */
  3283. ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
  3284. /* run the descriptor */
  3285. ppc440spe_chan_run(chan);
  3286. } else
  3287. printk(KERN_ERR "ppc440spe adma%d"
  3288. " failed to allocate null descriptor\n",
  3289. chan->device->id);
  3290. spin_unlock_bh(&chan->lock);
  3291. }
  3292. /**
  3293. * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
  3294. * For this we just perform one WXOR operation with the same source
  3295. * and destination addresses, the GF-multiplier is 1; so if RAID-6
  3296. * capabilities are enabled then we'll get src/dst filled with zero.
  3297. */
  3298. static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
  3299. {
  3300. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  3301. struct page *pg;
  3302. char *a;
  3303. dma_addr_t dma_addr, addrs[2];
  3304. unsigned long op = 0;
  3305. int rval = 0;
  3306. set_bit(PPC440SPE_DESC_WXOR, &op);
  3307. pg = alloc_page(GFP_KERNEL);
  3308. if (!pg)
  3309. return -ENOMEM;
  3310. spin_lock_bh(&chan->lock);
  3311. sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
  3312. if (sw_desc) {
  3313. /* 1 src, 1 dsr, int_ena, WXOR */
  3314. ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
  3315. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  3316. ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
  3317. iter->unmap_len = PAGE_SIZE;
  3318. }
  3319. } else {
  3320. rval = -EFAULT;
  3321. spin_unlock_bh(&chan->lock);
  3322. goto exit;
  3323. }
  3324. spin_unlock_bh(&chan->lock);
  3325. /* Fill the test page with ones */
  3326. memset(page_address(pg), 0xFF, PAGE_SIZE);
  3327. dma_addr = dma_map_page(chan->device->dev, pg, 0,
  3328. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3329. /* Setup addresses */
  3330. ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
  3331. ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
  3332. addrs[0] = dma_addr;
  3333. addrs[1] = 0;
  3334. ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
  3335. async_tx_ack(&sw_desc->async_tx);
  3336. sw_desc->async_tx.callback = ppc440spe_test_callback;
  3337. sw_desc->async_tx.callback_param = NULL;
  3338. init_completion(&ppc440spe_r6_test_comp);
  3339. ppc440spe_adma_tx_submit(&sw_desc->async_tx);
  3340. ppc440spe_adma_issue_pending(&chan->common);
  3341. wait_for_completion(&ppc440spe_r6_test_comp);
  3342. /* Now check if the test page is zeroed */
  3343. a = page_address(pg);
  3344. if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
  3345. /* page is zero - RAID-6 enabled */
  3346. rval = 0;
  3347. } else {
  3348. /* RAID-6 was not enabled */
  3349. rval = -EINVAL;
  3350. }
  3351. exit:
  3352. __free_page(pg);
  3353. return rval;
  3354. }
  3355. static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
  3356. {
  3357. switch (adev->id) {
  3358. case PPC440SPE_DMA0_ID:
  3359. case PPC440SPE_DMA1_ID:
  3360. dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
  3361. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3362. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3363. dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
  3364. dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
  3365. break;
  3366. case PPC440SPE_XOR_ID:
  3367. dma_cap_set(DMA_XOR, adev->common.cap_mask);
  3368. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3369. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3370. adev->common.cap_mask = adev->common.cap_mask;
  3371. break;
  3372. }
  3373. /* Set base routines */
  3374. adev->common.device_alloc_chan_resources =
  3375. ppc440spe_adma_alloc_chan_resources;
  3376. adev->common.device_free_chan_resources =
  3377. ppc440spe_adma_free_chan_resources;
  3378. adev->common.device_tx_status = ppc440spe_adma_tx_status;
  3379. adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
  3380. /* Set prep routines based on capability */
  3381. if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
  3382. adev->common.device_prep_dma_memcpy =
  3383. ppc440spe_adma_prep_dma_memcpy;
  3384. }
  3385. if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
  3386. adev->common.max_xor = XOR_MAX_OPS;
  3387. adev->common.device_prep_dma_xor =
  3388. ppc440spe_adma_prep_dma_xor;
  3389. }
  3390. if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
  3391. switch (adev->id) {
  3392. case PPC440SPE_DMA0_ID:
  3393. dma_set_maxpq(&adev->common,
  3394. DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3395. break;
  3396. case PPC440SPE_DMA1_ID:
  3397. dma_set_maxpq(&adev->common,
  3398. DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3399. break;
  3400. case PPC440SPE_XOR_ID:
  3401. adev->common.max_pq = XOR_MAX_OPS * 3;
  3402. break;
  3403. }
  3404. adev->common.device_prep_dma_pq =
  3405. ppc440spe_adma_prep_dma_pq;
  3406. }
  3407. if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
  3408. switch (adev->id) {
  3409. case PPC440SPE_DMA0_ID:
  3410. adev->common.max_pq = DMA0_FIFO_SIZE /
  3411. sizeof(struct dma_cdb);
  3412. break;
  3413. case PPC440SPE_DMA1_ID:
  3414. adev->common.max_pq = DMA1_FIFO_SIZE /
  3415. sizeof(struct dma_cdb);
  3416. break;
  3417. }
  3418. adev->common.device_prep_dma_pq_val =
  3419. ppc440spe_adma_prep_dma_pqzero_sum;
  3420. }
  3421. if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
  3422. switch (adev->id) {
  3423. case PPC440SPE_DMA0_ID:
  3424. adev->common.max_xor = DMA0_FIFO_SIZE /
  3425. sizeof(struct dma_cdb);
  3426. break;
  3427. case PPC440SPE_DMA1_ID:
  3428. adev->common.max_xor = DMA1_FIFO_SIZE /
  3429. sizeof(struct dma_cdb);
  3430. break;
  3431. }
  3432. adev->common.device_prep_dma_xor_val =
  3433. ppc440spe_adma_prep_dma_xor_zero_sum;
  3434. }
  3435. if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
  3436. adev->common.device_prep_dma_interrupt =
  3437. ppc440spe_adma_prep_dma_interrupt;
  3438. }
  3439. pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
  3440. "( %s%s%s%s%s%s%s)\n",
  3441. dev_name(adev->dev),
  3442. dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
  3443. dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
  3444. dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
  3445. dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
  3446. dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
  3447. dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
  3448. }
  3449. static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
  3450. struct ppc440spe_adma_chan *chan,
  3451. int *initcode)
  3452. {
  3453. struct platform_device *ofdev;
  3454. struct device_node *np;
  3455. int ret;
  3456. ofdev = container_of(adev->dev, struct platform_device, dev);
  3457. np = ofdev->dev.of_node;
  3458. if (adev->id != PPC440SPE_XOR_ID) {
  3459. adev->err_irq = irq_of_parse_and_map(np, 1);
  3460. if (adev->err_irq == NO_IRQ) {
  3461. dev_warn(adev->dev, "no err irq resource?\n");
  3462. *initcode = PPC_ADMA_INIT_IRQ2;
  3463. adev->err_irq = -ENXIO;
  3464. } else
  3465. atomic_inc(&ppc440spe_adma_err_irq_ref);
  3466. } else {
  3467. adev->err_irq = -ENXIO;
  3468. }
  3469. adev->irq = irq_of_parse_and_map(np, 0);
  3470. if (adev->irq == NO_IRQ) {
  3471. dev_err(adev->dev, "no irq resource\n");
  3472. *initcode = PPC_ADMA_INIT_IRQ1;
  3473. ret = -ENXIO;
  3474. goto err_irq_map;
  3475. }
  3476. dev_dbg(adev->dev, "irq %d, err irq %d\n",
  3477. adev->irq, adev->err_irq);
  3478. ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
  3479. 0, dev_driver_string(adev->dev), chan);
  3480. if (ret) {
  3481. dev_err(adev->dev, "can't request irq %d\n",
  3482. adev->irq);
  3483. *initcode = PPC_ADMA_INIT_IRQ1;
  3484. ret = -EIO;
  3485. goto err_req1;
  3486. }
  3487. /* only DMA engines have a separate error IRQ
  3488. * so it's Ok if err_irq < 0 in XOR engine case.
  3489. */
  3490. if (adev->err_irq > 0) {
  3491. /* both DMA engines share common error IRQ */
  3492. ret = request_irq(adev->err_irq,
  3493. ppc440spe_adma_err_handler,
  3494. IRQF_SHARED,
  3495. dev_driver_string(adev->dev),
  3496. chan);
  3497. if (ret) {
  3498. dev_err(adev->dev, "can't request irq %d\n",
  3499. adev->err_irq);
  3500. *initcode = PPC_ADMA_INIT_IRQ2;
  3501. ret = -EIO;
  3502. goto err_req2;
  3503. }
  3504. }
  3505. if (adev->id == PPC440SPE_XOR_ID) {
  3506. /* enable XOR engine interrupts */
  3507. iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3508. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
  3509. &adev->xor_reg->ier);
  3510. } else {
  3511. u32 mask, enable;
  3512. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  3513. if (!np) {
  3514. pr_err("%s: can't find I2O device tree node\n",
  3515. __func__);
  3516. ret = -ENODEV;
  3517. goto err_req2;
  3518. }
  3519. adev->i2o_reg = of_iomap(np, 0);
  3520. if (!adev->i2o_reg) {
  3521. pr_err("%s: failed to map I2O registers\n", __func__);
  3522. of_node_put(np);
  3523. ret = -EINVAL;
  3524. goto err_req2;
  3525. }
  3526. of_node_put(np);
  3527. /* Unmask 'CS FIFO Attention' interrupts and
  3528. * enable generating interrupts on errors
  3529. */
  3530. enable = (adev->id == PPC440SPE_DMA0_ID) ?
  3531. ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3532. ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3533. mask = ioread32(&adev->i2o_reg->iopim) & enable;
  3534. iowrite32(mask, &adev->i2o_reg->iopim);
  3535. }
  3536. return 0;
  3537. err_req2:
  3538. free_irq(adev->irq, chan);
  3539. err_req1:
  3540. irq_dispose_mapping(adev->irq);
  3541. err_irq_map:
  3542. if (adev->err_irq > 0) {
  3543. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
  3544. irq_dispose_mapping(adev->err_irq);
  3545. }
  3546. return ret;
  3547. }
  3548. static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
  3549. struct ppc440spe_adma_chan *chan)
  3550. {
  3551. u32 mask, disable;
  3552. if (adev->id == PPC440SPE_XOR_ID) {
  3553. /* disable XOR engine interrupts */
  3554. mask = ioread32be(&adev->xor_reg->ier);
  3555. mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3556. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
  3557. iowrite32be(mask, &adev->xor_reg->ier);
  3558. } else {
  3559. /* disable DMAx engine interrupts */
  3560. disable = (adev->id == PPC440SPE_DMA0_ID) ?
  3561. (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3562. (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3563. mask = ioread32(&adev->i2o_reg->iopim) | disable;
  3564. iowrite32(mask, &adev->i2o_reg->iopim);
  3565. }
  3566. free_irq(adev->irq, chan);
  3567. irq_dispose_mapping(adev->irq);
  3568. if (adev->err_irq > 0) {
  3569. free_irq(adev->err_irq, chan);
  3570. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
  3571. irq_dispose_mapping(adev->err_irq);
  3572. iounmap(adev->i2o_reg);
  3573. }
  3574. }
  3575. }
  3576. /**
  3577. * ppc440spe_adma_probe - probe the asynch device
  3578. */
  3579. static int ppc440spe_adma_probe(struct platform_device *ofdev)
  3580. {
  3581. struct device_node *np = ofdev->dev.of_node;
  3582. struct resource res;
  3583. struct ppc440spe_adma_device *adev;
  3584. struct ppc440spe_adma_chan *chan;
  3585. struct ppc_dma_chan_ref *ref, *_ref;
  3586. int ret = 0, initcode = PPC_ADMA_INIT_OK;
  3587. const u32 *idx;
  3588. int len;
  3589. void *regs;
  3590. u32 id, pool_size;
  3591. if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
  3592. id = PPC440SPE_XOR_ID;
  3593. /* As far as the XOR engine is concerned, it does not
  3594. * use FIFOs but uses linked list. So there is no dependency
  3595. * between pool size to allocate and the engine configuration.
  3596. */
  3597. pool_size = PAGE_SIZE << 1;
  3598. } else {
  3599. /* it is DMA0 or DMA1 */
  3600. idx = of_get_property(np, "cell-index", &len);
  3601. if (!idx || (len != sizeof(u32))) {
  3602. dev_err(&ofdev->dev, "Device node %s has missing "
  3603. "or invalid cell-index property\n",
  3604. np->full_name);
  3605. return -EINVAL;
  3606. }
  3607. id = *idx;
  3608. /* DMA0,1 engines use FIFO to maintain CDBs, so we
  3609. * should allocate the pool accordingly to size of this
  3610. * FIFO. Thus, the pool size depends on the FIFO depth:
  3611. * how much CDBs pointers the FIFO may contain then so
  3612. * much CDBs we should provide in the pool.
  3613. * That is
  3614. * CDB size = 32B;
  3615. * CDBs number = (DMA0_FIFO_SIZE >> 3);
  3616. * Pool size = CDBs number * CDB size =
  3617. * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
  3618. */
  3619. pool_size = (id == PPC440SPE_DMA0_ID) ?
  3620. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3621. pool_size <<= 2;
  3622. }
  3623. if (of_address_to_resource(np, 0, &res)) {
  3624. dev_err(&ofdev->dev, "failed to get memory resource\n");
  3625. initcode = PPC_ADMA_INIT_MEMRES;
  3626. ret = -ENODEV;
  3627. goto out;
  3628. }
  3629. if (!request_mem_region(res.start, resource_size(&res),
  3630. dev_driver_string(&ofdev->dev))) {
  3631. dev_err(&ofdev->dev, "failed to request memory region %pR\n",
  3632. &res);
  3633. initcode = PPC_ADMA_INIT_MEMREG;
  3634. ret = -EBUSY;
  3635. goto out;
  3636. }
  3637. /* create a device */
  3638. adev = kzalloc(sizeof(*adev), GFP_KERNEL);
  3639. if (!adev) {
  3640. dev_err(&ofdev->dev, "failed to allocate device\n");
  3641. initcode = PPC_ADMA_INIT_ALLOC;
  3642. ret = -ENOMEM;
  3643. goto err_adev_alloc;
  3644. }
  3645. adev->id = id;
  3646. adev->pool_size = pool_size;
  3647. /* allocate coherent memory for hardware descriptors */
  3648. adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
  3649. adev->pool_size, &adev->dma_desc_pool,
  3650. GFP_KERNEL);
  3651. if (adev->dma_desc_pool_virt == NULL) {
  3652. dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
  3653. "memory for hardware descriptors\n",
  3654. adev->pool_size);
  3655. initcode = PPC_ADMA_INIT_COHERENT;
  3656. ret = -ENOMEM;
  3657. goto err_dma_alloc;
  3658. }
  3659. dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
  3660. adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
  3661. regs = ioremap(res.start, resource_size(&res));
  3662. if (!regs) {
  3663. dev_err(&ofdev->dev, "failed to ioremap regs!\n");
  3664. goto err_regs_alloc;
  3665. }
  3666. if (adev->id == PPC440SPE_XOR_ID) {
  3667. adev->xor_reg = regs;
  3668. /* Reset XOR */
  3669. iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
  3670. iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
  3671. } else {
  3672. size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
  3673. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3674. adev->dma_reg = regs;
  3675. /* DMAx_FIFO_SIZE is defined in bytes,
  3676. * <fsiz> - is defined in number of CDB pointers (8byte).
  3677. * DMA FIFO Length = CSlength + CPlength, where
  3678. * CSlength = CPlength = (fsiz + 1) * 8.
  3679. */
  3680. iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
  3681. &adev->dma_reg->fsiz);
  3682. /* Configure DMA engine */
  3683. iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
  3684. &adev->dma_reg->cfg);
  3685. /* Clear Status */
  3686. iowrite32(~0, &adev->dma_reg->dsts);
  3687. }
  3688. adev->dev = &ofdev->dev;
  3689. adev->common.dev = &ofdev->dev;
  3690. INIT_LIST_HEAD(&adev->common.channels);
  3691. platform_set_drvdata(ofdev, adev);
  3692. /* create a channel */
  3693. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  3694. if (!chan) {
  3695. dev_err(&ofdev->dev, "can't allocate channel structure\n");
  3696. initcode = PPC_ADMA_INIT_CHANNEL;
  3697. ret = -ENOMEM;
  3698. goto err_chan_alloc;
  3699. }
  3700. spin_lock_init(&chan->lock);
  3701. INIT_LIST_HEAD(&chan->chain);
  3702. INIT_LIST_HEAD(&chan->all_slots);
  3703. chan->device = adev;
  3704. chan->common.device = &adev->common;
  3705. dma_cookie_init(&chan->common);
  3706. list_add_tail(&chan->common.device_node, &adev->common.channels);
  3707. tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
  3708. (unsigned long)chan);
  3709. /* allocate and map helper pages for async validation or
  3710. * async_mult/async_sum_product operations on DMA0/1.
  3711. */
  3712. if (adev->id != PPC440SPE_XOR_ID) {
  3713. chan->pdest_page = alloc_page(GFP_KERNEL);
  3714. chan->qdest_page = alloc_page(GFP_KERNEL);
  3715. if (!chan->pdest_page ||
  3716. !chan->qdest_page) {
  3717. if (chan->pdest_page)
  3718. __free_page(chan->pdest_page);
  3719. if (chan->qdest_page)
  3720. __free_page(chan->qdest_page);
  3721. ret = -ENOMEM;
  3722. goto err_page_alloc;
  3723. }
  3724. chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
  3725. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3726. chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
  3727. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3728. }
  3729. ref = kmalloc(sizeof(*ref), GFP_KERNEL);
  3730. if (ref) {
  3731. ref->chan = &chan->common;
  3732. INIT_LIST_HEAD(&ref->node);
  3733. list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
  3734. } else {
  3735. dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
  3736. ret = -ENOMEM;
  3737. goto err_ref_alloc;
  3738. }
  3739. ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
  3740. if (ret)
  3741. goto err_irq;
  3742. ppc440spe_adma_init_capabilities(adev);
  3743. ret = dma_async_device_register(&adev->common);
  3744. if (ret) {
  3745. initcode = PPC_ADMA_INIT_REGISTER;
  3746. dev_err(&ofdev->dev, "failed to register dma device\n");
  3747. goto err_dev_reg;
  3748. }
  3749. goto out;
  3750. err_dev_reg:
  3751. ppc440spe_adma_release_irqs(adev, chan);
  3752. err_irq:
  3753. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
  3754. if (chan == to_ppc440spe_adma_chan(ref->chan)) {
  3755. list_del(&ref->node);
  3756. kfree(ref);
  3757. }
  3758. }
  3759. err_ref_alloc:
  3760. if (adev->id != PPC440SPE_XOR_ID) {
  3761. dma_unmap_page(&ofdev->dev, chan->pdest,
  3762. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3763. dma_unmap_page(&ofdev->dev, chan->qdest,
  3764. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3765. __free_page(chan->pdest_page);
  3766. __free_page(chan->qdest_page);
  3767. }
  3768. err_page_alloc:
  3769. kfree(chan);
  3770. err_chan_alloc:
  3771. if (adev->id == PPC440SPE_XOR_ID)
  3772. iounmap(adev->xor_reg);
  3773. else
  3774. iounmap(adev->dma_reg);
  3775. err_regs_alloc:
  3776. dma_free_coherent(adev->dev, adev->pool_size,
  3777. adev->dma_desc_pool_virt,
  3778. adev->dma_desc_pool);
  3779. err_dma_alloc:
  3780. kfree(adev);
  3781. err_adev_alloc:
  3782. release_mem_region(res.start, resource_size(&res));
  3783. out:
  3784. if (id < PPC440SPE_ADMA_ENGINES_NUM)
  3785. ppc440spe_adma_devices[id] = initcode;
  3786. return ret;
  3787. }
  3788. /**
  3789. * ppc440spe_adma_remove - remove the asynch device
  3790. */
  3791. static int ppc440spe_adma_remove(struct platform_device *ofdev)
  3792. {
  3793. struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
  3794. struct device_node *np = ofdev->dev.of_node;
  3795. struct resource res;
  3796. struct dma_chan *chan, *_chan;
  3797. struct ppc_dma_chan_ref *ref, *_ref;
  3798. struct ppc440spe_adma_chan *ppc440spe_chan;
  3799. if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
  3800. ppc440spe_adma_devices[adev->id] = -1;
  3801. dma_async_device_unregister(&adev->common);
  3802. list_for_each_entry_safe(chan, _chan, &adev->common.channels,
  3803. device_node) {
  3804. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3805. ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
  3806. tasklet_kill(&ppc440spe_chan->irq_tasklet);
  3807. if (adev->id != PPC440SPE_XOR_ID) {
  3808. dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
  3809. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3810. dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
  3811. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3812. __free_page(ppc440spe_chan->pdest_page);
  3813. __free_page(ppc440spe_chan->qdest_page);
  3814. }
  3815. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
  3816. node) {
  3817. if (ppc440spe_chan ==
  3818. to_ppc440spe_adma_chan(ref->chan)) {
  3819. list_del(&ref->node);
  3820. kfree(ref);
  3821. }
  3822. }
  3823. list_del(&chan->device_node);
  3824. kfree(ppc440spe_chan);
  3825. }
  3826. dma_free_coherent(adev->dev, adev->pool_size,
  3827. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  3828. if (adev->id == PPC440SPE_XOR_ID)
  3829. iounmap(adev->xor_reg);
  3830. else
  3831. iounmap(adev->dma_reg);
  3832. of_address_to_resource(np, 0, &res);
  3833. release_mem_region(res.start, resource_size(&res));
  3834. kfree(adev);
  3835. return 0;
  3836. }
  3837. /*
  3838. * /sys driver interface to enable h/w RAID-6 capabilities
  3839. * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
  3840. * directory are "devices", "enable" and "poly".
  3841. * "devices" shows available engines.
  3842. * "enable" is used to enable RAID-6 capabilities or to check
  3843. * whether these has been activated.
  3844. * "poly" allows setting/checking used polynomial (for PPC440SPe only).
  3845. */
  3846. static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
  3847. {
  3848. ssize_t size = 0;
  3849. int i;
  3850. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
  3851. if (ppc440spe_adma_devices[i] == -1)
  3852. continue;
  3853. size += snprintf(buf + size, PAGE_SIZE - size,
  3854. "PPC440SP(E)-ADMA.%d: %s\n", i,
  3855. ppc_adma_errors[ppc440spe_adma_devices[i]]);
  3856. }
  3857. return size;
  3858. }
  3859. static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
  3860. {
  3861. return snprintf(buf, PAGE_SIZE,
  3862. "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
  3863. ppc440spe_r6_enabled ? "EN" : "DIS");
  3864. }
  3865. static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
  3866. const char *buf, size_t count)
  3867. {
  3868. unsigned long val;
  3869. if (!count || count > 11)
  3870. return -EINVAL;
  3871. if (!ppc440spe_r6_tchan)
  3872. return -EFAULT;
  3873. /* Write a key */
  3874. sscanf(buf, "%lx", &val);
  3875. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
  3876. isync();
  3877. /* Verify whether it really works now */
  3878. if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
  3879. pr_info("PPC440SP(e) RAID-6 has been activated "
  3880. "successfully\n");
  3881. ppc440spe_r6_enabled = 1;
  3882. } else {
  3883. pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
  3884. " Error key ?\n");
  3885. ppc440spe_r6_enabled = 0;
  3886. }
  3887. return count;
  3888. }
  3889. static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
  3890. {
  3891. ssize_t size = 0;
  3892. u32 reg;
  3893. #ifdef CONFIG_440SP
  3894. /* 440SP has fixed polynomial */
  3895. reg = 0x4d;
  3896. #else
  3897. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  3898. reg >>= MQ0_CFBHL_POLY;
  3899. reg &= 0xFF;
  3900. #endif
  3901. size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
  3902. "uses 0x1%02x polynomial.\n", reg);
  3903. return size;
  3904. }
  3905. static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
  3906. const char *buf, size_t count)
  3907. {
  3908. unsigned long reg, val;
  3909. #ifdef CONFIG_440SP
  3910. /* 440SP uses default 0x14D polynomial only */
  3911. return -EINVAL;
  3912. #endif
  3913. if (!count || count > 6)
  3914. return -EINVAL;
  3915. /* e.g., 0x14D or 0x11D */
  3916. sscanf(buf, "%lx", &val);
  3917. if (val & ~0x1FF)
  3918. return -EINVAL;
  3919. val &= 0xFF;
  3920. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  3921. reg &= ~(0xFF << MQ0_CFBHL_POLY);
  3922. reg |= val << MQ0_CFBHL_POLY;
  3923. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
  3924. return count;
  3925. }
  3926. static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
  3927. static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
  3928. store_ppc440spe_r6enable);
  3929. static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
  3930. store_ppc440spe_r6poly);
  3931. /*
  3932. * Common initialisation for RAID engines; allocate memory for
  3933. * DMAx FIFOs, perform configuration common for all DMA engines.
  3934. * Further DMA engine specific configuration is done at probe time.
  3935. */
  3936. static int ppc440spe_configure_raid_devices(void)
  3937. {
  3938. struct device_node *np;
  3939. struct resource i2o_res;
  3940. struct i2o_regs __iomem *i2o_reg;
  3941. dcr_host_t i2o_dcr_host;
  3942. unsigned int dcr_base, dcr_len;
  3943. int i, ret;
  3944. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  3945. if (!np) {
  3946. pr_err("%s: can't find I2O device tree node\n",
  3947. __func__);
  3948. return -ENODEV;
  3949. }
  3950. if (of_address_to_resource(np, 0, &i2o_res)) {
  3951. of_node_put(np);
  3952. return -EINVAL;
  3953. }
  3954. i2o_reg = of_iomap(np, 0);
  3955. if (!i2o_reg) {
  3956. pr_err("%s: failed to map I2O registers\n", __func__);
  3957. of_node_put(np);
  3958. return -EINVAL;
  3959. }
  3960. /* Get I2O DCRs base */
  3961. dcr_base = dcr_resource_start(np, 0);
  3962. dcr_len = dcr_resource_len(np, 0);
  3963. if (!dcr_base && !dcr_len) {
  3964. pr_err("%s: can't get DCR registers base/len!\n",
  3965. np->full_name);
  3966. of_node_put(np);
  3967. iounmap(i2o_reg);
  3968. return -ENODEV;
  3969. }
  3970. i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
  3971. if (!DCR_MAP_OK(i2o_dcr_host)) {
  3972. pr_err("%s: failed to map DCRs!\n", np->full_name);
  3973. of_node_put(np);
  3974. iounmap(i2o_reg);
  3975. return -ENODEV;
  3976. }
  3977. of_node_put(np);
  3978. /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
  3979. * the base address of FIFO memory space.
  3980. * Actually we need twice more physical memory than programmed in the
  3981. * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
  3982. */
  3983. ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
  3984. GFP_KERNEL);
  3985. if (!ppc440spe_dma_fifo_buf) {
  3986. pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
  3987. iounmap(i2o_reg);
  3988. dcr_unmap(i2o_dcr_host, dcr_len);
  3989. return -ENOMEM;
  3990. }
  3991. /*
  3992. * Configure h/w
  3993. */
  3994. /* Reset I2O/DMA */
  3995. mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
  3996. mtdcri(SDR0, DCRN_SDR0_SRST, 0);
  3997. /* Setup the base address of mmaped registers */
  3998. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
  3999. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
  4000. I2O_REG_ENABLE);
  4001. dcr_unmap(i2o_dcr_host, dcr_len);
  4002. /* Setup FIFO memory space base address */
  4003. iowrite32(0, &i2o_reg->ifbah);
  4004. iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
  4005. /* set zero FIFO size for I2O, so the whole
  4006. * ppc440spe_dma_fifo_buf is used by DMAs.
  4007. * DMAx_FIFOs will be configured while probe.
  4008. */
  4009. iowrite32(0, &i2o_reg->ifsiz);
  4010. iounmap(i2o_reg);
  4011. /* To prepare WXOR/RXOR functionality we need access to
  4012. * Memory Queue Module DCRs (finally it will be enabled
  4013. * via /sys interface of the ppc440spe ADMA driver).
  4014. */
  4015. np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
  4016. if (!np) {
  4017. pr_err("%s: can't find MQ device tree node\n",
  4018. __func__);
  4019. ret = -ENODEV;
  4020. goto out_free;
  4021. }
  4022. /* Get MQ DCRs base */
  4023. dcr_base = dcr_resource_start(np, 0);
  4024. dcr_len = dcr_resource_len(np, 0);
  4025. if (!dcr_base && !dcr_len) {
  4026. pr_err("%s: can't get DCR registers base/len!\n",
  4027. np->full_name);
  4028. ret = -ENODEV;
  4029. goto out_mq;
  4030. }
  4031. ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
  4032. if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
  4033. pr_err("%s: failed to map DCRs!\n", np->full_name);
  4034. ret = -ENODEV;
  4035. goto out_mq;
  4036. }
  4037. of_node_put(np);
  4038. ppc440spe_mq_dcr_len = dcr_len;
  4039. /* Set HB alias */
  4040. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
  4041. /* Set:
  4042. * - LL transaction passing limit to 1;
  4043. * - Memory controller cycle limit to 1;
  4044. * - Galois Polynomial to 0x14d (default)
  4045. */
  4046. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
  4047. (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
  4048. (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
  4049. atomic_set(&ppc440spe_adma_err_irq_ref, 0);
  4050. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
  4051. ppc440spe_adma_devices[i] = -1;
  4052. return 0;
  4053. out_mq:
  4054. of_node_put(np);
  4055. out_free:
  4056. kfree(ppc440spe_dma_fifo_buf);
  4057. return ret;
  4058. }
  4059. static const struct of_device_id ppc440spe_adma_of_match[] = {
  4060. { .compatible = "ibm,dma-440spe", },
  4061. { .compatible = "amcc,xor-accelerator", },
  4062. {},
  4063. };
  4064. MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
  4065. static struct platform_driver ppc440spe_adma_driver = {
  4066. .probe = ppc440spe_adma_probe,
  4067. .remove = ppc440spe_adma_remove,
  4068. .driver = {
  4069. .name = "PPC440SP(E)-ADMA",
  4070. .owner = THIS_MODULE,
  4071. .of_match_table = ppc440spe_adma_of_match,
  4072. },
  4073. };
  4074. static __init int ppc440spe_adma_init(void)
  4075. {
  4076. int ret;
  4077. ret = ppc440spe_configure_raid_devices();
  4078. if (ret)
  4079. return ret;
  4080. ret = platform_driver_register(&ppc440spe_adma_driver);
  4081. if (ret) {
  4082. pr_err("%s: failed to register platform driver\n",
  4083. __func__);
  4084. goto out_reg;
  4085. }
  4086. /* Initialization status */
  4087. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4088. &driver_attr_devices);
  4089. if (ret)
  4090. goto out_dev;
  4091. /* RAID-6 h/w enable entry */
  4092. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4093. &driver_attr_enable);
  4094. if (ret)
  4095. goto out_en;
  4096. /* GF polynomial to use */
  4097. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4098. &driver_attr_poly);
  4099. if (!ret)
  4100. return ret;
  4101. driver_remove_file(&ppc440spe_adma_driver.driver,
  4102. &driver_attr_enable);
  4103. out_en:
  4104. driver_remove_file(&ppc440spe_adma_driver.driver,
  4105. &driver_attr_devices);
  4106. out_dev:
  4107. /* User will not be able to enable h/w RAID-6 */
  4108. pr_err("%s: failed to create RAID-6 driver interface\n",
  4109. __func__);
  4110. platform_driver_unregister(&ppc440spe_adma_driver);
  4111. out_reg:
  4112. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4113. kfree(ppc440spe_dma_fifo_buf);
  4114. return ret;
  4115. }
  4116. static void __exit ppc440spe_adma_exit(void)
  4117. {
  4118. driver_remove_file(&ppc440spe_adma_driver.driver,
  4119. &driver_attr_poly);
  4120. driver_remove_file(&ppc440spe_adma_driver.driver,
  4121. &driver_attr_enable);
  4122. driver_remove_file(&ppc440spe_adma_driver.driver,
  4123. &driver_attr_devices);
  4124. platform_driver_unregister(&ppc440spe_adma_driver);
  4125. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4126. kfree(ppc440spe_dma_fifo_buf);
  4127. }
  4128. arch_initcall(ppc440spe_adma_init);
  4129. module_exit(ppc440spe_adma_exit);
  4130. MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
  4131. MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
  4132. MODULE_LICENSE("GPL");