cppi41.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093
  1. #include <linux/dmaengine.h>
  2. #include <linux/dma-mapping.h>
  3. #include <linux/platform_device.h>
  4. #include <linux/module.h>
  5. #include <linux/of.h>
  6. #include <linux/slab.h>
  7. #include <linux/of_dma.h>
  8. #include <linux/of_irq.h>
  9. #include <linux/dmapool.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/of_address.h>
  12. #include <linux/pm_runtime.h>
  13. #include "dmaengine.h"
  14. #define DESC_TYPE 27
  15. #define DESC_TYPE_HOST 0x10
  16. #define DESC_TYPE_TEARD 0x13
  17. #define TD_DESC_IS_RX (1 << 16)
  18. #define TD_DESC_DMA_NUM 10
  19. #define DESC_LENGTH_BITS_NUM 21
  20. #define DESC_TYPE_USB (5 << 26)
  21. #define DESC_PD_COMPLETE (1 << 31)
  22. /* DMA engine */
  23. #define DMA_TDFDQ 4
  24. #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
  25. #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
  26. #define RXHPCRA0 4
  27. #define GCR_CHAN_ENABLE (1 << 31)
  28. #define GCR_TEARDOWN (1 << 30)
  29. #define GCR_STARV_RETRY (1 << 24)
  30. #define GCR_DESC_TYPE_HOST (1 << 14)
  31. /* DMA scheduler */
  32. #define DMA_SCHED_CTRL 0
  33. #define DMA_SCHED_CTRL_EN (1 << 31)
  34. #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
  35. #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
  36. #define SCHED_ENTRY0_IS_RX (1 << 7)
  37. #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
  38. #define SCHED_ENTRY1_IS_RX (1 << 15)
  39. #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
  40. #define SCHED_ENTRY2_IS_RX (1 << 23)
  41. #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
  42. #define SCHED_ENTRY3_IS_RX (1 << 31)
  43. /* Queue manager */
  44. /* 4 KiB of memory for descriptors, 2 for each endpoint */
  45. #define ALLOC_DECS_NUM 128
  46. #define DESCS_AREAS 1
  47. #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
  48. #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
  49. #define QMGR_LRAM0_BASE 0x80
  50. #define QMGR_LRAM_SIZE 0x84
  51. #define QMGR_LRAM1_BASE 0x88
  52. #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
  53. #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
  54. #define QMGR_MEMCTRL_IDX_SH 16
  55. #define QMGR_MEMCTRL_DESC_SH 8
  56. #define QMGR_NUM_PEND 5
  57. #define QMGR_PEND(x) (0x90 + (x) * 4)
  58. #define QMGR_PENDING_SLOT_Q(x) (x / 32)
  59. #define QMGR_PENDING_BIT_Q(x) (x % 32)
  60. #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
  61. #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
  62. #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
  63. #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
  64. /* Glue layer specific */
  65. /* USBSS / USB AM335x */
  66. #define USBSS_IRQ_STATUS 0x28
  67. #define USBSS_IRQ_ENABLER 0x2c
  68. #define USBSS_IRQ_CLEARR 0x30
  69. #define USBSS_IRQ_PD_COMP (1 << 2)
  70. struct cppi41_channel {
  71. struct dma_chan chan;
  72. struct dma_async_tx_descriptor txd;
  73. struct cppi41_dd *cdd;
  74. struct cppi41_desc *desc;
  75. dma_addr_t desc_phys;
  76. void __iomem *gcr_reg;
  77. int is_tx;
  78. u32 residue;
  79. unsigned int q_num;
  80. unsigned int q_comp_num;
  81. unsigned int port_num;
  82. unsigned td_retry;
  83. unsigned td_queued:1;
  84. unsigned td_seen:1;
  85. unsigned td_desc_seen:1;
  86. };
  87. struct cppi41_desc {
  88. u32 pd0;
  89. u32 pd1;
  90. u32 pd2;
  91. u32 pd3;
  92. u32 pd4;
  93. u32 pd5;
  94. u32 pd6;
  95. u32 pd7;
  96. } __aligned(32);
  97. struct chan_queues {
  98. u16 submit;
  99. u16 complete;
  100. };
  101. struct cppi41_dd {
  102. struct dma_device ddev;
  103. void *qmgr_scratch;
  104. dma_addr_t scratch_phys;
  105. struct cppi41_desc *cd;
  106. dma_addr_t descs_phys;
  107. u32 first_td_desc;
  108. struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
  109. void __iomem *usbss_mem;
  110. void __iomem *ctrl_mem;
  111. void __iomem *sched_mem;
  112. void __iomem *qmgr_mem;
  113. unsigned int irq;
  114. const struct chan_queues *queues_rx;
  115. const struct chan_queues *queues_tx;
  116. struct chan_queues td_queue;
  117. /* context for suspend/resume */
  118. unsigned int dma_tdfdq;
  119. };
  120. #define FIST_COMPLETION_QUEUE 93
  121. static struct chan_queues usb_queues_tx[] = {
  122. /* USB0 ENDP 1 */
  123. [ 0] = { .submit = 32, .complete = 93},
  124. [ 1] = { .submit = 34, .complete = 94},
  125. [ 2] = { .submit = 36, .complete = 95},
  126. [ 3] = { .submit = 38, .complete = 96},
  127. [ 4] = { .submit = 40, .complete = 97},
  128. [ 5] = { .submit = 42, .complete = 98},
  129. [ 6] = { .submit = 44, .complete = 99},
  130. [ 7] = { .submit = 46, .complete = 100},
  131. [ 8] = { .submit = 48, .complete = 101},
  132. [ 9] = { .submit = 50, .complete = 102},
  133. [10] = { .submit = 52, .complete = 103},
  134. [11] = { .submit = 54, .complete = 104},
  135. [12] = { .submit = 56, .complete = 105},
  136. [13] = { .submit = 58, .complete = 106},
  137. [14] = { .submit = 60, .complete = 107},
  138. /* USB1 ENDP1 */
  139. [15] = { .submit = 62, .complete = 125},
  140. [16] = { .submit = 64, .complete = 126},
  141. [17] = { .submit = 66, .complete = 127},
  142. [18] = { .submit = 68, .complete = 128},
  143. [19] = { .submit = 70, .complete = 129},
  144. [20] = { .submit = 72, .complete = 130},
  145. [21] = { .submit = 74, .complete = 131},
  146. [22] = { .submit = 76, .complete = 132},
  147. [23] = { .submit = 78, .complete = 133},
  148. [24] = { .submit = 80, .complete = 134},
  149. [25] = { .submit = 82, .complete = 135},
  150. [26] = { .submit = 84, .complete = 136},
  151. [27] = { .submit = 86, .complete = 137},
  152. [28] = { .submit = 88, .complete = 138},
  153. [29] = { .submit = 90, .complete = 139},
  154. };
  155. static const struct chan_queues usb_queues_rx[] = {
  156. /* USB0 ENDP 1 */
  157. [ 0] = { .submit = 1, .complete = 109},
  158. [ 1] = { .submit = 2, .complete = 110},
  159. [ 2] = { .submit = 3, .complete = 111},
  160. [ 3] = { .submit = 4, .complete = 112},
  161. [ 4] = { .submit = 5, .complete = 113},
  162. [ 5] = { .submit = 6, .complete = 114},
  163. [ 6] = { .submit = 7, .complete = 115},
  164. [ 7] = { .submit = 8, .complete = 116},
  165. [ 8] = { .submit = 9, .complete = 117},
  166. [ 9] = { .submit = 10, .complete = 118},
  167. [10] = { .submit = 11, .complete = 119},
  168. [11] = { .submit = 12, .complete = 120},
  169. [12] = { .submit = 13, .complete = 121},
  170. [13] = { .submit = 14, .complete = 122},
  171. [14] = { .submit = 15, .complete = 123},
  172. /* USB1 ENDP 1 */
  173. [15] = { .submit = 16, .complete = 141},
  174. [16] = { .submit = 17, .complete = 142},
  175. [17] = { .submit = 18, .complete = 143},
  176. [18] = { .submit = 19, .complete = 144},
  177. [19] = { .submit = 20, .complete = 145},
  178. [20] = { .submit = 21, .complete = 146},
  179. [21] = { .submit = 22, .complete = 147},
  180. [22] = { .submit = 23, .complete = 148},
  181. [23] = { .submit = 24, .complete = 149},
  182. [24] = { .submit = 25, .complete = 150},
  183. [25] = { .submit = 26, .complete = 151},
  184. [26] = { .submit = 27, .complete = 152},
  185. [27] = { .submit = 28, .complete = 153},
  186. [28] = { .submit = 29, .complete = 154},
  187. [29] = { .submit = 30, .complete = 155},
  188. };
  189. struct cppi_glue_infos {
  190. irqreturn_t (*isr)(int irq, void *data);
  191. const struct chan_queues *queues_rx;
  192. const struct chan_queues *queues_tx;
  193. struct chan_queues td_queue;
  194. };
  195. static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
  196. {
  197. return container_of(c, struct cppi41_channel, chan);
  198. }
  199. static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
  200. {
  201. struct cppi41_channel *c;
  202. u32 descs_size;
  203. u32 desc_num;
  204. descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
  205. if (!((desc >= cdd->descs_phys) &&
  206. (desc < (cdd->descs_phys + descs_size)))) {
  207. return NULL;
  208. }
  209. desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
  210. BUG_ON(desc_num >= ALLOC_DECS_NUM);
  211. c = cdd->chan_busy[desc_num];
  212. cdd->chan_busy[desc_num] = NULL;
  213. return c;
  214. }
  215. static void cppi_writel(u32 val, void *__iomem *mem)
  216. {
  217. __raw_writel(val, mem);
  218. }
  219. static u32 cppi_readl(void *__iomem *mem)
  220. {
  221. return __raw_readl(mem);
  222. }
  223. static u32 pd_trans_len(u32 val)
  224. {
  225. return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
  226. }
  227. static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
  228. {
  229. u32 desc;
  230. desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
  231. desc &= ~0x1f;
  232. return desc;
  233. }
  234. static irqreturn_t cppi41_irq(int irq, void *data)
  235. {
  236. struct cppi41_dd *cdd = data;
  237. struct cppi41_channel *c;
  238. u32 status;
  239. int i;
  240. status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
  241. if (!(status & USBSS_IRQ_PD_COMP))
  242. return IRQ_NONE;
  243. cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
  244. for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
  245. i++) {
  246. u32 val;
  247. u32 q_num;
  248. val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
  249. if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
  250. u32 mask;
  251. /* set corresponding bit for completetion Q 93 */
  252. mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
  253. /* not set all bits for queues less than Q 93 */
  254. mask--;
  255. /* now invert and keep only Q 93+ set */
  256. val &= ~mask;
  257. }
  258. if (val)
  259. __iormb();
  260. while (val) {
  261. u32 desc;
  262. q_num = __fls(val);
  263. val &= ~(1 << q_num);
  264. q_num += 32 * i;
  265. desc = cppi41_pop_desc(cdd, q_num);
  266. c = desc_to_chan(cdd, desc);
  267. if (WARN_ON(!c)) {
  268. pr_err("%s() q %d desc %08x\n", __func__,
  269. q_num, desc);
  270. continue;
  271. }
  272. c->residue = pd_trans_len(c->desc->pd6) -
  273. pd_trans_len(c->desc->pd0);
  274. dma_cookie_complete(&c->txd);
  275. c->txd.callback(c->txd.callback_param);
  276. }
  277. }
  278. return IRQ_HANDLED;
  279. }
  280. static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
  281. {
  282. dma_cookie_t cookie;
  283. cookie = dma_cookie_assign(tx);
  284. return cookie;
  285. }
  286. static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
  287. {
  288. struct cppi41_channel *c = to_cpp41_chan(chan);
  289. dma_cookie_init(chan);
  290. dma_async_tx_descriptor_init(&c->txd, chan);
  291. c->txd.tx_submit = cppi41_tx_submit;
  292. if (!c->is_tx)
  293. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  294. return 0;
  295. }
  296. static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
  297. {
  298. }
  299. static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
  300. dma_cookie_t cookie, struct dma_tx_state *txstate)
  301. {
  302. struct cppi41_channel *c = to_cpp41_chan(chan);
  303. enum dma_status ret;
  304. /* lock */
  305. ret = dma_cookie_status(chan, cookie, txstate);
  306. if (txstate && ret == DMA_COMPLETE)
  307. txstate->residue = c->residue;
  308. /* unlock */
  309. return ret;
  310. }
  311. static void push_desc_queue(struct cppi41_channel *c)
  312. {
  313. struct cppi41_dd *cdd = c->cdd;
  314. u32 desc_num;
  315. u32 desc_phys;
  316. u32 reg;
  317. desc_phys = lower_32_bits(c->desc_phys);
  318. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  319. WARN_ON(cdd->chan_busy[desc_num]);
  320. cdd->chan_busy[desc_num] = c;
  321. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  322. reg |= desc_phys;
  323. cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
  324. }
  325. static void cppi41_dma_issue_pending(struct dma_chan *chan)
  326. {
  327. struct cppi41_channel *c = to_cpp41_chan(chan);
  328. u32 reg;
  329. c->residue = 0;
  330. reg = GCR_CHAN_ENABLE;
  331. if (!c->is_tx) {
  332. reg |= GCR_STARV_RETRY;
  333. reg |= GCR_DESC_TYPE_HOST;
  334. reg |= c->q_comp_num;
  335. }
  336. cppi_writel(reg, c->gcr_reg);
  337. /*
  338. * We don't use writel() but __raw_writel() so we have to make sure
  339. * that the DMA descriptor in coherent memory made to the main memory
  340. * before starting the dma engine.
  341. */
  342. __iowmb();
  343. push_desc_queue(c);
  344. }
  345. static u32 get_host_pd0(u32 length)
  346. {
  347. u32 reg;
  348. reg = DESC_TYPE_HOST << DESC_TYPE;
  349. reg |= length;
  350. return reg;
  351. }
  352. static u32 get_host_pd1(struct cppi41_channel *c)
  353. {
  354. u32 reg;
  355. reg = 0;
  356. return reg;
  357. }
  358. static u32 get_host_pd2(struct cppi41_channel *c)
  359. {
  360. u32 reg;
  361. reg = DESC_TYPE_USB;
  362. reg |= c->q_comp_num;
  363. return reg;
  364. }
  365. static u32 get_host_pd3(u32 length)
  366. {
  367. u32 reg;
  368. /* PD3 = packet size */
  369. reg = length;
  370. return reg;
  371. }
  372. static u32 get_host_pd6(u32 length)
  373. {
  374. u32 reg;
  375. /* PD6 buffer size */
  376. reg = DESC_PD_COMPLETE;
  377. reg |= length;
  378. return reg;
  379. }
  380. static u32 get_host_pd4_or_7(u32 addr)
  381. {
  382. u32 reg;
  383. reg = addr;
  384. return reg;
  385. }
  386. static u32 get_host_pd5(void)
  387. {
  388. u32 reg;
  389. reg = 0;
  390. return reg;
  391. }
  392. static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
  393. struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
  394. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  395. {
  396. struct cppi41_channel *c = to_cpp41_chan(chan);
  397. struct cppi41_desc *d;
  398. struct scatterlist *sg;
  399. unsigned int i;
  400. unsigned int num;
  401. num = 0;
  402. d = c->desc;
  403. for_each_sg(sgl, sg, sg_len, i) {
  404. u32 addr;
  405. u32 len;
  406. /* We need to use more than one desc once musb supports sg */
  407. BUG_ON(num > 0);
  408. addr = lower_32_bits(sg_dma_address(sg));
  409. len = sg_dma_len(sg);
  410. d->pd0 = get_host_pd0(len);
  411. d->pd1 = get_host_pd1(c);
  412. d->pd2 = get_host_pd2(c);
  413. d->pd3 = get_host_pd3(len);
  414. d->pd4 = get_host_pd4_or_7(addr);
  415. d->pd5 = get_host_pd5();
  416. d->pd6 = get_host_pd6(len);
  417. d->pd7 = get_host_pd4_or_7(addr);
  418. d++;
  419. }
  420. return &c->txd;
  421. }
  422. static int cpp41_cfg_chan(struct cppi41_channel *c,
  423. struct dma_slave_config *cfg)
  424. {
  425. return 0;
  426. }
  427. static void cppi41_compute_td_desc(struct cppi41_desc *d)
  428. {
  429. d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
  430. }
  431. static int cppi41_tear_down_chan(struct cppi41_channel *c)
  432. {
  433. struct cppi41_dd *cdd = c->cdd;
  434. struct cppi41_desc *td;
  435. u32 reg;
  436. u32 desc_phys;
  437. u32 td_desc_phys;
  438. td = cdd->cd;
  439. td += cdd->first_td_desc;
  440. td_desc_phys = cdd->descs_phys;
  441. td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
  442. if (!c->td_queued) {
  443. cppi41_compute_td_desc(td);
  444. __iowmb();
  445. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  446. reg |= td_desc_phys;
  447. cppi_writel(reg, cdd->qmgr_mem +
  448. QMGR_QUEUE_D(cdd->td_queue.submit));
  449. reg = GCR_CHAN_ENABLE;
  450. if (!c->is_tx) {
  451. reg |= GCR_STARV_RETRY;
  452. reg |= GCR_DESC_TYPE_HOST;
  453. reg |= c->q_comp_num;
  454. }
  455. reg |= GCR_TEARDOWN;
  456. cppi_writel(reg, c->gcr_reg);
  457. c->td_queued = 1;
  458. c->td_retry = 100;
  459. }
  460. if (!c->td_seen || !c->td_desc_seen) {
  461. desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
  462. if (!desc_phys)
  463. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  464. if (desc_phys == c->desc_phys) {
  465. c->td_desc_seen = 1;
  466. } else if (desc_phys == td_desc_phys) {
  467. u32 pd0;
  468. __iormb();
  469. pd0 = td->pd0;
  470. WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
  471. WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
  472. WARN_ON((pd0 & 0x1f) != c->port_num);
  473. c->td_seen = 1;
  474. } else if (desc_phys) {
  475. WARN_ON_ONCE(1);
  476. }
  477. }
  478. c->td_retry--;
  479. /*
  480. * If the TX descriptor / channel is in use, the caller needs to poke
  481. * his TD bit multiple times. After that he hardware releases the
  482. * transfer descriptor followed by TD descriptor. Waiting seems not to
  483. * cause any difference.
  484. * RX seems to be thrown out right away. However once the TearDown
  485. * descriptor gets through we are done. If we have seens the transfer
  486. * descriptor before the TD we fetch it from enqueue, it has to be
  487. * there waiting for us.
  488. */
  489. if (!c->td_seen && c->td_retry)
  490. return -EAGAIN;
  491. WARN_ON(!c->td_retry);
  492. if (!c->td_desc_seen) {
  493. desc_phys = cppi41_pop_desc(cdd, c->q_num);
  494. WARN_ON(!desc_phys);
  495. }
  496. c->td_queued = 0;
  497. c->td_seen = 0;
  498. c->td_desc_seen = 0;
  499. cppi_writel(0, c->gcr_reg);
  500. return 0;
  501. }
  502. static int cppi41_stop_chan(struct dma_chan *chan)
  503. {
  504. struct cppi41_channel *c = to_cpp41_chan(chan);
  505. struct cppi41_dd *cdd = c->cdd;
  506. u32 desc_num;
  507. u32 desc_phys;
  508. int ret;
  509. ret = cppi41_tear_down_chan(c);
  510. if (ret)
  511. return ret;
  512. desc_phys = lower_32_bits(c->desc_phys);
  513. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  514. WARN_ON(!cdd->chan_busy[desc_num]);
  515. cdd->chan_busy[desc_num] = NULL;
  516. return 0;
  517. }
  518. static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  519. unsigned long arg)
  520. {
  521. struct cppi41_channel *c = to_cpp41_chan(chan);
  522. int ret;
  523. switch (cmd) {
  524. case DMA_SLAVE_CONFIG:
  525. ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
  526. break;
  527. case DMA_TERMINATE_ALL:
  528. ret = cppi41_stop_chan(chan);
  529. break;
  530. default:
  531. ret = -ENXIO;
  532. break;
  533. }
  534. return ret;
  535. }
  536. static void cleanup_chans(struct cppi41_dd *cdd)
  537. {
  538. while (!list_empty(&cdd->ddev.channels)) {
  539. struct cppi41_channel *cchan;
  540. cchan = list_first_entry(&cdd->ddev.channels,
  541. struct cppi41_channel, chan.device_node);
  542. list_del(&cchan->chan.device_node);
  543. kfree(cchan);
  544. }
  545. }
  546. static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
  547. {
  548. struct cppi41_channel *cchan;
  549. int i;
  550. int ret;
  551. u32 n_chans;
  552. ret = of_property_read_u32(dev->of_node, "#dma-channels",
  553. &n_chans);
  554. if (ret)
  555. return ret;
  556. /*
  557. * The channels can only be used as TX or as RX. So we add twice
  558. * that much dma channels because USB can only do RX or TX.
  559. */
  560. n_chans *= 2;
  561. for (i = 0; i < n_chans; i++) {
  562. cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
  563. if (!cchan)
  564. goto err;
  565. cchan->cdd = cdd;
  566. if (i & 1) {
  567. cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
  568. cchan->is_tx = 1;
  569. } else {
  570. cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
  571. cchan->is_tx = 0;
  572. }
  573. cchan->port_num = i >> 1;
  574. cchan->desc = &cdd->cd[i];
  575. cchan->desc_phys = cdd->descs_phys;
  576. cchan->desc_phys += i * sizeof(struct cppi41_desc);
  577. cchan->chan.device = &cdd->ddev;
  578. list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
  579. }
  580. cdd->first_td_desc = n_chans;
  581. return 0;
  582. err:
  583. cleanup_chans(cdd);
  584. return -ENOMEM;
  585. }
  586. static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
  587. {
  588. unsigned int mem_decs;
  589. int i;
  590. mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
  591. for (i = 0; i < DESCS_AREAS; i++) {
  592. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
  593. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  594. dma_free_coherent(dev, mem_decs, cdd->cd,
  595. cdd->descs_phys);
  596. }
  597. }
  598. static void disable_sched(struct cppi41_dd *cdd)
  599. {
  600. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  601. }
  602. static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
  603. {
  604. disable_sched(cdd);
  605. purge_descs(dev, cdd);
  606. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  607. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  608. dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
  609. cdd->scratch_phys);
  610. }
  611. static int init_descs(struct device *dev, struct cppi41_dd *cdd)
  612. {
  613. unsigned int desc_size;
  614. unsigned int mem_decs;
  615. int i;
  616. u32 reg;
  617. u32 idx;
  618. BUILD_BUG_ON(sizeof(struct cppi41_desc) &
  619. (sizeof(struct cppi41_desc) - 1));
  620. BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
  621. BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
  622. desc_size = sizeof(struct cppi41_desc);
  623. mem_decs = ALLOC_DECS_NUM * desc_size;
  624. idx = 0;
  625. for (i = 0; i < DESCS_AREAS; i++) {
  626. reg = idx << QMGR_MEMCTRL_IDX_SH;
  627. reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
  628. reg |= ilog2(ALLOC_DECS_NUM) - 5;
  629. BUILD_BUG_ON(DESCS_AREAS != 1);
  630. cdd->cd = dma_alloc_coherent(dev, mem_decs,
  631. &cdd->descs_phys, GFP_KERNEL);
  632. if (!cdd->cd)
  633. return -ENOMEM;
  634. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  635. cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  636. idx += ALLOC_DECS_NUM;
  637. }
  638. return 0;
  639. }
  640. static void init_sched(struct cppi41_dd *cdd)
  641. {
  642. unsigned ch;
  643. unsigned word;
  644. u32 reg;
  645. word = 0;
  646. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  647. for (ch = 0; ch < 15 * 2; ch += 2) {
  648. reg = SCHED_ENTRY0_CHAN(ch);
  649. reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
  650. reg |= SCHED_ENTRY2_CHAN(ch + 1);
  651. reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
  652. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
  653. word++;
  654. }
  655. reg = 15 * 2 * 2 - 1;
  656. reg |= DMA_SCHED_CTRL_EN;
  657. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
  658. }
  659. static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
  660. {
  661. int ret;
  662. BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
  663. cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
  664. &cdd->scratch_phys, GFP_KERNEL);
  665. if (!cdd->qmgr_scratch)
  666. return -ENOMEM;
  667. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  668. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  669. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  670. ret = init_descs(dev, cdd);
  671. if (ret)
  672. goto err_td;
  673. cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
  674. init_sched(cdd);
  675. return 0;
  676. err_td:
  677. deinit_cppi41(dev, cdd);
  678. return ret;
  679. }
  680. static struct platform_driver cpp41_dma_driver;
  681. /*
  682. * The param format is:
  683. * X Y
  684. * X: Port
  685. * Y: 0 = RX else TX
  686. */
  687. #define INFO_PORT 0
  688. #define INFO_IS_TX 1
  689. static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
  690. {
  691. struct cppi41_channel *cchan;
  692. struct cppi41_dd *cdd;
  693. const struct chan_queues *queues;
  694. u32 *num = param;
  695. if (chan->device->dev->driver != &cpp41_dma_driver.driver)
  696. return false;
  697. cchan = to_cpp41_chan(chan);
  698. if (cchan->port_num != num[INFO_PORT])
  699. return false;
  700. if (cchan->is_tx && !num[INFO_IS_TX])
  701. return false;
  702. cdd = cchan->cdd;
  703. if (cchan->is_tx)
  704. queues = cdd->queues_tx;
  705. else
  706. queues = cdd->queues_rx;
  707. BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
  708. if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
  709. return false;
  710. cchan->q_num = queues[cchan->port_num].submit;
  711. cchan->q_comp_num = queues[cchan->port_num].complete;
  712. return true;
  713. }
  714. static struct of_dma_filter_info cpp41_dma_info = {
  715. .filter_fn = cpp41_dma_filter_fn,
  716. };
  717. static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
  718. struct of_dma *ofdma)
  719. {
  720. int count = dma_spec->args_count;
  721. struct of_dma_filter_info *info = ofdma->of_dma_data;
  722. if (!info || !info->filter_fn)
  723. return NULL;
  724. if (count != 2)
  725. return NULL;
  726. return dma_request_channel(info->dma_cap, info->filter_fn,
  727. &dma_spec->args[0]);
  728. }
  729. static const struct cppi_glue_infos usb_infos = {
  730. .isr = cppi41_irq,
  731. .queues_rx = usb_queues_rx,
  732. .queues_tx = usb_queues_tx,
  733. .td_queue = { .submit = 31, .complete = 0 },
  734. };
  735. static const struct of_device_id cppi41_dma_ids[] = {
  736. { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
  737. {},
  738. };
  739. MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
  740. static const struct cppi_glue_infos *get_glue_info(struct device *dev)
  741. {
  742. const struct of_device_id *of_id;
  743. of_id = of_match_node(cppi41_dma_ids, dev->of_node);
  744. if (!of_id)
  745. return NULL;
  746. return of_id->data;
  747. }
  748. static int cppi41_dma_probe(struct platform_device *pdev)
  749. {
  750. struct cppi41_dd *cdd;
  751. struct device *dev = &pdev->dev;
  752. const struct cppi_glue_infos *glue_info;
  753. int irq;
  754. int ret;
  755. glue_info = get_glue_info(dev);
  756. if (!glue_info)
  757. return -EINVAL;
  758. cdd = kzalloc(sizeof(*cdd), GFP_KERNEL);
  759. if (!cdd)
  760. return -ENOMEM;
  761. dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
  762. cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
  763. cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
  764. cdd->ddev.device_tx_status = cppi41_dma_tx_status;
  765. cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
  766. cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
  767. cdd->ddev.device_control = cppi41_dma_control;
  768. cdd->ddev.dev = dev;
  769. INIT_LIST_HEAD(&cdd->ddev.channels);
  770. cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
  771. cdd->usbss_mem = of_iomap(dev->of_node, 0);
  772. cdd->ctrl_mem = of_iomap(dev->of_node, 1);
  773. cdd->sched_mem = of_iomap(dev->of_node, 2);
  774. cdd->qmgr_mem = of_iomap(dev->of_node, 3);
  775. if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
  776. !cdd->qmgr_mem) {
  777. ret = -ENXIO;
  778. goto err_remap;
  779. }
  780. pm_runtime_enable(dev);
  781. ret = pm_runtime_get_sync(dev);
  782. if (ret < 0)
  783. goto err_get_sync;
  784. cdd->queues_rx = glue_info->queues_rx;
  785. cdd->queues_tx = glue_info->queues_tx;
  786. cdd->td_queue = glue_info->td_queue;
  787. ret = init_cppi41(dev, cdd);
  788. if (ret)
  789. goto err_init_cppi;
  790. ret = cppi41_add_chans(dev, cdd);
  791. if (ret)
  792. goto err_chans;
  793. irq = irq_of_parse_and_map(dev->of_node, 0);
  794. if (!irq)
  795. goto err_irq;
  796. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  797. ret = request_irq(irq, glue_info->isr, IRQF_SHARED,
  798. dev_name(dev), cdd);
  799. if (ret)
  800. goto err_irq;
  801. cdd->irq = irq;
  802. ret = dma_async_device_register(&cdd->ddev);
  803. if (ret)
  804. goto err_dma_reg;
  805. ret = of_dma_controller_register(dev->of_node,
  806. cppi41_dma_xlate, &cpp41_dma_info);
  807. if (ret)
  808. goto err_of;
  809. platform_set_drvdata(pdev, cdd);
  810. return 0;
  811. err_of:
  812. dma_async_device_unregister(&cdd->ddev);
  813. err_dma_reg:
  814. free_irq(irq, cdd);
  815. err_irq:
  816. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  817. cleanup_chans(cdd);
  818. err_chans:
  819. deinit_cppi41(dev, cdd);
  820. err_init_cppi:
  821. pm_runtime_put(dev);
  822. err_get_sync:
  823. pm_runtime_disable(dev);
  824. iounmap(cdd->usbss_mem);
  825. iounmap(cdd->ctrl_mem);
  826. iounmap(cdd->sched_mem);
  827. iounmap(cdd->qmgr_mem);
  828. err_remap:
  829. kfree(cdd);
  830. return ret;
  831. }
  832. static int cppi41_dma_remove(struct platform_device *pdev)
  833. {
  834. struct cppi41_dd *cdd = platform_get_drvdata(pdev);
  835. of_dma_controller_free(pdev->dev.of_node);
  836. dma_async_device_unregister(&cdd->ddev);
  837. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  838. free_irq(cdd->irq, cdd);
  839. cleanup_chans(cdd);
  840. deinit_cppi41(&pdev->dev, cdd);
  841. iounmap(cdd->usbss_mem);
  842. iounmap(cdd->ctrl_mem);
  843. iounmap(cdd->sched_mem);
  844. iounmap(cdd->qmgr_mem);
  845. pm_runtime_put(&pdev->dev);
  846. pm_runtime_disable(&pdev->dev);
  847. kfree(cdd);
  848. return 0;
  849. }
  850. #ifdef CONFIG_PM_SLEEP
  851. static int cppi41_suspend(struct device *dev)
  852. {
  853. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  854. cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
  855. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  856. disable_sched(cdd);
  857. return 0;
  858. }
  859. static int cppi41_resume(struct device *dev)
  860. {
  861. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  862. struct cppi41_channel *c;
  863. int i;
  864. for (i = 0; i < DESCS_AREAS; i++)
  865. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  866. list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
  867. if (!c->is_tx)
  868. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  869. init_sched(cdd);
  870. cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
  871. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  872. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  873. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  874. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  875. return 0;
  876. }
  877. #endif
  878. static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
  879. static struct platform_driver cpp41_dma_driver = {
  880. .probe = cppi41_dma_probe,
  881. .remove = cppi41_dma_remove,
  882. .driver = {
  883. .name = "cppi41-dma-engine",
  884. .owner = THIS_MODULE,
  885. .pm = &cppi41_pm_ops,
  886. .of_match_table = of_match_ptr(cppi41_dma_ids),
  887. },
  888. };
  889. module_platform_driver(cpp41_dma_driver);
  890. MODULE_LICENSE("GPL");
  891. MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");