futex.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  23. * enough at me, Linus for the original (flawed) idea, Matthew
  24. * Kirkwood for proof-of-concept implementation.
  25. *
  26. * "The futexes are also cursed."
  27. * "But they come in a choice of three flavours!"
  28. *
  29. * This program is free software; you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation; either version 2 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * This program is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with this program; if not, write to the Free Software
  41. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  42. */
  43. #include <linux/slab.h>
  44. #include <linux/poll.h>
  45. #include <linux/fs.h>
  46. #include <linux/file.h>
  47. #include <linux/jhash.h>
  48. #include <linux/init.h>
  49. #include <linux/futex.h>
  50. #include <linux/mount.h>
  51. #include <linux/pagemap.h>
  52. #include <linux/syscalls.h>
  53. #include <linux/signal.h>
  54. #include <linux/module.h>
  55. #include <linux/magic.h>
  56. #include <asm/futex.h>
  57. #include "rtmutex_common.h"
  58. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  59. /*
  60. * Priority Inheritance state:
  61. */
  62. struct futex_pi_state {
  63. /*
  64. * list of 'owned' pi_state instances - these have to be
  65. * cleaned up in do_exit() if the task exits prematurely:
  66. */
  67. struct list_head list;
  68. /*
  69. * The PI object:
  70. */
  71. struct rt_mutex pi_mutex;
  72. struct task_struct *owner;
  73. atomic_t refcount;
  74. union futex_key key;
  75. };
  76. /*
  77. * We use this hashed waitqueue instead of a normal wait_queue_t, so
  78. * we can wake only the relevant ones (hashed queues may be shared).
  79. *
  80. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  81. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  82. * The order of wakup is always to make the first condition true, then
  83. * wake up q->waiters, then make the second condition true.
  84. */
  85. struct futex_q {
  86. struct plist_node list;
  87. wait_queue_head_t waiters;
  88. /* Which hash list lock to use: */
  89. spinlock_t *lock_ptr;
  90. /* Key which the futex is hashed on: */
  91. union futex_key key;
  92. /* For fd, sigio sent using these: */
  93. int fd;
  94. struct file *filp;
  95. /* Optional priority inheritance state: */
  96. struct futex_pi_state *pi_state;
  97. struct task_struct *task;
  98. };
  99. /*
  100. * Split the global futex_lock into every hash list lock.
  101. */
  102. struct futex_hash_bucket {
  103. spinlock_t lock;
  104. struct plist_head chain;
  105. };
  106. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  107. /* Futex-fs vfsmount entry: */
  108. static struct vfsmount *futex_mnt;
  109. /*
  110. * Take mm->mmap_sem, when futex is shared
  111. */
  112. static inline void futex_lock_mm(struct rw_semaphore *fshared)
  113. {
  114. if (fshared)
  115. down_read(fshared);
  116. }
  117. /*
  118. * Release mm->mmap_sem, when the futex is shared
  119. */
  120. static inline void futex_unlock_mm(struct rw_semaphore *fshared)
  121. {
  122. if (fshared)
  123. up_read(fshared);
  124. }
  125. /*
  126. * We hash on the keys returned from get_futex_key (see below).
  127. */
  128. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  129. {
  130. u32 hash = jhash2((u32*)&key->both.word,
  131. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  132. key->both.offset);
  133. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  134. }
  135. /*
  136. * Return 1 if two futex_keys are equal, 0 otherwise.
  137. */
  138. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  139. {
  140. return (key1->both.word == key2->both.word
  141. && key1->both.ptr == key2->both.ptr
  142. && key1->both.offset == key2->both.offset);
  143. }
  144. /**
  145. * get_futex_key - Get parameters which are the keys for a futex.
  146. * @uaddr: virtual address of the futex
  147. * @shared: NULL for a PROCESS_PRIVATE futex,
  148. * &current->mm->mmap_sem for a PROCESS_SHARED futex
  149. * @key: address where result is stored.
  150. *
  151. * Returns a negative error code or 0
  152. * The key words are stored in *key on success.
  153. *
  154. * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
  155. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  156. * We can usually work out the index without swapping in the page.
  157. *
  158. * fshared is NULL for PROCESS_PRIVATE futexes
  159. * For other futexes, it points to &current->mm->mmap_sem and
  160. * caller must have taken the reader lock. but NOT any spinlocks.
  161. */
  162. int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
  163. union futex_key *key)
  164. {
  165. unsigned long address = (unsigned long)uaddr;
  166. struct mm_struct *mm = current->mm;
  167. struct vm_area_struct *vma;
  168. struct page *page;
  169. int err;
  170. /*
  171. * The futex address must be "naturally" aligned.
  172. */
  173. key->both.offset = address % PAGE_SIZE;
  174. if (unlikely((address % sizeof(u32)) != 0))
  175. return -EINVAL;
  176. address -= key->both.offset;
  177. /*
  178. * PROCESS_PRIVATE futexes are fast.
  179. * As the mm cannot disappear under us and the 'key' only needs
  180. * virtual address, we dont even have to find the underlying vma.
  181. * Note : We do have to check 'uaddr' is a valid user address,
  182. * but access_ok() should be faster than find_vma()
  183. */
  184. if (!fshared) {
  185. if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
  186. return -EFAULT;
  187. key->private.mm = mm;
  188. key->private.address = address;
  189. return 0;
  190. }
  191. /*
  192. * The futex is hashed differently depending on whether
  193. * it's in a shared or private mapping. So check vma first.
  194. */
  195. vma = find_extend_vma(mm, address);
  196. if (unlikely(!vma))
  197. return -EFAULT;
  198. /*
  199. * Permissions.
  200. */
  201. if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
  202. return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
  203. /*
  204. * Private mappings are handled in a simple way.
  205. *
  206. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  207. * it's a read-only handle, it's expected that futexes attach to
  208. * the object not the particular process. Therefore we use
  209. * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
  210. * mappings of _writable_ handles.
  211. */
  212. if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
  213. key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
  214. key->private.mm = mm;
  215. key->private.address = address;
  216. return 0;
  217. }
  218. /*
  219. * Linear file mappings are also simple.
  220. */
  221. key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
  222. key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
  223. if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
  224. key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
  225. + vma->vm_pgoff);
  226. return 0;
  227. }
  228. /*
  229. * We could walk the page table to read the non-linear
  230. * pte, and get the page index without fetching the page
  231. * from swap. But that's a lot of code to duplicate here
  232. * for a rare case, so we simply fetch the page.
  233. */
  234. err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
  235. if (err >= 0) {
  236. key->shared.pgoff =
  237. page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  238. put_page(page);
  239. return 0;
  240. }
  241. return err;
  242. }
  243. EXPORT_SYMBOL_GPL(get_futex_key);
  244. /*
  245. * Take a reference to the resource addressed by a key.
  246. * Can be called while holding spinlocks.
  247. *
  248. */
  249. inline void get_futex_key_refs(union futex_key *key)
  250. {
  251. if (key->both.ptr == 0)
  252. return;
  253. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  254. case FUT_OFF_INODE:
  255. atomic_inc(&key->shared.inode->i_count);
  256. break;
  257. case FUT_OFF_MMSHARED:
  258. atomic_inc(&key->private.mm->mm_count);
  259. break;
  260. }
  261. }
  262. EXPORT_SYMBOL_GPL(get_futex_key_refs);
  263. /*
  264. * Drop a reference to the resource addressed by a key.
  265. * The hash bucket spinlock must not be held.
  266. */
  267. void drop_futex_key_refs(union futex_key *key)
  268. {
  269. if (key->both.ptr == 0)
  270. return;
  271. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  272. case FUT_OFF_INODE:
  273. iput(key->shared.inode);
  274. break;
  275. case FUT_OFF_MMSHARED:
  276. mmdrop(key->private.mm);
  277. break;
  278. }
  279. }
  280. EXPORT_SYMBOL_GPL(drop_futex_key_refs);
  281. static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
  282. {
  283. u32 curval;
  284. pagefault_disable();
  285. curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
  286. pagefault_enable();
  287. return curval;
  288. }
  289. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  290. {
  291. int ret;
  292. pagefault_disable();
  293. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  294. pagefault_enable();
  295. return ret ? -EFAULT : 0;
  296. }
  297. /*
  298. * Fault handling.
  299. * if fshared is non NULL, current->mm->mmap_sem is already held
  300. */
  301. static int futex_handle_fault(unsigned long address,
  302. struct rw_semaphore *fshared, int attempt)
  303. {
  304. struct vm_area_struct * vma;
  305. struct mm_struct *mm = current->mm;
  306. int ret = -EFAULT;
  307. if (attempt > 2)
  308. return ret;
  309. if (!fshared)
  310. down_read(&mm->mmap_sem);
  311. vma = find_vma(mm, address);
  312. if (vma && address >= vma->vm_start &&
  313. (vma->vm_flags & VM_WRITE)) {
  314. int fault;
  315. fault = handle_mm_fault(mm, vma, address, 1);
  316. if (unlikely((fault & VM_FAULT_ERROR))) {
  317. #if 0
  318. /* XXX: let's do this when we verify it is OK */
  319. if (ret & VM_FAULT_OOM)
  320. ret = -ENOMEM;
  321. #endif
  322. } else {
  323. ret = 0;
  324. if (fault & VM_FAULT_MAJOR)
  325. current->maj_flt++;
  326. else
  327. current->min_flt++;
  328. }
  329. }
  330. if (!fshared)
  331. up_read(&mm->mmap_sem);
  332. return ret;
  333. }
  334. /*
  335. * PI code:
  336. */
  337. static int refill_pi_state_cache(void)
  338. {
  339. struct futex_pi_state *pi_state;
  340. if (likely(current->pi_state_cache))
  341. return 0;
  342. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  343. if (!pi_state)
  344. return -ENOMEM;
  345. INIT_LIST_HEAD(&pi_state->list);
  346. /* pi_mutex gets initialized later */
  347. pi_state->owner = NULL;
  348. atomic_set(&pi_state->refcount, 1);
  349. current->pi_state_cache = pi_state;
  350. return 0;
  351. }
  352. static struct futex_pi_state * alloc_pi_state(void)
  353. {
  354. struct futex_pi_state *pi_state = current->pi_state_cache;
  355. WARN_ON(!pi_state);
  356. current->pi_state_cache = NULL;
  357. return pi_state;
  358. }
  359. static void free_pi_state(struct futex_pi_state *pi_state)
  360. {
  361. if (!atomic_dec_and_test(&pi_state->refcount))
  362. return;
  363. /*
  364. * If pi_state->owner is NULL, the owner is most probably dying
  365. * and has cleaned up the pi_state already
  366. */
  367. if (pi_state->owner) {
  368. spin_lock_irq(&pi_state->owner->pi_lock);
  369. list_del_init(&pi_state->list);
  370. spin_unlock_irq(&pi_state->owner->pi_lock);
  371. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  372. }
  373. if (current->pi_state_cache)
  374. kfree(pi_state);
  375. else {
  376. /*
  377. * pi_state->list is already empty.
  378. * clear pi_state->owner.
  379. * refcount is at 0 - put it back to 1.
  380. */
  381. pi_state->owner = NULL;
  382. atomic_set(&pi_state->refcount, 1);
  383. current->pi_state_cache = pi_state;
  384. }
  385. }
  386. /*
  387. * Look up the task based on what TID userspace gave us.
  388. * We dont trust it.
  389. */
  390. static struct task_struct * futex_find_get_task(pid_t pid)
  391. {
  392. struct task_struct *p;
  393. rcu_read_lock();
  394. p = find_task_by_pid(pid);
  395. if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
  396. p = ERR_PTR(-ESRCH);
  397. else
  398. get_task_struct(p);
  399. rcu_read_unlock();
  400. return p;
  401. }
  402. /*
  403. * This task is holding PI mutexes at exit time => bad.
  404. * Kernel cleans up PI-state, but userspace is likely hosed.
  405. * (Robust-futex cleanup is separate and might save the day for userspace.)
  406. */
  407. void exit_pi_state_list(struct task_struct *curr)
  408. {
  409. struct list_head *next, *head = &curr->pi_state_list;
  410. struct futex_pi_state *pi_state;
  411. struct futex_hash_bucket *hb;
  412. union futex_key key;
  413. /*
  414. * We are a ZOMBIE and nobody can enqueue itself on
  415. * pi_state_list anymore, but we have to be careful
  416. * versus waiters unqueueing themselves:
  417. */
  418. spin_lock_irq(&curr->pi_lock);
  419. while (!list_empty(head)) {
  420. next = head->next;
  421. pi_state = list_entry(next, struct futex_pi_state, list);
  422. key = pi_state->key;
  423. hb = hash_futex(&key);
  424. spin_unlock_irq(&curr->pi_lock);
  425. spin_lock(&hb->lock);
  426. spin_lock_irq(&curr->pi_lock);
  427. /*
  428. * We dropped the pi-lock, so re-check whether this
  429. * task still owns the PI-state:
  430. */
  431. if (head->next != next) {
  432. spin_unlock(&hb->lock);
  433. continue;
  434. }
  435. WARN_ON(pi_state->owner != curr);
  436. WARN_ON(list_empty(&pi_state->list));
  437. list_del_init(&pi_state->list);
  438. pi_state->owner = NULL;
  439. spin_unlock_irq(&curr->pi_lock);
  440. rt_mutex_unlock(&pi_state->pi_mutex);
  441. spin_unlock(&hb->lock);
  442. spin_lock_irq(&curr->pi_lock);
  443. }
  444. spin_unlock_irq(&curr->pi_lock);
  445. }
  446. static int
  447. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  448. union futex_key *key, struct futex_pi_state **ps)
  449. {
  450. struct futex_pi_state *pi_state = NULL;
  451. struct futex_q *this, *next;
  452. struct plist_head *head;
  453. struct task_struct *p;
  454. pid_t pid = uval & FUTEX_TID_MASK;
  455. head = &hb->chain;
  456. plist_for_each_entry_safe(this, next, head, list) {
  457. if (match_futex(&this->key, key)) {
  458. /*
  459. * Another waiter already exists - bump up
  460. * the refcount and return its pi_state:
  461. */
  462. pi_state = this->pi_state;
  463. /*
  464. * Userspace might have messed up non PI and PI futexes
  465. */
  466. if (unlikely(!pi_state))
  467. return -EINVAL;
  468. WARN_ON(!atomic_read(&pi_state->refcount));
  469. WARN_ON(pid && pi_state->owner &&
  470. pi_state->owner->pid != pid);
  471. atomic_inc(&pi_state->refcount);
  472. *ps = pi_state;
  473. return 0;
  474. }
  475. }
  476. /*
  477. * We are the first waiter - try to look up the real owner and attach
  478. * the new pi_state to it, but bail out when TID = 0
  479. */
  480. if (!pid)
  481. return -ESRCH;
  482. p = futex_find_get_task(pid);
  483. if (IS_ERR(p))
  484. return PTR_ERR(p);
  485. /*
  486. * We need to look at the task state flags to figure out,
  487. * whether the task is exiting. To protect against the do_exit
  488. * change of the task flags, we do this protected by
  489. * p->pi_lock:
  490. */
  491. spin_lock_irq(&p->pi_lock);
  492. if (unlikely(p->flags & PF_EXITING)) {
  493. /*
  494. * The task is on the way out. When PF_EXITPIDONE is
  495. * set, we know that the task has finished the
  496. * cleanup:
  497. */
  498. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  499. spin_unlock_irq(&p->pi_lock);
  500. put_task_struct(p);
  501. return ret;
  502. }
  503. pi_state = alloc_pi_state();
  504. /*
  505. * Initialize the pi_mutex in locked state and make 'p'
  506. * the owner of it:
  507. */
  508. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  509. /* Store the key for possible exit cleanups: */
  510. pi_state->key = *key;
  511. WARN_ON(!list_empty(&pi_state->list));
  512. list_add(&pi_state->list, &p->pi_state_list);
  513. pi_state->owner = p;
  514. spin_unlock_irq(&p->pi_lock);
  515. put_task_struct(p);
  516. *ps = pi_state;
  517. return 0;
  518. }
  519. /*
  520. * The hash bucket lock must be held when this is called.
  521. * Afterwards, the futex_q must not be accessed.
  522. */
  523. static void wake_futex(struct futex_q *q)
  524. {
  525. plist_del(&q->list, &q->list.plist);
  526. if (q->filp)
  527. send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
  528. /*
  529. * The lock in wake_up_all() is a crucial memory barrier after the
  530. * plist_del() and also before assigning to q->lock_ptr.
  531. */
  532. wake_up_all(&q->waiters);
  533. /*
  534. * The waiting task can free the futex_q as soon as this is written,
  535. * without taking any locks. This must come last.
  536. *
  537. * A memory barrier is required here to prevent the following store
  538. * to lock_ptr from getting ahead of the wakeup. Clearing the lock
  539. * at the end of wake_up_all() does not prevent this store from
  540. * moving.
  541. */
  542. smp_wmb();
  543. q->lock_ptr = NULL;
  544. }
  545. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  546. {
  547. struct task_struct *new_owner;
  548. struct futex_pi_state *pi_state = this->pi_state;
  549. u32 curval, newval;
  550. if (!pi_state)
  551. return -EINVAL;
  552. spin_lock(&pi_state->pi_mutex.wait_lock);
  553. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  554. /*
  555. * This happens when we have stolen the lock and the original
  556. * pending owner did not enqueue itself back on the rt_mutex.
  557. * Thats not a tragedy. We know that way, that a lock waiter
  558. * is on the fly. We make the futex_q waiter the pending owner.
  559. */
  560. if (!new_owner)
  561. new_owner = this->task;
  562. /*
  563. * We pass it to the next owner. (The WAITERS bit is always
  564. * kept enabled while there is PI state around. We must also
  565. * preserve the owner died bit.)
  566. */
  567. if (!(uval & FUTEX_OWNER_DIED)) {
  568. int ret = 0;
  569. newval = FUTEX_WAITERS | new_owner->pid;
  570. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  571. if (curval == -EFAULT)
  572. ret = -EFAULT;
  573. if (curval != uval)
  574. ret = -EINVAL;
  575. if (ret) {
  576. spin_unlock(&pi_state->pi_mutex.wait_lock);
  577. return ret;
  578. }
  579. }
  580. spin_lock_irq(&pi_state->owner->pi_lock);
  581. WARN_ON(list_empty(&pi_state->list));
  582. list_del_init(&pi_state->list);
  583. spin_unlock_irq(&pi_state->owner->pi_lock);
  584. spin_lock_irq(&new_owner->pi_lock);
  585. WARN_ON(!list_empty(&pi_state->list));
  586. list_add(&pi_state->list, &new_owner->pi_state_list);
  587. pi_state->owner = new_owner;
  588. spin_unlock_irq(&new_owner->pi_lock);
  589. spin_unlock(&pi_state->pi_mutex.wait_lock);
  590. rt_mutex_unlock(&pi_state->pi_mutex);
  591. return 0;
  592. }
  593. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  594. {
  595. u32 oldval;
  596. /*
  597. * There is no waiter, so we unlock the futex. The owner died
  598. * bit has not to be preserved here. We are the owner:
  599. */
  600. oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
  601. if (oldval == -EFAULT)
  602. return oldval;
  603. if (oldval != uval)
  604. return -EAGAIN;
  605. return 0;
  606. }
  607. /*
  608. * Express the locking dependencies for lockdep:
  609. */
  610. static inline void
  611. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  612. {
  613. if (hb1 <= hb2) {
  614. spin_lock(&hb1->lock);
  615. if (hb1 < hb2)
  616. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  617. } else { /* hb1 > hb2 */
  618. spin_lock(&hb2->lock);
  619. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  620. }
  621. }
  622. /*
  623. * Wake up all waiters hashed on the physical page that is mapped
  624. * to this virtual address:
  625. */
  626. static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
  627. int nr_wake)
  628. {
  629. struct futex_hash_bucket *hb;
  630. struct futex_q *this, *next;
  631. struct plist_head *head;
  632. union futex_key key;
  633. int ret;
  634. futex_lock_mm(fshared);
  635. ret = get_futex_key(uaddr, fshared, &key);
  636. if (unlikely(ret != 0))
  637. goto out;
  638. hb = hash_futex(&key);
  639. spin_lock(&hb->lock);
  640. head = &hb->chain;
  641. plist_for_each_entry_safe(this, next, head, list) {
  642. if (match_futex (&this->key, &key)) {
  643. if (this->pi_state) {
  644. ret = -EINVAL;
  645. break;
  646. }
  647. wake_futex(this);
  648. if (++ret >= nr_wake)
  649. break;
  650. }
  651. }
  652. spin_unlock(&hb->lock);
  653. out:
  654. futex_unlock_mm(fshared);
  655. return ret;
  656. }
  657. /*
  658. * Wake up all waiters hashed on the physical page that is mapped
  659. * to this virtual address:
  660. */
  661. static int
  662. futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
  663. u32 __user *uaddr2,
  664. int nr_wake, int nr_wake2, int op)
  665. {
  666. union futex_key key1, key2;
  667. struct futex_hash_bucket *hb1, *hb2;
  668. struct plist_head *head;
  669. struct futex_q *this, *next;
  670. int ret, op_ret, attempt = 0;
  671. retryfull:
  672. futex_lock_mm(fshared);
  673. ret = get_futex_key(uaddr1, fshared, &key1);
  674. if (unlikely(ret != 0))
  675. goto out;
  676. ret = get_futex_key(uaddr2, fshared, &key2);
  677. if (unlikely(ret != 0))
  678. goto out;
  679. hb1 = hash_futex(&key1);
  680. hb2 = hash_futex(&key2);
  681. retry:
  682. double_lock_hb(hb1, hb2);
  683. op_ret = futex_atomic_op_inuser(op, uaddr2);
  684. if (unlikely(op_ret < 0)) {
  685. u32 dummy;
  686. spin_unlock(&hb1->lock);
  687. if (hb1 != hb2)
  688. spin_unlock(&hb2->lock);
  689. #ifndef CONFIG_MMU
  690. /*
  691. * we don't get EFAULT from MMU faults if we don't have an MMU,
  692. * but we might get them from range checking
  693. */
  694. ret = op_ret;
  695. goto out;
  696. #endif
  697. if (unlikely(op_ret != -EFAULT)) {
  698. ret = op_ret;
  699. goto out;
  700. }
  701. /*
  702. * futex_atomic_op_inuser needs to both read and write
  703. * *(int __user *)uaddr2, but we can't modify it
  704. * non-atomically. Therefore, if get_user below is not
  705. * enough, we need to handle the fault ourselves, while
  706. * still holding the mmap_sem.
  707. */
  708. if (attempt++) {
  709. ret = futex_handle_fault((unsigned long)uaddr2,
  710. fshared, attempt);
  711. if (ret)
  712. goto out;
  713. goto retry;
  714. }
  715. /*
  716. * If we would have faulted, release mmap_sem,
  717. * fault it in and start all over again.
  718. */
  719. futex_unlock_mm(fshared);
  720. ret = get_user(dummy, uaddr2);
  721. if (ret)
  722. return ret;
  723. goto retryfull;
  724. }
  725. head = &hb1->chain;
  726. plist_for_each_entry_safe(this, next, head, list) {
  727. if (match_futex (&this->key, &key1)) {
  728. wake_futex(this);
  729. if (++ret >= nr_wake)
  730. break;
  731. }
  732. }
  733. if (op_ret > 0) {
  734. head = &hb2->chain;
  735. op_ret = 0;
  736. plist_for_each_entry_safe(this, next, head, list) {
  737. if (match_futex (&this->key, &key2)) {
  738. wake_futex(this);
  739. if (++op_ret >= nr_wake2)
  740. break;
  741. }
  742. }
  743. ret += op_ret;
  744. }
  745. spin_unlock(&hb1->lock);
  746. if (hb1 != hb2)
  747. spin_unlock(&hb2->lock);
  748. out:
  749. futex_unlock_mm(fshared);
  750. return ret;
  751. }
  752. /*
  753. * Requeue all waiters hashed on one physical page to another
  754. * physical page.
  755. */
  756. static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
  757. u32 __user *uaddr2,
  758. int nr_wake, int nr_requeue, u32 *cmpval)
  759. {
  760. union futex_key key1, key2;
  761. struct futex_hash_bucket *hb1, *hb2;
  762. struct plist_head *head1;
  763. struct futex_q *this, *next;
  764. int ret, drop_count = 0;
  765. retry:
  766. futex_lock_mm(fshared);
  767. ret = get_futex_key(uaddr1, fshared, &key1);
  768. if (unlikely(ret != 0))
  769. goto out;
  770. ret = get_futex_key(uaddr2, fshared, &key2);
  771. if (unlikely(ret != 0))
  772. goto out;
  773. hb1 = hash_futex(&key1);
  774. hb2 = hash_futex(&key2);
  775. double_lock_hb(hb1, hb2);
  776. if (likely(cmpval != NULL)) {
  777. u32 curval;
  778. ret = get_futex_value_locked(&curval, uaddr1);
  779. if (unlikely(ret)) {
  780. spin_unlock(&hb1->lock);
  781. if (hb1 != hb2)
  782. spin_unlock(&hb2->lock);
  783. /*
  784. * If we would have faulted, release mmap_sem, fault
  785. * it in and start all over again.
  786. */
  787. futex_unlock_mm(fshared);
  788. ret = get_user(curval, uaddr1);
  789. if (!ret)
  790. goto retry;
  791. return ret;
  792. }
  793. if (curval != *cmpval) {
  794. ret = -EAGAIN;
  795. goto out_unlock;
  796. }
  797. }
  798. head1 = &hb1->chain;
  799. plist_for_each_entry_safe(this, next, head1, list) {
  800. if (!match_futex (&this->key, &key1))
  801. continue;
  802. if (++ret <= nr_wake) {
  803. wake_futex(this);
  804. } else {
  805. /*
  806. * If key1 and key2 hash to the same bucket, no need to
  807. * requeue.
  808. */
  809. if (likely(head1 != &hb2->chain)) {
  810. plist_del(&this->list, &hb1->chain);
  811. plist_add(&this->list, &hb2->chain);
  812. this->lock_ptr = &hb2->lock;
  813. #ifdef CONFIG_DEBUG_PI_LIST
  814. this->list.plist.lock = &hb2->lock;
  815. #endif
  816. }
  817. this->key = key2;
  818. get_futex_key_refs(&key2);
  819. drop_count++;
  820. if (ret - nr_wake >= nr_requeue)
  821. break;
  822. }
  823. }
  824. out_unlock:
  825. spin_unlock(&hb1->lock);
  826. if (hb1 != hb2)
  827. spin_unlock(&hb2->lock);
  828. /* drop_futex_key_refs() must be called outside the spinlocks. */
  829. while (--drop_count >= 0)
  830. drop_futex_key_refs(&key1);
  831. out:
  832. futex_unlock_mm(fshared);
  833. return ret;
  834. }
  835. /* The key must be already stored in q->key. */
  836. static inline struct futex_hash_bucket *
  837. queue_lock(struct futex_q *q, int fd, struct file *filp)
  838. {
  839. struct futex_hash_bucket *hb;
  840. q->fd = fd;
  841. q->filp = filp;
  842. init_waitqueue_head(&q->waiters);
  843. get_futex_key_refs(&q->key);
  844. hb = hash_futex(&q->key);
  845. q->lock_ptr = &hb->lock;
  846. spin_lock(&hb->lock);
  847. return hb;
  848. }
  849. static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  850. {
  851. int prio;
  852. /*
  853. * The priority used to register this element is
  854. * - either the real thread-priority for the real-time threads
  855. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  856. * - or MAX_RT_PRIO for non-RT threads.
  857. * Thus, all RT-threads are woken first in priority order, and
  858. * the others are woken last, in FIFO order.
  859. */
  860. prio = min(current->normal_prio, MAX_RT_PRIO);
  861. plist_node_init(&q->list, prio);
  862. #ifdef CONFIG_DEBUG_PI_LIST
  863. q->list.plist.lock = &hb->lock;
  864. #endif
  865. plist_add(&q->list, &hb->chain);
  866. q->task = current;
  867. spin_unlock(&hb->lock);
  868. }
  869. static inline void
  870. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  871. {
  872. spin_unlock(&hb->lock);
  873. drop_futex_key_refs(&q->key);
  874. }
  875. /*
  876. * queue_me and unqueue_me must be called as a pair, each
  877. * exactly once. They are called with the hashed spinlock held.
  878. */
  879. /* The key must be already stored in q->key. */
  880. static void queue_me(struct futex_q *q, int fd, struct file *filp)
  881. {
  882. struct futex_hash_bucket *hb;
  883. hb = queue_lock(q, fd, filp);
  884. __queue_me(q, hb);
  885. }
  886. /* Return 1 if we were still queued (ie. 0 means we were woken) */
  887. static int unqueue_me(struct futex_q *q)
  888. {
  889. spinlock_t *lock_ptr;
  890. int ret = 0;
  891. /* In the common case we don't take the spinlock, which is nice. */
  892. retry:
  893. lock_ptr = q->lock_ptr;
  894. barrier();
  895. if (lock_ptr != 0) {
  896. spin_lock(lock_ptr);
  897. /*
  898. * q->lock_ptr can change between reading it and
  899. * spin_lock(), causing us to take the wrong lock. This
  900. * corrects the race condition.
  901. *
  902. * Reasoning goes like this: if we have the wrong lock,
  903. * q->lock_ptr must have changed (maybe several times)
  904. * between reading it and the spin_lock(). It can
  905. * change again after the spin_lock() but only if it was
  906. * already changed before the spin_lock(). It cannot,
  907. * however, change back to the original value. Therefore
  908. * we can detect whether we acquired the correct lock.
  909. */
  910. if (unlikely(lock_ptr != q->lock_ptr)) {
  911. spin_unlock(lock_ptr);
  912. goto retry;
  913. }
  914. WARN_ON(plist_node_empty(&q->list));
  915. plist_del(&q->list, &q->list.plist);
  916. BUG_ON(q->pi_state);
  917. spin_unlock(lock_ptr);
  918. ret = 1;
  919. }
  920. drop_futex_key_refs(&q->key);
  921. return ret;
  922. }
  923. /*
  924. * PI futexes can not be requeued and must remove themself from the
  925. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  926. * and dropped here.
  927. */
  928. static void unqueue_me_pi(struct futex_q *q)
  929. {
  930. WARN_ON(plist_node_empty(&q->list));
  931. plist_del(&q->list, &q->list.plist);
  932. BUG_ON(!q->pi_state);
  933. free_pi_state(q->pi_state);
  934. q->pi_state = NULL;
  935. spin_unlock(q->lock_ptr);
  936. drop_futex_key_refs(&q->key);
  937. }
  938. /*
  939. * Fixup the pi_state owner with current.
  940. *
  941. * Must be called with hash bucket lock held and mm->sem held for non
  942. * private futexes.
  943. */
  944. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  945. struct task_struct *curr)
  946. {
  947. u32 newtid = curr->pid | FUTEX_WAITERS;
  948. struct futex_pi_state *pi_state = q->pi_state;
  949. u32 uval, curval, newval;
  950. int ret;
  951. /* Owner died? */
  952. if (pi_state->owner != NULL) {
  953. spin_lock_irq(&pi_state->owner->pi_lock);
  954. WARN_ON(list_empty(&pi_state->list));
  955. list_del_init(&pi_state->list);
  956. spin_unlock_irq(&pi_state->owner->pi_lock);
  957. } else
  958. newtid |= FUTEX_OWNER_DIED;
  959. pi_state->owner = curr;
  960. spin_lock_irq(&curr->pi_lock);
  961. WARN_ON(!list_empty(&pi_state->list));
  962. list_add(&pi_state->list, &curr->pi_state_list);
  963. spin_unlock_irq(&curr->pi_lock);
  964. /*
  965. * We own it, so we have to replace the pending owner
  966. * TID. This must be atomic as we have preserve the
  967. * owner died bit here.
  968. */
  969. ret = get_futex_value_locked(&uval, uaddr);
  970. while (!ret) {
  971. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  972. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  973. if (curval == -EFAULT)
  974. ret = -EFAULT;
  975. if (curval == uval)
  976. break;
  977. uval = curval;
  978. }
  979. return ret;
  980. }
  981. /*
  982. * In case we must use restart_block to restart a futex_wait,
  983. * we encode in the 'arg3' shared capability
  984. */
  985. #define ARG3_SHARED 1
  986. static long futex_wait_restart(struct restart_block *restart);
  987. static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
  988. u32 val, ktime_t *abs_time)
  989. {
  990. struct task_struct *curr = current;
  991. DECLARE_WAITQUEUE(wait, curr);
  992. struct futex_hash_bucket *hb;
  993. struct futex_q q;
  994. u32 uval;
  995. int ret;
  996. struct hrtimer_sleeper t;
  997. int rem = 0;
  998. q.pi_state = NULL;
  999. retry:
  1000. futex_lock_mm(fshared);
  1001. ret = get_futex_key(uaddr, fshared, &q.key);
  1002. if (unlikely(ret != 0))
  1003. goto out_release_sem;
  1004. hb = queue_lock(&q, -1, NULL);
  1005. /*
  1006. * Access the page AFTER the futex is queued.
  1007. * Order is important:
  1008. *
  1009. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1010. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1011. *
  1012. * The basic logical guarantee of a futex is that it blocks ONLY
  1013. * if cond(var) is known to be true at the time of blocking, for
  1014. * any cond. If we queued after testing *uaddr, that would open
  1015. * a race condition where we could block indefinitely with
  1016. * cond(var) false, which would violate the guarantee.
  1017. *
  1018. * A consequence is that futex_wait() can return zero and absorb
  1019. * a wakeup when *uaddr != val on entry to the syscall. This is
  1020. * rare, but normal.
  1021. *
  1022. * for shared futexes, we hold the mmap semaphore, so the mapping
  1023. * cannot have changed since we looked it up in get_futex_key.
  1024. */
  1025. ret = get_futex_value_locked(&uval, uaddr);
  1026. if (unlikely(ret)) {
  1027. queue_unlock(&q, hb);
  1028. /*
  1029. * If we would have faulted, release mmap_sem, fault it in and
  1030. * start all over again.
  1031. */
  1032. futex_unlock_mm(fshared);
  1033. ret = get_user(uval, uaddr);
  1034. if (!ret)
  1035. goto retry;
  1036. return ret;
  1037. }
  1038. ret = -EWOULDBLOCK;
  1039. if (uval != val)
  1040. goto out_unlock_release_sem;
  1041. /* Only actually queue if *uaddr contained val. */
  1042. __queue_me(&q, hb);
  1043. /*
  1044. * Now the futex is queued and we have checked the data, we
  1045. * don't want to hold mmap_sem while we sleep.
  1046. */
  1047. futex_unlock_mm(fshared);
  1048. /*
  1049. * There might have been scheduling since the queue_me(), as we
  1050. * cannot hold a spinlock across the get_user() in case it
  1051. * faults, and we cannot just set TASK_INTERRUPTIBLE state when
  1052. * queueing ourselves into the futex hash. This code thus has to
  1053. * rely on the futex_wake() code removing us from hash when it
  1054. * wakes us up.
  1055. */
  1056. /* add_wait_queue is the barrier after __set_current_state. */
  1057. __set_current_state(TASK_INTERRUPTIBLE);
  1058. add_wait_queue(&q.waiters, &wait);
  1059. /*
  1060. * !plist_node_empty() is safe here without any lock.
  1061. * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
  1062. */
  1063. if (likely(!plist_node_empty(&q.list))) {
  1064. if (!abs_time)
  1065. schedule();
  1066. else {
  1067. hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1068. hrtimer_init_sleeper(&t, current);
  1069. t.timer.expires = *abs_time;
  1070. hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
  1071. /*
  1072. * the timer could have already expired, in which
  1073. * case current would be flagged for rescheduling.
  1074. * Don't bother calling schedule.
  1075. */
  1076. if (likely(t.task))
  1077. schedule();
  1078. hrtimer_cancel(&t.timer);
  1079. /* Flag if a timeout occured */
  1080. rem = (t.task == NULL);
  1081. }
  1082. }
  1083. __set_current_state(TASK_RUNNING);
  1084. /*
  1085. * NOTE: we don't remove ourselves from the waitqueue because
  1086. * we are the only user of it.
  1087. */
  1088. /* If we were woken (and unqueued), we succeeded, whatever. */
  1089. if (!unqueue_me(&q))
  1090. return 0;
  1091. if (rem)
  1092. return -ETIMEDOUT;
  1093. /*
  1094. * We expect signal_pending(current), but another thread may
  1095. * have handled it for us already.
  1096. */
  1097. if (!abs_time)
  1098. return -ERESTARTSYS;
  1099. else {
  1100. struct restart_block *restart;
  1101. restart = &current_thread_info()->restart_block;
  1102. restart->fn = futex_wait_restart;
  1103. restart->arg0 = (unsigned long)uaddr;
  1104. restart->arg1 = (unsigned long)val;
  1105. restart->arg2 = (unsigned long)abs_time;
  1106. restart->arg3 = 0;
  1107. if (fshared)
  1108. restart->arg3 |= ARG3_SHARED;
  1109. return -ERESTART_RESTARTBLOCK;
  1110. }
  1111. out_unlock_release_sem:
  1112. queue_unlock(&q, hb);
  1113. out_release_sem:
  1114. futex_unlock_mm(fshared);
  1115. return ret;
  1116. }
  1117. static long futex_wait_restart(struct restart_block *restart)
  1118. {
  1119. u32 __user *uaddr = (u32 __user *)restart->arg0;
  1120. u32 val = (u32)restart->arg1;
  1121. ktime_t *abs_time = (ktime_t *)restart->arg2;
  1122. struct rw_semaphore *fshared = NULL;
  1123. restart->fn = do_no_restart_syscall;
  1124. if (restart->arg3 & ARG3_SHARED)
  1125. fshared = &current->mm->mmap_sem;
  1126. return (long)futex_wait(uaddr, fshared, val, abs_time);
  1127. }
  1128. /*
  1129. * Userspace tried a 0 -> TID atomic transition of the futex value
  1130. * and failed. The kernel side here does the whole locking operation:
  1131. * if there are waiters then it will block, it does PI, etc. (Due to
  1132. * races the kernel might see a 0 value of the futex too.)
  1133. */
  1134. static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
  1135. int detect, ktime_t *time, int trylock)
  1136. {
  1137. struct hrtimer_sleeper timeout, *to = NULL;
  1138. struct task_struct *curr = current;
  1139. struct futex_hash_bucket *hb;
  1140. u32 uval, newval, curval;
  1141. struct futex_q q;
  1142. int ret, lock_taken, ownerdied = 0, attempt = 0;
  1143. if (refill_pi_state_cache())
  1144. return -ENOMEM;
  1145. if (time) {
  1146. to = &timeout;
  1147. hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
  1148. hrtimer_init_sleeper(to, current);
  1149. to->timer.expires = *time;
  1150. }
  1151. q.pi_state = NULL;
  1152. retry:
  1153. futex_lock_mm(fshared);
  1154. ret = get_futex_key(uaddr, fshared, &q.key);
  1155. if (unlikely(ret != 0))
  1156. goto out_release_sem;
  1157. retry_unlocked:
  1158. hb = queue_lock(&q, -1, NULL);
  1159. retry_locked:
  1160. ret = lock_taken = 0;
  1161. /*
  1162. * To avoid races, we attempt to take the lock here again
  1163. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  1164. * the locks. It will most likely not succeed.
  1165. */
  1166. newval = current->pid;
  1167. curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
  1168. if (unlikely(curval == -EFAULT))
  1169. goto uaddr_faulted;
  1170. /*
  1171. * Detect deadlocks. In case of REQUEUE_PI this is a valid
  1172. * situation and we return success to user space.
  1173. */
  1174. if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
  1175. ret = -EDEADLK;
  1176. goto out_unlock_release_sem;
  1177. }
  1178. /*
  1179. * Surprise - we got the lock. Just return to userspace:
  1180. */
  1181. if (unlikely(!curval))
  1182. goto out_unlock_release_sem;
  1183. uval = curval;
  1184. /*
  1185. * Set the WAITERS flag, so the owner will know it has someone
  1186. * to wake at next unlock
  1187. */
  1188. newval = curval | FUTEX_WAITERS;
  1189. /*
  1190. * There are two cases, where a futex might have no owner (the
  1191. * owner TID is 0): OWNER_DIED. We take over the futex in this
  1192. * case. We also do an unconditional take over, when the owner
  1193. * of the futex died.
  1194. *
  1195. * This is safe as we are protected by the hash bucket lock !
  1196. */
  1197. if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
  1198. /* Keep the OWNER_DIED bit */
  1199. newval = (curval & ~FUTEX_TID_MASK) | current->pid;
  1200. ownerdied = 0;
  1201. lock_taken = 1;
  1202. }
  1203. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  1204. if (unlikely(curval == -EFAULT))
  1205. goto uaddr_faulted;
  1206. if (unlikely(curval != uval))
  1207. goto retry_locked;
  1208. /*
  1209. * We took the lock due to owner died take over.
  1210. */
  1211. if (unlikely(lock_taken))
  1212. goto out_unlock_release_sem;
  1213. /*
  1214. * We dont have the lock. Look up the PI state (or create it if
  1215. * we are the first waiter):
  1216. */
  1217. ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
  1218. if (unlikely(ret)) {
  1219. switch (ret) {
  1220. case -EAGAIN:
  1221. /*
  1222. * Task is exiting and we just wait for the
  1223. * exit to complete.
  1224. */
  1225. queue_unlock(&q, hb);
  1226. futex_unlock_mm(fshared);
  1227. cond_resched();
  1228. goto retry;
  1229. case -ESRCH:
  1230. /*
  1231. * No owner found for this futex. Check if the
  1232. * OWNER_DIED bit is set to figure out whether
  1233. * this is a robust futex or not.
  1234. */
  1235. if (get_futex_value_locked(&curval, uaddr))
  1236. goto uaddr_faulted;
  1237. /*
  1238. * We simply start over in case of a robust
  1239. * futex. The code above will take the futex
  1240. * and return happy.
  1241. */
  1242. if (curval & FUTEX_OWNER_DIED) {
  1243. ownerdied = 1;
  1244. goto retry_locked;
  1245. }
  1246. default:
  1247. goto out_unlock_release_sem;
  1248. }
  1249. }
  1250. /*
  1251. * Only actually queue now that the atomic ops are done:
  1252. */
  1253. __queue_me(&q, hb);
  1254. /*
  1255. * Now the futex is queued and we have checked the data, we
  1256. * don't want to hold mmap_sem while we sleep.
  1257. */
  1258. futex_unlock_mm(fshared);
  1259. WARN_ON(!q.pi_state);
  1260. /*
  1261. * Block on the PI mutex:
  1262. */
  1263. if (!trylock)
  1264. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1265. else {
  1266. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1267. /* Fixup the trylock return value: */
  1268. ret = ret ? 0 : -EWOULDBLOCK;
  1269. }
  1270. futex_lock_mm(fshared);
  1271. spin_lock(q.lock_ptr);
  1272. if (!ret) {
  1273. /*
  1274. * Got the lock. We might not be the anticipated owner
  1275. * if we did a lock-steal - fix up the PI-state in
  1276. * that case:
  1277. */
  1278. if (q.pi_state->owner != curr)
  1279. ret = fixup_pi_state_owner(uaddr, &q, curr);
  1280. } else {
  1281. /*
  1282. * Catch the rare case, where the lock was released
  1283. * when we were on the way back before we locked the
  1284. * hash bucket.
  1285. */
  1286. if (q.pi_state->owner == curr &&
  1287. rt_mutex_trylock(&q.pi_state->pi_mutex)) {
  1288. ret = 0;
  1289. } else {
  1290. /*
  1291. * Paranoia check. If we did not take the lock
  1292. * in the trylock above, then we should not be
  1293. * the owner of the rtmutex, neither the real
  1294. * nor the pending one:
  1295. */
  1296. if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
  1297. printk(KERN_ERR "futex_lock_pi: ret = %d "
  1298. "pi-mutex: %p pi-state %p\n", ret,
  1299. q.pi_state->pi_mutex.owner,
  1300. q.pi_state->owner);
  1301. }
  1302. }
  1303. /* Unqueue and drop the lock */
  1304. unqueue_me_pi(&q);
  1305. futex_unlock_mm(fshared);
  1306. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  1307. out_unlock_release_sem:
  1308. queue_unlock(&q, hb);
  1309. out_release_sem:
  1310. futex_unlock_mm(fshared);
  1311. return ret;
  1312. uaddr_faulted:
  1313. /*
  1314. * We have to r/w *(int __user *)uaddr, but we can't modify it
  1315. * non-atomically. Therefore, if get_user below is not
  1316. * enough, we need to handle the fault ourselves, while
  1317. * still holding the mmap_sem.
  1318. *
  1319. * ... and hb->lock. :-) --ANK
  1320. */
  1321. queue_unlock(&q, hb);
  1322. if (attempt++) {
  1323. ret = futex_handle_fault((unsigned long)uaddr, fshared,
  1324. attempt);
  1325. if (ret)
  1326. goto out_release_sem;
  1327. goto retry_unlocked;
  1328. }
  1329. futex_unlock_mm(fshared);
  1330. ret = get_user(uval, uaddr);
  1331. if (!ret && (uval != -EFAULT))
  1332. goto retry;
  1333. return ret;
  1334. }
  1335. /*
  1336. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1337. * This is the in-kernel slowpath: we look up the PI state (if any),
  1338. * and do the rt-mutex unlock.
  1339. */
  1340. static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
  1341. {
  1342. struct futex_hash_bucket *hb;
  1343. struct futex_q *this, *next;
  1344. u32 uval;
  1345. struct plist_head *head;
  1346. union futex_key key;
  1347. int ret, attempt = 0;
  1348. retry:
  1349. if (get_user(uval, uaddr))
  1350. return -EFAULT;
  1351. /*
  1352. * We release only a lock we actually own:
  1353. */
  1354. if ((uval & FUTEX_TID_MASK) != current->pid)
  1355. return -EPERM;
  1356. /*
  1357. * First take all the futex related locks:
  1358. */
  1359. futex_lock_mm(fshared);
  1360. ret = get_futex_key(uaddr, fshared, &key);
  1361. if (unlikely(ret != 0))
  1362. goto out;
  1363. hb = hash_futex(&key);
  1364. retry_unlocked:
  1365. spin_lock(&hb->lock);
  1366. /*
  1367. * To avoid races, try to do the TID -> 0 atomic transition
  1368. * again. If it succeeds then we can return without waking
  1369. * anyone else up:
  1370. */
  1371. if (!(uval & FUTEX_OWNER_DIED))
  1372. uval = cmpxchg_futex_value_locked(uaddr, current->pid, 0);
  1373. if (unlikely(uval == -EFAULT))
  1374. goto pi_faulted;
  1375. /*
  1376. * Rare case: we managed to release the lock atomically,
  1377. * no need to wake anyone else up:
  1378. */
  1379. if (unlikely(uval == current->pid))
  1380. goto out_unlock;
  1381. /*
  1382. * Ok, other tasks may need to be woken up - check waiters
  1383. * and do the wakeup if necessary:
  1384. */
  1385. head = &hb->chain;
  1386. plist_for_each_entry_safe(this, next, head, list) {
  1387. if (!match_futex (&this->key, &key))
  1388. continue;
  1389. ret = wake_futex_pi(uaddr, uval, this);
  1390. /*
  1391. * The atomic access to the futex value
  1392. * generated a pagefault, so retry the
  1393. * user-access and the wakeup:
  1394. */
  1395. if (ret == -EFAULT)
  1396. goto pi_faulted;
  1397. goto out_unlock;
  1398. }
  1399. /*
  1400. * No waiters - kernel unlocks the futex:
  1401. */
  1402. if (!(uval & FUTEX_OWNER_DIED)) {
  1403. ret = unlock_futex_pi(uaddr, uval);
  1404. if (ret == -EFAULT)
  1405. goto pi_faulted;
  1406. }
  1407. out_unlock:
  1408. spin_unlock(&hb->lock);
  1409. out:
  1410. futex_unlock_mm(fshared);
  1411. return ret;
  1412. pi_faulted:
  1413. /*
  1414. * We have to r/w *(int __user *)uaddr, but we can't modify it
  1415. * non-atomically. Therefore, if get_user below is not
  1416. * enough, we need to handle the fault ourselves, while
  1417. * still holding the mmap_sem.
  1418. *
  1419. * ... and hb->lock. --ANK
  1420. */
  1421. spin_unlock(&hb->lock);
  1422. if (attempt++) {
  1423. ret = futex_handle_fault((unsigned long)uaddr, fshared,
  1424. attempt);
  1425. if (ret)
  1426. goto out;
  1427. uval = 0;
  1428. goto retry_unlocked;
  1429. }
  1430. futex_unlock_mm(fshared);
  1431. ret = get_user(uval, uaddr);
  1432. if (!ret && (uval != -EFAULT))
  1433. goto retry;
  1434. return ret;
  1435. }
  1436. static int futex_close(struct inode *inode, struct file *filp)
  1437. {
  1438. struct futex_q *q = filp->private_data;
  1439. unqueue_me(q);
  1440. kfree(q);
  1441. return 0;
  1442. }
  1443. /* This is one-shot: once it's gone off you need a new fd */
  1444. static unsigned int futex_poll(struct file *filp,
  1445. struct poll_table_struct *wait)
  1446. {
  1447. struct futex_q *q = filp->private_data;
  1448. int ret = 0;
  1449. poll_wait(filp, &q->waiters, wait);
  1450. /*
  1451. * plist_node_empty() is safe here without any lock.
  1452. * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
  1453. */
  1454. if (plist_node_empty(&q->list))
  1455. ret = POLLIN | POLLRDNORM;
  1456. return ret;
  1457. }
  1458. static const struct file_operations futex_fops = {
  1459. .release = futex_close,
  1460. .poll = futex_poll,
  1461. };
  1462. /*
  1463. * Signal allows caller to avoid the race which would occur if they
  1464. * set the sigio stuff up afterwards.
  1465. */
  1466. static int futex_fd(u32 __user *uaddr, int signal)
  1467. {
  1468. struct futex_q *q;
  1469. struct file *filp;
  1470. int ret, err;
  1471. struct rw_semaphore *fshared;
  1472. static unsigned long printk_interval;
  1473. if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
  1474. printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
  1475. "will be removed from the kernel in June 2007\n",
  1476. current->comm);
  1477. }
  1478. ret = -EINVAL;
  1479. if (!valid_signal(signal))
  1480. goto out;
  1481. ret = get_unused_fd();
  1482. if (ret < 0)
  1483. goto out;
  1484. filp = get_empty_filp();
  1485. if (!filp) {
  1486. put_unused_fd(ret);
  1487. ret = -ENFILE;
  1488. goto out;
  1489. }
  1490. filp->f_op = &futex_fops;
  1491. filp->f_path.mnt = mntget(futex_mnt);
  1492. filp->f_path.dentry = dget(futex_mnt->mnt_root);
  1493. filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
  1494. if (signal) {
  1495. err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
  1496. if (err < 0) {
  1497. goto error;
  1498. }
  1499. filp->f_owner.signum = signal;
  1500. }
  1501. q = kmalloc(sizeof(*q), GFP_KERNEL);
  1502. if (!q) {
  1503. err = -ENOMEM;
  1504. goto error;
  1505. }
  1506. q->pi_state = NULL;
  1507. fshared = &current->mm->mmap_sem;
  1508. down_read(fshared);
  1509. err = get_futex_key(uaddr, fshared, &q->key);
  1510. if (unlikely(err != 0)) {
  1511. up_read(fshared);
  1512. kfree(q);
  1513. goto error;
  1514. }
  1515. /*
  1516. * queue_me() must be called before releasing mmap_sem, because
  1517. * key->shared.inode needs to be referenced while holding it.
  1518. */
  1519. filp->private_data = q;
  1520. queue_me(q, ret, filp);
  1521. up_read(fshared);
  1522. /* Now we map fd to filp, so userspace can access it */
  1523. fd_install(ret, filp);
  1524. out:
  1525. return ret;
  1526. error:
  1527. put_unused_fd(ret);
  1528. put_filp(filp);
  1529. ret = err;
  1530. goto out;
  1531. }
  1532. /*
  1533. * Support for robust futexes: the kernel cleans up held futexes at
  1534. * thread exit time.
  1535. *
  1536. * Implementation: user-space maintains a per-thread list of locks it
  1537. * is holding. Upon do_exit(), the kernel carefully walks this list,
  1538. * and marks all locks that are owned by this thread with the
  1539. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  1540. * always manipulated with the lock held, so the list is private and
  1541. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  1542. * field, to allow the kernel to clean up if the thread dies after
  1543. * acquiring the lock, but just before it could have added itself to
  1544. * the list. There can only be one such pending lock.
  1545. */
  1546. /**
  1547. * sys_set_robust_list - set the robust-futex list head of a task
  1548. * @head: pointer to the list-head
  1549. * @len: length of the list-head, as userspace expects
  1550. */
  1551. asmlinkage long
  1552. sys_set_robust_list(struct robust_list_head __user *head,
  1553. size_t len)
  1554. {
  1555. /*
  1556. * The kernel knows only one size for now:
  1557. */
  1558. if (unlikely(len != sizeof(*head)))
  1559. return -EINVAL;
  1560. current->robust_list = head;
  1561. return 0;
  1562. }
  1563. /**
  1564. * sys_get_robust_list - get the robust-futex list head of a task
  1565. * @pid: pid of the process [zero for current task]
  1566. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  1567. * @len_ptr: pointer to a length field, the kernel fills in the header size
  1568. */
  1569. asmlinkage long
  1570. sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
  1571. size_t __user *len_ptr)
  1572. {
  1573. struct robust_list_head __user *head;
  1574. unsigned long ret;
  1575. if (!pid)
  1576. head = current->robust_list;
  1577. else {
  1578. struct task_struct *p;
  1579. ret = -ESRCH;
  1580. rcu_read_lock();
  1581. p = find_task_by_pid(pid);
  1582. if (!p)
  1583. goto err_unlock;
  1584. ret = -EPERM;
  1585. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  1586. !capable(CAP_SYS_PTRACE))
  1587. goto err_unlock;
  1588. head = p->robust_list;
  1589. rcu_read_unlock();
  1590. }
  1591. if (put_user(sizeof(*head), len_ptr))
  1592. return -EFAULT;
  1593. return put_user(head, head_ptr);
  1594. err_unlock:
  1595. rcu_read_unlock();
  1596. return ret;
  1597. }
  1598. /*
  1599. * Process a futex-list entry, check whether it's owned by the
  1600. * dying task, and do notification if so:
  1601. */
  1602. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  1603. {
  1604. u32 uval, nval, mval;
  1605. retry:
  1606. if (get_user(uval, uaddr))
  1607. return -1;
  1608. if ((uval & FUTEX_TID_MASK) == curr->pid) {
  1609. /*
  1610. * Ok, this dying thread is truly holding a futex
  1611. * of interest. Set the OWNER_DIED bit atomically
  1612. * via cmpxchg, and if the value had FUTEX_WAITERS
  1613. * set, wake up a waiter (if any). (We have to do a
  1614. * futex_wake() even if OWNER_DIED is already set -
  1615. * to handle the rare but possible case of recursive
  1616. * thread-death.) The rest of the cleanup is done in
  1617. * userspace.
  1618. */
  1619. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  1620. nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
  1621. if (nval == -EFAULT)
  1622. return -1;
  1623. if (nval != uval)
  1624. goto retry;
  1625. /*
  1626. * Wake robust non-PI futexes here. The wakeup of
  1627. * PI futexes happens in exit_pi_state():
  1628. */
  1629. if (!pi && (uval & FUTEX_WAITERS))
  1630. futex_wake(uaddr, &curr->mm->mmap_sem, 1);
  1631. }
  1632. return 0;
  1633. }
  1634. /*
  1635. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  1636. */
  1637. static inline int fetch_robust_entry(struct robust_list __user **entry,
  1638. struct robust_list __user * __user *head,
  1639. int *pi)
  1640. {
  1641. unsigned long uentry;
  1642. if (get_user(uentry, (unsigned long __user *)head))
  1643. return -EFAULT;
  1644. *entry = (void __user *)(uentry & ~1UL);
  1645. *pi = uentry & 1;
  1646. return 0;
  1647. }
  1648. /*
  1649. * Walk curr->robust_list (very carefully, it's a userspace list!)
  1650. * and mark any locks found there dead, and notify any waiters.
  1651. *
  1652. * We silently return on any sign of list-walking problem.
  1653. */
  1654. void exit_robust_list(struct task_struct *curr)
  1655. {
  1656. struct robust_list_head __user *head = curr->robust_list;
  1657. struct robust_list __user *entry, *next_entry, *pending;
  1658. unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
  1659. unsigned long futex_offset;
  1660. int rc;
  1661. /*
  1662. * Fetch the list head (which was registered earlier, via
  1663. * sys_set_robust_list()):
  1664. */
  1665. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  1666. return;
  1667. /*
  1668. * Fetch the relative futex offset:
  1669. */
  1670. if (get_user(futex_offset, &head->futex_offset))
  1671. return;
  1672. /*
  1673. * Fetch any possibly pending lock-add first, and handle it
  1674. * if it exists:
  1675. */
  1676. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  1677. return;
  1678. next_entry = NULL; /* avoid warning with gcc */
  1679. while (entry != &head->list) {
  1680. /*
  1681. * Fetch the next entry in the list before calling
  1682. * handle_futex_death:
  1683. */
  1684. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  1685. /*
  1686. * A pending lock might already be on the list, so
  1687. * don't process it twice:
  1688. */
  1689. if (entry != pending)
  1690. if (handle_futex_death((void __user *)entry + futex_offset,
  1691. curr, pi))
  1692. return;
  1693. if (rc)
  1694. return;
  1695. entry = next_entry;
  1696. pi = next_pi;
  1697. /*
  1698. * Avoid excessively long or circular lists:
  1699. */
  1700. if (!--limit)
  1701. break;
  1702. cond_resched();
  1703. }
  1704. if (pending)
  1705. handle_futex_death((void __user *)pending + futex_offset,
  1706. curr, pip);
  1707. }
  1708. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  1709. u32 __user *uaddr2, u32 val2, u32 val3)
  1710. {
  1711. int ret;
  1712. int cmd = op & FUTEX_CMD_MASK;
  1713. struct rw_semaphore *fshared = NULL;
  1714. if (!(op & FUTEX_PRIVATE_FLAG))
  1715. fshared = &current->mm->mmap_sem;
  1716. switch (cmd) {
  1717. case FUTEX_WAIT:
  1718. ret = futex_wait(uaddr, fshared, val, timeout);
  1719. break;
  1720. case FUTEX_WAKE:
  1721. ret = futex_wake(uaddr, fshared, val);
  1722. break;
  1723. case FUTEX_FD:
  1724. /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
  1725. ret = futex_fd(uaddr, val);
  1726. break;
  1727. case FUTEX_REQUEUE:
  1728. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
  1729. break;
  1730. case FUTEX_CMP_REQUEUE:
  1731. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
  1732. break;
  1733. case FUTEX_WAKE_OP:
  1734. ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
  1735. break;
  1736. case FUTEX_LOCK_PI:
  1737. ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
  1738. break;
  1739. case FUTEX_UNLOCK_PI:
  1740. ret = futex_unlock_pi(uaddr, fshared);
  1741. break;
  1742. case FUTEX_TRYLOCK_PI:
  1743. ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
  1744. break;
  1745. default:
  1746. ret = -ENOSYS;
  1747. }
  1748. return ret;
  1749. }
  1750. asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
  1751. struct timespec __user *utime, u32 __user *uaddr2,
  1752. u32 val3)
  1753. {
  1754. struct timespec ts;
  1755. ktime_t t, *tp = NULL;
  1756. u32 val2 = 0;
  1757. int cmd = op & FUTEX_CMD_MASK;
  1758. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
  1759. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  1760. return -EFAULT;
  1761. if (!timespec_valid(&ts))
  1762. return -EINVAL;
  1763. t = timespec_to_ktime(ts);
  1764. if (cmd == FUTEX_WAIT)
  1765. t = ktime_add(ktime_get(), t);
  1766. tp = &t;
  1767. }
  1768. /*
  1769. * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
  1770. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  1771. */
  1772. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  1773. cmd == FUTEX_WAKE_OP)
  1774. val2 = (u32) (unsigned long) utime;
  1775. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  1776. }
  1777. static int futexfs_get_sb(struct file_system_type *fs_type,
  1778. int flags, const char *dev_name, void *data,
  1779. struct vfsmount *mnt)
  1780. {
  1781. return get_sb_pseudo(fs_type, "futex", NULL, FUTEXFS_SUPER_MAGIC, mnt);
  1782. }
  1783. static struct file_system_type futex_fs_type = {
  1784. .name = "futexfs",
  1785. .get_sb = futexfs_get_sb,
  1786. .kill_sb = kill_anon_super,
  1787. };
  1788. static int __init init(void)
  1789. {
  1790. int i = register_filesystem(&futex_fs_type);
  1791. if (i)
  1792. return i;
  1793. futex_mnt = kern_mount(&futex_fs_type);
  1794. if (IS_ERR(futex_mnt)) {
  1795. unregister_filesystem(&futex_fs_type);
  1796. return PTR_ERR(futex_mnt);
  1797. }
  1798. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  1799. plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
  1800. spin_lock_init(&futex_queues[i].lock);
  1801. }
  1802. return 0;
  1803. }
  1804. __initcall(init);