memory.c 116 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <asm/io.h>
  58. #include <asm/pgalloc.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/tlb.h>
  61. #include <asm/tlbflush.h>
  62. #include <asm/pgtable.h>
  63. #include "internal.h"
  64. #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
  65. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
  66. #endif
  67. #ifndef CONFIG_NEED_MULTIPLE_NODES
  68. /* use the per-pgdat data instead for discontigmem - mbligh */
  69. unsigned long max_mapnr;
  70. struct page *mem_map;
  71. EXPORT_SYMBOL(max_mapnr);
  72. EXPORT_SYMBOL(mem_map);
  73. #endif
  74. unsigned long num_physpages;
  75. /*
  76. * A number of key systems in x86 including ioremap() rely on the assumption
  77. * that high_memory defines the upper bound on direct map memory, then end
  78. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  79. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  80. * and ZONE_HIGHMEM.
  81. */
  82. void * high_memory;
  83. EXPORT_SYMBOL(num_physpages);
  84. EXPORT_SYMBOL(high_memory);
  85. /*
  86. * Randomize the address space (stacks, mmaps, brk, etc.).
  87. *
  88. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  89. * as ancient (libc5 based) binaries can segfault. )
  90. */
  91. int randomize_va_space __read_mostly =
  92. #ifdef CONFIG_COMPAT_BRK
  93. 1;
  94. #else
  95. 2;
  96. #endif
  97. static int __init disable_randmaps(char *s)
  98. {
  99. randomize_va_space = 0;
  100. return 1;
  101. }
  102. __setup("norandmaps", disable_randmaps);
  103. unsigned long zero_pfn __read_mostly;
  104. unsigned long highest_memmap_pfn __read_mostly;
  105. /*
  106. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  107. */
  108. static int __init init_zero_pfn(void)
  109. {
  110. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  111. return 0;
  112. }
  113. core_initcall(init_zero_pfn);
  114. #if defined(SPLIT_RSS_COUNTING)
  115. void sync_mm_rss(struct mm_struct *mm)
  116. {
  117. int i;
  118. for (i = 0; i < NR_MM_COUNTERS; i++) {
  119. if (current->rss_stat.count[i]) {
  120. add_mm_counter(mm, i, current->rss_stat.count[i]);
  121. current->rss_stat.count[i] = 0;
  122. }
  123. }
  124. current->rss_stat.events = 0;
  125. }
  126. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  127. {
  128. struct task_struct *task = current;
  129. if (likely(task->mm == mm))
  130. task->rss_stat.count[member] += val;
  131. else
  132. add_mm_counter(mm, member, val);
  133. }
  134. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  135. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  136. /* sync counter once per 64 page faults */
  137. #define TASK_RSS_EVENTS_THRESH (64)
  138. static void check_sync_rss_stat(struct task_struct *task)
  139. {
  140. if (unlikely(task != current))
  141. return;
  142. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  143. sync_mm_rss(task->mm);
  144. }
  145. #else /* SPLIT_RSS_COUNTING */
  146. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  147. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  148. static void check_sync_rss_stat(struct task_struct *task)
  149. {
  150. }
  151. #endif /* SPLIT_RSS_COUNTING */
  152. #ifdef HAVE_GENERIC_MMU_GATHER
  153. static int tlb_next_batch(struct mmu_gather *tlb)
  154. {
  155. struct mmu_gather_batch *batch;
  156. batch = tlb->active;
  157. if (batch->next) {
  158. tlb->active = batch->next;
  159. return 1;
  160. }
  161. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  162. return 0;
  163. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  164. if (!batch)
  165. return 0;
  166. tlb->batch_count++;
  167. batch->next = NULL;
  168. batch->nr = 0;
  169. batch->max = MAX_GATHER_BATCH;
  170. tlb->active->next = batch;
  171. tlb->active = batch;
  172. return 1;
  173. }
  174. /* tlb_gather_mmu
  175. * Called to initialize an (on-stack) mmu_gather structure for page-table
  176. * tear-down from @mm. The @fullmm argument is used when @mm is without
  177. * users and we're going to destroy the full address space (exit/execve).
  178. */
  179. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  180. {
  181. tlb->mm = mm;
  182. tlb->fullmm = fullmm;
  183. tlb->need_flush_all = 0;
  184. tlb->start = -1UL;
  185. tlb->end = 0;
  186. tlb->need_flush = 0;
  187. tlb->local.next = NULL;
  188. tlb->local.nr = 0;
  189. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  190. tlb->active = &tlb->local;
  191. tlb->batch_count = 0;
  192. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  193. tlb->batch = NULL;
  194. #endif
  195. }
  196. void tlb_flush_mmu(struct mmu_gather *tlb)
  197. {
  198. struct mmu_gather_batch *batch;
  199. if (!tlb->need_flush)
  200. return;
  201. tlb->need_flush = 0;
  202. tlb_flush(tlb);
  203. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  204. tlb_table_flush(tlb);
  205. #endif
  206. for (batch = &tlb->local; batch; batch = batch->next) {
  207. free_pages_and_swap_cache(batch->pages, batch->nr);
  208. batch->nr = 0;
  209. }
  210. tlb->active = &tlb->local;
  211. }
  212. /* tlb_finish_mmu
  213. * Called at the end of the shootdown operation to free up any resources
  214. * that were required.
  215. */
  216. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  217. {
  218. struct mmu_gather_batch *batch, *next;
  219. tlb->start = start;
  220. tlb->end = end;
  221. tlb_flush_mmu(tlb);
  222. /* keep the page table cache within bounds */
  223. check_pgt_cache();
  224. for (batch = tlb->local.next; batch; batch = next) {
  225. next = batch->next;
  226. free_pages((unsigned long)batch, 0);
  227. }
  228. tlb->local.next = NULL;
  229. }
  230. /* __tlb_remove_page
  231. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  232. * handling the additional races in SMP caused by other CPUs caching valid
  233. * mappings in their TLBs. Returns the number of free page slots left.
  234. * When out of page slots we must call tlb_flush_mmu().
  235. */
  236. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  237. {
  238. struct mmu_gather_batch *batch;
  239. VM_BUG_ON(!tlb->need_flush);
  240. batch = tlb->active;
  241. batch->pages[batch->nr++] = page;
  242. if (batch->nr == batch->max) {
  243. if (!tlb_next_batch(tlb))
  244. return 0;
  245. batch = tlb->active;
  246. }
  247. VM_BUG_ON(batch->nr > batch->max);
  248. return batch->max - batch->nr;
  249. }
  250. #endif /* HAVE_GENERIC_MMU_GATHER */
  251. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  252. /*
  253. * See the comment near struct mmu_table_batch.
  254. */
  255. static void tlb_remove_table_smp_sync(void *arg)
  256. {
  257. /* Simply deliver the interrupt */
  258. }
  259. static void tlb_remove_table_one(void *table)
  260. {
  261. /*
  262. * This isn't an RCU grace period and hence the page-tables cannot be
  263. * assumed to be actually RCU-freed.
  264. *
  265. * It is however sufficient for software page-table walkers that rely on
  266. * IRQ disabling. See the comment near struct mmu_table_batch.
  267. */
  268. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  269. __tlb_remove_table(table);
  270. }
  271. static void tlb_remove_table_rcu(struct rcu_head *head)
  272. {
  273. struct mmu_table_batch *batch;
  274. int i;
  275. batch = container_of(head, struct mmu_table_batch, rcu);
  276. for (i = 0; i < batch->nr; i++)
  277. __tlb_remove_table(batch->tables[i]);
  278. free_page((unsigned long)batch);
  279. }
  280. void tlb_table_flush(struct mmu_gather *tlb)
  281. {
  282. struct mmu_table_batch **batch = &tlb->batch;
  283. if (*batch) {
  284. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  285. *batch = NULL;
  286. }
  287. }
  288. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  289. {
  290. struct mmu_table_batch **batch = &tlb->batch;
  291. tlb->need_flush = 1;
  292. /*
  293. * When there's less then two users of this mm there cannot be a
  294. * concurrent page-table walk.
  295. */
  296. if (atomic_read(&tlb->mm->mm_users) < 2) {
  297. __tlb_remove_table(table);
  298. return;
  299. }
  300. if (*batch == NULL) {
  301. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  302. if (*batch == NULL) {
  303. tlb_remove_table_one(table);
  304. return;
  305. }
  306. (*batch)->nr = 0;
  307. }
  308. (*batch)->tables[(*batch)->nr++] = table;
  309. if ((*batch)->nr == MAX_TABLE_BATCH)
  310. tlb_table_flush(tlb);
  311. }
  312. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  313. /*
  314. * If a p?d_bad entry is found while walking page tables, report
  315. * the error, before resetting entry to p?d_none. Usually (but
  316. * very seldom) called out from the p?d_none_or_clear_bad macros.
  317. */
  318. void pgd_clear_bad(pgd_t *pgd)
  319. {
  320. pgd_ERROR(*pgd);
  321. pgd_clear(pgd);
  322. }
  323. void pud_clear_bad(pud_t *pud)
  324. {
  325. pud_ERROR(*pud);
  326. pud_clear(pud);
  327. }
  328. void pmd_clear_bad(pmd_t *pmd)
  329. {
  330. pmd_ERROR(*pmd);
  331. pmd_clear(pmd);
  332. }
  333. /*
  334. * Note: this doesn't free the actual pages themselves. That
  335. * has been handled earlier when unmapping all the memory regions.
  336. */
  337. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  338. unsigned long addr)
  339. {
  340. pgtable_t token = pmd_pgtable(*pmd);
  341. pmd_clear(pmd);
  342. pte_free_tlb(tlb, token, addr);
  343. tlb->mm->nr_ptes--;
  344. }
  345. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  346. unsigned long addr, unsigned long end,
  347. unsigned long floor, unsigned long ceiling)
  348. {
  349. pmd_t *pmd;
  350. unsigned long next;
  351. unsigned long start;
  352. start = addr;
  353. pmd = pmd_offset(pud, addr);
  354. do {
  355. next = pmd_addr_end(addr, end);
  356. if (pmd_none_or_clear_bad(pmd))
  357. continue;
  358. free_pte_range(tlb, pmd, addr);
  359. } while (pmd++, addr = next, addr != end);
  360. start &= PUD_MASK;
  361. if (start < floor)
  362. return;
  363. if (ceiling) {
  364. ceiling &= PUD_MASK;
  365. if (!ceiling)
  366. return;
  367. }
  368. if (end - 1 > ceiling - 1)
  369. return;
  370. pmd = pmd_offset(pud, start);
  371. pud_clear(pud);
  372. pmd_free_tlb(tlb, pmd, start);
  373. }
  374. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  375. unsigned long addr, unsigned long end,
  376. unsigned long floor, unsigned long ceiling)
  377. {
  378. pud_t *pud;
  379. unsigned long next;
  380. unsigned long start;
  381. start = addr;
  382. pud = pud_offset(pgd, addr);
  383. do {
  384. next = pud_addr_end(addr, end);
  385. if (pud_none_or_clear_bad(pud))
  386. continue;
  387. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  388. } while (pud++, addr = next, addr != end);
  389. start &= PGDIR_MASK;
  390. if (start < floor)
  391. return;
  392. if (ceiling) {
  393. ceiling &= PGDIR_MASK;
  394. if (!ceiling)
  395. return;
  396. }
  397. if (end - 1 > ceiling - 1)
  398. return;
  399. pud = pud_offset(pgd, start);
  400. pgd_clear(pgd);
  401. pud_free_tlb(tlb, pud, start);
  402. }
  403. /*
  404. * This function frees user-level page tables of a process.
  405. *
  406. * Must be called with pagetable lock held.
  407. */
  408. void free_pgd_range(struct mmu_gather *tlb,
  409. unsigned long addr, unsigned long end,
  410. unsigned long floor, unsigned long ceiling)
  411. {
  412. pgd_t *pgd;
  413. unsigned long next;
  414. /*
  415. * The next few lines have given us lots of grief...
  416. *
  417. * Why are we testing PMD* at this top level? Because often
  418. * there will be no work to do at all, and we'd prefer not to
  419. * go all the way down to the bottom just to discover that.
  420. *
  421. * Why all these "- 1"s? Because 0 represents both the bottom
  422. * of the address space and the top of it (using -1 for the
  423. * top wouldn't help much: the masks would do the wrong thing).
  424. * The rule is that addr 0 and floor 0 refer to the bottom of
  425. * the address space, but end 0 and ceiling 0 refer to the top
  426. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  427. * that end 0 case should be mythical).
  428. *
  429. * Wherever addr is brought up or ceiling brought down, we must
  430. * be careful to reject "the opposite 0" before it confuses the
  431. * subsequent tests. But what about where end is brought down
  432. * by PMD_SIZE below? no, end can't go down to 0 there.
  433. *
  434. * Whereas we round start (addr) and ceiling down, by different
  435. * masks at different levels, in order to test whether a table
  436. * now has no other vmas using it, so can be freed, we don't
  437. * bother to round floor or end up - the tests don't need that.
  438. */
  439. addr &= PMD_MASK;
  440. if (addr < floor) {
  441. addr += PMD_SIZE;
  442. if (!addr)
  443. return;
  444. }
  445. if (ceiling) {
  446. ceiling &= PMD_MASK;
  447. if (!ceiling)
  448. return;
  449. }
  450. if (end - 1 > ceiling - 1)
  451. end -= PMD_SIZE;
  452. if (addr > end - 1)
  453. return;
  454. pgd = pgd_offset(tlb->mm, addr);
  455. do {
  456. next = pgd_addr_end(addr, end);
  457. if (pgd_none_or_clear_bad(pgd))
  458. continue;
  459. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  460. } while (pgd++, addr = next, addr != end);
  461. }
  462. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  463. unsigned long floor, unsigned long ceiling)
  464. {
  465. while (vma) {
  466. struct vm_area_struct *next = vma->vm_next;
  467. unsigned long addr = vma->vm_start;
  468. /*
  469. * Hide vma from rmap and truncate_pagecache before freeing
  470. * pgtables
  471. */
  472. unlink_anon_vmas(vma);
  473. unlink_file_vma(vma);
  474. if (is_vm_hugetlb_page(vma)) {
  475. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  476. floor, next? next->vm_start: ceiling);
  477. } else {
  478. /*
  479. * Optimization: gather nearby vmas into one call down
  480. */
  481. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  482. && !is_vm_hugetlb_page(next)) {
  483. vma = next;
  484. next = vma->vm_next;
  485. unlink_anon_vmas(vma);
  486. unlink_file_vma(vma);
  487. }
  488. free_pgd_range(tlb, addr, vma->vm_end,
  489. floor, next? next->vm_start: ceiling);
  490. }
  491. vma = next;
  492. }
  493. }
  494. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  495. pmd_t *pmd, unsigned long address)
  496. {
  497. pgtable_t new = pte_alloc_one(mm, address);
  498. int wait_split_huge_page;
  499. if (!new)
  500. return -ENOMEM;
  501. /*
  502. * Ensure all pte setup (eg. pte page lock and page clearing) are
  503. * visible before the pte is made visible to other CPUs by being
  504. * put into page tables.
  505. *
  506. * The other side of the story is the pointer chasing in the page
  507. * table walking code (when walking the page table without locking;
  508. * ie. most of the time). Fortunately, these data accesses consist
  509. * of a chain of data-dependent loads, meaning most CPUs (alpha
  510. * being the notable exception) will already guarantee loads are
  511. * seen in-order. See the alpha page table accessors for the
  512. * smp_read_barrier_depends() barriers in page table walking code.
  513. */
  514. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  515. spin_lock(&mm->page_table_lock);
  516. wait_split_huge_page = 0;
  517. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  518. mm->nr_ptes++;
  519. pmd_populate(mm, pmd, new);
  520. new = NULL;
  521. } else if (unlikely(pmd_trans_splitting(*pmd)))
  522. wait_split_huge_page = 1;
  523. spin_unlock(&mm->page_table_lock);
  524. if (new)
  525. pte_free(mm, new);
  526. if (wait_split_huge_page)
  527. wait_split_huge_page(vma->anon_vma, pmd);
  528. return 0;
  529. }
  530. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  531. {
  532. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  533. if (!new)
  534. return -ENOMEM;
  535. smp_wmb(); /* See comment in __pte_alloc */
  536. spin_lock(&init_mm.page_table_lock);
  537. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  538. pmd_populate_kernel(&init_mm, pmd, new);
  539. new = NULL;
  540. } else
  541. VM_BUG_ON(pmd_trans_splitting(*pmd));
  542. spin_unlock(&init_mm.page_table_lock);
  543. if (new)
  544. pte_free_kernel(&init_mm, new);
  545. return 0;
  546. }
  547. static inline void init_rss_vec(int *rss)
  548. {
  549. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  550. }
  551. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  552. {
  553. int i;
  554. if (current->mm == mm)
  555. sync_mm_rss(mm);
  556. for (i = 0; i < NR_MM_COUNTERS; i++)
  557. if (rss[i])
  558. add_mm_counter(mm, i, rss[i]);
  559. }
  560. /*
  561. * This function is called to print an error when a bad pte
  562. * is found. For example, we might have a PFN-mapped pte in
  563. * a region that doesn't allow it.
  564. *
  565. * The calling function must still handle the error.
  566. */
  567. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  568. pte_t pte, struct page *page)
  569. {
  570. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  571. pud_t *pud = pud_offset(pgd, addr);
  572. pmd_t *pmd = pmd_offset(pud, addr);
  573. struct address_space *mapping;
  574. pgoff_t index;
  575. static unsigned long resume;
  576. static unsigned long nr_shown;
  577. static unsigned long nr_unshown;
  578. /*
  579. * Allow a burst of 60 reports, then keep quiet for that minute;
  580. * or allow a steady drip of one report per second.
  581. */
  582. if (nr_shown == 60) {
  583. if (time_before(jiffies, resume)) {
  584. nr_unshown++;
  585. return;
  586. }
  587. if (nr_unshown) {
  588. printk(KERN_ALERT
  589. "BUG: Bad page map: %lu messages suppressed\n",
  590. nr_unshown);
  591. nr_unshown = 0;
  592. }
  593. nr_shown = 0;
  594. }
  595. if (nr_shown++ == 0)
  596. resume = jiffies + 60 * HZ;
  597. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  598. index = linear_page_index(vma, addr);
  599. printk(KERN_ALERT
  600. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  601. current->comm,
  602. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  603. if (page)
  604. dump_page(page);
  605. printk(KERN_ALERT
  606. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  607. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  608. /*
  609. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  610. */
  611. if (vma->vm_ops)
  612. printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
  613. vma->vm_ops->fault);
  614. if (vma->vm_file && vma->vm_file->f_op)
  615. printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
  616. vma->vm_file->f_op->mmap);
  617. dump_stack();
  618. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  619. }
  620. static inline bool is_cow_mapping(vm_flags_t flags)
  621. {
  622. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  623. }
  624. /*
  625. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  626. *
  627. * "Special" mappings do not wish to be associated with a "struct page" (either
  628. * it doesn't exist, or it exists but they don't want to touch it). In this
  629. * case, NULL is returned here. "Normal" mappings do have a struct page.
  630. *
  631. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  632. * pte bit, in which case this function is trivial. Secondly, an architecture
  633. * may not have a spare pte bit, which requires a more complicated scheme,
  634. * described below.
  635. *
  636. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  637. * special mapping (even if there are underlying and valid "struct pages").
  638. * COWed pages of a VM_PFNMAP are always normal.
  639. *
  640. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  641. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  642. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  643. * mapping will always honor the rule
  644. *
  645. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  646. *
  647. * And for normal mappings this is false.
  648. *
  649. * This restricts such mappings to be a linear translation from virtual address
  650. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  651. * as the vma is not a COW mapping; in that case, we know that all ptes are
  652. * special (because none can have been COWed).
  653. *
  654. *
  655. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  656. *
  657. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  658. * page" backing, however the difference is that _all_ pages with a struct
  659. * page (that is, those where pfn_valid is true) are refcounted and considered
  660. * normal pages by the VM. The disadvantage is that pages are refcounted
  661. * (which can be slower and simply not an option for some PFNMAP users). The
  662. * advantage is that we don't have to follow the strict linearity rule of
  663. * PFNMAP mappings in order to support COWable mappings.
  664. *
  665. */
  666. #ifdef __HAVE_ARCH_PTE_SPECIAL
  667. # define HAVE_PTE_SPECIAL 1
  668. #else
  669. # define HAVE_PTE_SPECIAL 0
  670. #endif
  671. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  672. pte_t pte)
  673. {
  674. unsigned long pfn = pte_pfn(pte);
  675. if (HAVE_PTE_SPECIAL) {
  676. if (likely(!pte_special(pte)))
  677. goto check_pfn;
  678. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  679. return NULL;
  680. if (!is_zero_pfn(pfn))
  681. print_bad_pte(vma, addr, pte, NULL);
  682. return NULL;
  683. }
  684. /* !HAVE_PTE_SPECIAL case follows: */
  685. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  686. if (vma->vm_flags & VM_MIXEDMAP) {
  687. if (!pfn_valid(pfn))
  688. return NULL;
  689. goto out;
  690. } else {
  691. unsigned long off;
  692. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  693. if (pfn == vma->vm_pgoff + off)
  694. return NULL;
  695. if (!is_cow_mapping(vma->vm_flags))
  696. return NULL;
  697. }
  698. }
  699. if (is_zero_pfn(pfn))
  700. return NULL;
  701. check_pfn:
  702. if (unlikely(pfn > highest_memmap_pfn)) {
  703. print_bad_pte(vma, addr, pte, NULL);
  704. return NULL;
  705. }
  706. /*
  707. * NOTE! We still have PageReserved() pages in the page tables.
  708. * eg. VDSO mappings can cause them to exist.
  709. */
  710. out:
  711. return pfn_to_page(pfn);
  712. }
  713. /*
  714. * copy one vm_area from one task to the other. Assumes the page tables
  715. * already present in the new task to be cleared in the whole range
  716. * covered by this vma.
  717. */
  718. static inline unsigned long
  719. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  720. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  721. unsigned long addr, int *rss)
  722. {
  723. unsigned long vm_flags = vma->vm_flags;
  724. pte_t pte = *src_pte;
  725. struct page *page;
  726. /* pte contains position in swap or file, so copy. */
  727. if (unlikely(!pte_present(pte))) {
  728. if (!pte_file(pte)) {
  729. swp_entry_t entry = pte_to_swp_entry(pte);
  730. if (swap_duplicate(entry) < 0)
  731. return entry.val;
  732. /* make sure dst_mm is on swapoff's mmlist. */
  733. if (unlikely(list_empty(&dst_mm->mmlist))) {
  734. spin_lock(&mmlist_lock);
  735. if (list_empty(&dst_mm->mmlist))
  736. list_add(&dst_mm->mmlist,
  737. &src_mm->mmlist);
  738. spin_unlock(&mmlist_lock);
  739. }
  740. if (likely(!non_swap_entry(entry)))
  741. rss[MM_SWAPENTS]++;
  742. else if (is_migration_entry(entry)) {
  743. page = migration_entry_to_page(entry);
  744. if (PageAnon(page))
  745. rss[MM_ANONPAGES]++;
  746. else
  747. rss[MM_FILEPAGES]++;
  748. if (is_write_migration_entry(entry) &&
  749. is_cow_mapping(vm_flags)) {
  750. /*
  751. * COW mappings require pages in both
  752. * parent and child to be set to read.
  753. */
  754. make_migration_entry_read(&entry);
  755. pte = swp_entry_to_pte(entry);
  756. set_pte_at(src_mm, addr, src_pte, pte);
  757. }
  758. }
  759. }
  760. goto out_set_pte;
  761. }
  762. /*
  763. * If it's a COW mapping, write protect it both
  764. * in the parent and the child
  765. */
  766. if (is_cow_mapping(vm_flags)) {
  767. ptep_set_wrprotect(src_mm, addr, src_pte);
  768. pte = pte_wrprotect(pte);
  769. }
  770. /*
  771. * If it's a shared mapping, mark it clean in
  772. * the child
  773. */
  774. if (vm_flags & VM_SHARED)
  775. pte = pte_mkclean(pte);
  776. pte = pte_mkold(pte);
  777. page = vm_normal_page(vma, addr, pte);
  778. if (page) {
  779. get_page(page);
  780. page_dup_rmap(page);
  781. if (PageAnon(page))
  782. rss[MM_ANONPAGES]++;
  783. else
  784. rss[MM_FILEPAGES]++;
  785. }
  786. out_set_pte:
  787. set_pte_at(dst_mm, addr, dst_pte, pte);
  788. return 0;
  789. }
  790. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  791. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  792. unsigned long addr, unsigned long end)
  793. {
  794. pte_t *orig_src_pte, *orig_dst_pte;
  795. pte_t *src_pte, *dst_pte;
  796. spinlock_t *src_ptl, *dst_ptl;
  797. int progress = 0;
  798. int rss[NR_MM_COUNTERS];
  799. swp_entry_t entry = (swp_entry_t){0};
  800. again:
  801. init_rss_vec(rss);
  802. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  803. if (!dst_pte)
  804. return -ENOMEM;
  805. src_pte = pte_offset_map(src_pmd, addr);
  806. src_ptl = pte_lockptr(src_mm, src_pmd);
  807. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  808. orig_src_pte = src_pte;
  809. orig_dst_pte = dst_pte;
  810. arch_enter_lazy_mmu_mode();
  811. do {
  812. /*
  813. * We are holding two locks at this point - either of them
  814. * could generate latencies in another task on another CPU.
  815. */
  816. if (progress >= 32) {
  817. progress = 0;
  818. if (need_resched() ||
  819. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  820. break;
  821. }
  822. if (pte_none(*src_pte)) {
  823. progress++;
  824. continue;
  825. }
  826. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  827. vma, addr, rss);
  828. if (entry.val)
  829. break;
  830. progress += 8;
  831. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  832. arch_leave_lazy_mmu_mode();
  833. spin_unlock(src_ptl);
  834. pte_unmap(orig_src_pte);
  835. add_mm_rss_vec(dst_mm, rss);
  836. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  837. cond_resched();
  838. if (entry.val) {
  839. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  840. return -ENOMEM;
  841. progress = 0;
  842. }
  843. if (addr != end)
  844. goto again;
  845. return 0;
  846. }
  847. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  848. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  849. unsigned long addr, unsigned long end)
  850. {
  851. pmd_t *src_pmd, *dst_pmd;
  852. unsigned long next;
  853. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  854. if (!dst_pmd)
  855. return -ENOMEM;
  856. src_pmd = pmd_offset(src_pud, addr);
  857. do {
  858. next = pmd_addr_end(addr, end);
  859. if (pmd_trans_huge(*src_pmd)) {
  860. int err;
  861. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  862. err = copy_huge_pmd(dst_mm, src_mm,
  863. dst_pmd, src_pmd, addr, vma);
  864. if (err == -ENOMEM)
  865. return -ENOMEM;
  866. if (!err)
  867. continue;
  868. /* fall through */
  869. }
  870. if (pmd_none_or_clear_bad(src_pmd))
  871. continue;
  872. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  873. vma, addr, next))
  874. return -ENOMEM;
  875. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  876. return 0;
  877. }
  878. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  879. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  880. unsigned long addr, unsigned long end)
  881. {
  882. pud_t *src_pud, *dst_pud;
  883. unsigned long next;
  884. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  885. if (!dst_pud)
  886. return -ENOMEM;
  887. src_pud = pud_offset(src_pgd, addr);
  888. do {
  889. next = pud_addr_end(addr, end);
  890. if (pud_none_or_clear_bad(src_pud))
  891. continue;
  892. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  893. vma, addr, next))
  894. return -ENOMEM;
  895. } while (dst_pud++, src_pud++, addr = next, addr != end);
  896. return 0;
  897. }
  898. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  899. struct vm_area_struct *vma)
  900. {
  901. pgd_t *src_pgd, *dst_pgd;
  902. unsigned long next;
  903. unsigned long addr = vma->vm_start;
  904. unsigned long end = vma->vm_end;
  905. unsigned long mmun_start; /* For mmu_notifiers */
  906. unsigned long mmun_end; /* For mmu_notifiers */
  907. bool is_cow;
  908. int ret;
  909. /*
  910. * Don't copy ptes where a page fault will fill them correctly.
  911. * Fork becomes much lighter when there are big shared or private
  912. * readonly mappings. The tradeoff is that copy_page_range is more
  913. * efficient than faulting.
  914. */
  915. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  916. VM_PFNMAP | VM_MIXEDMAP))) {
  917. if (!vma->anon_vma)
  918. return 0;
  919. }
  920. if (is_vm_hugetlb_page(vma))
  921. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  922. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  923. /*
  924. * We do not free on error cases below as remove_vma
  925. * gets called on error from higher level routine
  926. */
  927. ret = track_pfn_copy(vma);
  928. if (ret)
  929. return ret;
  930. }
  931. /*
  932. * We need to invalidate the secondary MMU mappings only when
  933. * there could be a permission downgrade on the ptes of the
  934. * parent mm. And a permission downgrade will only happen if
  935. * is_cow_mapping() returns true.
  936. */
  937. is_cow = is_cow_mapping(vma->vm_flags);
  938. mmun_start = addr;
  939. mmun_end = end;
  940. if (is_cow)
  941. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  942. mmun_end);
  943. ret = 0;
  944. dst_pgd = pgd_offset(dst_mm, addr);
  945. src_pgd = pgd_offset(src_mm, addr);
  946. do {
  947. next = pgd_addr_end(addr, end);
  948. if (pgd_none_or_clear_bad(src_pgd))
  949. continue;
  950. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  951. vma, addr, next))) {
  952. ret = -ENOMEM;
  953. break;
  954. }
  955. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  956. if (is_cow)
  957. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  958. return ret;
  959. }
  960. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  961. struct vm_area_struct *vma, pmd_t *pmd,
  962. unsigned long addr, unsigned long end,
  963. struct zap_details *details)
  964. {
  965. struct mm_struct *mm = tlb->mm;
  966. int force_flush = 0;
  967. int rss[NR_MM_COUNTERS];
  968. spinlock_t *ptl;
  969. pte_t *start_pte;
  970. pte_t *pte;
  971. unsigned long range_start = addr;
  972. again:
  973. init_rss_vec(rss);
  974. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  975. pte = start_pte;
  976. arch_enter_lazy_mmu_mode();
  977. do {
  978. pte_t ptent = *pte;
  979. if (pte_none(ptent)) {
  980. continue;
  981. }
  982. if (pte_present(ptent)) {
  983. struct page *page;
  984. page = vm_normal_page(vma, addr, ptent);
  985. if (unlikely(details) && page) {
  986. /*
  987. * unmap_shared_mapping_pages() wants to
  988. * invalidate cache without truncating:
  989. * unmap shared but keep private pages.
  990. */
  991. if (details->check_mapping &&
  992. details->check_mapping != page->mapping)
  993. continue;
  994. /*
  995. * Each page->index must be checked when
  996. * invalidating or truncating nonlinear.
  997. */
  998. if (details->nonlinear_vma &&
  999. (page->index < details->first_index ||
  1000. page->index > details->last_index))
  1001. continue;
  1002. }
  1003. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1004. tlb->fullmm);
  1005. tlb_remove_tlb_entry(tlb, pte, addr);
  1006. if (unlikely(!page))
  1007. continue;
  1008. if (unlikely(details) && details->nonlinear_vma
  1009. && linear_page_index(details->nonlinear_vma,
  1010. addr) != page->index)
  1011. set_pte_at(mm, addr, pte,
  1012. pgoff_to_pte(page->index));
  1013. if (PageAnon(page))
  1014. rss[MM_ANONPAGES]--;
  1015. else {
  1016. if (pte_dirty(ptent))
  1017. set_page_dirty(page);
  1018. if (pte_young(ptent) &&
  1019. likely(!VM_SequentialReadHint(vma)))
  1020. mark_page_accessed(page);
  1021. rss[MM_FILEPAGES]--;
  1022. }
  1023. page_remove_rmap(page);
  1024. if (unlikely(page_mapcount(page) < 0))
  1025. print_bad_pte(vma, addr, ptent, page);
  1026. force_flush = !__tlb_remove_page(tlb, page);
  1027. if (force_flush)
  1028. break;
  1029. continue;
  1030. }
  1031. /*
  1032. * If details->check_mapping, we leave swap entries;
  1033. * if details->nonlinear_vma, we leave file entries.
  1034. */
  1035. if (unlikely(details))
  1036. continue;
  1037. if (pte_file(ptent)) {
  1038. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1039. print_bad_pte(vma, addr, ptent, NULL);
  1040. } else {
  1041. swp_entry_t entry = pte_to_swp_entry(ptent);
  1042. if (!non_swap_entry(entry))
  1043. rss[MM_SWAPENTS]--;
  1044. else if (is_migration_entry(entry)) {
  1045. struct page *page;
  1046. page = migration_entry_to_page(entry);
  1047. if (PageAnon(page))
  1048. rss[MM_ANONPAGES]--;
  1049. else
  1050. rss[MM_FILEPAGES]--;
  1051. }
  1052. if (unlikely(!free_swap_and_cache(entry)))
  1053. print_bad_pte(vma, addr, ptent, NULL);
  1054. }
  1055. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1056. } while (pte++, addr += PAGE_SIZE, addr != end);
  1057. add_mm_rss_vec(mm, rss);
  1058. arch_leave_lazy_mmu_mode();
  1059. pte_unmap_unlock(start_pte, ptl);
  1060. /*
  1061. * mmu_gather ran out of room to batch pages, we break out of
  1062. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1063. * and page-free while holding it.
  1064. */
  1065. if (force_flush) {
  1066. force_flush = 0;
  1067. #ifdef HAVE_GENERIC_MMU_GATHER
  1068. tlb->start = range_start;
  1069. tlb->end = addr;
  1070. #endif
  1071. tlb_flush_mmu(tlb);
  1072. if (addr != end) {
  1073. range_start = addr;
  1074. goto again;
  1075. }
  1076. }
  1077. return addr;
  1078. }
  1079. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1080. struct vm_area_struct *vma, pud_t *pud,
  1081. unsigned long addr, unsigned long end,
  1082. struct zap_details *details)
  1083. {
  1084. pmd_t *pmd;
  1085. unsigned long next;
  1086. pmd = pmd_offset(pud, addr);
  1087. do {
  1088. next = pmd_addr_end(addr, end);
  1089. if (pmd_trans_huge(*pmd)) {
  1090. if (next - addr != HPAGE_PMD_SIZE) {
  1091. #ifdef CONFIG_DEBUG_VM
  1092. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1093. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1094. __func__, addr, end,
  1095. vma->vm_start,
  1096. vma->vm_end);
  1097. BUG();
  1098. }
  1099. #endif
  1100. split_huge_page_pmd(vma, addr, pmd);
  1101. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1102. goto next;
  1103. /* fall through */
  1104. }
  1105. /*
  1106. * Here there can be other concurrent MADV_DONTNEED or
  1107. * trans huge page faults running, and if the pmd is
  1108. * none or trans huge it can change under us. This is
  1109. * because MADV_DONTNEED holds the mmap_sem in read
  1110. * mode.
  1111. */
  1112. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1113. goto next;
  1114. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1115. next:
  1116. cond_resched();
  1117. } while (pmd++, addr = next, addr != end);
  1118. return addr;
  1119. }
  1120. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1121. struct vm_area_struct *vma, pgd_t *pgd,
  1122. unsigned long addr, unsigned long end,
  1123. struct zap_details *details)
  1124. {
  1125. pud_t *pud;
  1126. unsigned long next;
  1127. pud = pud_offset(pgd, addr);
  1128. do {
  1129. next = pud_addr_end(addr, end);
  1130. if (pud_none_or_clear_bad(pud))
  1131. continue;
  1132. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1133. } while (pud++, addr = next, addr != end);
  1134. return addr;
  1135. }
  1136. static void unmap_page_range(struct mmu_gather *tlb,
  1137. struct vm_area_struct *vma,
  1138. unsigned long addr, unsigned long end,
  1139. struct zap_details *details)
  1140. {
  1141. pgd_t *pgd;
  1142. unsigned long next;
  1143. if (details && !details->check_mapping && !details->nonlinear_vma)
  1144. details = NULL;
  1145. BUG_ON(addr >= end);
  1146. mem_cgroup_uncharge_start();
  1147. tlb_start_vma(tlb, vma);
  1148. pgd = pgd_offset(vma->vm_mm, addr);
  1149. do {
  1150. next = pgd_addr_end(addr, end);
  1151. if (pgd_none_or_clear_bad(pgd))
  1152. continue;
  1153. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1154. } while (pgd++, addr = next, addr != end);
  1155. tlb_end_vma(tlb, vma);
  1156. mem_cgroup_uncharge_end();
  1157. }
  1158. static void unmap_single_vma(struct mmu_gather *tlb,
  1159. struct vm_area_struct *vma, unsigned long start_addr,
  1160. unsigned long end_addr,
  1161. struct zap_details *details)
  1162. {
  1163. unsigned long start = max(vma->vm_start, start_addr);
  1164. unsigned long end;
  1165. if (start >= vma->vm_end)
  1166. return;
  1167. end = min(vma->vm_end, end_addr);
  1168. if (end <= vma->vm_start)
  1169. return;
  1170. if (vma->vm_file)
  1171. uprobe_munmap(vma, start, end);
  1172. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1173. untrack_pfn(vma, 0, 0);
  1174. if (start != end) {
  1175. if (unlikely(is_vm_hugetlb_page(vma))) {
  1176. /*
  1177. * It is undesirable to test vma->vm_file as it
  1178. * should be non-null for valid hugetlb area.
  1179. * However, vm_file will be NULL in the error
  1180. * cleanup path of do_mmap_pgoff. When
  1181. * hugetlbfs ->mmap method fails,
  1182. * do_mmap_pgoff() nullifies vma->vm_file
  1183. * before calling this function to clean up.
  1184. * Since no pte has actually been setup, it is
  1185. * safe to do nothing in this case.
  1186. */
  1187. if (vma->vm_file) {
  1188. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1189. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1190. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1191. }
  1192. } else
  1193. unmap_page_range(tlb, vma, start, end, details);
  1194. }
  1195. }
  1196. /**
  1197. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1198. * @tlb: address of the caller's struct mmu_gather
  1199. * @vma: the starting vma
  1200. * @start_addr: virtual address at which to start unmapping
  1201. * @end_addr: virtual address at which to end unmapping
  1202. *
  1203. * Unmap all pages in the vma list.
  1204. *
  1205. * Only addresses between `start' and `end' will be unmapped.
  1206. *
  1207. * The VMA list must be sorted in ascending virtual address order.
  1208. *
  1209. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1210. * range after unmap_vmas() returns. So the only responsibility here is to
  1211. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1212. * drops the lock and schedules.
  1213. */
  1214. void unmap_vmas(struct mmu_gather *tlb,
  1215. struct vm_area_struct *vma, unsigned long start_addr,
  1216. unsigned long end_addr)
  1217. {
  1218. struct mm_struct *mm = vma->vm_mm;
  1219. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1220. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1221. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1222. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1223. }
  1224. /**
  1225. * zap_page_range - remove user pages in a given range
  1226. * @vma: vm_area_struct holding the applicable pages
  1227. * @start: starting address of pages to zap
  1228. * @size: number of bytes to zap
  1229. * @details: details of nonlinear truncation or shared cache invalidation
  1230. *
  1231. * Caller must protect the VMA list
  1232. */
  1233. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1234. unsigned long size, struct zap_details *details)
  1235. {
  1236. struct mm_struct *mm = vma->vm_mm;
  1237. struct mmu_gather tlb;
  1238. unsigned long end = start + size;
  1239. lru_add_drain();
  1240. tlb_gather_mmu(&tlb, mm, 0);
  1241. update_hiwater_rss(mm);
  1242. mmu_notifier_invalidate_range_start(mm, start, end);
  1243. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1244. unmap_single_vma(&tlb, vma, start, end, details);
  1245. mmu_notifier_invalidate_range_end(mm, start, end);
  1246. tlb_finish_mmu(&tlb, start, end);
  1247. }
  1248. /**
  1249. * zap_page_range_single - remove user pages in a given range
  1250. * @vma: vm_area_struct holding the applicable pages
  1251. * @address: starting address of pages to zap
  1252. * @size: number of bytes to zap
  1253. * @details: details of nonlinear truncation or shared cache invalidation
  1254. *
  1255. * The range must fit into one VMA.
  1256. */
  1257. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1258. unsigned long size, struct zap_details *details)
  1259. {
  1260. struct mm_struct *mm = vma->vm_mm;
  1261. struct mmu_gather tlb;
  1262. unsigned long end = address + size;
  1263. lru_add_drain();
  1264. tlb_gather_mmu(&tlb, mm, 0);
  1265. update_hiwater_rss(mm);
  1266. mmu_notifier_invalidate_range_start(mm, address, end);
  1267. unmap_single_vma(&tlb, vma, address, end, details);
  1268. mmu_notifier_invalidate_range_end(mm, address, end);
  1269. tlb_finish_mmu(&tlb, address, end);
  1270. }
  1271. /**
  1272. * zap_vma_ptes - remove ptes mapping the vma
  1273. * @vma: vm_area_struct holding ptes to be zapped
  1274. * @address: starting address of pages to zap
  1275. * @size: number of bytes to zap
  1276. *
  1277. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1278. *
  1279. * The entire address range must be fully contained within the vma.
  1280. *
  1281. * Returns 0 if successful.
  1282. */
  1283. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1284. unsigned long size)
  1285. {
  1286. if (address < vma->vm_start || address + size > vma->vm_end ||
  1287. !(vma->vm_flags & VM_PFNMAP))
  1288. return -1;
  1289. zap_page_range_single(vma, address, size, NULL);
  1290. return 0;
  1291. }
  1292. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1293. /**
  1294. * follow_page_mask - look up a page descriptor from a user-virtual address
  1295. * @vma: vm_area_struct mapping @address
  1296. * @address: virtual address to look up
  1297. * @flags: flags modifying lookup behaviour
  1298. * @page_mask: on output, *page_mask is set according to the size of the page
  1299. *
  1300. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1301. *
  1302. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1303. * an error pointer if there is a mapping to something not represented
  1304. * by a page descriptor (see also vm_normal_page()).
  1305. */
  1306. struct page *follow_page_mask(struct vm_area_struct *vma,
  1307. unsigned long address, unsigned int flags,
  1308. unsigned int *page_mask)
  1309. {
  1310. pgd_t *pgd;
  1311. pud_t *pud;
  1312. pmd_t *pmd;
  1313. pte_t *ptep, pte;
  1314. spinlock_t *ptl;
  1315. struct page *page;
  1316. struct mm_struct *mm = vma->vm_mm;
  1317. *page_mask = 0;
  1318. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1319. if (!IS_ERR(page)) {
  1320. BUG_ON(flags & FOLL_GET);
  1321. goto out;
  1322. }
  1323. page = NULL;
  1324. pgd = pgd_offset(mm, address);
  1325. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1326. goto no_page_table;
  1327. pud = pud_offset(pgd, address);
  1328. if (pud_none(*pud))
  1329. goto no_page_table;
  1330. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1331. BUG_ON(flags & FOLL_GET);
  1332. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1333. goto out;
  1334. }
  1335. if (unlikely(pud_bad(*pud)))
  1336. goto no_page_table;
  1337. pmd = pmd_offset(pud, address);
  1338. if (pmd_none(*pmd))
  1339. goto no_page_table;
  1340. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1341. BUG_ON(flags & FOLL_GET);
  1342. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1343. goto out;
  1344. }
  1345. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1346. goto no_page_table;
  1347. if (pmd_trans_huge(*pmd)) {
  1348. if (flags & FOLL_SPLIT) {
  1349. split_huge_page_pmd(vma, address, pmd);
  1350. goto split_fallthrough;
  1351. }
  1352. spin_lock(&mm->page_table_lock);
  1353. if (likely(pmd_trans_huge(*pmd))) {
  1354. if (unlikely(pmd_trans_splitting(*pmd))) {
  1355. spin_unlock(&mm->page_table_lock);
  1356. wait_split_huge_page(vma->anon_vma, pmd);
  1357. } else {
  1358. page = follow_trans_huge_pmd(vma, address,
  1359. pmd, flags);
  1360. spin_unlock(&mm->page_table_lock);
  1361. *page_mask = HPAGE_PMD_NR - 1;
  1362. goto out;
  1363. }
  1364. } else
  1365. spin_unlock(&mm->page_table_lock);
  1366. /* fall through */
  1367. }
  1368. split_fallthrough:
  1369. if (unlikely(pmd_bad(*pmd)))
  1370. goto no_page_table;
  1371. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1372. pte = *ptep;
  1373. if (!pte_present(pte)) {
  1374. swp_entry_t entry;
  1375. /*
  1376. * KSM's break_ksm() relies upon recognizing a ksm page
  1377. * even while it is being migrated, so for that case we
  1378. * need migration_entry_wait().
  1379. */
  1380. if (likely(!(flags & FOLL_MIGRATION)))
  1381. goto no_page;
  1382. if (pte_none(pte) || pte_file(pte))
  1383. goto no_page;
  1384. entry = pte_to_swp_entry(pte);
  1385. if (!is_migration_entry(entry))
  1386. goto no_page;
  1387. pte_unmap_unlock(ptep, ptl);
  1388. migration_entry_wait(mm, pmd, address);
  1389. goto split_fallthrough;
  1390. }
  1391. if ((flags & FOLL_NUMA) && pte_numa(pte))
  1392. goto no_page;
  1393. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1394. goto unlock;
  1395. page = vm_normal_page(vma, address, pte);
  1396. if (unlikely(!page)) {
  1397. if ((flags & FOLL_DUMP) ||
  1398. !is_zero_pfn(pte_pfn(pte)))
  1399. goto bad_page;
  1400. page = pte_page(pte);
  1401. }
  1402. if (flags & FOLL_GET)
  1403. get_page_foll(page);
  1404. if (flags & FOLL_TOUCH) {
  1405. if ((flags & FOLL_WRITE) &&
  1406. !pte_dirty(pte) && !PageDirty(page))
  1407. set_page_dirty(page);
  1408. /*
  1409. * pte_mkyoung() would be more correct here, but atomic care
  1410. * is needed to avoid losing the dirty bit: it is easier to use
  1411. * mark_page_accessed().
  1412. */
  1413. mark_page_accessed(page);
  1414. }
  1415. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1416. /*
  1417. * The preliminary mapping check is mainly to avoid the
  1418. * pointless overhead of lock_page on the ZERO_PAGE
  1419. * which might bounce very badly if there is contention.
  1420. *
  1421. * If the page is already locked, we don't need to
  1422. * handle it now - vmscan will handle it later if and
  1423. * when it attempts to reclaim the page.
  1424. */
  1425. if (page->mapping && trylock_page(page)) {
  1426. lru_add_drain(); /* push cached pages to LRU */
  1427. /*
  1428. * Because we lock page here, and migration is
  1429. * blocked by the pte's page reference, and we
  1430. * know the page is still mapped, we don't even
  1431. * need to check for file-cache page truncation.
  1432. */
  1433. mlock_vma_page(page);
  1434. unlock_page(page);
  1435. }
  1436. }
  1437. unlock:
  1438. pte_unmap_unlock(ptep, ptl);
  1439. out:
  1440. return page;
  1441. bad_page:
  1442. pte_unmap_unlock(ptep, ptl);
  1443. return ERR_PTR(-EFAULT);
  1444. no_page:
  1445. pte_unmap_unlock(ptep, ptl);
  1446. if (!pte_none(pte))
  1447. return page;
  1448. no_page_table:
  1449. /*
  1450. * When core dumping an enormous anonymous area that nobody
  1451. * has touched so far, we don't want to allocate unnecessary pages or
  1452. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1453. * then get_dump_page() will return NULL to leave a hole in the dump.
  1454. * But we can only make this optimization where a hole would surely
  1455. * be zero-filled if handle_mm_fault() actually did handle it.
  1456. */
  1457. if ((flags & FOLL_DUMP) &&
  1458. (!vma->vm_ops || !vma->vm_ops->fault))
  1459. return ERR_PTR(-EFAULT);
  1460. return page;
  1461. }
  1462. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1463. {
  1464. return stack_guard_page_start(vma, addr) ||
  1465. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1466. }
  1467. /**
  1468. * __get_user_pages() - pin user pages in memory
  1469. * @tsk: task_struct of target task
  1470. * @mm: mm_struct of target mm
  1471. * @start: starting user address
  1472. * @nr_pages: number of pages from start to pin
  1473. * @gup_flags: flags modifying pin behaviour
  1474. * @pages: array that receives pointers to the pages pinned.
  1475. * Should be at least nr_pages long. Or NULL, if caller
  1476. * only intends to ensure the pages are faulted in.
  1477. * @vmas: array of pointers to vmas corresponding to each page.
  1478. * Or NULL if the caller does not require them.
  1479. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1480. *
  1481. * Returns number of pages pinned. This may be fewer than the number
  1482. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1483. * were pinned, returns -errno. Each page returned must be released
  1484. * with a put_page() call when it is finished with. vmas will only
  1485. * remain valid while mmap_sem is held.
  1486. *
  1487. * Must be called with mmap_sem held for read or write.
  1488. *
  1489. * __get_user_pages walks a process's page tables and takes a reference to
  1490. * each struct page that each user address corresponds to at a given
  1491. * instant. That is, it takes the page that would be accessed if a user
  1492. * thread accesses the given user virtual address at that instant.
  1493. *
  1494. * This does not guarantee that the page exists in the user mappings when
  1495. * __get_user_pages returns, and there may even be a completely different
  1496. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1497. * and subsequently re faulted). However it does guarantee that the page
  1498. * won't be freed completely. And mostly callers simply care that the page
  1499. * contains data that was valid *at some point in time*. Typically, an IO
  1500. * or similar operation cannot guarantee anything stronger anyway because
  1501. * locks can't be held over the syscall boundary.
  1502. *
  1503. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1504. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1505. * appropriate) must be called after the page is finished with, and
  1506. * before put_page is called.
  1507. *
  1508. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1509. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1510. * *@nonblocking will be set to 0.
  1511. *
  1512. * In most cases, get_user_pages or get_user_pages_fast should be used
  1513. * instead of __get_user_pages. __get_user_pages should be used only if
  1514. * you need some special @gup_flags.
  1515. */
  1516. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1517. unsigned long start, unsigned long nr_pages,
  1518. unsigned int gup_flags, struct page **pages,
  1519. struct vm_area_struct **vmas, int *nonblocking)
  1520. {
  1521. long i;
  1522. unsigned long vm_flags;
  1523. unsigned int page_mask;
  1524. if (!nr_pages)
  1525. return 0;
  1526. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1527. /*
  1528. * Require read or write permissions.
  1529. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1530. */
  1531. vm_flags = (gup_flags & FOLL_WRITE) ?
  1532. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1533. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1534. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1535. /*
  1536. * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
  1537. * would be called on PROT_NONE ranges. We must never invoke
  1538. * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
  1539. * page faults would unprotect the PROT_NONE ranges if
  1540. * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
  1541. * bitflag. So to avoid that, don't set FOLL_NUMA if
  1542. * FOLL_FORCE is set.
  1543. */
  1544. if (!(gup_flags & FOLL_FORCE))
  1545. gup_flags |= FOLL_NUMA;
  1546. i = 0;
  1547. do {
  1548. struct vm_area_struct *vma;
  1549. vma = find_extend_vma(mm, start);
  1550. if (!vma && in_gate_area(mm, start)) {
  1551. unsigned long pg = start & PAGE_MASK;
  1552. pgd_t *pgd;
  1553. pud_t *pud;
  1554. pmd_t *pmd;
  1555. pte_t *pte;
  1556. /* user gate pages are read-only */
  1557. if (gup_flags & FOLL_WRITE)
  1558. return i ? : -EFAULT;
  1559. if (pg > TASK_SIZE)
  1560. pgd = pgd_offset_k(pg);
  1561. else
  1562. pgd = pgd_offset_gate(mm, pg);
  1563. BUG_ON(pgd_none(*pgd));
  1564. pud = pud_offset(pgd, pg);
  1565. BUG_ON(pud_none(*pud));
  1566. pmd = pmd_offset(pud, pg);
  1567. if (pmd_none(*pmd))
  1568. return i ? : -EFAULT;
  1569. VM_BUG_ON(pmd_trans_huge(*pmd));
  1570. pte = pte_offset_map(pmd, pg);
  1571. if (pte_none(*pte)) {
  1572. pte_unmap(pte);
  1573. return i ? : -EFAULT;
  1574. }
  1575. vma = get_gate_vma(mm);
  1576. if (pages) {
  1577. struct page *page;
  1578. page = vm_normal_page(vma, start, *pte);
  1579. if (!page) {
  1580. if (!(gup_flags & FOLL_DUMP) &&
  1581. is_zero_pfn(pte_pfn(*pte)))
  1582. page = pte_page(*pte);
  1583. else {
  1584. pte_unmap(pte);
  1585. return i ? : -EFAULT;
  1586. }
  1587. }
  1588. pages[i] = page;
  1589. get_page(page);
  1590. }
  1591. pte_unmap(pte);
  1592. page_mask = 0;
  1593. goto next_page;
  1594. }
  1595. if (!vma ||
  1596. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1597. !(vm_flags & vma->vm_flags))
  1598. return i ? : -EFAULT;
  1599. if (is_vm_hugetlb_page(vma)) {
  1600. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1601. &start, &nr_pages, i, gup_flags);
  1602. continue;
  1603. }
  1604. do {
  1605. struct page *page;
  1606. unsigned int foll_flags = gup_flags;
  1607. unsigned int page_increm;
  1608. /*
  1609. * If we have a pending SIGKILL, don't keep faulting
  1610. * pages and potentially allocating memory.
  1611. */
  1612. if (unlikely(fatal_signal_pending(current)))
  1613. return i ? i : -ERESTARTSYS;
  1614. cond_resched();
  1615. while (!(page = follow_page_mask(vma, start,
  1616. foll_flags, &page_mask))) {
  1617. int ret;
  1618. unsigned int fault_flags = 0;
  1619. /* For mlock, just skip the stack guard page. */
  1620. if (foll_flags & FOLL_MLOCK) {
  1621. if (stack_guard_page(vma, start))
  1622. goto next_page;
  1623. }
  1624. if (foll_flags & FOLL_WRITE)
  1625. fault_flags |= FAULT_FLAG_WRITE;
  1626. if (nonblocking)
  1627. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1628. if (foll_flags & FOLL_NOWAIT)
  1629. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1630. ret = handle_mm_fault(mm, vma, start,
  1631. fault_flags);
  1632. if (ret & VM_FAULT_ERROR) {
  1633. if (ret & VM_FAULT_OOM)
  1634. return i ? i : -ENOMEM;
  1635. if (ret & (VM_FAULT_HWPOISON |
  1636. VM_FAULT_HWPOISON_LARGE)) {
  1637. if (i)
  1638. return i;
  1639. else if (gup_flags & FOLL_HWPOISON)
  1640. return -EHWPOISON;
  1641. else
  1642. return -EFAULT;
  1643. }
  1644. if (ret & VM_FAULT_SIGBUS)
  1645. return i ? i : -EFAULT;
  1646. BUG();
  1647. }
  1648. if (tsk) {
  1649. if (ret & VM_FAULT_MAJOR)
  1650. tsk->maj_flt++;
  1651. else
  1652. tsk->min_flt++;
  1653. }
  1654. if (ret & VM_FAULT_RETRY) {
  1655. if (nonblocking)
  1656. *nonblocking = 0;
  1657. return i;
  1658. }
  1659. /*
  1660. * The VM_FAULT_WRITE bit tells us that
  1661. * do_wp_page has broken COW when necessary,
  1662. * even if maybe_mkwrite decided not to set
  1663. * pte_write. We can thus safely do subsequent
  1664. * page lookups as if they were reads. But only
  1665. * do so when looping for pte_write is futile:
  1666. * in some cases userspace may also be wanting
  1667. * to write to the gotten user page, which a
  1668. * read fault here might prevent (a readonly
  1669. * page might get reCOWed by userspace write).
  1670. */
  1671. if ((ret & VM_FAULT_WRITE) &&
  1672. !(vma->vm_flags & VM_WRITE))
  1673. foll_flags &= ~FOLL_WRITE;
  1674. cond_resched();
  1675. }
  1676. if (IS_ERR(page))
  1677. return i ? i : PTR_ERR(page);
  1678. if (pages) {
  1679. pages[i] = page;
  1680. flush_anon_page(vma, page, start);
  1681. flush_dcache_page(page);
  1682. page_mask = 0;
  1683. }
  1684. next_page:
  1685. if (vmas) {
  1686. vmas[i] = vma;
  1687. page_mask = 0;
  1688. }
  1689. page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
  1690. if (page_increm > nr_pages)
  1691. page_increm = nr_pages;
  1692. i += page_increm;
  1693. start += page_increm * PAGE_SIZE;
  1694. nr_pages -= page_increm;
  1695. } while (nr_pages && start < vma->vm_end);
  1696. } while (nr_pages);
  1697. return i;
  1698. }
  1699. EXPORT_SYMBOL(__get_user_pages);
  1700. /*
  1701. * fixup_user_fault() - manually resolve a user page fault
  1702. * @tsk: the task_struct to use for page fault accounting, or
  1703. * NULL if faults are not to be recorded.
  1704. * @mm: mm_struct of target mm
  1705. * @address: user address
  1706. * @fault_flags:flags to pass down to handle_mm_fault()
  1707. *
  1708. * This is meant to be called in the specific scenario where for locking reasons
  1709. * we try to access user memory in atomic context (within a pagefault_disable()
  1710. * section), this returns -EFAULT, and we want to resolve the user fault before
  1711. * trying again.
  1712. *
  1713. * Typically this is meant to be used by the futex code.
  1714. *
  1715. * The main difference with get_user_pages() is that this function will
  1716. * unconditionally call handle_mm_fault() which will in turn perform all the
  1717. * necessary SW fixup of the dirty and young bits in the PTE, while
  1718. * handle_mm_fault() only guarantees to update these in the struct page.
  1719. *
  1720. * This is important for some architectures where those bits also gate the
  1721. * access permission to the page because they are maintained in software. On
  1722. * such architectures, gup() will not be enough to make a subsequent access
  1723. * succeed.
  1724. *
  1725. * This should be called with the mm_sem held for read.
  1726. */
  1727. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1728. unsigned long address, unsigned int fault_flags)
  1729. {
  1730. struct vm_area_struct *vma;
  1731. int ret;
  1732. vma = find_extend_vma(mm, address);
  1733. if (!vma || address < vma->vm_start)
  1734. return -EFAULT;
  1735. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1736. if (ret & VM_FAULT_ERROR) {
  1737. if (ret & VM_FAULT_OOM)
  1738. return -ENOMEM;
  1739. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1740. return -EHWPOISON;
  1741. if (ret & VM_FAULT_SIGBUS)
  1742. return -EFAULT;
  1743. BUG();
  1744. }
  1745. if (tsk) {
  1746. if (ret & VM_FAULT_MAJOR)
  1747. tsk->maj_flt++;
  1748. else
  1749. tsk->min_flt++;
  1750. }
  1751. return 0;
  1752. }
  1753. /*
  1754. * get_user_pages() - pin user pages in memory
  1755. * @tsk: the task_struct to use for page fault accounting, or
  1756. * NULL if faults are not to be recorded.
  1757. * @mm: mm_struct of target mm
  1758. * @start: starting user address
  1759. * @nr_pages: number of pages from start to pin
  1760. * @write: whether pages will be written to by the caller
  1761. * @force: whether to force write access even if user mapping is
  1762. * readonly. This will result in the page being COWed even
  1763. * in MAP_SHARED mappings. You do not want this.
  1764. * @pages: array that receives pointers to the pages pinned.
  1765. * Should be at least nr_pages long. Or NULL, if caller
  1766. * only intends to ensure the pages are faulted in.
  1767. * @vmas: array of pointers to vmas corresponding to each page.
  1768. * Or NULL if the caller does not require them.
  1769. *
  1770. * Returns number of pages pinned. This may be fewer than the number
  1771. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1772. * were pinned, returns -errno. Each page returned must be released
  1773. * with a put_page() call when it is finished with. vmas will only
  1774. * remain valid while mmap_sem is held.
  1775. *
  1776. * Must be called with mmap_sem held for read or write.
  1777. *
  1778. * get_user_pages walks a process's page tables and takes a reference to
  1779. * each struct page that each user address corresponds to at a given
  1780. * instant. That is, it takes the page that would be accessed if a user
  1781. * thread accesses the given user virtual address at that instant.
  1782. *
  1783. * This does not guarantee that the page exists in the user mappings when
  1784. * get_user_pages returns, and there may even be a completely different
  1785. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1786. * and subsequently re faulted). However it does guarantee that the page
  1787. * won't be freed completely. And mostly callers simply care that the page
  1788. * contains data that was valid *at some point in time*. Typically, an IO
  1789. * or similar operation cannot guarantee anything stronger anyway because
  1790. * locks can't be held over the syscall boundary.
  1791. *
  1792. * If write=0, the page must not be written to. If the page is written to,
  1793. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1794. * after the page is finished with, and before put_page is called.
  1795. *
  1796. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1797. * handle on the memory by some means other than accesses via the user virtual
  1798. * addresses. The pages may be submitted for DMA to devices or accessed via
  1799. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1800. * use the correct cache flushing APIs.
  1801. *
  1802. * See also get_user_pages_fast, for performance critical applications.
  1803. */
  1804. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1805. unsigned long start, unsigned long nr_pages, int write,
  1806. int force, struct page **pages, struct vm_area_struct **vmas)
  1807. {
  1808. int flags = FOLL_TOUCH;
  1809. if (pages)
  1810. flags |= FOLL_GET;
  1811. if (write)
  1812. flags |= FOLL_WRITE;
  1813. if (force)
  1814. flags |= FOLL_FORCE;
  1815. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1816. NULL);
  1817. }
  1818. EXPORT_SYMBOL(get_user_pages);
  1819. /**
  1820. * get_dump_page() - pin user page in memory while writing it to core dump
  1821. * @addr: user address
  1822. *
  1823. * Returns struct page pointer of user page pinned for dump,
  1824. * to be freed afterwards by page_cache_release() or put_page().
  1825. *
  1826. * Returns NULL on any kind of failure - a hole must then be inserted into
  1827. * the corefile, to preserve alignment with its headers; and also returns
  1828. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1829. * allowing a hole to be left in the corefile to save diskspace.
  1830. *
  1831. * Called without mmap_sem, but after all other threads have been killed.
  1832. */
  1833. #ifdef CONFIG_ELF_CORE
  1834. struct page *get_dump_page(unsigned long addr)
  1835. {
  1836. struct vm_area_struct *vma;
  1837. struct page *page;
  1838. if (__get_user_pages(current, current->mm, addr, 1,
  1839. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1840. NULL) < 1)
  1841. return NULL;
  1842. flush_cache_page(vma, addr, page_to_pfn(page));
  1843. return page;
  1844. }
  1845. #endif /* CONFIG_ELF_CORE */
  1846. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1847. spinlock_t **ptl)
  1848. {
  1849. pgd_t * pgd = pgd_offset(mm, addr);
  1850. pud_t * pud = pud_alloc(mm, pgd, addr);
  1851. if (pud) {
  1852. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1853. if (pmd) {
  1854. VM_BUG_ON(pmd_trans_huge(*pmd));
  1855. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1856. }
  1857. }
  1858. return NULL;
  1859. }
  1860. /*
  1861. * This is the old fallback for page remapping.
  1862. *
  1863. * For historical reasons, it only allows reserved pages. Only
  1864. * old drivers should use this, and they needed to mark their
  1865. * pages reserved for the old functions anyway.
  1866. */
  1867. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1868. struct page *page, pgprot_t prot)
  1869. {
  1870. struct mm_struct *mm = vma->vm_mm;
  1871. int retval;
  1872. pte_t *pte;
  1873. spinlock_t *ptl;
  1874. retval = -EINVAL;
  1875. if (PageAnon(page))
  1876. goto out;
  1877. retval = -ENOMEM;
  1878. flush_dcache_page(page);
  1879. pte = get_locked_pte(mm, addr, &ptl);
  1880. if (!pte)
  1881. goto out;
  1882. retval = -EBUSY;
  1883. if (!pte_none(*pte))
  1884. goto out_unlock;
  1885. /* Ok, finally just insert the thing.. */
  1886. get_page(page);
  1887. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1888. page_add_file_rmap(page);
  1889. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1890. retval = 0;
  1891. pte_unmap_unlock(pte, ptl);
  1892. return retval;
  1893. out_unlock:
  1894. pte_unmap_unlock(pte, ptl);
  1895. out:
  1896. return retval;
  1897. }
  1898. /**
  1899. * vm_insert_page - insert single page into user vma
  1900. * @vma: user vma to map to
  1901. * @addr: target user address of this page
  1902. * @page: source kernel page
  1903. *
  1904. * This allows drivers to insert individual pages they've allocated
  1905. * into a user vma.
  1906. *
  1907. * The page has to be a nice clean _individual_ kernel allocation.
  1908. * If you allocate a compound page, you need to have marked it as
  1909. * such (__GFP_COMP), or manually just split the page up yourself
  1910. * (see split_page()).
  1911. *
  1912. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1913. * took an arbitrary page protection parameter. This doesn't allow
  1914. * that. Your vma protection will have to be set up correctly, which
  1915. * means that if you want a shared writable mapping, you'd better
  1916. * ask for a shared writable mapping!
  1917. *
  1918. * The page does not need to be reserved.
  1919. *
  1920. * Usually this function is called from f_op->mmap() handler
  1921. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1922. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1923. * function from other places, for example from page-fault handler.
  1924. */
  1925. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1926. struct page *page)
  1927. {
  1928. if (addr < vma->vm_start || addr >= vma->vm_end)
  1929. return -EFAULT;
  1930. if (!page_count(page))
  1931. return -EINVAL;
  1932. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1933. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1934. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1935. vma->vm_flags |= VM_MIXEDMAP;
  1936. }
  1937. return insert_page(vma, addr, page, vma->vm_page_prot);
  1938. }
  1939. EXPORT_SYMBOL(vm_insert_page);
  1940. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1941. unsigned long pfn, pgprot_t prot)
  1942. {
  1943. struct mm_struct *mm = vma->vm_mm;
  1944. int retval;
  1945. pte_t *pte, entry;
  1946. spinlock_t *ptl;
  1947. retval = -ENOMEM;
  1948. pte = get_locked_pte(mm, addr, &ptl);
  1949. if (!pte)
  1950. goto out;
  1951. retval = -EBUSY;
  1952. if (!pte_none(*pte))
  1953. goto out_unlock;
  1954. /* Ok, finally just insert the thing.. */
  1955. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1956. set_pte_at(mm, addr, pte, entry);
  1957. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1958. retval = 0;
  1959. out_unlock:
  1960. pte_unmap_unlock(pte, ptl);
  1961. out:
  1962. return retval;
  1963. }
  1964. /**
  1965. * vm_insert_pfn - insert single pfn into user vma
  1966. * @vma: user vma to map to
  1967. * @addr: target user address of this page
  1968. * @pfn: source kernel pfn
  1969. *
  1970. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1971. * they've allocated into a user vma. Same comments apply.
  1972. *
  1973. * This function should only be called from a vm_ops->fault handler, and
  1974. * in that case the handler should return NULL.
  1975. *
  1976. * vma cannot be a COW mapping.
  1977. *
  1978. * As this is called only for pages that do not currently exist, we
  1979. * do not need to flush old virtual caches or the TLB.
  1980. */
  1981. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1982. unsigned long pfn)
  1983. {
  1984. int ret;
  1985. pgprot_t pgprot = vma->vm_page_prot;
  1986. /*
  1987. * Technically, architectures with pte_special can avoid all these
  1988. * restrictions (same for remap_pfn_range). However we would like
  1989. * consistency in testing and feature parity among all, so we should
  1990. * try to keep these invariants in place for everybody.
  1991. */
  1992. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1993. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1994. (VM_PFNMAP|VM_MIXEDMAP));
  1995. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1996. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1997. if (addr < vma->vm_start || addr >= vma->vm_end)
  1998. return -EFAULT;
  1999. if (track_pfn_insert(vma, &pgprot, pfn))
  2000. return -EINVAL;
  2001. ret = insert_pfn(vma, addr, pfn, pgprot);
  2002. return ret;
  2003. }
  2004. EXPORT_SYMBOL(vm_insert_pfn);
  2005. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2006. unsigned long pfn)
  2007. {
  2008. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  2009. if (addr < vma->vm_start || addr >= vma->vm_end)
  2010. return -EFAULT;
  2011. /*
  2012. * If we don't have pte special, then we have to use the pfn_valid()
  2013. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  2014. * refcount the page if pfn_valid is true (hence insert_page rather
  2015. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  2016. * without pte special, it would there be refcounted as a normal page.
  2017. */
  2018. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  2019. struct page *page;
  2020. page = pfn_to_page(pfn);
  2021. return insert_page(vma, addr, page, vma->vm_page_prot);
  2022. }
  2023. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  2024. }
  2025. EXPORT_SYMBOL(vm_insert_mixed);
  2026. /*
  2027. * maps a range of physical memory into the requested pages. the old
  2028. * mappings are removed. any references to nonexistent pages results
  2029. * in null mappings (currently treated as "copy-on-access")
  2030. */
  2031. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2032. unsigned long addr, unsigned long end,
  2033. unsigned long pfn, pgprot_t prot)
  2034. {
  2035. pte_t *pte;
  2036. spinlock_t *ptl;
  2037. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2038. if (!pte)
  2039. return -ENOMEM;
  2040. arch_enter_lazy_mmu_mode();
  2041. do {
  2042. BUG_ON(!pte_none(*pte));
  2043. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  2044. pfn++;
  2045. } while (pte++, addr += PAGE_SIZE, addr != end);
  2046. arch_leave_lazy_mmu_mode();
  2047. pte_unmap_unlock(pte - 1, ptl);
  2048. return 0;
  2049. }
  2050. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  2051. unsigned long addr, unsigned long end,
  2052. unsigned long pfn, pgprot_t prot)
  2053. {
  2054. pmd_t *pmd;
  2055. unsigned long next;
  2056. pfn -= addr >> PAGE_SHIFT;
  2057. pmd = pmd_alloc(mm, pud, addr);
  2058. if (!pmd)
  2059. return -ENOMEM;
  2060. VM_BUG_ON(pmd_trans_huge(*pmd));
  2061. do {
  2062. next = pmd_addr_end(addr, end);
  2063. if (remap_pte_range(mm, pmd, addr, next,
  2064. pfn + (addr >> PAGE_SHIFT), prot))
  2065. return -ENOMEM;
  2066. } while (pmd++, addr = next, addr != end);
  2067. return 0;
  2068. }
  2069. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2070. unsigned long addr, unsigned long end,
  2071. unsigned long pfn, pgprot_t prot)
  2072. {
  2073. pud_t *pud;
  2074. unsigned long next;
  2075. pfn -= addr >> PAGE_SHIFT;
  2076. pud = pud_alloc(mm, pgd, addr);
  2077. if (!pud)
  2078. return -ENOMEM;
  2079. do {
  2080. next = pud_addr_end(addr, end);
  2081. if (remap_pmd_range(mm, pud, addr, next,
  2082. pfn + (addr >> PAGE_SHIFT), prot))
  2083. return -ENOMEM;
  2084. } while (pud++, addr = next, addr != end);
  2085. return 0;
  2086. }
  2087. /**
  2088. * remap_pfn_range - remap kernel memory to userspace
  2089. * @vma: user vma to map to
  2090. * @addr: target user address to start at
  2091. * @pfn: physical address of kernel memory
  2092. * @size: size of map area
  2093. * @prot: page protection flags for this mapping
  2094. *
  2095. * Note: this is only safe if the mm semaphore is held when called.
  2096. */
  2097. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2098. unsigned long pfn, unsigned long size, pgprot_t prot)
  2099. {
  2100. pgd_t *pgd;
  2101. unsigned long next;
  2102. unsigned long end = addr + PAGE_ALIGN(size);
  2103. struct mm_struct *mm = vma->vm_mm;
  2104. int err;
  2105. /*
  2106. * Physically remapped pages are special. Tell the
  2107. * rest of the world about it:
  2108. * VM_IO tells people not to look at these pages
  2109. * (accesses can have side effects).
  2110. * VM_PFNMAP tells the core MM that the base pages are just
  2111. * raw PFN mappings, and do not have a "struct page" associated
  2112. * with them.
  2113. * VM_DONTEXPAND
  2114. * Disable vma merging and expanding with mremap().
  2115. * VM_DONTDUMP
  2116. * Omit vma from core dump, even when VM_IO turned off.
  2117. *
  2118. * There's a horrible special case to handle copy-on-write
  2119. * behaviour that some programs depend on. We mark the "original"
  2120. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2121. * See vm_normal_page() for details.
  2122. */
  2123. if (is_cow_mapping(vma->vm_flags)) {
  2124. if (addr != vma->vm_start || end != vma->vm_end)
  2125. return -EINVAL;
  2126. vma->vm_pgoff = pfn;
  2127. }
  2128. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  2129. if (err)
  2130. return -EINVAL;
  2131. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  2132. BUG_ON(addr >= end);
  2133. pfn -= addr >> PAGE_SHIFT;
  2134. pgd = pgd_offset(mm, addr);
  2135. flush_cache_range(vma, addr, end);
  2136. do {
  2137. next = pgd_addr_end(addr, end);
  2138. err = remap_pud_range(mm, pgd, addr, next,
  2139. pfn + (addr >> PAGE_SHIFT), prot);
  2140. if (err)
  2141. break;
  2142. } while (pgd++, addr = next, addr != end);
  2143. if (err)
  2144. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  2145. return err;
  2146. }
  2147. EXPORT_SYMBOL(remap_pfn_range);
  2148. /**
  2149. * vm_iomap_memory - remap memory to userspace
  2150. * @vma: user vma to map to
  2151. * @start: start of area
  2152. * @len: size of area
  2153. *
  2154. * This is a simplified io_remap_pfn_range() for common driver use. The
  2155. * driver just needs to give us the physical memory range to be mapped,
  2156. * we'll figure out the rest from the vma information.
  2157. *
  2158. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  2159. * whatever write-combining details or similar.
  2160. */
  2161. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  2162. {
  2163. unsigned long vm_len, pfn, pages;
  2164. /* Check that the physical memory area passed in looks valid */
  2165. if (start + len < start)
  2166. return -EINVAL;
  2167. /*
  2168. * You *really* shouldn't map things that aren't page-aligned,
  2169. * but we've historically allowed it because IO memory might
  2170. * just have smaller alignment.
  2171. */
  2172. len += start & ~PAGE_MASK;
  2173. pfn = start >> PAGE_SHIFT;
  2174. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  2175. if (pfn + pages < pfn)
  2176. return -EINVAL;
  2177. /* We start the mapping 'vm_pgoff' pages into the area */
  2178. if (vma->vm_pgoff > pages)
  2179. return -EINVAL;
  2180. pfn += vma->vm_pgoff;
  2181. pages -= vma->vm_pgoff;
  2182. /* Can we fit all of the mapping? */
  2183. vm_len = vma->vm_end - vma->vm_start;
  2184. if (vm_len >> PAGE_SHIFT > pages)
  2185. return -EINVAL;
  2186. /* Ok, let it rip */
  2187. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  2188. }
  2189. EXPORT_SYMBOL(vm_iomap_memory);
  2190. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2191. unsigned long addr, unsigned long end,
  2192. pte_fn_t fn, void *data)
  2193. {
  2194. pte_t *pte;
  2195. int err;
  2196. pgtable_t token;
  2197. spinlock_t *uninitialized_var(ptl);
  2198. pte = (mm == &init_mm) ?
  2199. pte_alloc_kernel(pmd, addr) :
  2200. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2201. if (!pte)
  2202. return -ENOMEM;
  2203. BUG_ON(pmd_huge(*pmd));
  2204. arch_enter_lazy_mmu_mode();
  2205. token = pmd_pgtable(*pmd);
  2206. do {
  2207. err = fn(pte++, token, addr, data);
  2208. if (err)
  2209. break;
  2210. } while (addr += PAGE_SIZE, addr != end);
  2211. arch_leave_lazy_mmu_mode();
  2212. if (mm != &init_mm)
  2213. pte_unmap_unlock(pte-1, ptl);
  2214. return err;
  2215. }
  2216. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2217. unsigned long addr, unsigned long end,
  2218. pte_fn_t fn, void *data)
  2219. {
  2220. pmd_t *pmd;
  2221. unsigned long next;
  2222. int err;
  2223. BUG_ON(pud_huge(*pud));
  2224. pmd = pmd_alloc(mm, pud, addr);
  2225. if (!pmd)
  2226. return -ENOMEM;
  2227. do {
  2228. next = pmd_addr_end(addr, end);
  2229. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2230. if (err)
  2231. break;
  2232. } while (pmd++, addr = next, addr != end);
  2233. return err;
  2234. }
  2235. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2236. unsigned long addr, unsigned long end,
  2237. pte_fn_t fn, void *data)
  2238. {
  2239. pud_t *pud;
  2240. unsigned long next;
  2241. int err;
  2242. pud = pud_alloc(mm, pgd, addr);
  2243. if (!pud)
  2244. return -ENOMEM;
  2245. do {
  2246. next = pud_addr_end(addr, end);
  2247. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2248. if (err)
  2249. break;
  2250. } while (pud++, addr = next, addr != end);
  2251. return err;
  2252. }
  2253. /*
  2254. * Scan a region of virtual memory, filling in page tables as necessary
  2255. * and calling a provided function on each leaf page table.
  2256. */
  2257. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2258. unsigned long size, pte_fn_t fn, void *data)
  2259. {
  2260. pgd_t *pgd;
  2261. unsigned long next;
  2262. unsigned long end = addr + size;
  2263. int err;
  2264. BUG_ON(addr >= end);
  2265. pgd = pgd_offset(mm, addr);
  2266. do {
  2267. next = pgd_addr_end(addr, end);
  2268. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2269. if (err)
  2270. break;
  2271. } while (pgd++, addr = next, addr != end);
  2272. return err;
  2273. }
  2274. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2275. /*
  2276. * handle_pte_fault chooses page fault handler according to an entry
  2277. * which was read non-atomically. Before making any commitment, on
  2278. * those architectures or configurations (e.g. i386 with PAE) which
  2279. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2280. * must check under lock before unmapping the pte and proceeding
  2281. * (but do_wp_page is only called after already making such a check;
  2282. * and do_anonymous_page can safely check later on).
  2283. */
  2284. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2285. pte_t *page_table, pte_t orig_pte)
  2286. {
  2287. int same = 1;
  2288. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2289. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2290. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2291. spin_lock(ptl);
  2292. same = pte_same(*page_table, orig_pte);
  2293. spin_unlock(ptl);
  2294. }
  2295. #endif
  2296. pte_unmap(page_table);
  2297. return same;
  2298. }
  2299. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2300. {
  2301. /*
  2302. * If the source page was a PFN mapping, we don't have
  2303. * a "struct page" for it. We do a best-effort copy by
  2304. * just copying from the original user address. If that
  2305. * fails, we just zero-fill it. Live with it.
  2306. */
  2307. if (unlikely(!src)) {
  2308. void *kaddr = kmap_atomic(dst);
  2309. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2310. /*
  2311. * This really shouldn't fail, because the page is there
  2312. * in the page tables. But it might just be unreadable,
  2313. * in which case we just give up and fill the result with
  2314. * zeroes.
  2315. */
  2316. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2317. clear_page(kaddr);
  2318. kunmap_atomic(kaddr);
  2319. flush_dcache_page(dst);
  2320. } else
  2321. copy_user_highpage(dst, src, va, vma);
  2322. }
  2323. /*
  2324. * This routine handles present pages, when users try to write
  2325. * to a shared page. It is done by copying the page to a new address
  2326. * and decrementing the shared-page counter for the old page.
  2327. *
  2328. * Note that this routine assumes that the protection checks have been
  2329. * done by the caller (the low-level page fault routine in most cases).
  2330. * Thus we can safely just mark it writable once we've done any necessary
  2331. * COW.
  2332. *
  2333. * We also mark the page dirty at this point even though the page will
  2334. * change only once the write actually happens. This avoids a few races,
  2335. * and potentially makes it more efficient.
  2336. *
  2337. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2338. * but allow concurrent faults), with pte both mapped and locked.
  2339. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2340. */
  2341. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2342. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2343. spinlock_t *ptl, pte_t orig_pte)
  2344. __releases(ptl)
  2345. {
  2346. struct page *old_page, *new_page = NULL;
  2347. pte_t entry;
  2348. int ret = 0;
  2349. int page_mkwrite = 0;
  2350. struct page *dirty_page = NULL;
  2351. unsigned long mmun_start = 0; /* For mmu_notifiers */
  2352. unsigned long mmun_end = 0; /* For mmu_notifiers */
  2353. old_page = vm_normal_page(vma, address, orig_pte);
  2354. if (!old_page) {
  2355. /*
  2356. * VM_MIXEDMAP !pfn_valid() case
  2357. *
  2358. * We should not cow pages in a shared writeable mapping.
  2359. * Just mark the pages writable as we can't do any dirty
  2360. * accounting on raw pfn maps.
  2361. */
  2362. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2363. (VM_WRITE|VM_SHARED))
  2364. goto reuse;
  2365. goto gotten;
  2366. }
  2367. /*
  2368. * Take out anonymous pages first, anonymous shared vmas are
  2369. * not dirty accountable.
  2370. */
  2371. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2372. if (!trylock_page(old_page)) {
  2373. page_cache_get(old_page);
  2374. pte_unmap_unlock(page_table, ptl);
  2375. lock_page(old_page);
  2376. page_table = pte_offset_map_lock(mm, pmd, address,
  2377. &ptl);
  2378. if (!pte_same(*page_table, orig_pte)) {
  2379. unlock_page(old_page);
  2380. goto unlock;
  2381. }
  2382. page_cache_release(old_page);
  2383. }
  2384. if (reuse_swap_page(old_page)) {
  2385. /*
  2386. * The page is all ours. Move it to our anon_vma so
  2387. * the rmap code will not search our parent or siblings.
  2388. * Protected against the rmap code by the page lock.
  2389. */
  2390. page_move_anon_rmap(old_page, vma, address);
  2391. unlock_page(old_page);
  2392. goto reuse;
  2393. }
  2394. unlock_page(old_page);
  2395. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2396. (VM_WRITE|VM_SHARED))) {
  2397. /*
  2398. * Only catch write-faults on shared writable pages,
  2399. * read-only shared pages can get COWed by
  2400. * get_user_pages(.write=1, .force=1).
  2401. */
  2402. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2403. struct vm_fault vmf;
  2404. int tmp;
  2405. vmf.virtual_address = (void __user *)(address &
  2406. PAGE_MASK);
  2407. vmf.pgoff = old_page->index;
  2408. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2409. vmf.page = old_page;
  2410. /*
  2411. * Notify the address space that the page is about to
  2412. * become writable so that it can prohibit this or wait
  2413. * for the page to get into an appropriate state.
  2414. *
  2415. * We do this without the lock held, so that it can
  2416. * sleep if it needs to.
  2417. */
  2418. page_cache_get(old_page);
  2419. pte_unmap_unlock(page_table, ptl);
  2420. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2421. if (unlikely(tmp &
  2422. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2423. ret = tmp;
  2424. goto unwritable_page;
  2425. }
  2426. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2427. lock_page(old_page);
  2428. if (!old_page->mapping) {
  2429. ret = 0; /* retry the fault */
  2430. unlock_page(old_page);
  2431. goto unwritable_page;
  2432. }
  2433. } else
  2434. VM_BUG_ON(!PageLocked(old_page));
  2435. /*
  2436. * Since we dropped the lock we need to revalidate
  2437. * the PTE as someone else may have changed it. If
  2438. * they did, we just return, as we can count on the
  2439. * MMU to tell us if they didn't also make it writable.
  2440. */
  2441. page_table = pte_offset_map_lock(mm, pmd, address,
  2442. &ptl);
  2443. if (!pte_same(*page_table, orig_pte)) {
  2444. unlock_page(old_page);
  2445. goto unlock;
  2446. }
  2447. page_mkwrite = 1;
  2448. }
  2449. dirty_page = old_page;
  2450. get_page(dirty_page);
  2451. reuse:
  2452. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2453. entry = pte_mkyoung(orig_pte);
  2454. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2455. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2456. update_mmu_cache(vma, address, page_table);
  2457. pte_unmap_unlock(page_table, ptl);
  2458. ret |= VM_FAULT_WRITE;
  2459. if (!dirty_page)
  2460. return ret;
  2461. /*
  2462. * Yes, Virginia, this is actually required to prevent a race
  2463. * with clear_page_dirty_for_io() from clearing the page dirty
  2464. * bit after it clear all dirty ptes, but before a racing
  2465. * do_wp_page installs a dirty pte.
  2466. *
  2467. * __do_fault is protected similarly.
  2468. */
  2469. if (!page_mkwrite) {
  2470. wait_on_page_locked(dirty_page);
  2471. set_page_dirty_balance(dirty_page, page_mkwrite);
  2472. /* file_update_time outside page_lock */
  2473. if (vma->vm_file)
  2474. file_update_time(vma->vm_file);
  2475. }
  2476. put_page(dirty_page);
  2477. if (page_mkwrite) {
  2478. struct address_space *mapping = dirty_page->mapping;
  2479. set_page_dirty(dirty_page);
  2480. unlock_page(dirty_page);
  2481. page_cache_release(dirty_page);
  2482. if (mapping) {
  2483. /*
  2484. * Some device drivers do not set page.mapping
  2485. * but still dirty their pages
  2486. */
  2487. balance_dirty_pages_ratelimited(mapping);
  2488. }
  2489. }
  2490. return ret;
  2491. }
  2492. /*
  2493. * Ok, we need to copy. Oh, well..
  2494. */
  2495. page_cache_get(old_page);
  2496. gotten:
  2497. pte_unmap_unlock(page_table, ptl);
  2498. if (unlikely(anon_vma_prepare(vma)))
  2499. goto oom;
  2500. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2501. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2502. if (!new_page)
  2503. goto oom;
  2504. } else {
  2505. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2506. if (!new_page)
  2507. goto oom;
  2508. cow_user_page(new_page, old_page, address, vma);
  2509. }
  2510. __SetPageUptodate(new_page);
  2511. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2512. goto oom_free_new;
  2513. mmun_start = address & PAGE_MASK;
  2514. mmun_end = mmun_start + PAGE_SIZE;
  2515. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2516. /*
  2517. * Re-check the pte - we dropped the lock
  2518. */
  2519. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2520. if (likely(pte_same(*page_table, orig_pte))) {
  2521. if (old_page) {
  2522. if (!PageAnon(old_page)) {
  2523. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2524. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2525. }
  2526. } else
  2527. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2528. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2529. entry = mk_pte(new_page, vma->vm_page_prot);
  2530. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2531. /*
  2532. * Clear the pte entry and flush it first, before updating the
  2533. * pte with the new entry. This will avoid a race condition
  2534. * seen in the presence of one thread doing SMC and another
  2535. * thread doing COW.
  2536. */
  2537. ptep_clear_flush(vma, address, page_table);
  2538. page_add_new_anon_rmap(new_page, vma, address);
  2539. /*
  2540. * We call the notify macro here because, when using secondary
  2541. * mmu page tables (such as kvm shadow page tables), we want the
  2542. * new page to be mapped directly into the secondary page table.
  2543. */
  2544. set_pte_at_notify(mm, address, page_table, entry);
  2545. update_mmu_cache(vma, address, page_table);
  2546. if (old_page) {
  2547. /*
  2548. * Only after switching the pte to the new page may
  2549. * we remove the mapcount here. Otherwise another
  2550. * process may come and find the rmap count decremented
  2551. * before the pte is switched to the new page, and
  2552. * "reuse" the old page writing into it while our pte
  2553. * here still points into it and can be read by other
  2554. * threads.
  2555. *
  2556. * The critical issue is to order this
  2557. * page_remove_rmap with the ptp_clear_flush above.
  2558. * Those stores are ordered by (if nothing else,)
  2559. * the barrier present in the atomic_add_negative
  2560. * in page_remove_rmap.
  2561. *
  2562. * Then the TLB flush in ptep_clear_flush ensures that
  2563. * no process can access the old page before the
  2564. * decremented mapcount is visible. And the old page
  2565. * cannot be reused until after the decremented
  2566. * mapcount is visible. So transitively, TLBs to
  2567. * old page will be flushed before it can be reused.
  2568. */
  2569. page_remove_rmap(old_page);
  2570. }
  2571. /* Free the old page.. */
  2572. new_page = old_page;
  2573. ret |= VM_FAULT_WRITE;
  2574. } else
  2575. mem_cgroup_uncharge_page(new_page);
  2576. if (new_page)
  2577. page_cache_release(new_page);
  2578. unlock:
  2579. pte_unmap_unlock(page_table, ptl);
  2580. if (mmun_end > mmun_start)
  2581. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2582. if (old_page) {
  2583. /*
  2584. * Don't let another task, with possibly unlocked vma,
  2585. * keep the mlocked page.
  2586. */
  2587. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2588. lock_page(old_page); /* LRU manipulation */
  2589. munlock_vma_page(old_page);
  2590. unlock_page(old_page);
  2591. }
  2592. page_cache_release(old_page);
  2593. }
  2594. return ret;
  2595. oom_free_new:
  2596. page_cache_release(new_page);
  2597. oom:
  2598. if (old_page)
  2599. page_cache_release(old_page);
  2600. return VM_FAULT_OOM;
  2601. unwritable_page:
  2602. page_cache_release(old_page);
  2603. return ret;
  2604. }
  2605. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2606. unsigned long start_addr, unsigned long end_addr,
  2607. struct zap_details *details)
  2608. {
  2609. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2610. }
  2611. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2612. struct zap_details *details)
  2613. {
  2614. struct vm_area_struct *vma;
  2615. pgoff_t vba, vea, zba, zea;
  2616. vma_interval_tree_foreach(vma, root,
  2617. details->first_index, details->last_index) {
  2618. vba = vma->vm_pgoff;
  2619. vea = vba + vma_pages(vma) - 1;
  2620. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2621. zba = details->first_index;
  2622. if (zba < vba)
  2623. zba = vba;
  2624. zea = details->last_index;
  2625. if (zea > vea)
  2626. zea = vea;
  2627. unmap_mapping_range_vma(vma,
  2628. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2629. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2630. details);
  2631. }
  2632. }
  2633. static inline void unmap_mapping_range_list(struct list_head *head,
  2634. struct zap_details *details)
  2635. {
  2636. struct vm_area_struct *vma;
  2637. /*
  2638. * In nonlinear VMAs there is no correspondence between virtual address
  2639. * offset and file offset. So we must perform an exhaustive search
  2640. * across *all* the pages in each nonlinear VMA, not just the pages
  2641. * whose virtual address lies outside the file truncation point.
  2642. */
  2643. list_for_each_entry(vma, head, shared.nonlinear) {
  2644. details->nonlinear_vma = vma;
  2645. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2646. }
  2647. }
  2648. /**
  2649. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2650. * @mapping: the address space containing mmaps to be unmapped.
  2651. * @holebegin: byte in first page to unmap, relative to the start of
  2652. * the underlying file. This will be rounded down to a PAGE_SIZE
  2653. * boundary. Note that this is different from truncate_pagecache(), which
  2654. * must keep the partial page. In contrast, we must get rid of
  2655. * partial pages.
  2656. * @holelen: size of prospective hole in bytes. This will be rounded
  2657. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2658. * end of the file.
  2659. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2660. * but 0 when invalidating pagecache, don't throw away private data.
  2661. */
  2662. void unmap_mapping_range(struct address_space *mapping,
  2663. loff_t const holebegin, loff_t const holelen, int even_cows)
  2664. {
  2665. struct zap_details details;
  2666. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2667. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2668. /* Check for overflow. */
  2669. if (sizeof(holelen) > sizeof(hlen)) {
  2670. long long holeend =
  2671. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2672. if (holeend & ~(long long)ULONG_MAX)
  2673. hlen = ULONG_MAX - hba + 1;
  2674. }
  2675. details.check_mapping = even_cows? NULL: mapping;
  2676. details.nonlinear_vma = NULL;
  2677. details.first_index = hba;
  2678. details.last_index = hba + hlen - 1;
  2679. if (details.last_index < details.first_index)
  2680. details.last_index = ULONG_MAX;
  2681. mutex_lock(&mapping->i_mmap_mutex);
  2682. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2683. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2684. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2685. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2686. mutex_unlock(&mapping->i_mmap_mutex);
  2687. }
  2688. EXPORT_SYMBOL(unmap_mapping_range);
  2689. /*
  2690. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2691. * but allow concurrent faults), and pte mapped but not yet locked.
  2692. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2693. */
  2694. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2695. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2696. unsigned int flags, pte_t orig_pte)
  2697. {
  2698. spinlock_t *ptl;
  2699. struct page *page, *swapcache;
  2700. swp_entry_t entry;
  2701. pte_t pte;
  2702. int locked;
  2703. struct mem_cgroup *ptr;
  2704. int exclusive = 0;
  2705. int ret = 0;
  2706. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2707. goto out;
  2708. entry = pte_to_swp_entry(orig_pte);
  2709. if (unlikely(non_swap_entry(entry))) {
  2710. if (is_migration_entry(entry)) {
  2711. migration_entry_wait(mm, pmd, address);
  2712. } else if (is_hwpoison_entry(entry)) {
  2713. ret = VM_FAULT_HWPOISON;
  2714. } else {
  2715. print_bad_pte(vma, address, orig_pte, NULL);
  2716. ret = VM_FAULT_SIGBUS;
  2717. }
  2718. goto out;
  2719. }
  2720. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2721. page = lookup_swap_cache(entry);
  2722. if (!page) {
  2723. page = swapin_readahead(entry,
  2724. GFP_HIGHUSER_MOVABLE, vma, address);
  2725. if (!page) {
  2726. /*
  2727. * Back out if somebody else faulted in this pte
  2728. * while we released the pte lock.
  2729. */
  2730. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2731. if (likely(pte_same(*page_table, orig_pte)))
  2732. ret = VM_FAULT_OOM;
  2733. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2734. goto unlock;
  2735. }
  2736. /* Had to read the page from swap area: Major fault */
  2737. ret = VM_FAULT_MAJOR;
  2738. count_vm_event(PGMAJFAULT);
  2739. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2740. } else if (PageHWPoison(page)) {
  2741. /*
  2742. * hwpoisoned dirty swapcache pages are kept for killing
  2743. * owner processes (which may be unknown at hwpoison time)
  2744. */
  2745. ret = VM_FAULT_HWPOISON;
  2746. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2747. swapcache = page;
  2748. goto out_release;
  2749. }
  2750. swapcache = page;
  2751. locked = lock_page_or_retry(page, mm, flags);
  2752. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2753. if (!locked) {
  2754. ret |= VM_FAULT_RETRY;
  2755. goto out_release;
  2756. }
  2757. /*
  2758. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2759. * release the swapcache from under us. The page pin, and pte_same
  2760. * test below, are not enough to exclude that. Even if it is still
  2761. * swapcache, we need to check that the page's swap has not changed.
  2762. */
  2763. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2764. goto out_page;
  2765. page = ksm_might_need_to_copy(page, vma, address);
  2766. if (unlikely(!page)) {
  2767. ret = VM_FAULT_OOM;
  2768. page = swapcache;
  2769. goto out_page;
  2770. }
  2771. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2772. ret = VM_FAULT_OOM;
  2773. goto out_page;
  2774. }
  2775. /*
  2776. * Back out if somebody else already faulted in this pte.
  2777. */
  2778. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2779. if (unlikely(!pte_same(*page_table, orig_pte)))
  2780. goto out_nomap;
  2781. if (unlikely(!PageUptodate(page))) {
  2782. ret = VM_FAULT_SIGBUS;
  2783. goto out_nomap;
  2784. }
  2785. /*
  2786. * The page isn't present yet, go ahead with the fault.
  2787. *
  2788. * Be careful about the sequence of operations here.
  2789. * To get its accounting right, reuse_swap_page() must be called
  2790. * while the page is counted on swap but not yet in mapcount i.e.
  2791. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2792. * must be called after the swap_free(), or it will never succeed.
  2793. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2794. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2795. * in page->private. In this case, a record in swap_cgroup is silently
  2796. * discarded at swap_free().
  2797. */
  2798. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2799. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2800. pte = mk_pte(page, vma->vm_page_prot);
  2801. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2802. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2803. flags &= ~FAULT_FLAG_WRITE;
  2804. ret |= VM_FAULT_WRITE;
  2805. exclusive = 1;
  2806. }
  2807. flush_icache_page(vma, page);
  2808. set_pte_at(mm, address, page_table, pte);
  2809. if (page == swapcache)
  2810. do_page_add_anon_rmap(page, vma, address, exclusive);
  2811. else /* ksm created a completely new copy */
  2812. page_add_new_anon_rmap(page, vma, address);
  2813. /* It's better to call commit-charge after rmap is established */
  2814. mem_cgroup_commit_charge_swapin(page, ptr);
  2815. swap_free(entry);
  2816. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2817. try_to_free_swap(page);
  2818. unlock_page(page);
  2819. if (page != swapcache) {
  2820. /*
  2821. * Hold the lock to avoid the swap entry to be reused
  2822. * until we take the PT lock for the pte_same() check
  2823. * (to avoid false positives from pte_same). For
  2824. * further safety release the lock after the swap_free
  2825. * so that the swap count won't change under a
  2826. * parallel locked swapcache.
  2827. */
  2828. unlock_page(swapcache);
  2829. page_cache_release(swapcache);
  2830. }
  2831. if (flags & FAULT_FLAG_WRITE) {
  2832. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2833. if (ret & VM_FAULT_ERROR)
  2834. ret &= VM_FAULT_ERROR;
  2835. goto out;
  2836. }
  2837. /* No need to invalidate - it was non-present before */
  2838. update_mmu_cache(vma, address, page_table);
  2839. unlock:
  2840. pte_unmap_unlock(page_table, ptl);
  2841. out:
  2842. return ret;
  2843. out_nomap:
  2844. mem_cgroup_cancel_charge_swapin(ptr);
  2845. pte_unmap_unlock(page_table, ptl);
  2846. out_page:
  2847. unlock_page(page);
  2848. out_release:
  2849. page_cache_release(page);
  2850. if (page != swapcache) {
  2851. unlock_page(swapcache);
  2852. page_cache_release(swapcache);
  2853. }
  2854. return ret;
  2855. }
  2856. /*
  2857. * This is like a special single-page "expand_{down|up}wards()",
  2858. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2859. * doesn't hit another vma.
  2860. */
  2861. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2862. {
  2863. address &= PAGE_MASK;
  2864. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2865. struct vm_area_struct *prev = vma->vm_prev;
  2866. /*
  2867. * Is there a mapping abutting this one below?
  2868. *
  2869. * That's only ok if it's the same stack mapping
  2870. * that has gotten split..
  2871. */
  2872. if (prev && prev->vm_end == address)
  2873. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2874. expand_downwards(vma, address - PAGE_SIZE);
  2875. }
  2876. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2877. struct vm_area_struct *next = vma->vm_next;
  2878. /* As VM_GROWSDOWN but s/below/above/ */
  2879. if (next && next->vm_start == address + PAGE_SIZE)
  2880. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2881. expand_upwards(vma, address + PAGE_SIZE);
  2882. }
  2883. return 0;
  2884. }
  2885. /*
  2886. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2887. * but allow concurrent faults), and pte mapped but not yet locked.
  2888. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2889. */
  2890. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2891. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2892. unsigned int flags)
  2893. {
  2894. struct page *page;
  2895. spinlock_t *ptl;
  2896. pte_t entry;
  2897. pte_unmap(page_table);
  2898. /* Check if we need to add a guard page to the stack */
  2899. if (check_stack_guard_page(vma, address) < 0)
  2900. return VM_FAULT_SIGBUS;
  2901. /* Use the zero-page for reads */
  2902. if (!(flags & FAULT_FLAG_WRITE)) {
  2903. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2904. vma->vm_page_prot));
  2905. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2906. if (!pte_none(*page_table))
  2907. goto unlock;
  2908. goto setpte;
  2909. }
  2910. /* Allocate our own private page. */
  2911. if (unlikely(anon_vma_prepare(vma)))
  2912. goto oom;
  2913. page = alloc_zeroed_user_highpage_movable(vma, address);
  2914. if (!page)
  2915. goto oom;
  2916. /*
  2917. * The memory barrier inside __SetPageUptodate makes sure that
  2918. * preceeding stores to the page contents become visible before
  2919. * the set_pte_at() write.
  2920. */
  2921. __SetPageUptodate(page);
  2922. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2923. goto oom_free_page;
  2924. entry = mk_pte(page, vma->vm_page_prot);
  2925. if (vma->vm_flags & VM_WRITE)
  2926. entry = pte_mkwrite(pte_mkdirty(entry));
  2927. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2928. if (!pte_none(*page_table))
  2929. goto release;
  2930. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2931. page_add_new_anon_rmap(page, vma, address);
  2932. setpte:
  2933. set_pte_at(mm, address, page_table, entry);
  2934. /* No need to invalidate - it was non-present before */
  2935. update_mmu_cache(vma, address, page_table);
  2936. unlock:
  2937. pte_unmap_unlock(page_table, ptl);
  2938. return 0;
  2939. release:
  2940. mem_cgroup_uncharge_page(page);
  2941. page_cache_release(page);
  2942. goto unlock;
  2943. oom_free_page:
  2944. page_cache_release(page);
  2945. oom:
  2946. return VM_FAULT_OOM;
  2947. }
  2948. /*
  2949. * __do_fault() tries to create a new page mapping. It aggressively
  2950. * tries to share with existing pages, but makes a separate copy if
  2951. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2952. * the next page fault.
  2953. *
  2954. * As this is called only for pages that do not currently exist, we
  2955. * do not need to flush old virtual caches or the TLB.
  2956. *
  2957. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2958. * but allow concurrent faults), and pte neither mapped nor locked.
  2959. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2960. */
  2961. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2962. unsigned long address, pmd_t *pmd,
  2963. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2964. {
  2965. pte_t *page_table;
  2966. spinlock_t *ptl;
  2967. struct page *page;
  2968. struct page *cow_page;
  2969. pte_t entry;
  2970. int anon = 0;
  2971. struct page *dirty_page = NULL;
  2972. struct vm_fault vmf;
  2973. int ret;
  2974. int page_mkwrite = 0;
  2975. /*
  2976. * If we do COW later, allocate page befor taking lock_page()
  2977. * on the file cache page. This will reduce lock holding time.
  2978. */
  2979. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2980. if (unlikely(anon_vma_prepare(vma)))
  2981. return VM_FAULT_OOM;
  2982. cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2983. if (!cow_page)
  2984. return VM_FAULT_OOM;
  2985. if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
  2986. page_cache_release(cow_page);
  2987. return VM_FAULT_OOM;
  2988. }
  2989. } else
  2990. cow_page = NULL;
  2991. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2992. vmf.pgoff = pgoff;
  2993. vmf.flags = flags;
  2994. vmf.page = NULL;
  2995. ret = vma->vm_ops->fault(vma, &vmf);
  2996. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2997. VM_FAULT_RETRY)))
  2998. goto uncharge_out;
  2999. if (unlikely(PageHWPoison(vmf.page))) {
  3000. if (ret & VM_FAULT_LOCKED)
  3001. unlock_page(vmf.page);
  3002. ret = VM_FAULT_HWPOISON;
  3003. goto uncharge_out;
  3004. }
  3005. /*
  3006. * For consistency in subsequent calls, make the faulted page always
  3007. * locked.
  3008. */
  3009. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  3010. lock_page(vmf.page);
  3011. else
  3012. VM_BUG_ON(!PageLocked(vmf.page));
  3013. /*
  3014. * Should we do an early C-O-W break?
  3015. */
  3016. page = vmf.page;
  3017. if (flags & FAULT_FLAG_WRITE) {
  3018. if (!(vma->vm_flags & VM_SHARED)) {
  3019. page = cow_page;
  3020. anon = 1;
  3021. copy_user_highpage(page, vmf.page, address, vma);
  3022. __SetPageUptodate(page);
  3023. } else {
  3024. /*
  3025. * If the page will be shareable, see if the backing
  3026. * address space wants to know that the page is about
  3027. * to become writable
  3028. */
  3029. if (vma->vm_ops->page_mkwrite) {
  3030. int tmp;
  3031. unlock_page(page);
  3032. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  3033. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  3034. if (unlikely(tmp &
  3035. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  3036. ret = tmp;
  3037. goto unwritable_page;
  3038. }
  3039. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  3040. lock_page(page);
  3041. if (!page->mapping) {
  3042. ret = 0; /* retry the fault */
  3043. unlock_page(page);
  3044. goto unwritable_page;
  3045. }
  3046. } else
  3047. VM_BUG_ON(!PageLocked(page));
  3048. page_mkwrite = 1;
  3049. }
  3050. }
  3051. }
  3052. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  3053. /*
  3054. * This silly early PAGE_DIRTY setting removes a race
  3055. * due to the bad i386 page protection. But it's valid
  3056. * for other architectures too.
  3057. *
  3058. * Note that if FAULT_FLAG_WRITE is set, we either now have
  3059. * an exclusive copy of the page, or this is a shared mapping,
  3060. * so we can make it writable and dirty to avoid having to
  3061. * handle that later.
  3062. */
  3063. /* Only go through if we didn't race with anybody else... */
  3064. if (likely(pte_same(*page_table, orig_pte))) {
  3065. flush_icache_page(vma, page);
  3066. entry = mk_pte(page, vma->vm_page_prot);
  3067. if (flags & FAULT_FLAG_WRITE)
  3068. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  3069. if (anon) {
  3070. inc_mm_counter_fast(mm, MM_ANONPAGES);
  3071. page_add_new_anon_rmap(page, vma, address);
  3072. } else {
  3073. inc_mm_counter_fast(mm, MM_FILEPAGES);
  3074. page_add_file_rmap(page);
  3075. if (flags & FAULT_FLAG_WRITE) {
  3076. dirty_page = page;
  3077. get_page(dirty_page);
  3078. }
  3079. }
  3080. set_pte_at(mm, address, page_table, entry);
  3081. /* no need to invalidate: a not-present page won't be cached */
  3082. update_mmu_cache(vma, address, page_table);
  3083. } else {
  3084. if (cow_page)
  3085. mem_cgroup_uncharge_page(cow_page);
  3086. if (anon)
  3087. page_cache_release(page);
  3088. else
  3089. anon = 1; /* no anon but release faulted_page */
  3090. }
  3091. pte_unmap_unlock(page_table, ptl);
  3092. if (dirty_page) {
  3093. struct address_space *mapping = page->mapping;
  3094. int dirtied = 0;
  3095. if (set_page_dirty(dirty_page))
  3096. dirtied = 1;
  3097. unlock_page(dirty_page);
  3098. put_page(dirty_page);
  3099. if ((dirtied || page_mkwrite) && mapping) {
  3100. /*
  3101. * Some device drivers do not set page.mapping but still
  3102. * dirty their pages
  3103. */
  3104. balance_dirty_pages_ratelimited(mapping);
  3105. }
  3106. /* file_update_time outside page_lock */
  3107. if (vma->vm_file && !page_mkwrite)
  3108. file_update_time(vma->vm_file);
  3109. } else {
  3110. unlock_page(vmf.page);
  3111. if (anon)
  3112. page_cache_release(vmf.page);
  3113. }
  3114. return ret;
  3115. unwritable_page:
  3116. page_cache_release(page);
  3117. return ret;
  3118. uncharge_out:
  3119. /* fs's fault handler get error */
  3120. if (cow_page) {
  3121. mem_cgroup_uncharge_page(cow_page);
  3122. page_cache_release(cow_page);
  3123. }
  3124. return ret;
  3125. }
  3126. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3127. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3128. unsigned int flags, pte_t orig_pte)
  3129. {
  3130. pgoff_t pgoff = (((address & PAGE_MASK)
  3131. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3132. pte_unmap(page_table);
  3133. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3134. }
  3135. /*
  3136. * Fault of a previously existing named mapping. Repopulate the pte
  3137. * from the encoded file_pte if possible. This enables swappable
  3138. * nonlinear vmas.
  3139. *
  3140. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3141. * but allow concurrent faults), and pte mapped but not yet locked.
  3142. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3143. */
  3144. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3145. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3146. unsigned int flags, pte_t orig_pte)
  3147. {
  3148. pgoff_t pgoff;
  3149. flags |= FAULT_FLAG_NONLINEAR;
  3150. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3151. return 0;
  3152. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3153. /*
  3154. * Page table corrupted: show pte and kill process.
  3155. */
  3156. print_bad_pte(vma, address, orig_pte, NULL);
  3157. return VM_FAULT_SIGBUS;
  3158. }
  3159. pgoff = pte_to_pgoff(orig_pte);
  3160. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3161. }
  3162. int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  3163. unsigned long addr, int current_nid)
  3164. {
  3165. get_page(page);
  3166. count_vm_numa_event(NUMA_HINT_FAULTS);
  3167. if (current_nid == numa_node_id())
  3168. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  3169. return mpol_misplaced(page, vma, addr);
  3170. }
  3171. int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3172. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  3173. {
  3174. struct page *page = NULL;
  3175. spinlock_t *ptl;
  3176. int current_nid = -1;
  3177. int target_nid;
  3178. bool migrated = false;
  3179. /*
  3180. * The "pte" at this point cannot be used safely without
  3181. * validation through pte_unmap_same(). It's of NUMA type but
  3182. * the pfn may be screwed if the read is non atomic.
  3183. *
  3184. * ptep_modify_prot_start is not called as this is clearing
  3185. * the _PAGE_NUMA bit and it is not really expected that there
  3186. * would be concurrent hardware modifications to the PTE.
  3187. */
  3188. ptl = pte_lockptr(mm, pmd);
  3189. spin_lock(ptl);
  3190. if (unlikely(!pte_same(*ptep, pte))) {
  3191. pte_unmap_unlock(ptep, ptl);
  3192. goto out;
  3193. }
  3194. pte = pte_mknonnuma(pte);
  3195. set_pte_at(mm, addr, ptep, pte);
  3196. update_mmu_cache(vma, addr, ptep);
  3197. page = vm_normal_page(vma, addr, pte);
  3198. if (!page) {
  3199. pte_unmap_unlock(ptep, ptl);
  3200. return 0;
  3201. }
  3202. current_nid = page_to_nid(page);
  3203. target_nid = numa_migrate_prep(page, vma, addr, current_nid);
  3204. pte_unmap_unlock(ptep, ptl);
  3205. if (target_nid == -1) {
  3206. /*
  3207. * Account for the fault against the current node if it not
  3208. * being replaced regardless of where the page is located.
  3209. */
  3210. current_nid = numa_node_id();
  3211. put_page(page);
  3212. goto out;
  3213. }
  3214. /* Migrate to the requested node */
  3215. migrated = migrate_misplaced_page(page, target_nid);
  3216. if (migrated)
  3217. current_nid = target_nid;
  3218. out:
  3219. if (current_nid != -1)
  3220. task_numa_fault(current_nid, 1, migrated);
  3221. return 0;
  3222. }
  3223. /* NUMA hinting page fault entry point for regular pmds */
  3224. #ifdef CONFIG_NUMA_BALANCING
  3225. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3226. unsigned long addr, pmd_t *pmdp)
  3227. {
  3228. pmd_t pmd;
  3229. pte_t *pte, *orig_pte;
  3230. unsigned long _addr = addr & PMD_MASK;
  3231. unsigned long offset;
  3232. spinlock_t *ptl;
  3233. bool numa = false;
  3234. int local_nid = numa_node_id();
  3235. spin_lock(&mm->page_table_lock);
  3236. pmd = *pmdp;
  3237. if (pmd_numa(pmd)) {
  3238. set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
  3239. numa = true;
  3240. }
  3241. spin_unlock(&mm->page_table_lock);
  3242. if (!numa)
  3243. return 0;
  3244. /* we're in a page fault so some vma must be in the range */
  3245. BUG_ON(!vma);
  3246. BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
  3247. offset = max(_addr, vma->vm_start) & ~PMD_MASK;
  3248. VM_BUG_ON(offset >= PMD_SIZE);
  3249. orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
  3250. pte += offset >> PAGE_SHIFT;
  3251. for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
  3252. pte_t pteval = *pte;
  3253. struct page *page;
  3254. int curr_nid = local_nid;
  3255. int target_nid;
  3256. bool migrated;
  3257. if (!pte_present(pteval))
  3258. continue;
  3259. if (!pte_numa(pteval))
  3260. continue;
  3261. if (addr >= vma->vm_end) {
  3262. vma = find_vma(mm, addr);
  3263. /* there's a pte present so there must be a vma */
  3264. BUG_ON(!vma);
  3265. BUG_ON(addr < vma->vm_start);
  3266. }
  3267. if (pte_numa(pteval)) {
  3268. pteval = pte_mknonnuma(pteval);
  3269. set_pte_at(mm, addr, pte, pteval);
  3270. }
  3271. page = vm_normal_page(vma, addr, pteval);
  3272. if (unlikely(!page))
  3273. continue;
  3274. /* only check non-shared pages */
  3275. if (unlikely(page_mapcount(page) != 1))
  3276. continue;
  3277. /*
  3278. * Note that the NUMA fault is later accounted to either
  3279. * the node that is currently running or where the page is
  3280. * migrated to.
  3281. */
  3282. curr_nid = local_nid;
  3283. target_nid = numa_migrate_prep(page, vma, addr,
  3284. page_to_nid(page));
  3285. if (target_nid == -1) {
  3286. put_page(page);
  3287. continue;
  3288. }
  3289. /* Migrate to the requested node */
  3290. pte_unmap_unlock(pte, ptl);
  3291. migrated = migrate_misplaced_page(page, target_nid);
  3292. if (migrated)
  3293. curr_nid = target_nid;
  3294. task_numa_fault(curr_nid, 1, migrated);
  3295. pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
  3296. }
  3297. pte_unmap_unlock(orig_pte, ptl);
  3298. return 0;
  3299. }
  3300. #else
  3301. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3302. unsigned long addr, pmd_t *pmdp)
  3303. {
  3304. BUG();
  3305. return 0;
  3306. }
  3307. #endif /* CONFIG_NUMA_BALANCING */
  3308. /*
  3309. * These routines also need to handle stuff like marking pages dirty
  3310. * and/or accessed for architectures that don't do it in hardware (most
  3311. * RISC architectures). The early dirtying is also good on the i386.
  3312. *
  3313. * There is also a hook called "update_mmu_cache()" that architectures
  3314. * with external mmu caches can use to update those (ie the Sparc or
  3315. * PowerPC hashed page tables that act as extended TLBs).
  3316. *
  3317. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3318. * but allow concurrent faults), and pte mapped but not yet locked.
  3319. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3320. */
  3321. int handle_pte_fault(struct mm_struct *mm,
  3322. struct vm_area_struct *vma, unsigned long address,
  3323. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3324. {
  3325. pte_t entry;
  3326. spinlock_t *ptl;
  3327. entry = *pte;
  3328. if (!pte_present(entry)) {
  3329. if (pte_none(entry)) {
  3330. if (vma->vm_ops) {
  3331. if (likely(vma->vm_ops->fault))
  3332. return do_linear_fault(mm, vma, address,
  3333. pte, pmd, flags, entry);
  3334. }
  3335. return do_anonymous_page(mm, vma, address,
  3336. pte, pmd, flags);
  3337. }
  3338. if (pte_file(entry))
  3339. return do_nonlinear_fault(mm, vma, address,
  3340. pte, pmd, flags, entry);
  3341. return do_swap_page(mm, vma, address,
  3342. pte, pmd, flags, entry);
  3343. }
  3344. if (pte_numa(entry))
  3345. return do_numa_page(mm, vma, address, entry, pte, pmd);
  3346. ptl = pte_lockptr(mm, pmd);
  3347. spin_lock(ptl);
  3348. if (unlikely(!pte_same(*pte, entry)))
  3349. goto unlock;
  3350. if (flags & FAULT_FLAG_WRITE) {
  3351. if (!pte_write(entry))
  3352. return do_wp_page(mm, vma, address,
  3353. pte, pmd, ptl, entry);
  3354. entry = pte_mkdirty(entry);
  3355. }
  3356. entry = pte_mkyoung(entry);
  3357. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3358. update_mmu_cache(vma, address, pte);
  3359. } else {
  3360. /*
  3361. * This is needed only for protection faults but the arch code
  3362. * is not yet telling us if this is a protection fault or not.
  3363. * This still avoids useless tlb flushes for .text page faults
  3364. * with threads.
  3365. */
  3366. if (flags & FAULT_FLAG_WRITE)
  3367. flush_tlb_fix_spurious_fault(vma, address);
  3368. }
  3369. unlock:
  3370. pte_unmap_unlock(pte, ptl);
  3371. return 0;
  3372. }
  3373. /*
  3374. * By the time we get here, we already hold the mm semaphore
  3375. */
  3376. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3377. unsigned long address, unsigned int flags)
  3378. {
  3379. pgd_t *pgd;
  3380. pud_t *pud;
  3381. pmd_t *pmd;
  3382. pte_t *pte;
  3383. __set_current_state(TASK_RUNNING);
  3384. count_vm_event(PGFAULT);
  3385. mem_cgroup_count_vm_event(mm, PGFAULT);
  3386. /* do counter updates before entering really critical section. */
  3387. check_sync_rss_stat(current);
  3388. if (unlikely(is_vm_hugetlb_page(vma)))
  3389. return hugetlb_fault(mm, vma, address, flags);
  3390. retry:
  3391. pgd = pgd_offset(mm, address);
  3392. pud = pud_alloc(mm, pgd, address);
  3393. if (!pud)
  3394. return VM_FAULT_OOM;
  3395. pmd = pmd_alloc(mm, pud, address);
  3396. if (!pmd)
  3397. return VM_FAULT_OOM;
  3398. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3399. if (!vma->vm_ops)
  3400. return do_huge_pmd_anonymous_page(mm, vma, address,
  3401. pmd, flags);
  3402. } else {
  3403. pmd_t orig_pmd = *pmd;
  3404. int ret;
  3405. barrier();
  3406. if (pmd_trans_huge(orig_pmd)) {
  3407. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3408. /*
  3409. * If the pmd is splitting, return and retry the
  3410. * the fault. Alternative: wait until the split
  3411. * is done, and goto retry.
  3412. */
  3413. if (pmd_trans_splitting(orig_pmd))
  3414. return 0;
  3415. if (pmd_numa(orig_pmd))
  3416. return do_huge_pmd_numa_page(mm, vma, address,
  3417. orig_pmd, pmd);
  3418. if (dirty && !pmd_write(orig_pmd)) {
  3419. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  3420. orig_pmd);
  3421. /*
  3422. * If COW results in an oom, the huge pmd will
  3423. * have been split, so retry the fault on the
  3424. * pte for a smaller charge.
  3425. */
  3426. if (unlikely(ret & VM_FAULT_OOM))
  3427. goto retry;
  3428. return ret;
  3429. } else {
  3430. huge_pmd_set_accessed(mm, vma, address, pmd,
  3431. orig_pmd, dirty);
  3432. }
  3433. return 0;
  3434. }
  3435. }
  3436. if (pmd_numa(*pmd))
  3437. return do_pmd_numa_page(mm, vma, address, pmd);
  3438. /*
  3439. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3440. * run pte_offset_map on the pmd, if an huge pmd could
  3441. * materialize from under us from a different thread.
  3442. */
  3443. if (unlikely(pmd_none(*pmd)) &&
  3444. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3445. return VM_FAULT_OOM;
  3446. /* if an huge pmd materialized from under us just retry later */
  3447. if (unlikely(pmd_trans_huge(*pmd)))
  3448. return 0;
  3449. /*
  3450. * A regular pmd is established and it can't morph into a huge pmd
  3451. * from under us anymore at this point because we hold the mmap_sem
  3452. * read mode and khugepaged takes it in write mode. So now it's
  3453. * safe to run pte_offset_map().
  3454. */
  3455. pte = pte_offset_map(pmd, address);
  3456. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3457. }
  3458. #ifndef __PAGETABLE_PUD_FOLDED
  3459. /*
  3460. * Allocate page upper directory.
  3461. * We've already handled the fast-path in-line.
  3462. */
  3463. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3464. {
  3465. pud_t *new = pud_alloc_one(mm, address);
  3466. if (!new)
  3467. return -ENOMEM;
  3468. smp_wmb(); /* See comment in __pte_alloc */
  3469. spin_lock(&mm->page_table_lock);
  3470. if (pgd_present(*pgd)) /* Another has populated it */
  3471. pud_free(mm, new);
  3472. else
  3473. pgd_populate(mm, pgd, new);
  3474. spin_unlock(&mm->page_table_lock);
  3475. return 0;
  3476. }
  3477. #endif /* __PAGETABLE_PUD_FOLDED */
  3478. #ifndef __PAGETABLE_PMD_FOLDED
  3479. /*
  3480. * Allocate page middle directory.
  3481. * We've already handled the fast-path in-line.
  3482. */
  3483. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3484. {
  3485. pmd_t *new = pmd_alloc_one(mm, address);
  3486. if (!new)
  3487. return -ENOMEM;
  3488. smp_wmb(); /* See comment in __pte_alloc */
  3489. spin_lock(&mm->page_table_lock);
  3490. #ifndef __ARCH_HAS_4LEVEL_HACK
  3491. if (pud_present(*pud)) /* Another has populated it */
  3492. pmd_free(mm, new);
  3493. else
  3494. pud_populate(mm, pud, new);
  3495. #else
  3496. if (pgd_present(*pud)) /* Another has populated it */
  3497. pmd_free(mm, new);
  3498. else
  3499. pgd_populate(mm, pud, new);
  3500. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3501. spin_unlock(&mm->page_table_lock);
  3502. return 0;
  3503. }
  3504. #endif /* __PAGETABLE_PMD_FOLDED */
  3505. #if !defined(__HAVE_ARCH_GATE_AREA)
  3506. #if defined(AT_SYSINFO_EHDR)
  3507. static struct vm_area_struct gate_vma;
  3508. static int __init gate_vma_init(void)
  3509. {
  3510. gate_vma.vm_mm = NULL;
  3511. gate_vma.vm_start = FIXADDR_USER_START;
  3512. gate_vma.vm_end = FIXADDR_USER_END;
  3513. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3514. gate_vma.vm_page_prot = __P101;
  3515. return 0;
  3516. }
  3517. __initcall(gate_vma_init);
  3518. #endif
  3519. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3520. {
  3521. #ifdef AT_SYSINFO_EHDR
  3522. return &gate_vma;
  3523. #else
  3524. return NULL;
  3525. #endif
  3526. }
  3527. int in_gate_area_no_mm(unsigned long addr)
  3528. {
  3529. #ifdef AT_SYSINFO_EHDR
  3530. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3531. return 1;
  3532. #endif
  3533. return 0;
  3534. }
  3535. #endif /* __HAVE_ARCH_GATE_AREA */
  3536. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3537. pte_t **ptepp, spinlock_t **ptlp)
  3538. {
  3539. pgd_t *pgd;
  3540. pud_t *pud;
  3541. pmd_t *pmd;
  3542. pte_t *ptep;
  3543. pgd = pgd_offset(mm, address);
  3544. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3545. goto out;
  3546. pud = pud_offset(pgd, address);
  3547. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3548. goto out;
  3549. pmd = pmd_offset(pud, address);
  3550. VM_BUG_ON(pmd_trans_huge(*pmd));
  3551. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3552. goto out;
  3553. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3554. if (pmd_huge(*pmd))
  3555. goto out;
  3556. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3557. if (!ptep)
  3558. goto out;
  3559. if (!pte_present(*ptep))
  3560. goto unlock;
  3561. *ptepp = ptep;
  3562. return 0;
  3563. unlock:
  3564. pte_unmap_unlock(ptep, *ptlp);
  3565. out:
  3566. return -EINVAL;
  3567. }
  3568. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3569. pte_t **ptepp, spinlock_t **ptlp)
  3570. {
  3571. int res;
  3572. /* (void) is needed to make gcc happy */
  3573. (void) __cond_lock(*ptlp,
  3574. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3575. return res;
  3576. }
  3577. /**
  3578. * follow_pfn - look up PFN at a user virtual address
  3579. * @vma: memory mapping
  3580. * @address: user virtual address
  3581. * @pfn: location to store found PFN
  3582. *
  3583. * Only IO mappings and raw PFN mappings are allowed.
  3584. *
  3585. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3586. */
  3587. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3588. unsigned long *pfn)
  3589. {
  3590. int ret = -EINVAL;
  3591. spinlock_t *ptl;
  3592. pte_t *ptep;
  3593. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3594. return ret;
  3595. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3596. if (ret)
  3597. return ret;
  3598. *pfn = pte_pfn(*ptep);
  3599. pte_unmap_unlock(ptep, ptl);
  3600. return 0;
  3601. }
  3602. EXPORT_SYMBOL(follow_pfn);
  3603. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3604. int follow_phys(struct vm_area_struct *vma,
  3605. unsigned long address, unsigned int flags,
  3606. unsigned long *prot, resource_size_t *phys)
  3607. {
  3608. int ret = -EINVAL;
  3609. pte_t *ptep, pte;
  3610. spinlock_t *ptl;
  3611. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3612. goto out;
  3613. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3614. goto out;
  3615. pte = *ptep;
  3616. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3617. goto unlock;
  3618. *prot = pgprot_val(pte_pgprot(pte));
  3619. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3620. ret = 0;
  3621. unlock:
  3622. pte_unmap_unlock(ptep, ptl);
  3623. out:
  3624. return ret;
  3625. }
  3626. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3627. void *buf, int len, int write)
  3628. {
  3629. resource_size_t phys_addr;
  3630. unsigned long prot = 0;
  3631. void __iomem *maddr;
  3632. int offset = addr & (PAGE_SIZE-1);
  3633. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3634. return -EINVAL;
  3635. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3636. if (write)
  3637. memcpy_toio(maddr + offset, buf, len);
  3638. else
  3639. memcpy_fromio(buf, maddr + offset, len);
  3640. iounmap(maddr);
  3641. return len;
  3642. }
  3643. #endif
  3644. /*
  3645. * Access another process' address space as given in mm. If non-NULL, use the
  3646. * given task for page fault accounting.
  3647. */
  3648. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3649. unsigned long addr, void *buf, int len, int write)
  3650. {
  3651. struct vm_area_struct *vma;
  3652. void *old_buf = buf;
  3653. down_read(&mm->mmap_sem);
  3654. /* ignore errors, just check how much was successfully transferred */
  3655. while (len) {
  3656. int bytes, ret, offset;
  3657. void *maddr;
  3658. struct page *page = NULL;
  3659. ret = get_user_pages(tsk, mm, addr, 1,
  3660. write, 1, &page, &vma);
  3661. if (ret <= 0) {
  3662. /*
  3663. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3664. * we can access using slightly different code.
  3665. */
  3666. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3667. vma = find_vma(mm, addr);
  3668. if (!vma || vma->vm_start > addr)
  3669. break;
  3670. if (vma->vm_ops && vma->vm_ops->access)
  3671. ret = vma->vm_ops->access(vma, addr, buf,
  3672. len, write);
  3673. if (ret <= 0)
  3674. #endif
  3675. break;
  3676. bytes = ret;
  3677. } else {
  3678. bytes = len;
  3679. offset = addr & (PAGE_SIZE-1);
  3680. if (bytes > PAGE_SIZE-offset)
  3681. bytes = PAGE_SIZE-offset;
  3682. maddr = kmap(page);
  3683. if (write) {
  3684. copy_to_user_page(vma, page, addr,
  3685. maddr + offset, buf, bytes);
  3686. set_page_dirty_lock(page);
  3687. } else {
  3688. copy_from_user_page(vma, page, addr,
  3689. buf, maddr + offset, bytes);
  3690. }
  3691. kunmap(page);
  3692. page_cache_release(page);
  3693. }
  3694. len -= bytes;
  3695. buf += bytes;
  3696. addr += bytes;
  3697. }
  3698. up_read(&mm->mmap_sem);
  3699. return buf - old_buf;
  3700. }
  3701. /**
  3702. * access_remote_vm - access another process' address space
  3703. * @mm: the mm_struct of the target address space
  3704. * @addr: start address to access
  3705. * @buf: source or destination buffer
  3706. * @len: number of bytes to transfer
  3707. * @write: whether the access is a write
  3708. *
  3709. * The caller must hold a reference on @mm.
  3710. */
  3711. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3712. void *buf, int len, int write)
  3713. {
  3714. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3715. }
  3716. /*
  3717. * Access another process' address space.
  3718. * Source/target buffer must be kernel space,
  3719. * Do not walk the page table directly, use get_user_pages
  3720. */
  3721. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3722. void *buf, int len, int write)
  3723. {
  3724. struct mm_struct *mm;
  3725. int ret;
  3726. mm = get_task_mm(tsk);
  3727. if (!mm)
  3728. return 0;
  3729. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3730. mmput(mm);
  3731. return ret;
  3732. }
  3733. /*
  3734. * Print the name of a VMA.
  3735. */
  3736. void print_vma_addr(char *prefix, unsigned long ip)
  3737. {
  3738. struct mm_struct *mm = current->mm;
  3739. struct vm_area_struct *vma;
  3740. /*
  3741. * Do not print if we are in atomic
  3742. * contexts (in exception stacks, etc.):
  3743. */
  3744. if (preempt_count())
  3745. return;
  3746. down_read(&mm->mmap_sem);
  3747. vma = find_vma(mm, ip);
  3748. if (vma && vma->vm_file) {
  3749. struct file *f = vma->vm_file;
  3750. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3751. if (buf) {
  3752. char *p;
  3753. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3754. if (IS_ERR(p))
  3755. p = "?";
  3756. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3757. vma->vm_start,
  3758. vma->vm_end - vma->vm_start);
  3759. free_page((unsigned long)buf);
  3760. }
  3761. }
  3762. up_read(&mm->mmap_sem);
  3763. }
  3764. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3765. void might_fault(void)
  3766. {
  3767. /*
  3768. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3769. * holding the mmap_sem, this is safe because kernel memory doesn't
  3770. * get paged out, therefore we'll never actually fault, and the
  3771. * below annotations will generate false positives.
  3772. */
  3773. if (segment_eq(get_fs(), KERNEL_DS))
  3774. return;
  3775. /*
  3776. * it would be nicer only to annotate paths which are not under
  3777. * pagefault_disable, however that requires a larger audit and
  3778. * providing helpers like get_user_atomic.
  3779. */
  3780. if (in_atomic())
  3781. return;
  3782. __might_sleep(__FILE__, __LINE__, 0);
  3783. if (current->mm)
  3784. might_lock_read(&current->mm->mmap_sem);
  3785. }
  3786. EXPORT_SYMBOL(might_fault);
  3787. #endif
  3788. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3789. static void clear_gigantic_page(struct page *page,
  3790. unsigned long addr,
  3791. unsigned int pages_per_huge_page)
  3792. {
  3793. int i;
  3794. struct page *p = page;
  3795. might_sleep();
  3796. for (i = 0; i < pages_per_huge_page;
  3797. i++, p = mem_map_next(p, page, i)) {
  3798. cond_resched();
  3799. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3800. }
  3801. }
  3802. void clear_huge_page(struct page *page,
  3803. unsigned long addr, unsigned int pages_per_huge_page)
  3804. {
  3805. int i;
  3806. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3807. clear_gigantic_page(page, addr, pages_per_huge_page);
  3808. return;
  3809. }
  3810. might_sleep();
  3811. for (i = 0; i < pages_per_huge_page; i++) {
  3812. cond_resched();
  3813. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3814. }
  3815. }
  3816. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3817. unsigned long addr,
  3818. struct vm_area_struct *vma,
  3819. unsigned int pages_per_huge_page)
  3820. {
  3821. int i;
  3822. struct page *dst_base = dst;
  3823. struct page *src_base = src;
  3824. for (i = 0; i < pages_per_huge_page; ) {
  3825. cond_resched();
  3826. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3827. i++;
  3828. dst = mem_map_next(dst, dst_base, i);
  3829. src = mem_map_next(src, src_base, i);
  3830. }
  3831. }
  3832. void copy_user_huge_page(struct page *dst, struct page *src,
  3833. unsigned long addr, struct vm_area_struct *vma,
  3834. unsigned int pages_per_huge_page)
  3835. {
  3836. int i;
  3837. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3838. copy_user_gigantic_page(dst, src, addr, vma,
  3839. pages_per_huge_page);
  3840. return;
  3841. }
  3842. might_sleep();
  3843. for (i = 0; i < pages_per_huge_page; i++) {
  3844. cond_resched();
  3845. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3846. }
  3847. }
  3848. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */