tcp_input.c 175 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_ecn __read_mostly = 2;
  81. EXPORT_SYMBOL(sysctl_tcp_ecn);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. /* rfc5961 challenge ack rate limiting */
  87. int sysctl_tcp_challenge_ack_limit = 100;
  88. int sysctl_tcp_stdurg __read_mostly;
  89. int sysctl_tcp_rfc1337 __read_mostly;
  90. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  91. int sysctl_tcp_frto __read_mostly = 2;
  92. int sysctl_tcp_frto_response __read_mostly;
  93. int sysctl_tcp_thin_dupack __read_mostly;
  94. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  95. int sysctl_tcp_abc __read_mostly;
  96. int sysctl_tcp_early_retrans __read_mostly = 2;
  97. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  98. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  99. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  100. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  101. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  102. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  103. #define FLAG_ECE 0x40 /* ECE in this ACK */
  104. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  105. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  106. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  107. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  108. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  109. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  110. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  111. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  112. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  113. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  114. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  115. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  116. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  117. /* Adapt the MSS value used to make delayed ack decision to the
  118. * real world.
  119. */
  120. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  121. {
  122. struct inet_connection_sock *icsk = inet_csk(sk);
  123. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  124. unsigned int len;
  125. icsk->icsk_ack.last_seg_size = 0;
  126. /* skb->len may jitter because of SACKs, even if peer
  127. * sends good full-sized frames.
  128. */
  129. len = skb_shinfo(skb)->gso_size ? : skb->len;
  130. if (len >= icsk->icsk_ack.rcv_mss) {
  131. icsk->icsk_ack.rcv_mss = len;
  132. } else {
  133. /* Otherwise, we make more careful check taking into account,
  134. * that SACKs block is variable.
  135. *
  136. * "len" is invariant segment length, including TCP header.
  137. */
  138. len += skb->data - skb_transport_header(skb);
  139. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  140. /* If PSH is not set, packet should be
  141. * full sized, provided peer TCP is not badly broken.
  142. * This observation (if it is correct 8)) allows
  143. * to handle super-low mtu links fairly.
  144. */
  145. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  146. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  147. /* Subtract also invariant (if peer is RFC compliant),
  148. * tcp header plus fixed timestamp option length.
  149. * Resulting "len" is MSS free of SACK jitter.
  150. */
  151. len -= tcp_sk(sk)->tcp_header_len;
  152. icsk->icsk_ack.last_seg_size = len;
  153. if (len == lss) {
  154. icsk->icsk_ack.rcv_mss = len;
  155. return;
  156. }
  157. }
  158. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  159. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  160. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  161. }
  162. }
  163. static void tcp_incr_quickack(struct sock *sk)
  164. {
  165. struct inet_connection_sock *icsk = inet_csk(sk);
  166. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  167. if (quickacks == 0)
  168. quickacks = 2;
  169. if (quickacks > icsk->icsk_ack.quick)
  170. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  171. }
  172. static void tcp_enter_quickack_mode(struct sock *sk)
  173. {
  174. struct inet_connection_sock *icsk = inet_csk(sk);
  175. tcp_incr_quickack(sk);
  176. icsk->icsk_ack.pingpong = 0;
  177. icsk->icsk_ack.ato = TCP_ATO_MIN;
  178. }
  179. /* Send ACKs quickly, if "quick" count is not exhausted
  180. * and the session is not interactive.
  181. */
  182. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  183. {
  184. const struct inet_connection_sock *icsk = inet_csk(sk);
  185. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  186. }
  187. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  188. {
  189. if (tp->ecn_flags & TCP_ECN_OK)
  190. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  191. }
  192. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  193. {
  194. if (tcp_hdr(skb)->cwr)
  195. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  196. }
  197. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  198. {
  199. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  200. }
  201. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  202. {
  203. if (!(tp->ecn_flags & TCP_ECN_OK))
  204. return;
  205. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  206. case INET_ECN_NOT_ECT:
  207. /* Funny extension: if ECT is not set on a segment,
  208. * and we already seen ECT on a previous segment,
  209. * it is probably a retransmit.
  210. */
  211. if (tp->ecn_flags & TCP_ECN_SEEN)
  212. tcp_enter_quickack_mode((struct sock *)tp);
  213. break;
  214. case INET_ECN_CE:
  215. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  216. /* Better not delay acks, sender can have a very low cwnd */
  217. tcp_enter_quickack_mode((struct sock *)tp);
  218. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  219. }
  220. /* fallinto */
  221. default:
  222. tp->ecn_flags |= TCP_ECN_SEEN;
  223. }
  224. }
  225. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  226. {
  227. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  228. tp->ecn_flags &= ~TCP_ECN_OK;
  229. }
  230. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  231. {
  232. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  233. tp->ecn_flags &= ~TCP_ECN_OK;
  234. }
  235. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  236. {
  237. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  238. return true;
  239. return false;
  240. }
  241. /* Buffer size and advertised window tuning.
  242. *
  243. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  244. */
  245. static void tcp_fixup_sndbuf(struct sock *sk)
  246. {
  247. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  248. sndmem *= TCP_INIT_CWND;
  249. if (sk->sk_sndbuf < sndmem)
  250. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  251. }
  252. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  253. *
  254. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  255. * forward and advertised in receiver window (tp->rcv_wnd) and
  256. * "application buffer", required to isolate scheduling/application
  257. * latencies from network.
  258. * window_clamp is maximal advertised window. It can be less than
  259. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  260. * is reserved for "application" buffer. The less window_clamp is
  261. * the smoother our behaviour from viewpoint of network, but the lower
  262. * throughput and the higher sensitivity of the connection to losses. 8)
  263. *
  264. * rcv_ssthresh is more strict window_clamp used at "slow start"
  265. * phase to predict further behaviour of this connection.
  266. * It is used for two goals:
  267. * - to enforce header prediction at sender, even when application
  268. * requires some significant "application buffer". It is check #1.
  269. * - to prevent pruning of receive queue because of misprediction
  270. * of receiver window. Check #2.
  271. *
  272. * The scheme does not work when sender sends good segments opening
  273. * window and then starts to feed us spaghetti. But it should work
  274. * in common situations. Otherwise, we have to rely on queue collapsing.
  275. */
  276. /* Slow part of check#2. */
  277. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  278. {
  279. struct tcp_sock *tp = tcp_sk(sk);
  280. /* Optimize this! */
  281. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  282. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  283. while (tp->rcv_ssthresh <= window) {
  284. if (truesize <= skb->len)
  285. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  286. truesize >>= 1;
  287. window >>= 1;
  288. }
  289. return 0;
  290. }
  291. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  292. {
  293. struct tcp_sock *tp = tcp_sk(sk);
  294. /* Check #1 */
  295. if (tp->rcv_ssthresh < tp->window_clamp &&
  296. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  297. !sk_under_memory_pressure(sk)) {
  298. int incr;
  299. /* Check #2. Increase window, if skb with such overhead
  300. * will fit to rcvbuf in future.
  301. */
  302. if (tcp_win_from_space(skb->truesize) <= skb->len)
  303. incr = 2 * tp->advmss;
  304. else
  305. incr = __tcp_grow_window(sk, skb);
  306. if (incr) {
  307. incr = max_t(int, incr, 2 * skb->len);
  308. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  309. tp->window_clamp);
  310. inet_csk(sk)->icsk_ack.quick |= 1;
  311. }
  312. }
  313. }
  314. /* 3. Tuning rcvbuf, when connection enters established state. */
  315. static void tcp_fixup_rcvbuf(struct sock *sk)
  316. {
  317. u32 mss = tcp_sk(sk)->advmss;
  318. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  319. int rcvmem;
  320. /* Limit to 10 segments if mss <= 1460,
  321. * or 14600/mss segments, with a minimum of two segments.
  322. */
  323. if (mss > 1460)
  324. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  325. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  326. while (tcp_win_from_space(rcvmem) < mss)
  327. rcvmem += 128;
  328. rcvmem *= icwnd;
  329. if (sk->sk_rcvbuf < rcvmem)
  330. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  331. }
  332. /* 4. Try to fixup all. It is made immediately after connection enters
  333. * established state.
  334. */
  335. void tcp_init_buffer_space(struct sock *sk)
  336. {
  337. struct tcp_sock *tp = tcp_sk(sk);
  338. int maxwin;
  339. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  340. tcp_fixup_rcvbuf(sk);
  341. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  342. tcp_fixup_sndbuf(sk);
  343. tp->rcvq_space.space = tp->rcv_wnd;
  344. maxwin = tcp_full_space(sk);
  345. if (tp->window_clamp >= maxwin) {
  346. tp->window_clamp = maxwin;
  347. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  348. tp->window_clamp = max(maxwin -
  349. (maxwin >> sysctl_tcp_app_win),
  350. 4 * tp->advmss);
  351. }
  352. /* Force reservation of one segment. */
  353. if (sysctl_tcp_app_win &&
  354. tp->window_clamp > 2 * tp->advmss &&
  355. tp->window_clamp + tp->advmss > maxwin)
  356. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  357. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  358. tp->snd_cwnd_stamp = tcp_time_stamp;
  359. }
  360. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  361. static void tcp_clamp_window(struct sock *sk)
  362. {
  363. struct tcp_sock *tp = tcp_sk(sk);
  364. struct inet_connection_sock *icsk = inet_csk(sk);
  365. icsk->icsk_ack.quick = 0;
  366. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  367. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  368. !sk_under_memory_pressure(sk) &&
  369. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  370. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  371. sysctl_tcp_rmem[2]);
  372. }
  373. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  374. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  375. }
  376. /* Initialize RCV_MSS value.
  377. * RCV_MSS is an our guess about MSS used by the peer.
  378. * We haven't any direct information about the MSS.
  379. * It's better to underestimate the RCV_MSS rather than overestimate.
  380. * Overestimations make us ACKing less frequently than needed.
  381. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  382. */
  383. void tcp_initialize_rcv_mss(struct sock *sk)
  384. {
  385. const struct tcp_sock *tp = tcp_sk(sk);
  386. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  387. hint = min(hint, tp->rcv_wnd / 2);
  388. hint = min(hint, TCP_MSS_DEFAULT);
  389. hint = max(hint, TCP_MIN_MSS);
  390. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  391. }
  392. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  393. /* Receiver "autotuning" code.
  394. *
  395. * The algorithm for RTT estimation w/o timestamps is based on
  396. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  397. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  398. *
  399. * More detail on this code can be found at
  400. * <http://staff.psc.edu/jheffner/>,
  401. * though this reference is out of date. A new paper
  402. * is pending.
  403. */
  404. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  405. {
  406. u32 new_sample = tp->rcv_rtt_est.rtt;
  407. long m = sample;
  408. if (m == 0)
  409. m = 1;
  410. if (new_sample != 0) {
  411. /* If we sample in larger samples in the non-timestamp
  412. * case, we could grossly overestimate the RTT especially
  413. * with chatty applications or bulk transfer apps which
  414. * are stalled on filesystem I/O.
  415. *
  416. * Also, since we are only going for a minimum in the
  417. * non-timestamp case, we do not smooth things out
  418. * else with timestamps disabled convergence takes too
  419. * long.
  420. */
  421. if (!win_dep) {
  422. m -= (new_sample >> 3);
  423. new_sample += m;
  424. } else {
  425. m <<= 3;
  426. if (m < new_sample)
  427. new_sample = m;
  428. }
  429. } else {
  430. /* No previous measure. */
  431. new_sample = m << 3;
  432. }
  433. if (tp->rcv_rtt_est.rtt != new_sample)
  434. tp->rcv_rtt_est.rtt = new_sample;
  435. }
  436. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  437. {
  438. if (tp->rcv_rtt_est.time == 0)
  439. goto new_measure;
  440. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  441. return;
  442. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  443. new_measure:
  444. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  445. tp->rcv_rtt_est.time = tcp_time_stamp;
  446. }
  447. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  448. const struct sk_buff *skb)
  449. {
  450. struct tcp_sock *tp = tcp_sk(sk);
  451. if (tp->rx_opt.rcv_tsecr &&
  452. (TCP_SKB_CB(skb)->end_seq -
  453. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  454. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  455. }
  456. /*
  457. * This function should be called every time data is copied to user space.
  458. * It calculates the appropriate TCP receive buffer space.
  459. */
  460. void tcp_rcv_space_adjust(struct sock *sk)
  461. {
  462. struct tcp_sock *tp = tcp_sk(sk);
  463. int time;
  464. int space;
  465. if (tp->rcvq_space.time == 0)
  466. goto new_measure;
  467. time = tcp_time_stamp - tp->rcvq_space.time;
  468. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  469. return;
  470. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  471. space = max(tp->rcvq_space.space, space);
  472. if (tp->rcvq_space.space != space) {
  473. int rcvmem;
  474. tp->rcvq_space.space = space;
  475. if (sysctl_tcp_moderate_rcvbuf &&
  476. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  477. int new_clamp = space;
  478. /* Receive space grows, normalize in order to
  479. * take into account packet headers and sk_buff
  480. * structure overhead.
  481. */
  482. space /= tp->advmss;
  483. if (!space)
  484. space = 1;
  485. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  486. while (tcp_win_from_space(rcvmem) < tp->advmss)
  487. rcvmem += 128;
  488. space *= rcvmem;
  489. space = min(space, sysctl_tcp_rmem[2]);
  490. if (space > sk->sk_rcvbuf) {
  491. sk->sk_rcvbuf = space;
  492. /* Make the window clamp follow along. */
  493. tp->window_clamp = new_clamp;
  494. }
  495. }
  496. }
  497. new_measure:
  498. tp->rcvq_space.seq = tp->copied_seq;
  499. tp->rcvq_space.time = tcp_time_stamp;
  500. }
  501. /* There is something which you must keep in mind when you analyze the
  502. * behavior of the tp->ato delayed ack timeout interval. When a
  503. * connection starts up, we want to ack as quickly as possible. The
  504. * problem is that "good" TCP's do slow start at the beginning of data
  505. * transmission. The means that until we send the first few ACK's the
  506. * sender will sit on his end and only queue most of his data, because
  507. * he can only send snd_cwnd unacked packets at any given time. For
  508. * each ACK we send, he increments snd_cwnd and transmits more of his
  509. * queue. -DaveM
  510. */
  511. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  512. {
  513. struct tcp_sock *tp = tcp_sk(sk);
  514. struct inet_connection_sock *icsk = inet_csk(sk);
  515. u32 now;
  516. inet_csk_schedule_ack(sk);
  517. tcp_measure_rcv_mss(sk, skb);
  518. tcp_rcv_rtt_measure(tp);
  519. now = tcp_time_stamp;
  520. if (!icsk->icsk_ack.ato) {
  521. /* The _first_ data packet received, initialize
  522. * delayed ACK engine.
  523. */
  524. tcp_incr_quickack(sk);
  525. icsk->icsk_ack.ato = TCP_ATO_MIN;
  526. } else {
  527. int m = now - icsk->icsk_ack.lrcvtime;
  528. if (m <= TCP_ATO_MIN / 2) {
  529. /* The fastest case is the first. */
  530. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  531. } else if (m < icsk->icsk_ack.ato) {
  532. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  533. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  534. icsk->icsk_ack.ato = icsk->icsk_rto;
  535. } else if (m > icsk->icsk_rto) {
  536. /* Too long gap. Apparently sender failed to
  537. * restart window, so that we send ACKs quickly.
  538. */
  539. tcp_incr_quickack(sk);
  540. sk_mem_reclaim(sk);
  541. }
  542. }
  543. icsk->icsk_ack.lrcvtime = now;
  544. TCP_ECN_check_ce(tp, skb);
  545. if (skb->len >= 128)
  546. tcp_grow_window(sk, skb);
  547. }
  548. /* Called to compute a smoothed rtt estimate. The data fed to this
  549. * routine either comes from timestamps, or from segments that were
  550. * known _not_ to have been retransmitted [see Karn/Partridge
  551. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  552. * piece by Van Jacobson.
  553. * NOTE: the next three routines used to be one big routine.
  554. * To save cycles in the RFC 1323 implementation it was better to break
  555. * it up into three procedures. -- erics
  556. */
  557. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  558. {
  559. struct tcp_sock *tp = tcp_sk(sk);
  560. long m = mrtt; /* RTT */
  561. /* The following amusing code comes from Jacobson's
  562. * article in SIGCOMM '88. Note that rtt and mdev
  563. * are scaled versions of rtt and mean deviation.
  564. * This is designed to be as fast as possible
  565. * m stands for "measurement".
  566. *
  567. * On a 1990 paper the rto value is changed to:
  568. * RTO = rtt + 4 * mdev
  569. *
  570. * Funny. This algorithm seems to be very broken.
  571. * These formulae increase RTO, when it should be decreased, increase
  572. * too slowly, when it should be increased quickly, decrease too quickly
  573. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  574. * does not matter how to _calculate_ it. Seems, it was trap
  575. * that VJ failed to avoid. 8)
  576. */
  577. if (m == 0)
  578. m = 1;
  579. if (tp->srtt != 0) {
  580. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  581. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  582. if (m < 0) {
  583. m = -m; /* m is now abs(error) */
  584. m -= (tp->mdev >> 2); /* similar update on mdev */
  585. /* This is similar to one of Eifel findings.
  586. * Eifel blocks mdev updates when rtt decreases.
  587. * This solution is a bit different: we use finer gain
  588. * for mdev in this case (alpha*beta).
  589. * Like Eifel it also prevents growth of rto,
  590. * but also it limits too fast rto decreases,
  591. * happening in pure Eifel.
  592. */
  593. if (m > 0)
  594. m >>= 3;
  595. } else {
  596. m -= (tp->mdev >> 2); /* similar update on mdev */
  597. }
  598. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  599. if (tp->mdev > tp->mdev_max) {
  600. tp->mdev_max = tp->mdev;
  601. if (tp->mdev_max > tp->rttvar)
  602. tp->rttvar = tp->mdev_max;
  603. }
  604. if (after(tp->snd_una, tp->rtt_seq)) {
  605. if (tp->mdev_max < tp->rttvar)
  606. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  607. tp->rtt_seq = tp->snd_nxt;
  608. tp->mdev_max = tcp_rto_min(sk);
  609. }
  610. } else {
  611. /* no previous measure. */
  612. tp->srtt = m << 3; /* take the measured time to be rtt */
  613. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  614. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  615. tp->rtt_seq = tp->snd_nxt;
  616. }
  617. }
  618. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  619. * routine referred to above.
  620. */
  621. void tcp_set_rto(struct sock *sk)
  622. {
  623. const struct tcp_sock *tp = tcp_sk(sk);
  624. /* Old crap is replaced with new one. 8)
  625. *
  626. * More seriously:
  627. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  628. * It cannot be less due to utterly erratic ACK generation made
  629. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  630. * to do with delayed acks, because at cwnd>2 true delack timeout
  631. * is invisible. Actually, Linux-2.4 also generates erratic
  632. * ACKs in some circumstances.
  633. */
  634. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  635. /* 2. Fixups made earlier cannot be right.
  636. * If we do not estimate RTO correctly without them,
  637. * all the algo is pure shit and should be replaced
  638. * with correct one. It is exactly, which we pretend to do.
  639. */
  640. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  641. * guarantees that rto is higher.
  642. */
  643. tcp_bound_rto(sk);
  644. }
  645. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  646. {
  647. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  648. if (!cwnd)
  649. cwnd = TCP_INIT_CWND;
  650. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  651. }
  652. /*
  653. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  654. * disables it when reordering is detected
  655. */
  656. void tcp_disable_fack(struct tcp_sock *tp)
  657. {
  658. /* RFC3517 uses different metric in lost marker => reset on change */
  659. if (tcp_is_fack(tp))
  660. tp->lost_skb_hint = NULL;
  661. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  662. }
  663. /* Take a notice that peer is sending D-SACKs */
  664. static void tcp_dsack_seen(struct tcp_sock *tp)
  665. {
  666. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  667. }
  668. static void tcp_update_reordering(struct sock *sk, const int metric,
  669. const int ts)
  670. {
  671. struct tcp_sock *tp = tcp_sk(sk);
  672. if (metric > tp->reordering) {
  673. int mib_idx;
  674. tp->reordering = min(TCP_MAX_REORDERING, metric);
  675. /* This exciting event is worth to be remembered. 8) */
  676. if (ts)
  677. mib_idx = LINUX_MIB_TCPTSREORDER;
  678. else if (tcp_is_reno(tp))
  679. mib_idx = LINUX_MIB_TCPRENOREORDER;
  680. else if (tcp_is_fack(tp))
  681. mib_idx = LINUX_MIB_TCPFACKREORDER;
  682. else
  683. mib_idx = LINUX_MIB_TCPSACKREORDER;
  684. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  685. #if FASTRETRANS_DEBUG > 1
  686. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  687. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  688. tp->reordering,
  689. tp->fackets_out,
  690. tp->sacked_out,
  691. tp->undo_marker ? tp->undo_retrans : 0);
  692. #endif
  693. tcp_disable_fack(tp);
  694. }
  695. if (metric > 0)
  696. tcp_disable_early_retrans(tp);
  697. }
  698. /* This must be called before lost_out is incremented */
  699. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  700. {
  701. if ((tp->retransmit_skb_hint == NULL) ||
  702. before(TCP_SKB_CB(skb)->seq,
  703. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  704. tp->retransmit_skb_hint = skb;
  705. if (!tp->lost_out ||
  706. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  707. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  708. }
  709. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  710. {
  711. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  712. tcp_verify_retransmit_hint(tp, skb);
  713. tp->lost_out += tcp_skb_pcount(skb);
  714. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  715. }
  716. }
  717. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  718. struct sk_buff *skb)
  719. {
  720. tcp_verify_retransmit_hint(tp, skb);
  721. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  722. tp->lost_out += tcp_skb_pcount(skb);
  723. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  724. }
  725. }
  726. /* This procedure tags the retransmission queue when SACKs arrive.
  727. *
  728. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  729. * Packets in queue with these bits set are counted in variables
  730. * sacked_out, retrans_out and lost_out, correspondingly.
  731. *
  732. * Valid combinations are:
  733. * Tag InFlight Description
  734. * 0 1 - orig segment is in flight.
  735. * S 0 - nothing flies, orig reached receiver.
  736. * L 0 - nothing flies, orig lost by net.
  737. * R 2 - both orig and retransmit are in flight.
  738. * L|R 1 - orig is lost, retransmit is in flight.
  739. * S|R 1 - orig reached receiver, retrans is still in flight.
  740. * (L|S|R is logically valid, it could occur when L|R is sacked,
  741. * but it is equivalent to plain S and code short-curcuits it to S.
  742. * L|S is logically invalid, it would mean -1 packet in flight 8))
  743. *
  744. * These 6 states form finite state machine, controlled by the following events:
  745. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  746. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  747. * 3. Loss detection event of two flavors:
  748. * A. Scoreboard estimator decided the packet is lost.
  749. * A'. Reno "three dupacks" marks head of queue lost.
  750. * A''. Its FACK modification, head until snd.fack is lost.
  751. * B. SACK arrives sacking SND.NXT at the moment, when the
  752. * segment was retransmitted.
  753. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  754. *
  755. * It is pleasant to note, that state diagram turns out to be commutative,
  756. * so that we are allowed not to be bothered by order of our actions,
  757. * when multiple events arrive simultaneously. (see the function below).
  758. *
  759. * Reordering detection.
  760. * --------------------
  761. * Reordering metric is maximal distance, which a packet can be displaced
  762. * in packet stream. With SACKs we can estimate it:
  763. *
  764. * 1. SACK fills old hole and the corresponding segment was not
  765. * ever retransmitted -> reordering. Alas, we cannot use it
  766. * when segment was retransmitted.
  767. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  768. * for retransmitted and already SACKed segment -> reordering..
  769. * Both of these heuristics are not used in Loss state, when we cannot
  770. * account for retransmits accurately.
  771. *
  772. * SACK block validation.
  773. * ----------------------
  774. *
  775. * SACK block range validation checks that the received SACK block fits to
  776. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  777. * Note that SND.UNA is not included to the range though being valid because
  778. * it means that the receiver is rather inconsistent with itself reporting
  779. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  780. * perfectly valid, however, in light of RFC2018 which explicitly states
  781. * that "SACK block MUST reflect the newest segment. Even if the newest
  782. * segment is going to be discarded ...", not that it looks very clever
  783. * in case of head skb. Due to potentional receiver driven attacks, we
  784. * choose to avoid immediate execution of a walk in write queue due to
  785. * reneging and defer head skb's loss recovery to standard loss recovery
  786. * procedure that will eventually trigger (nothing forbids us doing this).
  787. *
  788. * Implements also blockage to start_seq wrap-around. Problem lies in the
  789. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  790. * there's no guarantee that it will be before snd_nxt (n). The problem
  791. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  792. * wrap (s_w):
  793. *
  794. * <- outs wnd -> <- wrapzone ->
  795. * u e n u_w e_w s n_w
  796. * | | | | | | |
  797. * |<------------+------+----- TCP seqno space --------------+---------->|
  798. * ...-- <2^31 ->| |<--------...
  799. * ...---- >2^31 ------>| |<--------...
  800. *
  801. * Current code wouldn't be vulnerable but it's better still to discard such
  802. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  803. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  804. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  805. * equal to the ideal case (infinite seqno space without wrap caused issues).
  806. *
  807. * With D-SACK the lower bound is extended to cover sequence space below
  808. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  809. * again, D-SACK block must not to go across snd_una (for the same reason as
  810. * for the normal SACK blocks, explained above). But there all simplicity
  811. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  812. * fully below undo_marker they do not affect behavior in anyway and can
  813. * therefore be safely ignored. In rare cases (which are more or less
  814. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  815. * fragmentation and packet reordering past skb's retransmission. To consider
  816. * them correctly, the acceptable range must be extended even more though
  817. * the exact amount is rather hard to quantify. However, tp->max_window can
  818. * be used as an exaggerated estimate.
  819. */
  820. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  821. u32 start_seq, u32 end_seq)
  822. {
  823. /* Too far in future, or reversed (interpretation is ambiguous) */
  824. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  825. return false;
  826. /* Nasty start_seq wrap-around check (see comments above) */
  827. if (!before(start_seq, tp->snd_nxt))
  828. return false;
  829. /* In outstanding window? ...This is valid exit for D-SACKs too.
  830. * start_seq == snd_una is non-sensical (see comments above)
  831. */
  832. if (after(start_seq, tp->snd_una))
  833. return true;
  834. if (!is_dsack || !tp->undo_marker)
  835. return false;
  836. /* ...Then it's D-SACK, and must reside below snd_una completely */
  837. if (after(end_seq, tp->snd_una))
  838. return false;
  839. if (!before(start_seq, tp->undo_marker))
  840. return true;
  841. /* Too old */
  842. if (!after(end_seq, tp->undo_marker))
  843. return false;
  844. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  845. * start_seq < undo_marker and end_seq >= undo_marker.
  846. */
  847. return !before(start_seq, end_seq - tp->max_window);
  848. }
  849. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  850. * Event "B". Later note: FACK people cheated me again 8), we have to account
  851. * for reordering! Ugly, but should help.
  852. *
  853. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  854. * less than what is now known to be received by the other end (derived from
  855. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  856. * retransmitted skbs to avoid some costly processing per ACKs.
  857. */
  858. static void tcp_mark_lost_retrans(struct sock *sk)
  859. {
  860. const struct inet_connection_sock *icsk = inet_csk(sk);
  861. struct tcp_sock *tp = tcp_sk(sk);
  862. struct sk_buff *skb;
  863. int cnt = 0;
  864. u32 new_low_seq = tp->snd_nxt;
  865. u32 received_upto = tcp_highest_sack_seq(tp);
  866. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  867. !after(received_upto, tp->lost_retrans_low) ||
  868. icsk->icsk_ca_state != TCP_CA_Recovery)
  869. return;
  870. tcp_for_write_queue(skb, sk) {
  871. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  872. if (skb == tcp_send_head(sk))
  873. break;
  874. if (cnt == tp->retrans_out)
  875. break;
  876. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  877. continue;
  878. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  879. continue;
  880. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  881. * constraint here (see above) but figuring out that at
  882. * least tp->reordering SACK blocks reside between ack_seq
  883. * and received_upto is not easy task to do cheaply with
  884. * the available datastructures.
  885. *
  886. * Whether FACK should check here for tp->reordering segs
  887. * in-between one could argue for either way (it would be
  888. * rather simple to implement as we could count fack_count
  889. * during the walk and do tp->fackets_out - fack_count).
  890. */
  891. if (after(received_upto, ack_seq)) {
  892. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  893. tp->retrans_out -= tcp_skb_pcount(skb);
  894. tcp_skb_mark_lost_uncond_verify(tp, skb);
  895. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  896. } else {
  897. if (before(ack_seq, new_low_seq))
  898. new_low_seq = ack_seq;
  899. cnt += tcp_skb_pcount(skb);
  900. }
  901. }
  902. if (tp->retrans_out)
  903. tp->lost_retrans_low = new_low_seq;
  904. }
  905. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  906. struct tcp_sack_block_wire *sp, int num_sacks,
  907. u32 prior_snd_una)
  908. {
  909. struct tcp_sock *tp = tcp_sk(sk);
  910. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  911. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  912. bool dup_sack = false;
  913. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  914. dup_sack = true;
  915. tcp_dsack_seen(tp);
  916. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  917. } else if (num_sacks > 1) {
  918. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  919. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  920. if (!after(end_seq_0, end_seq_1) &&
  921. !before(start_seq_0, start_seq_1)) {
  922. dup_sack = true;
  923. tcp_dsack_seen(tp);
  924. NET_INC_STATS_BH(sock_net(sk),
  925. LINUX_MIB_TCPDSACKOFORECV);
  926. }
  927. }
  928. /* D-SACK for already forgotten data... Do dumb counting. */
  929. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  930. !after(end_seq_0, prior_snd_una) &&
  931. after(end_seq_0, tp->undo_marker))
  932. tp->undo_retrans--;
  933. return dup_sack;
  934. }
  935. struct tcp_sacktag_state {
  936. int reord;
  937. int fack_count;
  938. int flag;
  939. };
  940. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  941. * the incoming SACK may not exactly match but we can find smaller MSS
  942. * aligned portion of it that matches. Therefore we might need to fragment
  943. * which may fail and creates some hassle (caller must handle error case
  944. * returns).
  945. *
  946. * FIXME: this could be merged to shift decision code
  947. */
  948. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  949. u32 start_seq, u32 end_seq)
  950. {
  951. int err;
  952. bool in_sack;
  953. unsigned int pkt_len;
  954. unsigned int mss;
  955. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  956. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  957. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  958. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  959. mss = tcp_skb_mss(skb);
  960. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  961. if (!in_sack) {
  962. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  963. if (pkt_len < mss)
  964. pkt_len = mss;
  965. } else {
  966. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  967. if (pkt_len < mss)
  968. return -EINVAL;
  969. }
  970. /* Round if necessary so that SACKs cover only full MSSes
  971. * and/or the remaining small portion (if present)
  972. */
  973. if (pkt_len > mss) {
  974. unsigned int new_len = (pkt_len / mss) * mss;
  975. if (!in_sack && new_len < pkt_len) {
  976. new_len += mss;
  977. if (new_len > skb->len)
  978. return 0;
  979. }
  980. pkt_len = new_len;
  981. }
  982. err = tcp_fragment(sk, skb, pkt_len, mss);
  983. if (err < 0)
  984. return err;
  985. }
  986. return in_sack;
  987. }
  988. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  989. static u8 tcp_sacktag_one(struct sock *sk,
  990. struct tcp_sacktag_state *state, u8 sacked,
  991. u32 start_seq, u32 end_seq,
  992. bool dup_sack, int pcount)
  993. {
  994. struct tcp_sock *tp = tcp_sk(sk);
  995. int fack_count = state->fack_count;
  996. /* Account D-SACK for retransmitted packet. */
  997. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  998. if (tp->undo_marker && tp->undo_retrans &&
  999. after(end_seq, tp->undo_marker))
  1000. tp->undo_retrans--;
  1001. if (sacked & TCPCB_SACKED_ACKED)
  1002. state->reord = min(fack_count, state->reord);
  1003. }
  1004. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1005. if (!after(end_seq, tp->snd_una))
  1006. return sacked;
  1007. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1008. if (sacked & TCPCB_SACKED_RETRANS) {
  1009. /* If the segment is not tagged as lost,
  1010. * we do not clear RETRANS, believing
  1011. * that retransmission is still in flight.
  1012. */
  1013. if (sacked & TCPCB_LOST) {
  1014. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1015. tp->lost_out -= pcount;
  1016. tp->retrans_out -= pcount;
  1017. }
  1018. } else {
  1019. if (!(sacked & TCPCB_RETRANS)) {
  1020. /* New sack for not retransmitted frame,
  1021. * which was in hole. It is reordering.
  1022. */
  1023. if (before(start_seq,
  1024. tcp_highest_sack_seq(tp)))
  1025. state->reord = min(fack_count,
  1026. state->reord);
  1027. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1028. if (!after(end_seq, tp->frto_highmark))
  1029. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1030. }
  1031. if (sacked & TCPCB_LOST) {
  1032. sacked &= ~TCPCB_LOST;
  1033. tp->lost_out -= pcount;
  1034. }
  1035. }
  1036. sacked |= TCPCB_SACKED_ACKED;
  1037. state->flag |= FLAG_DATA_SACKED;
  1038. tp->sacked_out += pcount;
  1039. fack_count += pcount;
  1040. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1041. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1042. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1043. tp->lost_cnt_hint += pcount;
  1044. if (fack_count > tp->fackets_out)
  1045. tp->fackets_out = fack_count;
  1046. }
  1047. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1048. * frames and clear it. undo_retrans is decreased above, L|R frames
  1049. * are accounted above as well.
  1050. */
  1051. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1052. sacked &= ~TCPCB_SACKED_RETRANS;
  1053. tp->retrans_out -= pcount;
  1054. }
  1055. return sacked;
  1056. }
  1057. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1058. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1059. */
  1060. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1061. struct tcp_sacktag_state *state,
  1062. unsigned int pcount, int shifted, int mss,
  1063. bool dup_sack)
  1064. {
  1065. struct tcp_sock *tp = tcp_sk(sk);
  1066. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1067. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1068. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1069. BUG_ON(!pcount);
  1070. /* Adjust counters and hints for the newly sacked sequence
  1071. * range but discard the return value since prev is already
  1072. * marked. We must tag the range first because the seq
  1073. * advancement below implicitly advances
  1074. * tcp_highest_sack_seq() when skb is highest_sack.
  1075. */
  1076. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1077. start_seq, end_seq, dup_sack, pcount);
  1078. if (skb == tp->lost_skb_hint)
  1079. tp->lost_cnt_hint += pcount;
  1080. TCP_SKB_CB(prev)->end_seq += shifted;
  1081. TCP_SKB_CB(skb)->seq += shifted;
  1082. skb_shinfo(prev)->gso_segs += pcount;
  1083. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1084. skb_shinfo(skb)->gso_segs -= pcount;
  1085. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1086. * in theory this shouldn't be necessary but as long as DSACK
  1087. * code can come after this skb later on it's better to keep
  1088. * setting gso_size to something.
  1089. */
  1090. if (!skb_shinfo(prev)->gso_size) {
  1091. skb_shinfo(prev)->gso_size = mss;
  1092. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1093. }
  1094. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1095. if (skb_shinfo(skb)->gso_segs <= 1) {
  1096. skb_shinfo(skb)->gso_size = 0;
  1097. skb_shinfo(skb)->gso_type = 0;
  1098. }
  1099. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1100. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1101. if (skb->len > 0) {
  1102. BUG_ON(!tcp_skb_pcount(skb));
  1103. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1104. return false;
  1105. }
  1106. /* Whole SKB was eaten :-) */
  1107. if (skb == tp->retransmit_skb_hint)
  1108. tp->retransmit_skb_hint = prev;
  1109. if (skb == tp->scoreboard_skb_hint)
  1110. tp->scoreboard_skb_hint = prev;
  1111. if (skb == tp->lost_skb_hint) {
  1112. tp->lost_skb_hint = prev;
  1113. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1114. }
  1115. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1116. if (skb == tcp_highest_sack(sk))
  1117. tcp_advance_highest_sack(sk, skb);
  1118. tcp_unlink_write_queue(skb, sk);
  1119. sk_wmem_free_skb(sk, skb);
  1120. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1121. return true;
  1122. }
  1123. /* I wish gso_size would have a bit more sane initialization than
  1124. * something-or-zero which complicates things
  1125. */
  1126. static int tcp_skb_seglen(const struct sk_buff *skb)
  1127. {
  1128. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1129. }
  1130. /* Shifting pages past head area doesn't work */
  1131. static int skb_can_shift(const struct sk_buff *skb)
  1132. {
  1133. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1134. }
  1135. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1136. * skb.
  1137. */
  1138. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1139. struct tcp_sacktag_state *state,
  1140. u32 start_seq, u32 end_seq,
  1141. bool dup_sack)
  1142. {
  1143. struct tcp_sock *tp = tcp_sk(sk);
  1144. struct sk_buff *prev;
  1145. int mss;
  1146. int pcount = 0;
  1147. int len;
  1148. int in_sack;
  1149. if (!sk_can_gso(sk))
  1150. goto fallback;
  1151. /* Normally R but no L won't result in plain S */
  1152. if (!dup_sack &&
  1153. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1154. goto fallback;
  1155. if (!skb_can_shift(skb))
  1156. goto fallback;
  1157. /* This frame is about to be dropped (was ACKed). */
  1158. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1159. goto fallback;
  1160. /* Can only happen with delayed DSACK + discard craziness */
  1161. if (unlikely(skb == tcp_write_queue_head(sk)))
  1162. goto fallback;
  1163. prev = tcp_write_queue_prev(sk, skb);
  1164. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1165. goto fallback;
  1166. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1167. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1168. if (in_sack) {
  1169. len = skb->len;
  1170. pcount = tcp_skb_pcount(skb);
  1171. mss = tcp_skb_seglen(skb);
  1172. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1173. * drop this restriction as unnecessary
  1174. */
  1175. if (mss != tcp_skb_seglen(prev))
  1176. goto fallback;
  1177. } else {
  1178. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1179. goto noop;
  1180. /* CHECKME: This is non-MSS split case only?, this will
  1181. * cause skipped skbs due to advancing loop btw, original
  1182. * has that feature too
  1183. */
  1184. if (tcp_skb_pcount(skb) <= 1)
  1185. goto noop;
  1186. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1187. if (!in_sack) {
  1188. /* TODO: head merge to next could be attempted here
  1189. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1190. * though it might not be worth of the additional hassle
  1191. *
  1192. * ...we can probably just fallback to what was done
  1193. * previously. We could try merging non-SACKed ones
  1194. * as well but it probably isn't going to buy off
  1195. * because later SACKs might again split them, and
  1196. * it would make skb timestamp tracking considerably
  1197. * harder problem.
  1198. */
  1199. goto fallback;
  1200. }
  1201. len = end_seq - TCP_SKB_CB(skb)->seq;
  1202. BUG_ON(len < 0);
  1203. BUG_ON(len > skb->len);
  1204. /* MSS boundaries should be honoured or else pcount will
  1205. * severely break even though it makes things bit trickier.
  1206. * Optimize common case to avoid most of the divides
  1207. */
  1208. mss = tcp_skb_mss(skb);
  1209. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1210. * drop this restriction as unnecessary
  1211. */
  1212. if (mss != tcp_skb_seglen(prev))
  1213. goto fallback;
  1214. if (len == mss) {
  1215. pcount = 1;
  1216. } else if (len < mss) {
  1217. goto noop;
  1218. } else {
  1219. pcount = len / mss;
  1220. len = pcount * mss;
  1221. }
  1222. }
  1223. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1224. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1225. goto fallback;
  1226. if (!skb_shift(prev, skb, len))
  1227. goto fallback;
  1228. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1229. goto out;
  1230. /* Hole filled allows collapsing with the next as well, this is very
  1231. * useful when hole on every nth skb pattern happens
  1232. */
  1233. if (prev == tcp_write_queue_tail(sk))
  1234. goto out;
  1235. skb = tcp_write_queue_next(sk, prev);
  1236. if (!skb_can_shift(skb) ||
  1237. (skb == tcp_send_head(sk)) ||
  1238. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1239. (mss != tcp_skb_seglen(skb)))
  1240. goto out;
  1241. len = skb->len;
  1242. if (skb_shift(prev, skb, len)) {
  1243. pcount += tcp_skb_pcount(skb);
  1244. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1245. }
  1246. out:
  1247. state->fack_count += pcount;
  1248. return prev;
  1249. noop:
  1250. return skb;
  1251. fallback:
  1252. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1253. return NULL;
  1254. }
  1255. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1256. struct tcp_sack_block *next_dup,
  1257. struct tcp_sacktag_state *state,
  1258. u32 start_seq, u32 end_seq,
  1259. bool dup_sack_in)
  1260. {
  1261. struct tcp_sock *tp = tcp_sk(sk);
  1262. struct sk_buff *tmp;
  1263. tcp_for_write_queue_from(skb, sk) {
  1264. int in_sack = 0;
  1265. bool dup_sack = dup_sack_in;
  1266. if (skb == tcp_send_head(sk))
  1267. break;
  1268. /* queue is in-order => we can short-circuit the walk early */
  1269. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1270. break;
  1271. if ((next_dup != NULL) &&
  1272. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1273. in_sack = tcp_match_skb_to_sack(sk, skb,
  1274. next_dup->start_seq,
  1275. next_dup->end_seq);
  1276. if (in_sack > 0)
  1277. dup_sack = true;
  1278. }
  1279. /* skb reference here is a bit tricky to get right, since
  1280. * shifting can eat and free both this skb and the next,
  1281. * so not even _safe variant of the loop is enough.
  1282. */
  1283. if (in_sack <= 0) {
  1284. tmp = tcp_shift_skb_data(sk, skb, state,
  1285. start_seq, end_seq, dup_sack);
  1286. if (tmp != NULL) {
  1287. if (tmp != skb) {
  1288. skb = tmp;
  1289. continue;
  1290. }
  1291. in_sack = 0;
  1292. } else {
  1293. in_sack = tcp_match_skb_to_sack(sk, skb,
  1294. start_seq,
  1295. end_seq);
  1296. }
  1297. }
  1298. if (unlikely(in_sack < 0))
  1299. break;
  1300. if (in_sack) {
  1301. TCP_SKB_CB(skb)->sacked =
  1302. tcp_sacktag_one(sk,
  1303. state,
  1304. TCP_SKB_CB(skb)->sacked,
  1305. TCP_SKB_CB(skb)->seq,
  1306. TCP_SKB_CB(skb)->end_seq,
  1307. dup_sack,
  1308. tcp_skb_pcount(skb));
  1309. if (!before(TCP_SKB_CB(skb)->seq,
  1310. tcp_highest_sack_seq(tp)))
  1311. tcp_advance_highest_sack(sk, skb);
  1312. }
  1313. state->fack_count += tcp_skb_pcount(skb);
  1314. }
  1315. return skb;
  1316. }
  1317. /* Avoid all extra work that is being done by sacktag while walking in
  1318. * a normal way
  1319. */
  1320. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1321. struct tcp_sacktag_state *state,
  1322. u32 skip_to_seq)
  1323. {
  1324. tcp_for_write_queue_from(skb, sk) {
  1325. if (skb == tcp_send_head(sk))
  1326. break;
  1327. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1328. break;
  1329. state->fack_count += tcp_skb_pcount(skb);
  1330. }
  1331. return skb;
  1332. }
  1333. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1334. struct sock *sk,
  1335. struct tcp_sack_block *next_dup,
  1336. struct tcp_sacktag_state *state,
  1337. u32 skip_to_seq)
  1338. {
  1339. if (next_dup == NULL)
  1340. return skb;
  1341. if (before(next_dup->start_seq, skip_to_seq)) {
  1342. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1343. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1344. next_dup->start_seq, next_dup->end_seq,
  1345. 1);
  1346. }
  1347. return skb;
  1348. }
  1349. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1350. {
  1351. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1352. }
  1353. static int
  1354. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1355. u32 prior_snd_una)
  1356. {
  1357. const struct inet_connection_sock *icsk = inet_csk(sk);
  1358. struct tcp_sock *tp = tcp_sk(sk);
  1359. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1360. TCP_SKB_CB(ack_skb)->sacked);
  1361. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1362. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1363. struct tcp_sack_block *cache;
  1364. struct tcp_sacktag_state state;
  1365. struct sk_buff *skb;
  1366. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1367. int used_sacks;
  1368. bool found_dup_sack = false;
  1369. int i, j;
  1370. int first_sack_index;
  1371. state.flag = 0;
  1372. state.reord = tp->packets_out;
  1373. if (!tp->sacked_out) {
  1374. if (WARN_ON(tp->fackets_out))
  1375. tp->fackets_out = 0;
  1376. tcp_highest_sack_reset(sk);
  1377. }
  1378. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1379. num_sacks, prior_snd_una);
  1380. if (found_dup_sack)
  1381. state.flag |= FLAG_DSACKING_ACK;
  1382. /* Eliminate too old ACKs, but take into
  1383. * account more or less fresh ones, they can
  1384. * contain valid SACK info.
  1385. */
  1386. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1387. return 0;
  1388. if (!tp->packets_out)
  1389. goto out;
  1390. used_sacks = 0;
  1391. first_sack_index = 0;
  1392. for (i = 0; i < num_sacks; i++) {
  1393. bool dup_sack = !i && found_dup_sack;
  1394. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1395. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1396. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1397. sp[used_sacks].start_seq,
  1398. sp[used_sacks].end_seq)) {
  1399. int mib_idx;
  1400. if (dup_sack) {
  1401. if (!tp->undo_marker)
  1402. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1403. else
  1404. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1405. } else {
  1406. /* Don't count olds caused by ACK reordering */
  1407. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1408. !after(sp[used_sacks].end_seq, tp->snd_una))
  1409. continue;
  1410. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1411. }
  1412. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1413. if (i == 0)
  1414. first_sack_index = -1;
  1415. continue;
  1416. }
  1417. /* Ignore very old stuff early */
  1418. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1419. continue;
  1420. used_sacks++;
  1421. }
  1422. /* order SACK blocks to allow in order walk of the retrans queue */
  1423. for (i = used_sacks - 1; i > 0; i--) {
  1424. for (j = 0; j < i; j++) {
  1425. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1426. swap(sp[j], sp[j + 1]);
  1427. /* Track where the first SACK block goes to */
  1428. if (j == first_sack_index)
  1429. first_sack_index = j + 1;
  1430. }
  1431. }
  1432. }
  1433. skb = tcp_write_queue_head(sk);
  1434. state.fack_count = 0;
  1435. i = 0;
  1436. if (!tp->sacked_out) {
  1437. /* It's already past, so skip checking against it */
  1438. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1439. } else {
  1440. cache = tp->recv_sack_cache;
  1441. /* Skip empty blocks in at head of the cache */
  1442. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1443. !cache->end_seq)
  1444. cache++;
  1445. }
  1446. while (i < used_sacks) {
  1447. u32 start_seq = sp[i].start_seq;
  1448. u32 end_seq = sp[i].end_seq;
  1449. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1450. struct tcp_sack_block *next_dup = NULL;
  1451. if (found_dup_sack && ((i + 1) == first_sack_index))
  1452. next_dup = &sp[i + 1];
  1453. /* Skip too early cached blocks */
  1454. while (tcp_sack_cache_ok(tp, cache) &&
  1455. !before(start_seq, cache->end_seq))
  1456. cache++;
  1457. /* Can skip some work by looking recv_sack_cache? */
  1458. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1459. after(end_seq, cache->start_seq)) {
  1460. /* Head todo? */
  1461. if (before(start_seq, cache->start_seq)) {
  1462. skb = tcp_sacktag_skip(skb, sk, &state,
  1463. start_seq);
  1464. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1465. &state,
  1466. start_seq,
  1467. cache->start_seq,
  1468. dup_sack);
  1469. }
  1470. /* Rest of the block already fully processed? */
  1471. if (!after(end_seq, cache->end_seq))
  1472. goto advance_sp;
  1473. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1474. &state,
  1475. cache->end_seq);
  1476. /* ...tail remains todo... */
  1477. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1478. /* ...but better entrypoint exists! */
  1479. skb = tcp_highest_sack(sk);
  1480. if (skb == NULL)
  1481. break;
  1482. state.fack_count = tp->fackets_out;
  1483. cache++;
  1484. goto walk;
  1485. }
  1486. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1487. /* Check overlap against next cached too (past this one already) */
  1488. cache++;
  1489. continue;
  1490. }
  1491. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1492. skb = tcp_highest_sack(sk);
  1493. if (skb == NULL)
  1494. break;
  1495. state.fack_count = tp->fackets_out;
  1496. }
  1497. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1498. walk:
  1499. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1500. start_seq, end_seq, dup_sack);
  1501. advance_sp:
  1502. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1503. * due to in-order walk
  1504. */
  1505. if (after(end_seq, tp->frto_highmark))
  1506. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1507. i++;
  1508. }
  1509. /* Clear the head of the cache sack blocks so we can skip it next time */
  1510. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1511. tp->recv_sack_cache[i].start_seq = 0;
  1512. tp->recv_sack_cache[i].end_seq = 0;
  1513. }
  1514. for (j = 0; j < used_sacks; j++)
  1515. tp->recv_sack_cache[i++] = sp[j];
  1516. tcp_mark_lost_retrans(sk);
  1517. tcp_verify_left_out(tp);
  1518. if ((state.reord < tp->fackets_out) &&
  1519. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1520. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1521. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1522. out:
  1523. #if FASTRETRANS_DEBUG > 0
  1524. WARN_ON((int)tp->sacked_out < 0);
  1525. WARN_ON((int)tp->lost_out < 0);
  1526. WARN_ON((int)tp->retrans_out < 0);
  1527. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1528. #endif
  1529. return state.flag;
  1530. }
  1531. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1532. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1533. */
  1534. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1535. {
  1536. u32 holes;
  1537. holes = max(tp->lost_out, 1U);
  1538. holes = min(holes, tp->packets_out);
  1539. if ((tp->sacked_out + holes) > tp->packets_out) {
  1540. tp->sacked_out = tp->packets_out - holes;
  1541. return true;
  1542. }
  1543. return false;
  1544. }
  1545. /* If we receive more dupacks than we expected counting segments
  1546. * in assumption of absent reordering, interpret this as reordering.
  1547. * The only another reason could be bug in receiver TCP.
  1548. */
  1549. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1550. {
  1551. struct tcp_sock *tp = tcp_sk(sk);
  1552. if (tcp_limit_reno_sacked(tp))
  1553. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1554. }
  1555. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1556. static void tcp_add_reno_sack(struct sock *sk)
  1557. {
  1558. struct tcp_sock *tp = tcp_sk(sk);
  1559. tp->sacked_out++;
  1560. tcp_check_reno_reordering(sk, 0);
  1561. tcp_verify_left_out(tp);
  1562. }
  1563. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1564. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1565. {
  1566. struct tcp_sock *tp = tcp_sk(sk);
  1567. if (acked > 0) {
  1568. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1569. if (acked - 1 >= tp->sacked_out)
  1570. tp->sacked_out = 0;
  1571. else
  1572. tp->sacked_out -= acked - 1;
  1573. }
  1574. tcp_check_reno_reordering(sk, acked);
  1575. tcp_verify_left_out(tp);
  1576. }
  1577. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1578. {
  1579. tp->sacked_out = 0;
  1580. }
  1581. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1582. {
  1583. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1584. }
  1585. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1586. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1587. */
  1588. bool tcp_use_frto(struct sock *sk)
  1589. {
  1590. const struct tcp_sock *tp = tcp_sk(sk);
  1591. const struct inet_connection_sock *icsk = inet_csk(sk);
  1592. struct sk_buff *skb;
  1593. if (!sysctl_tcp_frto)
  1594. return false;
  1595. /* MTU probe and F-RTO won't really play nicely along currently */
  1596. if (icsk->icsk_mtup.probe_size)
  1597. return false;
  1598. if (tcp_is_sackfrto(tp))
  1599. return true;
  1600. /* Avoid expensive walking of rexmit queue if possible */
  1601. if (tp->retrans_out > 1)
  1602. return false;
  1603. skb = tcp_write_queue_head(sk);
  1604. if (tcp_skb_is_last(sk, skb))
  1605. return true;
  1606. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1607. tcp_for_write_queue_from(skb, sk) {
  1608. if (skb == tcp_send_head(sk))
  1609. break;
  1610. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1611. return false;
  1612. /* Short-circuit when first non-SACKed skb has been checked */
  1613. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1614. break;
  1615. }
  1616. return true;
  1617. }
  1618. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1619. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1620. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1621. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1622. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1623. * bits are handled if the Loss state is really to be entered (in
  1624. * tcp_enter_frto_loss).
  1625. *
  1626. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1627. * does:
  1628. * "Reduce ssthresh if it has not yet been made inside this window."
  1629. */
  1630. void tcp_enter_frto(struct sock *sk)
  1631. {
  1632. const struct inet_connection_sock *icsk = inet_csk(sk);
  1633. struct tcp_sock *tp = tcp_sk(sk);
  1634. struct sk_buff *skb;
  1635. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1636. tp->snd_una == tp->high_seq ||
  1637. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1638. !icsk->icsk_retransmits)) {
  1639. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1640. /* Our state is too optimistic in ssthresh() call because cwnd
  1641. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1642. * recovery has not yet completed. Pattern would be this: RTO,
  1643. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1644. * up here twice).
  1645. * RFC4138 should be more specific on what to do, even though
  1646. * RTO is quite unlikely to occur after the first Cumulative ACK
  1647. * due to back-off and complexity of triggering events ...
  1648. */
  1649. if (tp->frto_counter) {
  1650. u32 stored_cwnd;
  1651. stored_cwnd = tp->snd_cwnd;
  1652. tp->snd_cwnd = 2;
  1653. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1654. tp->snd_cwnd = stored_cwnd;
  1655. } else {
  1656. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1657. }
  1658. /* ... in theory, cong.control module could do "any tricks" in
  1659. * ssthresh(), which means that ca_state, lost bits and lost_out
  1660. * counter would have to be faked before the call occurs. We
  1661. * consider that too expensive, unlikely and hacky, so modules
  1662. * using these in ssthresh() must deal these incompatibility
  1663. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1664. */
  1665. tcp_ca_event(sk, CA_EVENT_FRTO);
  1666. }
  1667. tp->undo_marker = tp->snd_una;
  1668. tp->undo_retrans = 0;
  1669. skb = tcp_write_queue_head(sk);
  1670. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1671. tp->undo_marker = 0;
  1672. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1673. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1674. tp->retrans_out -= tcp_skb_pcount(skb);
  1675. }
  1676. tcp_verify_left_out(tp);
  1677. /* Too bad if TCP was application limited */
  1678. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1679. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1680. * The last condition is necessary at least in tp->frto_counter case.
  1681. */
  1682. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1683. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1684. after(tp->high_seq, tp->snd_una)) {
  1685. tp->frto_highmark = tp->high_seq;
  1686. } else {
  1687. tp->frto_highmark = tp->snd_nxt;
  1688. }
  1689. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1690. tp->high_seq = tp->snd_nxt;
  1691. tp->frto_counter = 1;
  1692. }
  1693. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1694. * which indicates that we should follow the traditional RTO recovery,
  1695. * i.e. mark everything lost and do go-back-N retransmission.
  1696. */
  1697. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1698. {
  1699. struct tcp_sock *tp = tcp_sk(sk);
  1700. struct sk_buff *skb;
  1701. tp->lost_out = 0;
  1702. tp->retrans_out = 0;
  1703. if (tcp_is_reno(tp))
  1704. tcp_reset_reno_sack(tp);
  1705. tcp_for_write_queue(skb, sk) {
  1706. if (skb == tcp_send_head(sk))
  1707. break;
  1708. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1709. /*
  1710. * Count the retransmission made on RTO correctly (only when
  1711. * waiting for the first ACK and did not get it)...
  1712. */
  1713. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1714. /* For some reason this R-bit might get cleared? */
  1715. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1716. tp->retrans_out += tcp_skb_pcount(skb);
  1717. /* ...enter this if branch just for the first segment */
  1718. flag |= FLAG_DATA_ACKED;
  1719. } else {
  1720. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1721. tp->undo_marker = 0;
  1722. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1723. }
  1724. /* Marking forward transmissions that were made after RTO lost
  1725. * can cause unnecessary retransmissions in some scenarios,
  1726. * SACK blocks will mitigate that in some but not in all cases.
  1727. * We used to not mark them but it was causing break-ups with
  1728. * receivers that do only in-order receival.
  1729. *
  1730. * TODO: we could detect presence of such receiver and select
  1731. * different behavior per flow.
  1732. */
  1733. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1734. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1735. tp->lost_out += tcp_skb_pcount(skb);
  1736. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1737. }
  1738. }
  1739. tcp_verify_left_out(tp);
  1740. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1741. tp->snd_cwnd_cnt = 0;
  1742. tp->snd_cwnd_stamp = tcp_time_stamp;
  1743. tp->frto_counter = 0;
  1744. tp->bytes_acked = 0;
  1745. tp->reordering = min_t(unsigned int, tp->reordering,
  1746. sysctl_tcp_reordering);
  1747. tcp_set_ca_state(sk, TCP_CA_Loss);
  1748. tp->high_seq = tp->snd_nxt;
  1749. TCP_ECN_queue_cwr(tp);
  1750. tcp_clear_all_retrans_hints(tp);
  1751. }
  1752. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1753. {
  1754. tp->retrans_out = 0;
  1755. tp->lost_out = 0;
  1756. tp->undo_marker = 0;
  1757. tp->undo_retrans = 0;
  1758. }
  1759. void tcp_clear_retrans(struct tcp_sock *tp)
  1760. {
  1761. tcp_clear_retrans_partial(tp);
  1762. tp->fackets_out = 0;
  1763. tp->sacked_out = 0;
  1764. }
  1765. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1766. * and reset tags completely, otherwise preserve SACKs. If receiver
  1767. * dropped its ofo queue, we will know this due to reneging detection.
  1768. */
  1769. void tcp_enter_loss(struct sock *sk, int how)
  1770. {
  1771. const struct inet_connection_sock *icsk = inet_csk(sk);
  1772. struct tcp_sock *tp = tcp_sk(sk);
  1773. struct sk_buff *skb;
  1774. /* Reduce ssthresh if it has not yet been made inside this window. */
  1775. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1776. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1777. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1778. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1779. tcp_ca_event(sk, CA_EVENT_LOSS);
  1780. }
  1781. tp->snd_cwnd = 1;
  1782. tp->snd_cwnd_cnt = 0;
  1783. tp->snd_cwnd_stamp = tcp_time_stamp;
  1784. tp->bytes_acked = 0;
  1785. tcp_clear_retrans_partial(tp);
  1786. if (tcp_is_reno(tp))
  1787. tcp_reset_reno_sack(tp);
  1788. if (!how) {
  1789. /* Push undo marker, if it was plain RTO and nothing
  1790. * was retransmitted. */
  1791. tp->undo_marker = tp->snd_una;
  1792. } else {
  1793. tp->sacked_out = 0;
  1794. tp->fackets_out = 0;
  1795. }
  1796. tcp_clear_all_retrans_hints(tp);
  1797. tcp_for_write_queue(skb, sk) {
  1798. if (skb == tcp_send_head(sk))
  1799. break;
  1800. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1801. tp->undo_marker = 0;
  1802. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1803. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1804. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1805. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1806. tp->lost_out += tcp_skb_pcount(skb);
  1807. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1808. }
  1809. }
  1810. tcp_verify_left_out(tp);
  1811. tp->reordering = min_t(unsigned int, tp->reordering,
  1812. sysctl_tcp_reordering);
  1813. tcp_set_ca_state(sk, TCP_CA_Loss);
  1814. tp->high_seq = tp->snd_nxt;
  1815. TCP_ECN_queue_cwr(tp);
  1816. /* Abort F-RTO algorithm if one is in progress */
  1817. tp->frto_counter = 0;
  1818. }
  1819. /* If ACK arrived pointing to a remembered SACK, it means that our
  1820. * remembered SACKs do not reflect real state of receiver i.e.
  1821. * receiver _host_ is heavily congested (or buggy).
  1822. *
  1823. * Do processing similar to RTO timeout.
  1824. */
  1825. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1826. {
  1827. if (flag & FLAG_SACK_RENEGING) {
  1828. struct inet_connection_sock *icsk = inet_csk(sk);
  1829. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1830. tcp_enter_loss(sk, 1);
  1831. icsk->icsk_retransmits++;
  1832. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1833. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1834. icsk->icsk_rto, TCP_RTO_MAX);
  1835. return true;
  1836. }
  1837. return false;
  1838. }
  1839. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1840. {
  1841. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1842. }
  1843. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1844. * counter when SACK is enabled (without SACK, sacked_out is used for
  1845. * that purpose).
  1846. *
  1847. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1848. * segments up to the highest received SACK block so far and holes in
  1849. * between them.
  1850. *
  1851. * With reordering, holes may still be in flight, so RFC3517 recovery
  1852. * uses pure sacked_out (total number of SACKed segments) even though
  1853. * it violates the RFC that uses duplicate ACKs, often these are equal
  1854. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1855. * they differ. Since neither occurs due to loss, TCP should really
  1856. * ignore them.
  1857. */
  1858. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1859. {
  1860. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1861. }
  1862. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1863. {
  1864. struct tcp_sock *tp = tcp_sk(sk);
  1865. unsigned long delay;
  1866. /* Delay early retransmit and entering fast recovery for
  1867. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1868. * available, or RTO is scheduled to fire first.
  1869. */
  1870. if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
  1871. return false;
  1872. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  1873. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1874. return false;
  1875. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
  1876. tp->early_retrans_delayed = 1;
  1877. return true;
  1878. }
  1879. static inline int tcp_skb_timedout(const struct sock *sk,
  1880. const struct sk_buff *skb)
  1881. {
  1882. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  1883. }
  1884. static inline int tcp_head_timedout(const struct sock *sk)
  1885. {
  1886. const struct tcp_sock *tp = tcp_sk(sk);
  1887. return tp->packets_out &&
  1888. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1889. }
  1890. /* Linux NewReno/SACK/FACK/ECN state machine.
  1891. * --------------------------------------
  1892. *
  1893. * "Open" Normal state, no dubious events, fast path.
  1894. * "Disorder" In all the respects it is "Open",
  1895. * but requires a bit more attention. It is entered when
  1896. * we see some SACKs or dupacks. It is split of "Open"
  1897. * mainly to move some processing from fast path to slow one.
  1898. * "CWR" CWND was reduced due to some Congestion Notification event.
  1899. * It can be ECN, ICMP source quench, local device congestion.
  1900. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1901. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1902. *
  1903. * tcp_fastretrans_alert() is entered:
  1904. * - each incoming ACK, if state is not "Open"
  1905. * - when arrived ACK is unusual, namely:
  1906. * * SACK
  1907. * * Duplicate ACK.
  1908. * * ECN ECE.
  1909. *
  1910. * Counting packets in flight is pretty simple.
  1911. *
  1912. * in_flight = packets_out - left_out + retrans_out
  1913. *
  1914. * packets_out is SND.NXT-SND.UNA counted in packets.
  1915. *
  1916. * retrans_out is number of retransmitted segments.
  1917. *
  1918. * left_out is number of segments left network, but not ACKed yet.
  1919. *
  1920. * left_out = sacked_out + lost_out
  1921. *
  1922. * sacked_out: Packets, which arrived to receiver out of order
  1923. * and hence not ACKed. With SACKs this number is simply
  1924. * amount of SACKed data. Even without SACKs
  1925. * it is easy to give pretty reliable estimate of this number,
  1926. * counting duplicate ACKs.
  1927. *
  1928. * lost_out: Packets lost by network. TCP has no explicit
  1929. * "loss notification" feedback from network (for now).
  1930. * It means that this number can be only _guessed_.
  1931. * Actually, it is the heuristics to predict lossage that
  1932. * distinguishes different algorithms.
  1933. *
  1934. * F.e. after RTO, when all the queue is considered as lost,
  1935. * lost_out = packets_out and in_flight = retrans_out.
  1936. *
  1937. * Essentially, we have now two algorithms counting
  1938. * lost packets.
  1939. *
  1940. * FACK: It is the simplest heuristics. As soon as we decided
  1941. * that something is lost, we decide that _all_ not SACKed
  1942. * packets until the most forward SACK are lost. I.e.
  1943. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1944. * It is absolutely correct estimate, if network does not reorder
  1945. * packets. And it loses any connection to reality when reordering
  1946. * takes place. We use FACK by default until reordering
  1947. * is suspected on the path to this destination.
  1948. *
  1949. * NewReno: when Recovery is entered, we assume that one segment
  1950. * is lost (classic Reno). While we are in Recovery and
  1951. * a partial ACK arrives, we assume that one more packet
  1952. * is lost (NewReno). This heuristics are the same in NewReno
  1953. * and SACK.
  1954. *
  1955. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1956. * deflation etc. CWND is real congestion window, never inflated, changes
  1957. * only according to classic VJ rules.
  1958. *
  1959. * Really tricky (and requiring careful tuning) part of algorithm
  1960. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1961. * The first determines the moment _when_ we should reduce CWND and,
  1962. * hence, slow down forward transmission. In fact, it determines the moment
  1963. * when we decide that hole is caused by loss, rather than by a reorder.
  1964. *
  1965. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1966. * holes, caused by lost packets.
  1967. *
  1968. * And the most logically complicated part of algorithm is undo
  1969. * heuristics. We detect false retransmits due to both too early
  1970. * fast retransmit (reordering) and underestimated RTO, analyzing
  1971. * timestamps and D-SACKs. When we detect that some segments were
  1972. * retransmitted by mistake and CWND reduction was wrong, we undo
  1973. * window reduction and abort recovery phase. This logic is hidden
  1974. * inside several functions named tcp_try_undo_<something>.
  1975. */
  1976. /* This function decides, when we should leave Disordered state
  1977. * and enter Recovery phase, reducing congestion window.
  1978. *
  1979. * Main question: may we further continue forward transmission
  1980. * with the same cwnd?
  1981. */
  1982. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1983. {
  1984. struct tcp_sock *tp = tcp_sk(sk);
  1985. __u32 packets_out;
  1986. /* Do not perform any recovery during F-RTO algorithm */
  1987. if (tp->frto_counter)
  1988. return false;
  1989. /* Trick#1: The loss is proven. */
  1990. if (tp->lost_out)
  1991. return true;
  1992. /* Not-A-Trick#2 : Classic rule... */
  1993. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1994. return true;
  1995. /* Trick#3 : when we use RFC2988 timer restart, fast
  1996. * retransmit can be triggered by timeout of queue head.
  1997. */
  1998. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1999. return true;
  2000. /* Trick#4: It is still not OK... But will it be useful to delay
  2001. * recovery more?
  2002. */
  2003. packets_out = tp->packets_out;
  2004. if (packets_out <= tp->reordering &&
  2005. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2006. !tcp_may_send_now(sk)) {
  2007. /* We have nothing to send. This connection is limited
  2008. * either by receiver window or by application.
  2009. */
  2010. return true;
  2011. }
  2012. /* If a thin stream is detected, retransmit after first
  2013. * received dupack. Employ only if SACK is supported in order
  2014. * to avoid possible corner-case series of spurious retransmissions
  2015. * Use only if there are no unsent data.
  2016. */
  2017. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2018. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2019. tcp_is_sack(tp) && !tcp_send_head(sk))
  2020. return true;
  2021. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  2022. * retransmissions due to small network reorderings, we implement
  2023. * Mitigation A.3 in the RFC and delay the retransmission for a short
  2024. * interval if appropriate.
  2025. */
  2026. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  2027. (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
  2028. !tcp_may_send_now(sk))
  2029. return !tcp_pause_early_retransmit(sk, flag);
  2030. return false;
  2031. }
  2032. /* New heuristics: it is possible only after we switched to restart timer
  2033. * each time when something is ACKed. Hence, we can detect timed out packets
  2034. * during fast retransmit without falling to slow start.
  2035. *
  2036. * Usefulness of this as is very questionable, since we should know which of
  2037. * the segments is the next to timeout which is relatively expensive to find
  2038. * in general case unless we add some data structure just for that. The
  2039. * current approach certainly won't find the right one too often and when it
  2040. * finally does find _something_ it usually marks large part of the window
  2041. * right away (because a retransmission with a larger timestamp blocks the
  2042. * loop from advancing). -ij
  2043. */
  2044. static void tcp_timeout_skbs(struct sock *sk)
  2045. {
  2046. struct tcp_sock *tp = tcp_sk(sk);
  2047. struct sk_buff *skb;
  2048. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2049. return;
  2050. skb = tp->scoreboard_skb_hint;
  2051. if (tp->scoreboard_skb_hint == NULL)
  2052. skb = tcp_write_queue_head(sk);
  2053. tcp_for_write_queue_from(skb, sk) {
  2054. if (skb == tcp_send_head(sk))
  2055. break;
  2056. if (!tcp_skb_timedout(sk, skb))
  2057. break;
  2058. tcp_skb_mark_lost(tp, skb);
  2059. }
  2060. tp->scoreboard_skb_hint = skb;
  2061. tcp_verify_left_out(tp);
  2062. }
  2063. /* Detect loss in event "A" above by marking head of queue up as lost.
  2064. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2065. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2066. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2067. * the maximum SACKed segments to pass before reaching this limit.
  2068. */
  2069. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2070. {
  2071. struct tcp_sock *tp = tcp_sk(sk);
  2072. struct sk_buff *skb;
  2073. int cnt, oldcnt;
  2074. int err;
  2075. unsigned int mss;
  2076. /* Use SACK to deduce losses of new sequences sent during recovery */
  2077. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2078. WARN_ON(packets > tp->packets_out);
  2079. if (tp->lost_skb_hint) {
  2080. skb = tp->lost_skb_hint;
  2081. cnt = tp->lost_cnt_hint;
  2082. /* Head already handled? */
  2083. if (mark_head && skb != tcp_write_queue_head(sk))
  2084. return;
  2085. } else {
  2086. skb = tcp_write_queue_head(sk);
  2087. cnt = 0;
  2088. }
  2089. tcp_for_write_queue_from(skb, sk) {
  2090. if (skb == tcp_send_head(sk))
  2091. break;
  2092. /* TODO: do this better */
  2093. /* this is not the most efficient way to do this... */
  2094. tp->lost_skb_hint = skb;
  2095. tp->lost_cnt_hint = cnt;
  2096. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2097. break;
  2098. oldcnt = cnt;
  2099. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2100. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2101. cnt += tcp_skb_pcount(skb);
  2102. if (cnt > packets) {
  2103. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2104. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2105. (oldcnt >= packets))
  2106. break;
  2107. mss = skb_shinfo(skb)->gso_size;
  2108. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2109. if (err < 0)
  2110. break;
  2111. cnt = packets;
  2112. }
  2113. tcp_skb_mark_lost(tp, skb);
  2114. if (mark_head)
  2115. break;
  2116. }
  2117. tcp_verify_left_out(tp);
  2118. }
  2119. /* Account newly detected lost packet(s) */
  2120. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2121. {
  2122. struct tcp_sock *tp = tcp_sk(sk);
  2123. if (tcp_is_reno(tp)) {
  2124. tcp_mark_head_lost(sk, 1, 1);
  2125. } else if (tcp_is_fack(tp)) {
  2126. int lost = tp->fackets_out - tp->reordering;
  2127. if (lost <= 0)
  2128. lost = 1;
  2129. tcp_mark_head_lost(sk, lost, 0);
  2130. } else {
  2131. int sacked_upto = tp->sacked_out - tp->reordering;
  2132. if (sacked_upto >= 0)
  2133. tcp_mark_head_lost(sk, sacked_upto, 0);
  2134. else if (fast_rexmit)
  2135. tcp_mark_head_lost(sk, 1, 1);
  2136. }
  2137. tcp_timeout_skbs(sk);
  2138. }
  2139. /* CWND moderation, preventing bursts due to too big ACKs
  2140. * in dubious situations.
  2141. */
  2142. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2143. {
  2144. tp->snd_cwnd = min(tp->snd_cwnd,
  2145. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2146. tp->snd_cwnd_stamp = tcp_time_stamp;
  2147. }
  2148. /* Nothing was retransmitted or returned timestamp is less
  2149. * than timestamp of the first retransmission.
  2150. */
  2151. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2152. {
  2153. return !tp->retrans_stamp ||
  2154. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2155. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2156. }
  2157. /* Undo procedures. */
  2158. #if FASTRETRANS_DEBUG > 1
  2159. static void DBGUNDO(struct sock *sk, const char *msg)
  2160. {
  2161. struct tcp_sock *tp = tcp_sk(sk);
  2162. struct inet_sock *inet = inet_sk(sk);
  2163. if (sk->sk_family == AF_INET) {
  2164. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2165. msg,
  2166. &inet->inet_daddr, ntohs(inet->inet_dport),
  2167. tp->snd_cwnd, tcp_left_out(tp),
  2168. tp->snd_ssthresh, tp->prior_ssthresh,
  2169. tp->packets_out);
  2170. }
  2171. #if IS_ENABLED(CONFIG_IPV6)
  2172. else if (sk->sk_family == AF_INET6) {
  2173. struct ipv6_pinfo *np = inet6_sk(sk);
  2174. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2175. msg,
  2176. &np->daddr, ntohs(inet->inet_dport),
  2177. tp->snd_cwnd, tcp_left_out(tp),
  2178. tp->snd_ssthresh, tp->prior_ssthresh,
  2179. tp->packets_out);
  2180. }
  2181. #endif
  2182. }
  2183. #else
  2184. #define DBGUNDO(x...) do { } while (0)
  2185. #endif
  2186. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2187. {
  2188. struct tcp_sock *tp = tcp_sk(sk);
  2189. if (tp->prior_ssthresh) {
  2190. const struct inet_connection_sock *icsk = inet_csk(sk);
  2191. if (icsk->icsk_ca_ops->undo_cwnd)
  2192. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2193. else
  2194. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2195. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2196. tp->snd_ssthresh = tp->prior_ssthresh;
  2197. TCP_ECN_withdraw_cwr(tp);
  2198. }
  2199. } else {
  2200. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2201. }
  2202. tp->snd_cwnd_stamp = tcp_time_stamp;
  2203. }
  2204. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2205. {
  2206. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2207. }
  2208. /* People celebrate: "We love our President!" */
  2209. static bool tcp_try_undo_recovery(struct sock *sk)
  2210. {
  2211. struct tcp_sock *tp = tcp_sk(sk);
  2212. if (tcp_may_undo(tp)) {
  2213. int mib_idx;
  2214. /* Happy end! We did not retransmit anything
  2215. * or our original transmission succeeded.
  2216. */
  2217. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2218. tcp_undo_cwr(sk, true);
  2219. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2220. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2221. else
  2222. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2223. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2224. tp->undo_marker = 0;
  2225. }
  2226. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2227. /* Hold old state until something *above* high_seq
  2228. * is ACKed. For Reno it is MUST to prevent false
  2229. * fast retransmits (RFC2582). SACK TCP is safe. */
  2230. tcp_moderate_cwnd(tp);
  2231. return true;
  2232. }
  2233. tcp_set_ca_state(sk, TCP_CA_Open);
  2234. return false;
  2235. }
  2236. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2237. static void tcp_try_undo_dsack(struct sock *sk)
  2238. {
  2239. struct tcp_sock *tp = tcp_sk(sk);
  2240. if (tp->undo_marker && !tp->undo_retrans) {
  2241. DBGUNDO(sk, "D-SACK");
  2242. tcp_undo_cwr(sk, true);
  2243. tp->undo_marker = 0;
  2244. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2245. }
  2246. }
  2247. /* We can clear retrans_stamp when there are no retransmissions in the
  2248. * window. It would seem that it is trivially available for us in
  2249. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2250. * what will happen if errors occur when sending retransmission for the
  2251. * second time. ...It could the that such segment has only
  2252. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2253. * the head skb is enough except for some reneging corner cases that
  2254. * are not worth the effort.
  2255. *
  2256. * Main reason for all this complexity is the fact that connection dying
  2257. * time now depends on the validity of the retrans_stamp, in particular,
  2258. * that successive retransmissions of a segment must not advance
  2259. * retrans_stamp under any conditions.
  2260. */
  2261. static bool tcp_any_retrans_done(const struct sock *sk)
  2262. {
  2263. const struct tcp_sock *tp = tcp_sk(sk);
  2264. struct sk_buff *skb;
  2265. if (tp->retrans_out)
  2266. return true;
  2267. skb = tcp_write_queue_head(sk);
  2268. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2269. return true;
  2270. return false;
  2271. }
  2272. /* Undo during fast recovery after partial ACK. */
  2273. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2274. {
  2275. struct tcp_sock *tp = tcp_sk(sk);
  2276. /* Partial ACK arrived. Force Hoe's retransmit. */
  2277. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2278. if (tcp_may_undo(tp)) {
  2279. /* Plain luck! Hole if filled with delayed
  2280. * packet, rather than with a retransmit.
  2281. */
  2282. if (!tcp_any_retrans_done(sk))
  2283. tp->retrans_stamp = 0;
  2284. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2285. DBGUNDO(sk, "Hoe");
  2286. tcp_undo_cwr(sk, false);
  2287. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2288. /* So... Do not make Hoe's retransmit yet.
  2289. * If the first packet was delayed, the rest
  2290. * ones are most probably delayed as well.
  2291. */
  2292. failed = 0;
  2293. }
  2294. return failed;
  2295. }
  2296. /* Undo during loss recovery after partial ACK. */
  2297. static bool tcp_try_undo_loss(struct sock *sk)
  2298. {
  2299. struct tcp_sock *tp = tcp_sk(sk);
  2300. if (tcp_may_undo(tp)) {
  2301. struct sk_buff *skb;
  2302. tcp_for_write_queue(skb, sk) {
  2303. if (skb == tcp_send_head(sk))
  2304. break;
  2305. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2306. }
  2307. tcp_clear_all_retrans_hints(tp);
  2308. DBGUNDO(sk, "partial loss");
  2309. tp->lost_out = 0;
  2310. tcp_undo_cwr(sk, true);
  2311. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2312. inet_csk(sk)->icsk_retransmits = 0;
  2313. tp->undo_marker = 0;
  2314. if (tcp_is_sack(tp))
  2315. tcp_set_ca_state(sk, TCP_CA_Open);
  2316. return true;
  2317. }
  2318. return false;
  2319. }
  2320. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2321. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2322. * It computes the number of packets to send (sndcnt) based on packets newly
  2323. * delivered:
  2324. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2325. * cwnd reductions across a full RTT.
  2326. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2327. * losses and/or application stalls), do not perform any further cwnd
  2328. * reductions, but instead slow start up to ssthresh.
  2329. */
  2330. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2331. {
  2332. struct tcp_sock *tp = tcp_sk(sk);
  2333. tp->high_seq = tp->snd_nxt;
  2334. tp->bytes_acked = 0;
  2335. tp->snd_cwnd_cnt = 0;
  2336. tp->prior_cwnd = tp->snd_cwnd;
  2337. tp->prr_delivered = 0;
  2338. tp->prr_out = 0;
  2339. if (set_ssthresh)
  2340. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2341. TCP_ECN_queue_cwr(tp);
  2342. }
  2343. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2344. int fast_rexmit)
  2345. {
  2346. struct tcp_sock *tp = tcp_sk(sk);
  2347. int sndcnt = 0;
  2348. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2349. tp->prr_delivered += newly_acked_sacked;
  2350. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2351. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2352. tp->prior_cwnd - 1;
  2353. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2354. } else {
  2355. sndcnt = min_t(int, delta,
  2356. max_t(int, tp->prr_delivered - tp->prr_out,
  2357. newly_acked_sacked) + 1);
  2358. }
  2359. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2360. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2361. }
  2362. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2363. {
  2364. struct tcp_sock *tp = tcp_sk(sk);
  2365. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2366. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2367. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2368. tp->snd_cwnd = tp->snd_ssthresh;
  2369. tp->snd_cwnd_stamp = tcp_time_stamp;
  2370. }
  2371. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2372. }
  2373. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2374. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2375. {
  2376. struct tcp_sock *tp = tcp_sk(sk);
  2377. tp->prior_ssthresh = 0;
  2378. tp->bytes_acked = 0;
  2379. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2380. tp->undo_marker = 0;
  2381. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2382. tcp_set_ca_state(sk, TCP_CA_CWR);
  2383. }
  2384. }
  2385. static void tcp_try_keep_open(struct sock *sk)
  2386. {
  2387. struct tcp_sock *tp = tcp_sk(sk);
  2388. int state = TCP_CA_Open;
  2389. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2390. state = TCP_CA_Disorder;
  2391. if (inet_csk(sk)->icsk_ca_state != state) {
  2392. tcp_set_ca_state(sk, state);
  2393. tp->high_seq = tp->snd_nxt;
  2394. }
  2395. }
  2396. static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
  2397. {
  2398. struct tcp_sock *tp = tcp_sk(sk);
  2399. tcp_verify_left_out(tp);
  2400. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2401. tp->retrans_stamp = 0;
  2402. if (flag & FLAG_ECE)
  2403. tcp_enter_cwr(sk, 1);
  2404. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2405. tcp_try_keep_open(sk);
  2406. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2407. tcp_moderate_cwnd(tp);
  2408. } else {
  2409. tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
  2410. }
  2411. }
  2412. static void tcp_mtup_probe_failed(struct sock *sk)
  2413. {
  2414. struct inet_connection_sock *icsk = inet_csk(sk);
  2415. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2416. icsk->icsk_mtup.probe_size = 0;
  2417. }
  2418. static void tcp_mtup_probe_success(struct sock *sk)
  2419. {
  2420. struct tcp_sock *tp = tcp_sk(sk);
  2421. struct inet_connection_sock *icsk = inet_csk(sk);
  2422. /* FIXME: breaks with very large cwnd */
  2423. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2424. tp->snd_cwnd = tp->snd_cwnd *
  2425. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2426. icsk->icsk_mtup.probe_size;
  2427. tp->snd_cwnd_cnt = 0;
  2428. tp->snd_cwnd_stamp = tcp_time_stamp;
  2429. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2430. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2431. icsk->icsk_mtup.probe_size = 0;
  2432. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2433. }
  2434. /* Do a simple retransmit without using the backoff mechanisms in
  2435. * tcp_timer. This is used for path mtu discovery.
  2436. * The socket is already locked here.
  2437. */
  2438. void tcp_simple_retransmit(struct sock *sk)
  2439. {
  2440. const struct inet_connection_sock *icsk = inet_csk(sk);
  2441. struct tcp_sock *tp = tcp_sk(sk);
  2442. struct sk_buff *skb;
  2443. unsigned int mss = tcp_current_mss(sk);
  2444. u32 prior_lost = tp->lost_out;
  2445. tcp_for_write_queue(skb, sk) {
  2446. if (skb == tcp_send_head(sk))
  2447. break;
  2448. if (tcp_skb_seglen(skb) > mss &&
  2449. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2450. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2451. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2452. tp->retrans_out -= tcp_skb_pcount(skb);
  2453. }
  2454. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2455. }
  2456. }
  2457. tcp_clear_retrans_hints_partial(tp);
  2458. if (prior_lost == tp->lost_out)
  2459. return;
  2460. if (tcp_is_reno(tp))
  2461. tcp_limit_reno_sacked(tp);
  2462. tcp_verify_left_out(tp);
  2463. /* Don't muck with the congestion window here.
  2464. * Reason is that we do not increase amount of _data_
  2465. * in network, but units changed and effective
  2466. * cwnd/ssthresh really reduced now.
  2467. */
  2468. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2469. tp->high_seq = tp->snd_nxt;
  2470. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2471. tp->prior_ssthresh = 0;
  2472. tp->undo_marker = 0;
  2473. tcp_set_ca_state(sk, TCP_CA_Loss);
  2474. }
  2475. tcp_xmit_retransmit_queue(sk);
  2476. }
  2477. EXPORT_SYMBOL(tcp_simple_retransmit);
  2478. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2479. {
  2480. struct tcp_sock *tp = tcp_sk(sk);
  2481. int mib_idx;
  2482. if (tcp_is_reno(tp))
  2483. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2484. else
  2485. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2486. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2487. tp->prior_ssthresh = 0;
  2488. tp->undo_marker = tp->snd_una;
  2489. tp->undo_retrans = tp->retrans_out;
  2490. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2491. if (!ece_ack)
  2492. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2493. tcp_init_cwnd_reduction(sk, true);
  2494. }
  2495. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2496. }
  2497. /* Process an event, which can update packets-in-flight not trivially.
  2498. * Main goal of this function is to calculate new estimate for left_out,
  2499. * taking into account both packets sitting in receiver's buffer and
  2500. * packets lost by network.
  2501. *
  2502. * Besides that it does CWND reduction, when packet loss is detected
  2503. * and changes state of machine.
  2504. *
  2505. * It does _not_ decide what to send, it is made in function
  2506. * tcp_xmit_retransmit_queue().
  2507. */
  2508. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2509. int prior_sacked, bool is_dupack,
  2510. int flag)
  2511. {
  2512. struct inet_connection_sock *icsk = inet_csk(sk);
  2513. struct tcp_sock *tp = tcp_sk(sk);
  2514. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2515. (tcp_fackets_out(tp) > tp->reordering));
  2516. int newly_acked_sacked = 0;
  2517. int fast_rexmit = 0;
  2518. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2519. tp->sacked_out = 0;
  2520. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2521. tp->fackets_out = 0;
  2522. /* Now state machine starts.
  2523. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2524. if (flag & FLAG_ECE)
  2525. tp->prior_ssthresh = 0;
  2526. /* B. In all the states check for reneging SACKs. */
  2527. if (tcp_check_sack_reneging(sk, flag))
  2528. return;
  2529. /* C. Check consistency of the current state. */
  2530. tcp_verify_left_out(tp);
  2531. /* D. Check state exit conditions. State can be terminated
  2532. * when high_seq is ACKed. */
  2533. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2534. WARN_ON(tp->retrans_out != 0);
  2535. tp->retrans_stamp = 0;
  2536. } else if (!before(tp->snd_una, tp->high_seq)) {
  2537. switch (icsk->icsk_ca_state) {
  2538. case TCP_CA_Loss:
  2539. icsk->icsk_retransmits = 0;
  2540. if (tcp_try_undo_recovery(sk))
  2541. return;
  2542. break;
  2543. case TCP_CA_CWR:
  2544. /* CWR is to be held something *above* high_seq
  2545. * is ACKed for CWR bit to reach receiver. */
  2546. if (tp->snd_una != tp->high_seq) {
  2547. tcp_end_cwnd_reduction(sk);
  2548. tcp_set_ca_state(sk, TCP_CA_Open);
  2549. }
  2550. break;
  2551. case TCP_CA_Recovery:
  2552. if (tcp_is_reno(tp))
  2553. tcp_reset_reno_sack(tp);
  2554. if (tcp_try_undo_recovery(sk))
  2555. return;
  2556. tcp_end_cwnd_reduction(sk);
  2557. break;
  2558. }
  2559. }
  2560. /* E. Process state. */
  2561. switch (icsk->icsk_ca_state) {
  2562. case TCP_CA_Recovery:
  2563. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2564. if (tcp_is_reno(tp) && is_dupack)
  2565. tcp_add_reno_sack(sk);
  2566. } else
  2567. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2568. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2569. break;
  2570. case TCP_CA_Loss:
  2571. if (flag & FLAG_DATA_ACKED)
  2572. icsk->icsk_retransmits = 0;
  2573. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2574. tcp_reset_reno_sack(tp);
  2575. if (!tcp_try_undo_loss(sk)) {
  2576. tcp_moderate_cwnd(tp);
  2577. tcp_xmit_retransmit_queue(sk);
  2578. return;
  2579. }
  2580. if (icsk->icsk_ca_state != TCP_CA_Open)
  2581. return;
  2582. /* Loss is undone; fall through to processing in Open state. */
  2583. default:
  2584. if (tcp_is_reno(tp)) {
  2585. if (flag & FLAG_SND_UNA_ADVANCED)
  2586. tcp_reset_reno_sack(tp);
  2587. if (is_dupack)
  2588. tcp_add_reno_sack(sk);
  2589. }
  2590. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2591. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2592. tcp_try_undo_dsack(sk);
  2593. if (!tcp_time_to_recover(sk, flag)) {
  2594. tcp_try_to_open(sk, flag, newly_acked_sacked);
  2595. return;
  2596. }
  2597. /* MTU probe failure: don't reduce cwnd */
  2598. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2599. icsk->icsk_mtup.probe_size &&
  2600. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2601. tcp_mtup_probe_failed(sk);
  2602. /* Restores the reduction we did in tcp_mtup_probe() */
  2603. tp->snd_cwnd++;
  2604. tcp_simple_retransmit(sk);
  2605. return;
  2606. }
  2607. /* Otherwise enter Recovery state */
  2608. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2609. fast_rexmit = 1;
  2610. }
  2611. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2612. tcp_update_scoreboard(sk, fast_rexmit);
  2613. tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
  2614. tcp_xmit_retransmit_queue(sk);
  2615. }
  2616. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2617. {
  2618. tcp_rtt_estimator(sk, seq_rtt);
  2619. tcp_set_rto(sk);
  2620. inet_csk(sk)->icsk_backoff = 0;
  2621. }
  2622. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2623. /* Read draft-ietf-tcplw-high-performance before mucking
  2624. * with this code. (Supersedes RFC1323)
  2625. */
  2626. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2627. {
  2628. /* RTTM Rule: A TSecr value received in a segment is used to
  2629. * update the averaged RTT measurement only if the segment
  2630. * acknowledges some new data, i.e., only if it advances the
  2631. * left edge of the send window.
  2632. *
  2633. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2634. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2635. *
  2636. * Changed: reset backoff as soon as we see the first valid sample.
  2637. * If we do not, we get strongly overestimated rto. With timestamps
  2638. * samples are accepted even from very old segments: f.e., when rtt=1
  2639. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2640. * answer arrives rto becomes 120 seconds! If at least one of segments
  2641. * in window is lost... Voila. --ANK (010210)
  2642. */
  2643. struct tcp_sock *tp = tcp_sk(sk);
  2644. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2645. }
  2646. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2647. {
  2648. /* We don't have a timestamp. Can only use
  2649. * packets that are not retransmitted to determine
  2650. * rtt estimates. Also, we must not reset the
  2651. * backoff for rto until we get a non-retransmitted
  2652. * packet. This allows us to deal with a situation
  2653. * where the network delay has increased suddenly.
  2654. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2655. */
  2656. if (flag & FLAG_RETRANS_DATA_ACKED)
  2657. return;
  2658. tcp_valid_rtt_meas(sk, seq_rtt);
  2659. }
  2660. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2661. const s32 seq_rtt)
  2662. {
  2663. const struct tcp_sock *tp = tcp_sk(sk);
  2664. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2665. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2666. tcp_ack_saw_tstamp(sk, flag);
  2667. else if (seq_rtt >= 0)
  2668. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2669. }
  2670. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2671. {
  2672. const struct inet_connection_sock *icsk = inet_csk(sk);
  2673. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2674. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2675. }
  2676. /* Restart timer after forward progress on connection.
  2677. * RFC2988 recommends to restart timer to now+rto.
  2678. */
  2679. void tcp_rearm_rto(struct sock *sk)
  2680. {
  2681. struct tcp_sock *tp = tcp_sk(sk);
  2682. /* If the retrans timer is currently being used by Fast Open
  2683. * for SYN-ACK retrans purpose, stay put.
  2684. */
  2685. if (tp->fastopen_rsk)
  2686. return;
  2687. if (!tp->packets_out) {
  2688. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2689. } else {
  2690. u32 rto = inet_csk(sk)->icsk_rto;
  2691. /* Offset the time elapsed after installing regular RTO */
  2692. if (tp->early_retrans_delayed) {
  2693. struct sk_buff *skb = tcp_write_queue_head(sk);
  2694. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2695. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2696. /* delta may not be positive if the socket is locked
  2697. * when the delayed ER timer fires and is rescheduled.
  2698. */
  2699. if (delta > 0)
  2700. rto = delta;
  2701. }
  2702. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2703. TCP_RTO_MAX);
  2704. }
  2705. tp->early_retrans_delayed = 0;
  2706. }
  2707. /* This function is called when the delayed ER timer fires. TCP enters
  2708. * fast recovery and performs fast-retransmit.
  2709. */
  2710. void tcp_resume_early_retransmit(struct sock *sk)
  2711. {
  2712. struct tcp_sock *tp = tcp_sk(sk);
  2713. tcp_rearm_rto(sk);
  2714. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2715. if (!tp->do_early_retrans)
  2716. return;
  2717. tcp_enter_recovery(sk, false);
  2718. tcp_update_scoreboard(sk, 1);
  2719. tcp_xmit_retransmit_queue(sk);
  2720. }
  2721. /* If we get here, the whole TSO packet has not been acked. */
  2722. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2723. {
  2724. struct tcp_sock *tp = tcp_sk(sk);
  2725. u32 packets_acked;
  2726. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2727. packets_acked = tcp_skb_pcount(skb);
  2728. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2729. return 0;
  2730. packets_acked -= tcp_skb_pcount(skb);
  2731. if (packets_acked) {
  2732. BUG_ON(tcp_skb_pcount(skb) == 0);
  2733. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2734. }
  2735. return packets_acked;
  2736. }
  2737. /* Remove acknowledged frames from the retransmission queue. If our packet
  2738. * is before the ack sequence we can discard it as it's confirmed to have
  2739. * arrived at the other end.
  2740. */
  2741. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2742. u32 prior_snd_una)
  2743. {
  2744. struct tcp_sock *tp = tcp_sk(sk);
  2745. const struct inet_connection_sock *icsk = inet_csk(sk);
  2746. struct sk_buff *skb;
  2747. u32 now = tcp_time_stamp;
  2748. int fully_acked = true;
  2749. int flag = 0;
  2750. u32 pkts_acked = 0;
  2751. u32 reord = tp->packets_out;
  2752. u32 prior_sacked = tp->sacked_out;
  2753. s32 seq_rtt = -1;
  2754. s32 ca_seq_rtt = -1;
  2755. ktime_t last_ackt = net_invalid_timestamp();
  2756. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2757. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2758. u32 acked_pcount;
  2759. u8 sacked = scb->sacked;
  2760. /* Determine how many packets and what bytes were acked, tso and else */
  2761. if (after(scb->end_seq, tp->snd_una)) {
  2762. if (tcp_skb_pcount(skb) == 1 ||
  2763. !after(tp->snd_una, scb->seq))
  2764. break;
  2765. acked_pcount = tcp_tso_acked(sk, skb);
  2766. if (!acked_pcount)
  2767. break;
  2768. fully_acked = false;
  2769. } else {
  2770. acked_pcount = tcp_skb_pcount(skb);
  2771. }
  2772. if (sacked & TCPCB_RETRANS) {
  2773. if (sacked & TCPCB_SACKED_RETRANS)
  2774. tp->retrans_out -= acked_pcount;
  2775. flag |= FLAG_RETRANS_DATA_ACKED;
  2776. ca_seq_rtt = -1;
  2777. seq_rtt = -1;
  2778. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2779. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2780. } else {
  2781. ca_seq_rtt = now - scb->when;
  2782. last_ackt = skb->tstamp;
  2783. if (seq_rtt < 0) {
  2784. seq_rtt = ca_seq_rtt;
  2785. }
  2786. if (!(sacked & TCPCB_SACKED_ACKED))
  2787. reord = min(pkts_acked, reord);
  2788. }
  2789. if (sacked & TCPCB_SACKED_ACKED)
  2790. tp->sacked_out -= acked_pcount;
  2791. if (sacked & TCPCB_LOST)
  2792. tp->lost_out -= acked_pcount;
  2793. tp->packets_out -= acked_pcount;
  2794. pkts_acked += acked_pcount;
  2795. /* Initial outgoing SYN's get put onto the write_queue
  2796. * just like anything else we transmit. It is not
  2797. * true data, and if we misinform our callers that
  2798. * this ACK acks real data, we will erroneously exit
  2799. * connection startup slow start one packet too
  2800. * quickly. This is severely frowned upon behavior.
  2801. */
  2802. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2803. flag |= FLAG_DATA_ACKED;
  2804. } else {
  2805. flag |= FLAG_SYN_ACKED;
  2806. tp->retrans_stamp = 0;
  2807. }
  2808. if (!fully_acked)
  2809. break;
  2810. tcp_unlink_write_queue(skb, sk);
  2811. sk_wmem_free_skb(sk, skb);
  2812. tp->scoreboard_skb_hint = NULL;
  2813. if (skb == tp->retransmit_skb_hint)
  2814. tp->retransmit_skb_hint = NULL;
  2815. if (skb == tp->lost_skb_hint)
  2816. tp->lost_skb_hint = NULL;
  2817. }
  2818. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2819. tp->snd_up = tp->snd_una;
  2820. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2821. flag |= FLAG_SACK_RENEGING;
  2822. if (flag & FLAG_ACKED) {
  2823. const struct tcp_congestion_ops *ca_ops
  2824. = inet_csk(sk)->icsk_ca_ops;
  2825. if (unlikely(icsk->icsk_mtup.probe_size &&
  2826. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2827. tcp_mtup_probe_success(sk);
  2828. }
  2829. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2830. tcp_rearm_rto(sk);
  2831. if (tcp_is_reno(tp)) {
  2832. tcp_remove_reno_sacks(sk, pkts_acked);
  2833. } else {
  2834. int delta;
  2835. /* Non-retransmitted hole got filled? That's reordering */
  2836. if (reord < prior_fackets)
  2837. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2838. delta = tcp_is_fack(tp) ? pkts_acked :
  2839. prior_sacked - tp->sacked_out;
  2840. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2841. }
  2842. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2843. if (ca_ops->pkts_acked) {
  2844. s32 rtt_us = -1;
  2845. /* Is the ACK triggering packet unambiguous? */
  2846. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2847. /* High resolution needed and available? */
  2848. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2849. !ktime_equal(last_ackt,
  2850. net_invalid_timestamp()))
  2851. rtt_us = ktime_us_delta(ktime_get_real(),
  2852. last_ackt);
  2853. else if (ca_seq_rtt >= 0)
  2854. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2855. }
  2856. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2857. }
  2858. }
  2859. #if FASTRETRANS_DEBUG > 0
  2860. WARN_ON((int)tp->sacked_out < 0);
  2861. WARN_ON((int)tp->lost_out < 0);
  2862. WARN_ON((int)tp->retrans_out < 0);
  2863. if (!tp->packets_out && tcp_is_sack(tp)) {
  2864. icsk = inet_csk(sk);
  2865. if (tp->lost_out) {
  2866. pr_debug("Leak l=%u %d\n",
  2867. tp->lost_out, icsk->icsk_ca_state);
  2868. tp->lost_out = 0;
  2869. }
  2870. if (tp->sacked_out) {
  2871. pr_debug("Leak s=%u %d\n",
  2872. tp->sacked_out, icsk->icsk_ca_state);
  2873. tp->sacked_out = 0;
  2874. }
  2875. if (tp->retrans_out) {
  2876. pr_debug("Leak r=%u %d\n",
  2877. tp->retrans_out, icsk->icsk_ca_state);
  2878. tp->retrans_out = 0;
  2879. }
  2880. }
  2881. #endif
  2882. return flag;
  2883. }
  2884. static void tcp_ack_probe(struct sock *sk)
  2885. {
  2886. const struct tcp_sock *tp = tcp_sk(sk);
  2887. struct inet_connection_sock *icsk = inet_csk(sk);
  2888. /* Was it a usable window open? */
  2889. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2890. icsk->icsk_backoff = 0;
  2891. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2892. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2893. * This function is not for random using!
  2894. */
  2895. } else {
  2896. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2897. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2898. TCP_RTO_MAX);
  2899. }
  2900. }
  2901. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2902. {
  2903. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2904. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2905. }
  2906. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2907. {
  2908. const struct tcp_sock *tp = tcp_sk(sk);
  2909. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2910. !tcp_in_cwnd_reduction(sk);
  2911. }
  2912. /* Check that window update is acceptable.
  2913. * The function assumes that snd_una<=ack<=snd_next.
  2914. */
  2915. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2916. const u32 ack, const u32 ack_seq,
  2917. const u32 nwin)
  2918. {
  2919. return after(ack, tp->snd_una) ||
  2920. after(ack_seq, tp->snd_wl1) ||
  2921. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2922. }
  2923. /* Update our send window.
  2924. *
  2925. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2926. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2927. */
  2928. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2929. u32 ack_seq)
  2930. {
  2931. struct tcp_sock *tp = tcp_sk(sk);
  2932. int flag = 0;
  2933. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2934. if (likely(!tcp_hdr(skb)->syn))
  2935. nwin <<= tp->rx_opt.snd_wscale;
  2936. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2937. flag |= FLAG_WIN_UPDATE;
  2938. tcp_update_wl(tp, ack_seq);
  2939. if (tp->snd_wnd != nwin) {
  2940. tp->snd_wnd = nwin;
  2941. /* Note, it is the only place, where
  2942. * fast path is recovered for sending TCP.
  2943. */
  2944. tp->pred_flags = 0;
  2945. tcp_fast_path_check(sk);
  2946. if (nwin > tp->max_window) {
  2947. tp->max_window = nwin;
  2948. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2949. }
  2950. }
  2951. }
  2952. tp->snd_una = ack;
  2953. return flag;
  2954. }
  2955. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2956. * continue in congestion avoidance.
  2957. */
  2958. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2959. {
  2960. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2961. tp->snd_cwnd_cnt = 0;
  2962. tp->bytes_acked = 0;
  2963. TCP_ECN_queue_cwr(tp);
  2964. tcp_moderate_cwnd(tp);
  2965. }
  2966. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2967. * PRR and continue in congestion avoidance.
  2968. */
  2969. static void tcp_cwr_spur_to_response(struct sock *sk)
  2970. {
  2971. tcp_enter_cwr(sk, 0);
  2972. }
  2973. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2974. {
  2975. if (flag & FLAG_ECE)
  2976. tcp_cwr_spur_to_response(sk);
  2977. else
  2978. tcp_undo_cwr(sk, true);
  2979. }
  2980. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2981. *
  2982. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2983. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2984. * window (but not to or beyond highest sequence sent before RTO):
  2985. * On First ACK, send two new segments out.
  2986. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2987. * algorithm is not part of the F-RTO detection algorithm
  2988. * given in RFC4138 but can be selected separately).
  2989. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  2990. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  2991. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  2992. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  2993. *
  2994. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  2995. * original window even after we transmit two new data segments.
  2996. *
  2997. * SACK version:
  2998. * on first step, wait until first cumulative ACK arrives, then move to
  2999. * the second step. In second step, the next ACK decides.
  3000. *
  3001. * F-RTO is implemented (mainly) in four functions:
  3002. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3003. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3004. * called when tcp_use_frto() showed green light
  3005. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3006. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3007. * to prove that the RTO is indeed spurious. It transfers the control
  3008. * from F-RTO to the conventional RTO recovery
  3009. */
  3010. static bool tcp_process_frto(struct sock *sk, int flag)
  3011. {
  3012. struct tcp_sock *tp = tcp_sk(sk);
  3013. tcp_verify_left_out(tp);
  3014. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3015. if (flag & FLAG_DATA_ACKED)
  3016. inet_csk(sk)->icsk_retransmits = 0;
  3017. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3018. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3019. tp->undo_marker = 0;
  3020. if (!before(tp->snd_una, tp->frto_highmark)) {
  3021. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3022. return true;
  3023. }
  3024. if (!tcp_is_sackfrto(tp)) {
  3025. /* RFC4138 shortcoming in step 2; should also have case c):
  3026. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3027. * data, winupdate
  3028. */
  3029. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3030. return true;
  3031. if (!(flag & FLAG_DATA_ACKED)) {
  3032. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3033. flag);
  3034. return true;
  3035. }
  3036. } else {
  3037. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3038. /* Prevent sending of new data. */
  3039. tp->snd_cwnd = min(tp->snd_cwnd,
  3040. tcp_packets_in_flight(tp));
  3041. return true;
  3042. }
  3043. if ((tp->frto_counter >= 2) &&
  3044. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3045. ((flag & FLAG_DATA_SACKED) &&
  3046. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3047. /* RFC4138 shortcoming (see comment above) */
  3048. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3049. (flag & FLAG_NOT_DUP))
  3050. return true;
  3051. tcp_enter_frto_loss(sk, 3, flag);
  3052. return true;
  3053. }
  3054. }
  3055. if (tp->frto_counter == 1) {
  3056. /* tcp_may_send_now needs to see updated state */
  3057. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3058. tp->frto_counter = 2;
  3059. if (!tcp_may_send_now(sk))
  3060. tcp_enter_frto_loss(sk, 2, flag);
  3061. return true;
  3062. } else {
  3063. switch (sysctl_tcp_frto_response) {
  3064. case 2:
  3065. tcp_undo_spur_to_response(sk, flag);
  3066. break;
  3067. case 1:
  3068. tcp_conservative_spur_to_response(tp);
  3069. break;
  3070. default:
  3071. tcp_cwr_spur_to_response(sk);
  3072. break;
  3073. }
  3074. tp->frto_counter = 0;
  3075. tp->undo_marker = 0;
  3076. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3077. }
  3078. return false;
  3079. }
  3080. /* RFC 5961 7 [ACK Throttling] */
  3081. static void tcp_send_challenge_ack(struct sock *sk)
  3082. {
  3083. /* unprotected vars, we dont care of overwrites */
  3084. static u32 challenge_timestamp;
  3085. static unsigned int challenge_count;
  3086. u32 now = jiffies / HZ;
  3087. if (now != challenge_timestamp) {
  3088. challenge_timestamp = now;
  3089. challenge_count = 0;
  3090. }
  3091. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  3092. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3093. tcp_send_ack(sk);
  3094. }
  3095. }
  3096. /* This routine deals with incoming acks, but not outgoing ones. */
  3097. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3098. {
  3099. struct inet_connection_sock *icsk = inet_csk(sk);
  3100. struct tcp_sock *tp = tcp_sk(sk);
  3101. u32 prior_snd_una = tp->snd_una;
  3102. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3103. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3104. bool is_dupack = false;
  3105. u32 prior_in_flight;
  3106. u32 prior_fackets;
  3107. int prior_packets;
  3108. int prior_sacked = tp->sacked_out;
  3109. int pkts_acked = 0;
  3110. bool frto_cwnd = false;
  3111. /* If the ack is older than previous acks
  3112. * then we can probably ignore it.
  3113. */
  3114. if (before(ack, prior_snd_una)) {
  3115. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3116. if (before(ack, prior_snd_una - tp->max_window)) {
  3117. tcp_send_challenge_ack(sk);
  3118. return -1;
  3119. }
  3120. goto old_ack;
  3121. }
  3122. /* If the ack includes data we haven't sent yet, discard
  3123. * this segment (RFC793 Section 3.9).
  3124. */
  3125. if (after(ack, tp->snd_nxt))
  3126. goto invalid_ack;
  3127. if (tp->early_retrans_delayed)
  3128. tcp_rearm_rto(sk);
  3129. if (after(ack, prior_snd_una))
  3130. flag |= FLAG_SND_UNA_ADVANCED;
  3131. if (sysctl_tcp_abc) {
  3132. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3133. tp->bytes_acked += ack - prior_snd_una;
  3134. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3135. /* we assume just one segment left network */
  3136. tp->bytes_acked += min(ack - prior_snd_una,
  3137. tp->mss_cache);
  3138. }
  3139. prior_fackets = tp->fackets_out;
  3140. prior_in_flight = tcp_packets_in_flight(tp);
  3141. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3142. /* Window is constant, pure forward advance.
  3143. * No more checks are required.
  3144. * Note, we use the fact that SND.UNA>=SND.WL2.
  3145. */
  3146. tcp_update_wl(tp, ack_seq);
  3147. tp->snd_una = ack;
  3148. flag |= FLAG_WIN_UPDATE;
  3149. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3150. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3151. } else {
  3152. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3153. flag |= FLAG_DATA;
  3154. else
  3155. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3156. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3157. if (TCP_SKB_CB(skb)->sacked)
  3158. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3159. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3160. flag |= FLAG_ECE;
  3161. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3162. }
  3163. /* We passed data and got it acked, remove any soft error
  3164. * log. Something worked...
  3165. */
  3166. sk->sk_err_soft = 0;
  3167. icsk->icsk_probes_out = 0;
  3168. tp->rcv_tstamp = tcp_time_stamp;
  3169. prior_packets = tp->packets_out;
  3170. if (!prior_packets)
  3171. goto no_queue;
  3172. /* See if we can take anything off of the retransmit queue. */
  3173. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3174. pkts_acked = prior_packets - tp->packets_out;
  3175. if (tp->frto_counter)
  3176. frto_cwnd = tcp_process_frto(sk, flag);
  3177. /* Guarantee sacktag reordering detection against wrap-arounds */
  3178. if (before(tp->frto_highmark, tp->snd_una))
  3179. tp->frto_highmark = 0;
  3180. if (tcp_ack_is_dubious(sk, flag)) {
  3181. /* Advance CWND, if state allows this. */
  3182. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3183. tcp_may_raise_cwnd(sk, flag))
  3184. tcp_cong_avoid(sk, ack, prior_in_flight);
  3185. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3186. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3187. is_dupack, flag);
  3188. } else {
  3189. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3190. tcp_cong_avoid(sk, ack, prior_in_flight);
  3191. }
  3192. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3193. struct dst_entry *dst = __sk_dst_get(sk);
  3194. if (dst)
  3195. dst_confirm(dst);
  3196. }
  3197. return 1;
  3198. no_queue:
  3199. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3200. if (flag & FLAG_DSACKING_ACK)
  3201. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3202. is_dupack, flag);
  3203. /* If this ack opens up a zero window, clear backoff. It was
  3204. * being used to time the probes, and is probably far higher than
  3205. * it needs to be for normal retransmission.
  3206. */
  3207. if (tcp_send_head(sk))
  3208. tcp_ack_probe(sk);
  3209. return 1;
  3210. invalid_ack:
  3211. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3212. return -1;
  3213. old_ack:
  3214. /* If data was SACKed, tag it and see if we should send more data.
  3215. * If data was DSACKed, see if we can undo a cwnd reduction.
  3216. */
  3217. if (TCP_SKB_CB(skb)->sacked) {
  3218. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3219. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3220. is_dupack, flag);
  3221. }
  3222. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3223. return 0;
  3224. }
  3225. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3226. * But, this can also be called on packets in the established flow when
  3227. * the fast version below fails.
  3228. */
  3229. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3230. const u8 **hvpp, int estab,
  3231. struct tcp_fastopen_cookie *foc)
  3232. {
  3233. const unsigned char *ptr;
  3234. const struct tcphdr *th = tcp_hdr(skb);
  3235. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3236. ptr = (const unsigned char *)(th + 1);
  3237. opt_rx->saw_tstamp = 0;
  3238. while (length > 0) {
  3239. int opcode = *ptr++;
  3240. int opsize;
  3241. switch (opcode) {
  3242. case TCPOPT_EOL:
  3243. return;
  3244. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3245. length--;
  3246. continue;
  3247. default:
  3248. opsize = *ptr++;
  3249. if (opsize < 2) /* "silly options" */
  3250. return;
  3251. if (opsize > length)
  3252. return; /* don't parse partial options */
  3253. switch (opcode) {
  3254. case TCPOPT_MSS:
  3255. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3256. u16 in_mss = get_unaligned_be16(ptr);
  3257. if (in_mss) {
  3258. if (opt_rx->user_mss &&
  3259. opt_rx->user_mss < in_mss)
  3260. in_mss = opt_rx->user_mss;
  3261. opt_rx->mss_clamp = in_mss;
  3262. }
  3263. }
  3264. break;
  3265. case TCPOPT_WINDOW:
  3266. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3267. !estab && sysctl_tcp_window_scaling) {
  3268. __u8 snd_wscale = *(__u8 *)ptr;
  3269. opt_rx->wscale_ok = 1;
  3270. if (snd_wscale > 14) {
  3271. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3272. __func__,
  3273. snd_wscale);
  3274. snd_wscale = 14;
  3275. }
  3276. opt_rx->snd_wscale = snd_wscale;
  3277. }
  3278. break;
  3279. case TCPOPT_TIMESTAMP:
  3280. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3281. ((estab && opt_rx->tstamp_ok) ||
  3282. (!estab && sysctl_tcp_timestamps))) {
  3283. opt_rx->saw_tstamp = 1;
  3284. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3285. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3286. }
  3287. break;
  3288. case TCPOPT_SACK_PERM:
  3289. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3290. !estab && sysctl_tcp_sack) {
  3291. opt_rx->sack_ok = TCP_SACK_SEEN;
  3292. tcp_sack_reset(opt_rx);
  3293. }
  3294. break;
  3295. case TCPOPT_SACK:
  3296. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3297. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3298. opt_rx->sack_ok) {
  3299. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3300. }
  3301. break;
  3302. #ifdef CONFIG_TCP_MD5SIG
  3303. case TCPOPT_MD5SIG:
  3304. /*
  3305. * The MD5 Hash has already been
  3306. * checked (see tcp_v{4,6}_do_rcv()).
  3307. */
  3308. break;
  3309. #endif
  3310. case TCPOPT_COOKIE:
  3311. /* This option is variable length.
  3312. */
  3313. switch (opsize) {
  3314. case TCPOLEN_COOKIE_BASE:
  3315. /* not yet implemented */
  3316. break;
  3317. case TCPOLEN_COOKIE_PAIR:
  3318. /* not yet implemented */
  3319. break;
  3320. case TCPOLEN_COOKIE_MIN+0:
  3321. case TCPOLEN_COOKIE_MIN+2:
  3322. case TCPOLEN_COOKIE_MIN+4:
  3323. case TCPOLEN_COOKIE_MIN+6:
  3324. case TCPOLEN_COOKIE_MAX:
  3325. /* 16-bit multiple */
  3326. opt_rx->cookie_plus = opsize;
  3327. *hvpp = ptr;
  3328. break;
  3329. default:
  3330. /* ignore option */
  3331. break;
  3332. }
  3333. break;
  3334. case TCPOPT_EXP:
  3335. /* Fast Open option shares code 254 using a
  3336. * 16 bits magic number. It's valid only in
  3337. * SYN or SYN-ACK with an even size.
  3338. */
  3339. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3340. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3341. foc == NULL || !th->syn || (opsize & 1))
  3342. break;
  3343. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3344. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3345. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3346. memcpy(foc->val, ptr + 2, foc->len);
  3347. else if (foc->len != 0)
  3348. foc->len = -1;
  3349. break;
  3350. }
  3351. ptr += opsize-2;
  3352. length -= opsize;
  3353. }
  3354. }
  3355. }
  3356. EXPORT_SYMBOL(tcp_parse_options);
  3357. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3358. {
  3359. const __be32 *ptr = (const __be32 *)(th + 1);
  3360. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3361. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3362. tp->rx_opt.saw_tstamp = 1;
  3363. ++ptr;
  3364. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3365. ++ptr;
  3366. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3367. return true;
  3368. }
  3369. return false;
  3370. }
  3371. /* Fast parse options. This hopes to only see timestamps.
  3372. * If it is wrong it falls back on tcp_parse_options().
  3373. */
  3374. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3375. const struct tcphdr *th,
  3376. struct tcp_sock *tp, const u8 **hvpp)
  3377. {
  3378. /* In the spirit of fast parsing, compare doff directly to constant
  3379. * values. Because equality is used, short doff can be ignored here.
  3380. */
  3381. if (th->doff == (sizeof(*th) / 4)) {
  3382. tp->rx_opt.saw_tstamp = 0;
  3383. return false;
  3384. } else if (tp->rx_opt.tstamp_ok &&
  3385. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3386. if (tcp_parse_aligned_timestamp(tp, th))
  3387. return true;
  3388. }
  3389. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
  3390. return true;
  3391. }
  3392. #ifdef CONFIG_TCP_MD5SIG
  3393. /*
  3394. * Parse MD5 Signature option
  3395. */
  3396. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3397. {
  3398. int length = (th->doff << 2) - sizeof(*th);
  3399. const u8 *ptr = (const u8 *)(th + 1);
  3400. /* If the TCP option is too short, we can short cut */
  3401. if (length < TCPOLEN_MD5SIG)
  3402. return NULL;
  3403. while (length > 0) {
  3404. int opcode = *ptr++;
  3405. int opsize;
  3406. switch(opcode) {
  3407. case TCPOPT_EOL:
  3408. return NULL;
  3409. case TCPOPT_NOP:
  3410. length--;
  3411. continue;
  3412. default:
  3413. opsize = *ptr++;
  3414. if (opsize < 2 || opsize > length)
  3415. return NULL;
  3416. if (opcode == TCPOPT_MD5SIG)
  3417. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3418. }
  3419. ptr += opsize - 2;
  3420. length -= opsize;
  3421. }
  3422. return NULL;
  3423. }
  3424. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3425. #endif
  3426. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3427. {
  3428. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3429. tp->rx_opt.ts_recent_stamp = get_seconds();
  3430. }
  3431. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3432. {
  3433. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3434. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3435. * extra check below makes sure this can only happen
  3436. * for pure ACK frames. -DaveM
  3437. *
  3438. * Not only, also it occurs for expired timestamps.
  3439. */
  3440. if (tcp_paws_check(&tp->rx_opt, 0))
  3441. tcp_store_ts_recent(tp);
  3442. }
  3443. }
  3444. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3445. *
  3446. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3447. * it can pass through stack. So, the following predicate verifies that
  3448. * this segment is not used for anything but congestion avoidance or
  3449. * fast retransmit. Moreover, we even are able to eliminate most of such
  3450. * second order effects, if we apply some small "replay" window (~RTO)
  3451. * to timestamp space.
  3452. *
  3453. * All these measures still do not guarantee that we reject wrapped ACKs
  3454. * on networks with high bandwidth, when sequence space is recycled fastly,
  3455. * but it guarantees that such events will be very rare and do not affect
  3456. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3457. * buggy extension.
  3458. *
  3459. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3460. * states that events when retransmit arrives after original data are rare.
  3461. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3462. * the biggest problem on large power networks even with minor reordering.
  3463. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3464. * up to bandwidth of 18Gigabit/sec. 8) ]
  3465. */
  3466. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3467. {
  3468. const struct tcp_sock *tp = tcp_sk(sk);
  3469. const struct tcphdr *th = tcp_hdr(skb);
  3470. u32 seq = TCP_SKB_CB(skb)->seq;
  3471. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3472. return (/* 1. Pure ACK with correct sequence number. */
  3473. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3474. /* 2. ... and duplicate ACK. */
  3475. ack == tp->snd_una &&
  3476. /* 3. ... and does not update window. */
  3477. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3478. /* 4. ... and sits in replay window. */
  3479. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3480. }
  3481. static inline bool tcp_paws_discard(const struct sock *sk,
  3482. const struct sk_buff *skb)
  3483. {
  3484. const struct tcp_sock *tp = tcp_sk(sk);
  3485. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3486. !tcp_disordered_ack(sk, skb);
  3487. }
  3488. /* Check segment sequence number for validity.
  3489. *
  3490. * Segment controls are considered valid, if the segment
  3491. * fits to the window after truncation to the window. Acceptability
  3492. * of data (and SYN, FIN, of course) is checked separately.
  3493. * See tcp_data_queue(), for example.
  3494. *
  3495. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3496. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3497. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3498. * (borrowed from freebsd)
  3499. */
  3500. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3501. {
  3502. return !before(end_seq, tp->rcv_wup) &&
  3503. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3504. }
  3505. /* When we get a reset we do this. */
  3506. void tcp_reset(struct sock *sk)
  3507. {
  3508. /* We want the right error as BSD sees it (and indeed as we do). */
  3509. switch (sk->sk_state) {
  3510. case TCP_SYN_SENT:
  3511. sk->sk_err = ECONNREFUSED;
  3512. break;
  3513. case TCP_CLOSE_WAIT:
  3514. sk->sk_err = EPIPE;
  3515. break;
  3516. case TCP_CLOSE:
  3517. return;
  3518. default:
  3519. sk->sk_err = ECONNRESET;
  3520. }
  3521. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3522. smp_wmb();
  3523. if (!sock_flag(sk, SOCK_DEAD))
  3524. sk->sk_error_report(sk);
  3525. tcp_done(sk);
  3526. }
  3527. /*
  3528. * Process the FIN bit. This now behaves as it is supposed to work
  3529. * and the FIN takes effect when it is validly part of sequence
  3530. * space. Not before when we get holes.
  3531. *
  3532. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3533. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3534. * TIME-WAIT)
  3535. *
  3536. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3537. * close and we go into CLOSING (and later onto TIME-WAIT)
  3538. *
  3539. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3540. */
  3541. static void tcp_fin(struct sock *sk)
  3542. {
  3543. struct tcp_sock *tp = tcp_sk(sk);
  3544. inet_csk_schedule_ack(sk);
  3545. sk->sk_shutdown |= RCV_SHUTDOWN;
  3546. sock_set_flag(sk, SOCK_DONE);
  3547. switch (sk->sk_state) {
  3548. case TCP_SYN_RECV:
  3549. case TCP_ESTABLISHED:
  3550. /* Move to CLOSE_WAIT */
  3551. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3552. inet_csk(sk)->icsk_ack.pingpong = 1;
  3553. break;
  3554. case TCP_CLOSE_WAIT:
  3555. case TCP_CLOSING:
  3556. /* Received a retransmission of the FIN, do
  3557. * nothing.
  3558. */
  3559. break;
  3560. case TCP_LAST_ACK:
  3561. /* RFC793: Remain in the LAST-ACK state. */
  3562. break;
  3563. case TCP_FIN_WAIT1:
  3564. /* This case occurs when a simultaneous close
  3565. * happens, we must ack the received FIN and
  3566. * enter the CLOSING state.
  3567. */
  3568. tcp_send_ack(sk);
  3569. tcp_set_state(sk, TCP_CLOSING);
  3570. break;
  3571. case TCP_FIN_WAIT2:
  3572. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3573. tcp_send_ack(sk);
  3574. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3575. break;
  3576. default:
  3577. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3578. * cases we should never reach this piece of code.
  3579. */
  3580. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3581. __func__, sk->sk_state);
  3582. break;
  3583. }
  3584. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3585. * Probably, we should reset in this case. For now drop them.
  3586. */
  3587. __skb_queue_purge(&tp->out_of_order_queue);
  3588. if (tcp_is_sack(tp))
  3589. tcp_sack_reset(&tp->rx_opt);
  3590. sk_mem_reclaim(sk);
  3591. if (!sock_flag(sk, SOCK_DEAD)) {
  3592. sk->sk_state_change(sk);
  3593. /* Do not send POLL_HUP for half duplex close. */
  3594. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3595. sk->sk_state == TCP_CLOSE)
  3596. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3597. else
  3598. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3599. }
  3600. }
  3601. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3602. u32 end_seq)
  3603. {
  3604. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3605. if (before(seq, sp->start_seq))
  3606. sp->start_seq = seq;
  3607. if (after(end_seq, sp->end_seq))
  3608. sp->end_seq = end_seq;
  3609. return true;
  3610. }
  3611. return false;
  3612. }
  3613. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3614. {
  3615. struct tcp_sock *tp = tcp_sk(sk);
  3616. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3617. int mib_idx;
  3618. if (before(seq, tp->rcv_nxt))
  3619. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3620. else
  3621. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3622. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3623. tp->rx_opt.dsack = 1;
  3624. tp->duplicate_sack[0].start_seq = seq;
  3625. tp->duplicate_sack[0].end_seq = end_seq;
  3626. }
  3627. }
  3628. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3629. {
  3630. struct tcp_sock *tp = tcp_sk(sk);
  3631. if (!tp->rx_opt.dsack)
  3632. tcp_dsack_set(sk, seq, end_seq);
  3633. else
  3634. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3635. }
  3636. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3637. {
  3638. struct tcp_sock *tp = tcp_sk(sk);
  3639. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3640. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3641. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3642. tcp_enter_quickack_mode(sk);
  3643. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3644. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3645. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3646. end_seq = tp->rcv_nxt;
  3647. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3648. }
  3649. }
  3650. tcp_send_ack(sk);
  3651. }
  3652. /* These routines update the SACK block as out-of-order packets arrive or
  3653. * in-order packets close up the sequence space.
  3654. */
  3655. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3656. {
  3657. int this_sack;
  3658. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3659. struct tcp_sack_block *swalk = sp + 1;
  3660. /* See if the recent change to the first SACK eats into
  3661. * or hits the sequence space of other SACK blocks, if so coalesce.
  3662. */
  3663. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3664. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3665. int i;
  3666. /* Zap SWALK, by moving every further SACK up by one slot.
  3667. * Decrease num_sacks.
  3668. */
  3669. tp->rx_opt.num_sacks--;
  3670. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3671. sp[i] = sp[i + 1];
  3672. continue;
  3673. }
  3674. this_sack++, swalk++;
  3675. }
  3676. }
  3677. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3678. {
  3679. struct tcp_sock *tp = tcp_sk(sk);
  3680. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3681. int cur_sacks = tp->rx_opt.num_sacks;
  3682. int this_sack;
  3683. if (!cur_sacks)
  3684. goto new_sack;
  3685. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3686. if (tcp_sack_extend(sp, seq, end_seq)) {
  3687. /* Rotate this_sack to the first one. */
  3688. for (; this_sack > 0; this_sack--, sp--)
  3689. swap(*sp, *(sp - 1));
  3690. if (cur_sacks > 1)
  3691. tcp_sack_maybe_coalesce(tp);
  3692. return;
  3693. }
  3694. }
  3695. /* Could not find an adjacent existing SACK, build a new one,
  3696. * put it at the front, and shift everyone else down. We
  3697. * always know there is at least one SACK present already here.
  3698. *
  3699. * If the sack array is full, forget about the last one.
  3700. */
  3701. if (this_sack >= TCP_NUM_SACKS) {
  3702. this_sack--;
  3703. tp->rx_opt.num_sacks--;
  3704. sp--;
  3705. }
  3706. for (; this_sack > 0; this_sack--, sp--)
  3707. *sp = *(sp - 1);
  3708. new_sack:
  3709. /* Build the new head SACK, and we're done. */
  3710. sp->start_seq = seq;
  3711. sp->end_seq = end_seq;
  3712. tp->rx_opt.num_sacks++;
  3713. }
  3714. /* RCV.NXT advances, some SACKs should be eaten. */
  3715. static void tcp_sack_remove(struct tcp_sock *tp)
  3716. {
  3717. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3718. int num_sacks = tp->rx_opt.num_sacks;
  3719. int this_sack;
  3720. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3721. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3722. tp->rx_opt.num_sacks = 0;
  3723. return;
  3724. }
  3725. for (this_sack = 0; this_sack < num_sacks;) {
  3726. /* Check if the start of the sack is covered by RCV.NXT. */
  3727. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3728. int i;
  3729. /* RCV.NXT must cover all the block! */
  3730. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3731. /* Zap this SACK, by moving forward any other SACKS. */
  3732. for (i=this_sack+1; i < num_sacks; i++)
  3733. tp->selective_acks[i-1] = tp->selective_acks[i];
  3734. num_sacks--;
  3735. continue;
  3736. }
  3737. this_sack++;
  3738. sp++;
  3739. }
  3740. tp->rx_opt.num_sacks = num_sacks;
  3741. }
  3742. /* This one checks to see if we can put data from the
  3743. * out_of_order queue into the receive_queue.
  3744. */
  3745. static void tcp_ofo_queue(struct sock *sk)
  3746. {
  3747. struct tcp_sock *tp = tcp_sk(sk);
  3748. __u32 dsack_high = tp->rcv_nxt;
  3749. struct sk_buff *skb;
  3750. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3751. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3752. break;
  3753. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3754. __u32 dsack = dsack_high;
  3755. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3756. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3757. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3758. }
  3759. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3760. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3761. __skb_unlink(skb, &tp->out_of_order_queue);
  3762. __kfree_skb(skb);
  3763. continue;
  3764. }
  3765. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3766. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3767. TCP_SKB_CB(skb)->end_seq);
  3768. __skb_unlink(skb, &tp->out_of_order_queue);
  3769. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3770. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3771. if (tcp_hdr(skb)->fin)
  3772. tcp_fin(sk);
  3773. }
  3774. }
  3775. static bool tcp_prune_ofo_queue(struct sock *sk);
  3776. static int tcp_prune_queue(struct sock *sk);
  3777. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3778. unsigned int size)
  3779. {
  3780. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3781. !sk_rmem_schedule(sk, skb, size)) {
  3782. if (tcp_prune_queue(sk) < 0)
  3783. return -1;
  3784. if (!sk_rmem_schedule(sk, skb, size)) {
  3785. if (!tcp_prune_ofo_queue(sk))
  3786. return -1;
  3787. if (!sk_rmem_schedule(sk, skb, size))
  3788. return -1;
  3789. }
  3790. }
  3791. return 0;
  3792. }
  3793. /**
  3794. * tcp_try_coalesce - try to merge skb to prior one
  3795. * @sk: socket
  3796. * @to: prior buffer
  3797. * @from: buffer to add in queue
  3798. * @fragstolen: pointer to boolean
  3799. *
  3800. * Before queueing skb @from after @to, try to merge them
  3801. * to reduce overall memory use and queue lengths, if cost is small.
  3802. * Packets in ofo or receive queues can stay a long time.
  3803. * Better try to coalesce them right now to avoid future collapses.
  3804. * Returns true if caller should free @from instead of queueing it
  3805. */
  3806. static bool tcp_try_coalesce(struct sock *sk,
  3807. struct sk_buff *to,
  3808. struct sk_buff *from,
  3809. bool *fragstolen)
  3810. {
  3811. int delta;
  3812. *fragstolen = false;
  3813. if (tcp_hdr(from)->fin)
  3814. return false;
  3815. /* Its possible this segment overlaps with prior segment in queue */
  3816. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3817. return false;
  3818. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3819. return false;
  3820. atomic_add(delta, &sk->sk_rmem_alloc);
  3821. sk_mem_charge(sk, delta);
  3822. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3823. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3824. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3825. return true;
  3826. }
  3827. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3828. {
  3829. struct tcp_sock *tp = tcp_sk(sk);
  3830. struct sk_buff *skb1;
  3831. u32 seq, end_seq;
  3832. TCP_ECN_check_ce(tp, skb);
  3833. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3834. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3835. __kfree_skb(skb);
  3836. return;
  3837. }
  3838. /* Disable header prediction. */
  3839. tp->pred_flags = 0;
  3840. inet_csk_schedule_ack(sk);
  3841. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3842. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3843. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3844. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3845. if (!skb1) {
  3846. /* Initial out of order segment, build 1 SACK. */
  3847. if (tcp_is_sack(tp)) {
  3848. tp->rx_opt.num_sacks = 1;
  3849. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3850. tp->selective_acks[0].end_seq =
  3851. TCP_SKB_CB(skb)->end_seq;
  3852. }
  3853. __skb_queue_head(&tp->out_of_order_queue, skb);
  3854. goto end;
  3855. }
  3856. seq = TCP_SKB_CB(skb)->seq;
  3857. end_seq = TCP_SKB_CB(skb)->end_seq;
  3858. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3859. bool fragstolen;
  3860. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3861. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3862. } else {
  3863. kfree_skb_partial(skb, fragstolen);
  3864. skb = NULL;
  3865. }
  3866. if (!tp->rx_opt.num_sacks ||
  3867. tp->selective_acks[0].end_seq != seq)
  3868. goto add_sack;
  3869. /* Common case: data arrive in order after hole. */
  3870. tp->selective_acks[0].end_seq = end_seq;
  3871. goto end;
  3872. }
  3873. /* Find place to insert this segment. */
  3874. while (1) {
  3875. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3876. break;
  3877. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3878. skb1 = NULL;
  3879. break;
  3880. }
  3881. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3882. }
  3883. /* Do skb overlap to previous one? */
  3884. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3885. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3886. /* All the bits are present. Drop. */
  3887. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3888. __kfree_skb(skb);
  3889. skb = NULL;
  3890. tcp_dsack_set(sk, seq, end_seq);
  3891. goto add_sack;
  3892. }
  3893. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3894. /* Partial overlap. */
  3895. tcp_dsack_set(sk, seq,
  3896. TCP_SKB_CB(skb1)->end_seq);
  3897. } else {
  3898. if (skb_queue_is_first(&tp->out_of_order_queue,
  3899. skb1))
  3900. skb1 = NULL;
  3901. else
  3902. skb1 = skb_queue_prev(
  3903. &tp->out_of_order_queue,
  3904. skb1);
  3905. }
  3906. }
  3907. if (!skb1)
  3908. __skb_queue_head(&tp->out_of_order_queue, skb);
  3909. else
  3910. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3911. /* And clean segments covered by new one as whole. */
  3912. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3913. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3914. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3915. break;
  3916. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3917. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3918. end_seq);
  3919. break;
  3920. }
  3921. __skb_unlink(skb1, &tp->out_of_order_queue);
  3922. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3923. TCP_SKB_CB(skb1)->end_seq);
  3924. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3925. __kfree_skb(skb1);
  3926. }
  3927. add_sack:
  3928. if (tcp_is_sack(tp))
  3929. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3930. end:
  3931. if (skb)
  3932. skb_set_owner_r(skb, sk);
  3933. }
  3934. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3935. bool *fragstolen)
  3936. {
  3937. int eaten;
  3938. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3939. __skb_pull(skb, hdrlen);
  3940. eaten = (tail &&
  3941. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3942. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3943. if (!eaten) {
  3944. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3945. skb_set_owner_r(skb, sk);
  3946. }
  3947. return eaten;
  3948. }
  3949. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3950. {
  3951. struct sk_buff *skb = NULL;
  3952. struct tcphdr *th;
  3953. bool fragstolen;
  3954. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3955. if (!skb)
  3956. goto err;
  3957. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3958. goto err_free;
  3959. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3960. skb_reset_transport_header(skb);
  3961. memset(th, 0, sizeof(*th));
  3962. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3963. goto err_free;
  3964. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3965. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3966. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3967. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3968. WARN_ON_ONCE(fragstolen); /* should not happen */
  3969. __kfree_skb(skb);
  3970. }
  3971. return size;
  3972. err_free:
  3973. kfree_skb(skb);
  3974. err:
  3975. return -ENOMEM;
  3976. }
  3977. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3978. {
  3979. const struct tcphdr *th = tcp_hdr(skb);
  3980. struct tcp_sock *tp = tcp_sk(sk);
  3981. int eaten = -1;
  3982. bool fragstolen = false;
  3983. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3984. goto drop;
  3985. skb_dst_drop(skb);
  3986. __skb_pull(skb, th->doff * 4);
  3987. TCP_ECN_accept_cwr(tp, skb);
  3988. tp->rx_opt.dsack = 0;
  3989. /* Queue data for delivery to the user.
  3990. * Packets in sequence go to the receive queue.
  3991. * Out of sequence packets to the out_of_order_queue.
  3992. */
  3993. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3994. if (tcp_receive_window(tp) == 0)
  3995. goto out_of_window;
  3996. /* Ok. In sequence. In window. */
  3997. if (tp->ucopy.task == current &&
  3998. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3999. sock_owned_by_user(sk) && !tp->urg_data) {
  4000. int chunk = min_t(unsigned int, skb->len,
  4001. tp->ucopy.len);
  4002. __set_current_state(TASK_RUNNING);
  4003. local_bh_enable();
  4004. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4005. tp->ucopy.len -= chunk;
  4006. tp->copied_seq += chunk;
  4007. eaten = (chunk == skb->len);
  4008. tcp_rcv_space_adjust(sk);
  4009. }
  4010. local_bh_disable();
  4011. }
  4012. if (eaten <= 0) {
  4013. queue_and_out:
  4014. if (eaten < 0 &&
  4015. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4016. goto drop;
  4017. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4018. }
  4019. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4020. if (skb->len)
  4021. tcp_event_data_recv(sk, skb);
  4022. if (th->fin)
  4023. tcp_fin(sk);
  4024. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4025. tcp_ofo_queue(sk);
  4026. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4027. * gap in queue is filled.
  4028. */
  4029. if (skb_queue_empty(&tp->out_of_order_queue))
  4030. inet_csk(sk)->icsk_ack.pingpong = 0;
  4031. }
  4032. if (tp->rx_opt.num_sacks)
  4033. tcp_sack_remove(tp);
  4034. tcp_fast_path_check(sk);
  4035. if (eaten > 0)
  4036. kfree_skb_partial(skb, fragstolen);
  4037. if (!sock_flag(sk, SOCK_DEAD))
  4038. sk->sk_data_ready(sk, 0);
  4039. return;
  4040. }
  4041. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4042. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4043. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4044. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4045. out_of_window:
  4046. tcp_enter_quickack_mode(sk);
  4047. inet_csk_schedule_ack(sk);
  4048. drop:
  4049. __kfree_skb(skb);
  4050. return;
  4051. }
  4052. /* Out of window. F.e. zero window probe. */
  4053. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4054. goto out_of_window;
  4055. tcp_enter_quickack_mode(sk);
  4056. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4057. /* Partial packet, seq < rcv_next < end_seq */
  4058. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4059. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4060. TCP_SKB_CB(skb)->end_seq);
  4061. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4062. /* If window is closed, drop tail of packet. But after
  4063. * remembering D-SACK for its head made in previous line.
  4064. */
  4065. if (!tcp_receive_window(tp))
  4066. goto out_of_window;
  4067. goto queue_and_out;
  4068. }
  4069. tcp_data_queue_ofo(sk, skb);
  4070. }
  4071. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4072. struct sk_buff_head *list)
  4073. {
  4074. struct sk_buff *next = NULL;
  4075. if (!skb_queue_is_last(list, skb))
  4076. next = skb_queue_next(list, skb);
  4077. __skb_unlink(skb, list);
  4078. __kfree_skb(skb);
  4079. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4080. return next;
  4081. }
  4082. /* Collapse contiguous sequence of skbs head..tail with
  4083. * sequence numbers start..end.
  4084. *
  4085. * If tail is NULL, this means until the end of the list.
  4086. *
  4087. * Segments with FIN/SYN are not collapsed (only because this
  4088. * simplifies code)
  4089. */
  4090. static void
  4091. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4092. struct sk_buff *head, struct sk_buff *tail,
  4093. u32 start, u32 end)
  4094. {
  4095. struct sk_buff *skb, *n;
  4096. bool end_of_skbs;
  4097. /* First, check that queue is collapsible and find
  4098. * the point where collapsing can be useful. */
  4099. skb = head;
  4100. restart:
  4101. end_of_skbs = true;
  4102. skb_queue_walk_from_safe(list, skb, n) {
  4103. if (skb == tail)
  4104. break;
  4105. /* No new bits? It is possible on ofo queue. */
  4106. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4107. skb = tcp_collapse_one(sk, skb, list);
  4108. if (!skb)
  4109. break;
  4110. goto restart;
  4111. }
  4112. /* The first skb to collapse is:
  4113. * - not SYN/FIN and
  4114. * - bloated or contains data before "start" or
  4115. * overlaps to the next one.
  4116. */
  4117. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4118. (tcp_win_from_space(skb->truesize) > skb->len ||
  4119. before(TCP_SKB_CB(skb)->seq, start))) {
  4120. end_of_skbs = false;
  4121. break;
  4122. }
  4123. if (!skb_queue_is_last(list, skb)) {
  4124. struct sk_buff *next = skb_queue_next(list, skb);
  4125. if (next != tail &&
  4126. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4127. end_of_skbs = false;
  4128. break;
  4129. }
  4130. }
  4131. /* Decided to skip this, advance start seq. */
  4132. start = TCP_SKB_CB(skb)->end_seq;
  4133. }
  4134. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4135. return;
  4136. while (before(start, end)) {
  4137. struct sk_buff *nskb;
  4138. unsigned int header = skb_headroom(skb);
  4139. int copy = SKB_MAX_ORDER(header, 0);
  4140. /* Too big header? This can happen with IPv6. */
  4141. if (copy < 0)
  4142. return;
  4143. if (end - start < copy)
  4144. copy = end - start;
  4145. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4146. if (!nskb)
  4147. return;
  4148. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4149. skb_set_network_header(nskb, (skb_network_header(skb) -
  4150. skb->head));
  4151. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4152. skb->head));
  4153. skb_reserve(nskb, header);
  4154. memcpy(nskb->head, skb->head, header);
  4155. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4156. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4157. __skb_queue_before(list, skb, nskb);
  4158. skb_set_owner_r(nskb, sk);
  4159. /* Copy data, releasing collapsed skbs. */
  4160. while (copy > 0) {
  4161. int offset = start - TCP_SKB_CB(skb)->seq;
  4162. int size = TCP_SKB_CB(skb)->end_seq - start;
  4163. BUG_ON(offset < 0);
  4164. if (size > 0) {
  4165. size = min(copy, size);
  4166. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4167. BUG();
  4168. TCP_SKB_CB(nskb)->end_seq += size;
  4169. copy -= size;
  4170. start += size;
  4171. }
  4172. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4173. skb = tcp_collapse_one(sk, skb, list);
  4174. if (!skb ||
  4175. skb == tail ||
  4176. tcp_hdr(skb)->syn ||
  4177. tcp_hdr(skb)->fin)
  4178. return;
  4179. }
  4180. }
  4181. }
  4182. }
  4183. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4184. * and tcp_collapse() them until all the queue is collapsed.
  4185. */
  4186. static void tcp_collapse_ofo_queue(struct sock *sk)
  4187. {
  4188. struct tcp_sock *tp = tcp_sk(sk);
  4189. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4190. struct sk_buff *head;
  4191. u32 start, end;
  4192. if (skb == NULL)
  4193. return;
  4194. start = TCP_SKB_CB(skb)->seq;
  4195. end = TCP_SKB_CB(skb)->end_seq;
  4196. head = skb;
  4197. for (;;) {
  4198. struct sk_buff *next = NULL;
  4199. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4200. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4201. skb = next;
  4202. /* Segment is terminated when we see gap or when
  4203. * we are at the end of all the queue. */
  4204. if (!skb ||
  4205. after(TCP_SKB_CB(skb)->seq, end) ||
  4206. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4207. tcp_collapse(sk, &tp->out_of_order_queue,
  4208. head, skb, start, end);
  4209. head = skb;
  4210. if (!skb)
  4211. break;
  4212. /* Start new segment */
  4213. start = TCP_SKB_CB(skb)->seq;
  4214. end = TCP_SKB_CB(skb)->end_seq;
  4215. } else {
  4216. if (before(TCP_SKB_CB(skb)->seq, start))
  4217. start = TCP_SKB_CB(skb)->seq;
  4218. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4219. end = TCP_SKB_CB(skb)->end_seq;
  4220. }
  4221. }
  4222. }
  4223. /*
  4224. * Purge the out-of-order queue.
  4225. * Return true if queue was pruned.
  4226. */
  4227. static bool tcp_prune_ofo_queue(struct sock *sk)
  4228. {
  4229. struct tcp_sock *tp = tcp_sk(sk);
  4230. bool res = false;
  4231. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4232. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4233. __skb_queue_purge(&tp->out_of_order_queue);
  4234. /* Reset SACK state. A conforming SACK implementation will
  4235. * do the same at a timeout based retransmit. When a connection
  4236. * is in a sad state like this, we care only about integrity
  4237. * of the connection not performance.
  4238. */
  4239. if (tp->rx_opt.sack_ok)
  4240. tcp_sack_reset(&tp->rx_opt);
  4241. sk_mem_reclaim(sk);
  4242. res = true;
  4243. }
  4244. return res;
  4245. }
  4246. /* Reduce allocated memory if we can, trying to get
  4247. * the socket within its memory limits again.
  4248. *
  4249. * Return less than zero if we should start dropping frames
  4250. * until the socket owning process reads some of the data
  4251. * to stabilize the situation.
  4252. */
  4253. static int tcp_prune_queue(struct sock *sk)
  4254. {
  4255. struct tcp_sock *tp = tcp_sk(sk);
  4256. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4257. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4258. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4259. tcp_clamp_window(sk);
  4260. else if (sk_under_memory_pressure(sk))
  4261. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4262. tcp_collapse_ofo_queue(sk);
  4263. if (!skb_queue_empty(&sk->sk_receive_queue))
  4264. tcp_collapse(sk, &sk->sk_receive_queue,
  4265. skb_peek(&sk->sk_receive_queue),
  4266. NULL,
  4267. tp->copied_seq, tp->rcv_nxt);
  4268. sk_mem_reclaim(sk);
  4269. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4270. return 0;
  4271. /* Collapsing did not help, destructive actions follow.
  4272. * This must not ever occur. */
  4273. tcp_prune_ofo_queue(sk);
  4274. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4275. return 0;
  4276. /* If we are really being abused, tell the caller to silently
  4277. * drop receive data on the floor. It will get retransmitted
  4278. * and hopefully then we'll have sufficient space.
  4279. */
  4280. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4281. /* Massive buffer overcommit. */
  4282. tp->pred_flags = 0;
  4283. return -1;
  4284. }
  4285. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4286. * As additional protections, we do not touch cwnd in retransmission phases,
  4287. * and if application hit its sndbuf limit recently.
  4288. */
  4289. void tcp_cwnd_application_limited(struct sock *sk)
  4290. {
  4291. struct tcp_sock *tp = tcp_sk(sk);
  4292. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4293. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4294. /* Limited by application or receiver window. */
  4295. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4296. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4297. if (win_used < tp->snd_cwnd) {
  4298. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4299. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4300. }
  4301. tp->snd_cwnd_used = 0;
  4302. }
  4303. tp->snd_cwnd_stamp = tcp_time_stamp;
  4304. }
  4305. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4306. {
  4307. const struct tcp_sock *tp = tcp_sk(sk);
  4308. /* If the user specified a specific send buffer setting, do
  4309. * not modify it.
  4310. */
  4311. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4312. return false;
  4313. /* If we are under global TCP memory pressure, do not expand. */
  4314. if (sk_under_memory_pressure(sk))
  4315. return false;
  4316. /* If we are under soft global TCP memory pressure, do not expand. */
  4317. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4318. return false;
  4319. /* If we filled the congestion window, do not expand. */
  4320. if (tp->packets_out >= tp->snd_cwnd)
  4321. return false;
  4322. return true;
  4323. }
  4324. /* When incoming ACK allowed to free some skb from write_queue,
  4325. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4326. * on the exit from tcp input handler.
  4327. *
  4328. * PROBLEM: sndbuf expansion does not work well with largesend.
  4329. */
  4330. static void tcp_new_space(struct sock *sk)
  4331. {
  4332. struct tcp_sock *tp = tcp_sk(sk);
  4333. if (tcp_should_expand_sndbuf(sk)) {
  4334. int sndmem = SKB_TRUESIZE(max_t(u32,
  4335. tp->rx_opt.mss_clamp,
  4336. tp->mss_cache) +
  4337. MAX_TCP_HEADER);
  4338. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4339. tp->reordering + 1);
  4340. sndmem *= 2 * demanded;
  4341. if (sndmem > sk->sk_sndbuf)
  4342. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4343. tp->snd_cwnd_stamp = tcp_time_stamp;
  4344. }
  4345. sk->sk_write_space(sk);
  4346. }
  4347. static void tcp_check_space(struct sock *sk)
  4348. {
  4349. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4350. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4351. if (sk->sk_socket &&
  4352. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4353. tcp_new_space(sk);
  4354. }
  4355. }
  4356. static inline void tcp_data_snd_check(struct sock *sk)
  4357. {
  4358. tcp_push_pending_frames(sk);
  4359. tcp_check_space(sk);
  4360. }
  4361. /*
  4362. * Check if sending an ack is needed.
  4363. */
  4364. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4365. {
  4366. struct tcp_sock *tp = tcp_sk(sk);
  4367. /* More than one full frame received... */
  4368. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4369. /* ... and right edge of window advances far enough.
  4370. * (tcp_recvmsg() will send ACK otherwise). Or...
  4371. */
  4372. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4373. /* We ACK each frame or... */
  4374. tcp_in_quickack_mode(sk) ||
  4375. /* We have out of order data. */
  4376. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4377. /* Then ack it now */
  4378. tcp_send_ack(sk);
  4379. } else {
  4380. /* Else, send delayed ack. */
  4381. tcp_send_delayed_ack(sk);
  4382. }
  4383. }
  4384. static inline void tcp_ack_snd_check(struct sock *sk)
  4385. {
  4386. if (!inet_csk_ack_scheduled(sk)) {
  4387. /* We sent a data segment already. */
  4388. return;
  4389. }
  4390. __tcp_ack_snd_check(sk, 1);
  4391. }
  4392. /*
  4393. * This routine is only called when we have urgent data
  4394. * signaled. Its the 'slow' part of tcp_urg. It could be
  4395. * moved inline now as tcp_urg is only called from one
  4396. * place. We handle URGent data wrong. We have to - as
  4397. * BSD still doesn't use the correction from RFC961.
  4398. * For 1003.1g we should support a new option TCP_STDURG to permit
  4399. * either form (or just set the sysctl tcp_stdurg).
  4400. */
  4401. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4402. {
  4403. struct tcp_sock *tp = tcp_sk(sk);
  4404. u32 ptr = ntohs(th->urg_ptr);
  4405. if (ptr && !sysctl_tcp_stdurg)
  4406. ptr--;
  4407. ptr += ntohl(th->seq);
  4408. /* Ignore urgent data that we've already seen and read. */
  4409. if (after(tp->copied_seq, ptr))
  4410. return;
  4411. /* Do not replay urg ptr.
  4412. *
  4413. * NOTE: interesting situation not covered by specs.
  4414. * Misbehaving sender may send urg ptr, pointing to segment,
  4415. * which we already have in ofo queue. We are not able to fetch
  4416. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4417. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4418. * situations. But it is worth to think about possibility of some
  4419. * DoSes using some hypothetical application level deadlock.
  4420. */
  4421. if (before(ptr, tp->rcv_nxt))
  4422. return;
  4423. /* Do we already have a newer (or duplicate) urgent pointer? */
  4424. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4425. return;
  4426. /* Tell the world about our new urgent pointer. */
  4427. sk_send_sigurg(sk);
  4428. /* We may be adding urgent data when the last byte read was
  4429. * urgent. To do this requires some care. We cannot just ignore
  4430. * tp->copied_seq since we would read the last urgent byte again
  4431. * as data, nor can we alter copied_seq until this data arrives
  4432. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4433. *
  4434. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4435. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4436. * and expect that both A and B disappear from stream. This is _wrong_.
  4437. * Though this happens in BSD with high probability, this is occasional.
  4438. * Any application relying on this is buggy. Note also, that fix "works"
  4439. * only in this artificial test. Insert some normal data between A and B and we will
  4440. * decline of BSD again. Verdict: it is better to remove to trap
  4441. * buggy users.
  4442. */
  4443. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4444. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4445. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4446. tp->copied_seq++;
  4447. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4448. __skb_unlink(skb, &sk->sk_receive_queue);
  4449. __kfree_skb(skb);
  4450. }
  4451. }
  4452. tp->urg_data = TCP_URG_NOTYET;
  4453. tp->urg_seq = ptr;
  4454. /* Disable header prediction. */
  4455. tp->pred_flags = 0;
  4456. }
  4457. /* This is the 'fast' part of urgent handling. */
  4458. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4459. {
  4460. struct tcp_sock *tp = tcp_sk(sk);
  4461. /* Check if we get a new urgent pointer - normally not. */
  4462. if (th->urg)
  4463. tcp_check_urg(sk, th);
  4464. /* Do we wait for any urgent data? - normally not... */
  4465. if (tp->urg_data == TCP_URG_NOTYET) {
  4466. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4467. th->syn;
  4468. /* Is the urgent pointer pointing into this packet? */
  4469. if (ptr < skb->len) {
  4470. u8 tmp;
  4471. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4472. BUG();
  4473. tp->urg_data = TCP_URG_VALID | tmp;
  4474. if (!sock_flag(sk, SOCK_DEAD))
  4475. sk->sk_data_ready(sk, 0);
  4476. }
  4477. }
  4478. }
  4479. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4480. {
  4481. struct tcp_sock *tp = tcp_sk(sk);
  4482. int chunk = skb->len - hlen;
  4483. int err;
  4484. local_bh_enable();
  4485. if (skb_csum_unnecessary(skb))
  4486. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4487. else
  4488. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4489. tp->ucopy.iov);
  4490. if (!err) {
  4491. tp->ucopy.len -= chunk;
  4492. tp->copied_seq += chunk;
  4493. tcp_rcv_space_adjust(sk);
  4494. }
  4495. local_bh_disable();
  4496. return err;
  4497. }
  4498. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4499. struct sk_buff *skb)
  4500. {
  4501. __sum16 result;
  4502. if (sock_owned_by_user(sk)) {
  4503. local_bh_enable();
  4504. result = __tcp_checksum_complete(skb);
  4505. local_bh_disable();
  4506. } else {
  4507. result = __tcp_checksum_complete(skb);
  4508. }
  4509. return result;
  4510. }
  4511. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4512. struct sk_buff *skb)
  4513. {
  4514. return !skb_csum_unnecessary(skb) &&
  4515. __tcp_checksum_complete_user(sk, skb);
  4516. }
  4517. #ifdef CONFIG_NET_DMA
  4518. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4519. int hlen)
  4520. {
  4521. struct tcp_sock *tp = tcp_sk(sk);
  4522. int chunk = skb->len - hlen;
  4523. int dma_cookie;
  4524. bool copied_early = false;
  4525. if (tp->ucopy.wakeup)
  4526. return false;
  4527. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4528. tp->ucopy.dma_chan = net_dma_find_channel();
  4529. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4530. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4531. skb, hlen,
  4532. tp->ucopy.iov, chunk,
  4533. tp->ucopy.pinned_list);
  4534. if (dma_cookie < 0)
  4535. goto out;
  4536. tp->ucopy.dma_cookie = dma_cookie;
  4537. copied_early = true;
  4538. tp->ucopy.len -= chunk;
  4539. tp->copied_seq += chunk;
  4540. tcp_rcv_space_adjust(sk);
  4541. if ((tp->ucopy.len == 0) ||
  4542. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4543. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4544. tp->ucopy.wakeup = 1;
  4545. sk->sk_data_ready(sk, 0);
  4546. }
  4547. } else if (chunk > 0) {
  4548. tp->ucopy.wakeup = 1;
  4549. sk->sk_data_ready(sk, 0);
  4550. }
  4551. out:
  4552. return copied_early;
  4553. }
  4554. #endif /* CONFIG_NET_DMA */
  4555. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4556. * play significant role here.
  4557. */
  4558. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4559. const struct tcphdr *th, int syn_inerr)
  4560. {
  4561. const u8 *hash_location;
  4562. struct tcp_sock *tp = tcp_sk(sk);
  4563. /* RFC1323: H1. Apply PAWS check first. */
  4564. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4565. tp->rx_opt.saw_tstamp &&
  4566. tcp_paws_discard(sk, skb)) {
  4567. if (!th->rst) {
  4568. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4569. tcp_send_dupack(sk, skb);
  4570. goto discard;
  4571. }
  4572. /* Reset is accepted even if it did not pass PAWS. */
  4573. }
  4574. /* Step 1: check sequence number */
  4575. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4576. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4577. * (RST) segments are validated by checking their SEQ-fields."
  4578. * And page 69: "If an incoming segment is not acceptable,
  4579. * an acknowledgment should be sent in reply (unless the RST
  4580. * bit is set, if so drop the segment and return)".
  4581. */
  4582. if (!th->rst) {
  4583. if (th->syn)
  4584. goto syn_challenge;
  4585. tcp_send_dupack(sk, skb);
  4586. }
  4587. goto discard;
  4588. }
  4589. /* Step 2: check RST bit */
  4590. if (th->rst) {
  4591. /* RFC 5961 3.2 :
  4592. * If sequence number exactly matches RCV.NXT, then
  4593. * RESET the connection
  4594. * else
  4595. * Send a challenge ACK
  4596. */
  4597. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4598. tcp_reset(sk);
  4599. else
  4600. tcp_send_challenge_ack(sk);
  4601. goto discard;
  4602. }
  4603. /* ts_recent update must be made after we are sure that the packet
  4604. * is in window.
  4605. */
  4606. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4607. /* step 3: check security and precedence [ignored] */
  4608. /* step 4: Check for a SYN
  4609. * RFC 5691 4.2 : Send a challenge ack
  4610. */
  4611. if (th->syn) {
  4612. syn_challenge:
  4613. if (syn_inerr)
  4614. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4615. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4616. tcp_send_challenge_ack(sk);
  4617. goto discard;
  4618. }
  4619. return true;
  4620. discard:
  4621. __kfree_skb(skb);
  4622. return false;
  4623. }
  4624. /*
  4625. * TCP receive function for the ESTABLISHED state.
  4626. *
  4627. * It is split into a fast path and a slow path. The fast path is
  4628. * disabled when:
  4629. * - A zero window was announced from us - zero window probing
  4630. * is only handled properly in the slow path.
  4631. * - Out of order segments arrived.
  4632. * - Urgent data is expected.
  4633. * - There is no buffer space left
  4634. * - Unexpected TCP flags/window values/header lengths are received
  4635. * (detected by checking the TCP header against pred_flags)
  4636. * - Data is sent in both directions. Fast path only supports pure senders
  4637. * or pure receivers (this means either the sequence number or the ack
  4638. * value must stay constant)
  4639. * - Unexpected TCP option.
  4640. *
  4641. * When these conditions are not satisfied it drops into a standard
  4642. * receive procedure patterned after RFC793 to handle all cases.
  4643. * The first three cases are guaranteed by proper pred_flags setting,
  4644. * the rest is checked inline. Fast processing is turned on in
  4645. * tcp_data_queue when everything is OK.
  4646. */
  4647. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4648. const struct tcphdr *th, unsigned int len)
  4649. {
  4650. struct tcp_sock *tp = tcp_sk(sk);
  4651. if (unlikely(sk->sk_rx_dst == NULL))
  4652. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4653. /*
  4654. * Header prediction.
  4655. * The code loosely follows the one in the famous
  4656. * "30 instruction TCP receive" Van Jacobson mail.
  4657. *
  4658. * Van's trick is to deposit buffers into socket queue
  4659. * on a device interrupt, to call tcp_recv function
  4660. * on the receive process context and checksum and copy
  4661. * the buffer to user space. smart...
  4662. *
  4663. * Our current scheme is not silly either but we take the
  4664. * extra cost of the net_bh soft interrupt processing...
  4665. * We do checksum and copy also but from device to kernel.
  4666. */
  4667. tp->rx_opt.saw_tstamp = 0;
  4668. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4669. * if header_prediction is to be made
  4670. * 'S' will always be tp->tcp_header_len >> 2
  4671. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4672. * turn it off (when there are holes in the receive
  4673. * space for instance)
  4674. * PSH flag is ignored.
  4675. */
  4676. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4677. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4678. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4679. int tcp_header_len = tp->tcp_header_len;
  4680. /* Timestamp header prediction: tcp_header_len
  4681. * is automatically equal to th->doff*4 due to pred_flags
  4682. * match.
  4683. */
  4684. /* Check timestamp */
  4685. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4686. /* No? Slow path! */
  4687. if (!tcp_parse_aligned_timestamp(tp, th))
  4688. goto slow_path;
  4689. /* If PAWS failed, check it more carefully in slow path */
  4690. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4691. goto slow_path;
  4692. /* DO NOT update ts_recent here, if checksum fails
  4693. * and timestamp was corrupted part, it will result
  4694. * in a hung connection since we will drop all
  4695. * future packets due to the PAWS test.
  4696. */
  4697. }
  4698. if (len <= tcp_header_len) {
  4699. /* Bulk data transfer: sender */
  4700. if (len == tcp_header_len) {
  4701. /* Predicted packet is in window by definition.
  4702. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4703. * Hence, check seq<=rcv_wup reduces to:
  4704. */
  4705. if (tcp_header_len ==
  4706. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4707. tp->rcv_nxt == tp->rcv_wup)
  4708. tcp_store_ts_recent(tp);
  4709. /* We know that such packets are checksummed
  4710. * on entry.
  4711. */
  4712. tcp_ack(sk, skb, 0);
  4713. __kfree_skb(skb);
  4714. tcp_data_snd_check(sk);
  4715. return 0;
  4716. } else { /* Header too small */
  4717. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4718. goto discard;
  4719. }
  4720. } else {
  4721. int eaten = 0;
  4722. int copied_early = 0;
  4723. bool fragstolen = false;
  4724. if (tp->copied_seq == tp->rcv_nxt &&
  4725. len - tcp_header_len <= tp->ucopy.len) {
  4726. #ifdef CONFIG_NET_DMA
  4727. if (tp->ucopy.task == current &&
  4728. sock_owned_by_user(sk) &&
  4729. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4730. copied_early = 1;
  4731. eaten = 1;
  4732. }
  4733. #endif
  4734. if (tp->ucopy.task == current &&
  4735. sock_owned_by_user(sk) && !copied_early) {
  4736. __set_current_state(TASK_RUNNING);
  4737. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4738. eaten = 1;
  4739. }
  4740. if (eaten) {
  4741. /* Predicted packet is in window by definition.
  4742. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4743. * Hence, check seq<=rcv_wup reduces to:
  4744. */
  4745. if (tcp_header_len ==
  4746. (sizeof(struct tcphdr) +
  4747. TCPOLEN_TSTAMP_ALIGNED) &&
  4748. tp->rcv_nxt == tp->rcv_wup)
  4749. tcp_store_ts_recent(tp);
  4750. tcp_rcv_rtt_measure_ts(sk, skb);
  4751. __skb_pull(skb, tcp_header_len);
  4752. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4753. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4754. }
  4755. if (copied_early)
  4756. tcp_cleanup_rbuf(sk, skb->len);
  4757. }
  4758. if (!eaten) {
  4759. if (tcp_checksum_complete_user(sk, skb))
  4760. goto csum_error;
  4761. /* Predicted packet is in window by definition.
  4762. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4763. * Hence, check seq<=rcv_wup reduces to:
  4764. */
  4765. if (tcp_header_len ==
  4766. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4767. tp->rcv_nxt == tp->rcv_wup)
  4768. tcp_store_ts_recent(tp);
  4769. tcp_rcv_rtt_measure_ts(sk, skb);
  4770. if ((int)skb->truesize > sk->sk_forward_alloc)
  4771. goto step5;
  4772. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4773. /* Bulk data transfer: receiver */
  4774. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4775. &fragstolen);
  4776. }
  4777. tcp_event_data_recv(sk, skb);
  4778. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4779. /* Well, only one small jumplet in fast path... */
  4780. tcp_ack(sk, skb, FLAG_DATA);
  4781. tcp_data_snd_check(sk);
  4782. if (!inet_csk_ack_scheduled(sk))
  4783. goto no_ack;
  4784. }
  4785. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4786. __tcp_ack_snd_check(sk, 0);
  4787. no_ack:
  4788. #ifdef CONFIG_NET_DMA
  4789. if (copied_early)
  4790. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4791. else
  4792. #endif
  4793. if (eaten)
  4794. kfree_skb_partial(skb, fragstolen);
  4795. sk->sk_data_ready(sk, 0);
  4796. return 0;
  4797. }
  4798. }
  4799. slow_path:
  4800. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4801. goto csum_error;
  4802. /*
  4803. * Standard slow path.
  4804. */
  4805. if (!tcp_validate_incoming(sk, skb, th, 1))
  4806. return 0;
  4807. step5:
  4808. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4809. goto discard;
  4810. tcp_rcv_rtt_measure_ts(sk, skb);
  4811. /* Process urgent data. */
  4812. tcp_urg(sk, skb, th);
  4813. /* step 7: process the segment text */
  4814. tcp_data_queue(sk, skb);
  4815. tcp_data_snd_check(sk);
  4816. tcp_ack_snd_check(sk);
  4817. return 0;
  4818. csum_error:
  4819. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4820. discard:
  4821. __kfree_skb(skb);
  4822. return 0;
  4823. }
  4824. EXPORT_SYMBOL(tcp_rcv_established);
  4825. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4826. {
  4827. struct tcp_sock *tp = tcp_sk(sk);
  4828. struct inet_connection_sock *icsk = inet_csk(sk);
  4829. tcp_set_state(sk, TCP_ESTABLISHED);
  4830. if (skb != NULL) {
  4831. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4832. security_inet_conn_established(sk, skb);
  4833. }
  4834. /* Make sure socket is routed, for correct metrics. */
  4835. icsk->icsk_af_ops->rebuild_header(sk);
  4836. tcp_init_metrics(sk);
  4837. tcp_init_congestion_control(sk);
  4838. /* Prevent spurious tcp_cwnd_restart() on first data
  4839. * packet.
  4840. */
  4841. tp->lsndtime = tcp_time_stamp;
  4842. tcp_init_buffer_space(sk);
  4843. if (sock_flag(sk, SOCK_KEEPOPEN))
  4844. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4845. if (!tp->rx_opt.snd_wscale)
  4846. __tcp_fast_path_on(tp, tp->snd_wnd);
  4847. else
  4848. tp->pred_flags = 0;
  4849. if (!sock_flag(sk, SOCK_DEAD)) {
  4850. sk->sk_state_change(sk);
  4851. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4852. }
  4853. }
  4854. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4855. struct tcp_fastopen_cookie *cookie)
  4856. {
  4857. struct tcp_sock *tp = tcp_sk(sk);
  4858. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4859. u16 mss = tp->rx_opt.mss_clamp;
  4860. bool syn_drop;
  4861. if (mss == tp->rx_opt.user_mss) {
  4862. struct tcp_options_received opt;
  4863. const u8 *hash_location;
  4864. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4865. tcp_clear_options(&opt);
  4866. opt.user_mss = opt.mss_clamp = 0;
  4867. tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
  4868. mss = opt.mss_clamp;
  4869. }
  4870. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4871. cookie->len = -1;
  4872. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4873. * the remote receives only the retransmitted (regular) SYNs: either
  4874. * the original SYN-data or the corresponding SYN-ACK is lost.
  4875. */
  4876. syn_drop = (cookie->len <= 0 && data &&
  4877. inet_csk(sk)->icsk_retransmits);
  4878. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4879. if (data) { /* Retransmit unacked data in SYN */
  4880. tcp_retransmit_skb(sk, data);
  4881. tcp_rearm_rto(sk);
  4882. return true;
  4883. }
  4884. return false;
  4885. }
  4886. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4887. const struct tcphdr *th, unsigned int len)
  4888. {
  4889. const u8 *hash_location;
  4890. struct inet_connection_sock *icsk = inet_csk(sk);
  4891. struct tcp_sock *tp = tcp_sk(sk);
  4892. struct tcp_cookie_values *cvp = tp->cookie_values;
  4893. struct tcp_fastopen_cookie foc = { .len = -1 };
  4894. int saved_clamp = tp->rx_opt.mss_clamp;
  4895. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
  4896. if (th->ack) {
  4897. /* rfc793:
  4898. * "If the state is SYN-SENT then
  4899. * first check the ACK bit
  4900. * If the ACK bit is set
  4901. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4902. * a reset (unless the RST bit is set, if so drop
  4903. * the segment and return)"
  4904. */
  4905. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4906. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4907. goto reset_and_undo;
  4908. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4909. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4910. tcp_time_stamp)) {
  4911. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4912. goto reset_and_undo;
  4913. }
  4914. /* Now ACK is acceptable.
  4915. *
  4916. * "If the RST bit is set
  4917. * If the ACK was acceptable then signal the user "error:
  4918. * connection reset", drop the segment, enter CLOSED state,
  4919. * delete TCB, and return."
  4920. */
  4921. if (th->rst) {
  4922. tcp_reset(sk);
  4923. goto discard;
  4924. }
  4925. /* rfc793:
  4926. * "fifth, if neither of the SYN or RST bits is set then
  4927. * drop the segment and return."
  4928. *
  4929. * See note below!
  4930. * --ANK(990513)
  4931. */
  4932. if (!th->syn)
  4933. goto discard_and_undo;
  4934. /* rfc793:
  4935. * "If the SYN bit is on ...
  4936. * are acceptable then ...
  4937. * (our SYN has been ACKed), change the connection
  4938. * state to ESTABLISHED..."
  4939. */
  4940. TCP_ECN_rcv_synack(tp, th);
  4941. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4942. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4943. /* Ok.. it's good. Set up sequence numbers and
  4944. * move to established.
  4945. */
  4946. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4947. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4948. /* RFC1323: The window in SYN & SYN/ACK segments is
  4949. * never scaled.
  4950. */
  4951. tp->snd_wnd = ntohs(th->window);
  4952. if (!tp->rx_opt.wscale_ok) {
  4953. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4954. tp->window_clamp = min(tp->window_clamp, 65535U);
  4955. }
  4956. if (tp->rx_opt.saw_tstamp) {
  4957. tp->rx_opt.tstamp_ok = 1;
  4958. tp->tcp_header_len =
  4959. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4960. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4961. tcp_store_ts_recent(tp);
  4962. } else {
  4963. tp->tcp_header_len = sizeof(struct tcphdr);
  4964. }
  4965. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4966. tcp_enable_fack(tp);
  4967. tcp_mtup_init(sk);
  4968. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4969. tcp_initialize_rcv_mss(sk);
  4970. /* Remember, tcp_poll() does not lock socket!
  4971. * Change state from SYN-SENT only after copied_seq
  4972. * is initialized. */
  4973. tp->copied_seq = tp->rcv_nxt;
  4974. if (cvp != NULL &&
  4975. cvp->cookie_pair_size > 0 &&
  4976. tp->rx_opt.cookie_plus > 0) {
  4977. int cookie_size = tp->rx_opt.cookie_plus
  4978. - TCPOLEN_COOKIE_BASE;
  4979. int cookie_pair_size = cookie_size
  4980. + cvp->cookie_desired;
  4981. /* A cookie extension option was sent and returned.
  4982. * Note that each incoming SYNACK replaces the
  4983. * Responder cookie. The initial exchange is most
  4984. * fragile, as protection against spoofing relies
  4985. * entirely upon the sequence and timestamp (above).
  4986. * This replacement strategy allows the correct pair to
  4987. * pass through, while any others will be filtered via
  4988. * Responder verification later.
  4989. */
  4990. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4991. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4992. hash_location, cookie_size);
  4993. cvp->cookie_pair_size = cookie_pair_size;
  4994. }
  4995. }
  4996. smp_mb();
  4997. tcp_finish_connect(sk, skb);
  4998. if ((tp->syn_fastopen || tp->syn_data) &&
  4999. tcp_rcv_fastopen_synack(sk, skb, &foc))
  5000. return -1;
  5001. if (sk->sk_write_pending ||
  5002. icsk->icsk_accept_queue.rskq_defer_accept ||
  5003. icsk->icsk_ack.pingpong) {
  5004. /* Save one ACK. Data will be ready after
  5005. * several ticks, if write_pending is set.
  5006. *
  5007. * It may be deleted, but with this feature tcpdumps
  5008. * look so _wonderfully_ clever, that I was not able
  5009. * to stand against the temptation 8) --ANK
  5010. */
  5011. inet_csk_schedule_ack(sk);
  5012. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  5013. tcp_enter_quickack_mode(sk);
  5014. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5015. TCP_DELACK_MAX, TCP_RTO_MAX);
  5016. discard:
  5017. __kfree_skb(skb);
  5018. return 0;
  5019. } else {
  5020. tcp_send_ack(sk);
  5021. }
  5022. return -1;
  5023. }
  5024. /* No ACK in the segment */
  5025. if (th->rst) {
  5026. /* rfc793:
  5027. * "If the RST bit is set
  5028. *
  5029. * Otherwise (no ACK) drop the segment and return."
  5030. */
  5031. goto discard_and_undo;
  5032. }
  5033. /* PAWS check. */
  5034. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5035. tcp_paws_reject(&tp->rx_opt, 0))
  5036. goto discard_and_undo;
  5037. if (th->syn) {
  5038. /* We see SYN without ACK. It is attempt of
  5039. * simultaneous connect with crossed SYNs.
  5040. * Particularly, it can be connect to self.
  5041. */
  5042. tcp_set_state(sk, TCP_SYN_RECV);
  5043. if (tp->rx_opt.saw_tstamp) {
  5044. tp->rx_opt.tstamp_ok = 1;
  5045. tcp_store_ts_recent(tp);
  5046. tp->tcp_header_len =
  5047. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5048. } else {
  5049. tp->tcp_header_len = sizeof(struct tcphdr);
  5050. }
  5051. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5052. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5053. /* RFC1323: The window in SYN & SYN/ACK segments is
  5054. * never scaled.
  5055. */
  5056. tp->snd_wnd = ntohs(th->window);
  5057. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5058. tp->max_window = tp->snd_wnd;
  5059. TCP_ECN_rcv_syn(tp, th);
  5060. tcp_mtup_init(sk);
  5061. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5062. tcp_initialize_rcv_mss(sk);
  5063. tcp_send_synack(sk);
  5064. #if 0
  5065. /* Note, we could accept data and URG from this segment.
  5066. * There are no obstacles to make this (except that we must
  5067. * either change tcp_recvmsg() to prevent it from returning data
  5068. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5069. *
  5070. * However, if we ignore data in ACKless segments sometimes,
  5071. * we have no reasons to accept it sometimes.
  5072. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5073. * is not flawless. So, discard packet for sanity.
  5074. * Uncomment this return to process the data.
  5075. */
  5076. return -1;
  5077. #else
  5078. goto discard;
  5079. #endif
  5080. }
  5081. /* "fifth, if neither of the SYN or RST bits is set then
  5082. * drop the segment and return."
  5083. */
  5084. discard_and_undo:
  5085. tcp_clear_options(&tp->rx_opt);
  5086. tp->rx_opt.mss_clamp = saved_clamp;
  5087. goto discard;
  5088. reset_and_undo:
  5089. tcp_clear_options(&tp->rx_opt);
  5090. tp->rx_opt.mss_clamp = saved_clamp;
  5091. return 1;
  5092. }
  5093. /*
  5094. * This function implements the receiving procedure of RFC 793 for
  5095. * all states except ESTABLISHED and TIME_WAIT.
  5096. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5097. * address independent.
  5098. */
  5099. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5100. const struct tcphdr *th, unsigned int len)
  5101. {
  5102. struct tcp_sock *tp = tcp_sk(sk);
  5103. struct inet_connection_sock *icsk = inet_csk(sk);
  5104. struct request_sock *req;
  5105. int queued = 0;
  5106. tp->rx_opt.saw_tstamp = 0;
  5107. switch (sk->sk_state) {
  5108. case TCP_CLOSE:
  5109. goto discard;
  5110. case TCP_LISTEN:
  5111. if (th->ack)
  5112. return 1;
  5113. if (th->rst)
  5114. goto discard;
  5115. if (th->syn) {
  5116. if (th->fin)
  5117. goto discard;
  5118. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5119. return 1;
  5120. /* Now we have several options: In theory there is
  5121. * nothing else in the frame. KA9Q has an option to
  5122. * send data with the syn, BSD accepts data with the
  5123. * syn up to the [to be] advertised window and
  5124. * Solaris 2.1 gives you a protocol error. For now
  5125. * we just ignore it, that fits the spec precisely
  5126. * and avoids incompatibilities. It would be nice in
  5127. * future to drop through and process the data.
  5128. *
  5129. * Now that TTCP is starting to be used we ought to
  5130. * queue this data.
  5131. * But, this leaves one open to an easy denial of
  5132. * service attack, and SYN cookies can't defend
  5133. * against this problem. So, we drop the data
  5134. * in the interest of security over speed unless
  5135. * it's still in use.
  5136. */
  5137. kfree_skb(skb);
  5138. return 0;
  5139. }
  5140. goto discard;
  5141. case TCP_SYN_SENT:
  5142. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5143. if (queued >= 0)
  5144. return queued;
  5145. /* Do step6 onward by hand. */
  5146. tcp_urg(sk, skb, th);
  5147. __kfree_skb(skb);
  5148. tcp_data_snd_check(sk);
  5149. return 0;
  5150. }
  5151. req = tp->fastopen_rsk;
  5152. if (req != NULL) {
  5153. BUG_ON(sk->sk_state != TCP_SYN_RECV &&
  5154. sk->sk_state != TCP_FIN_WAIT1);
  5155. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  5156. goto discard;
  5157. }
  5158. if (!tcp_validate_incoming(sk, skb, th, 0))
  5159. return 0;
  5160. /* step 5: check the ACK field */
  5161. if (th->ack) {
  5162. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5163. switch (sk->sk_state) {
  5164. case TCP_SYN_RECV:
  5165. if (acceptable) {
  5166. /* Once we leave TCP_SYN_RECV, we no longer
  5167. * need req so release it.
  5168. */
  5169. if (req) {
  5170. tcp_synack_rtt_meas(sk, req);
  5171. tp->total_retrans = req->num_retrans;
  5172. reqsk_fastopen_remove(sk, req, false);
  5173. } else {
  5174. /* Make sure socket is routed, for
  5175. * correct metrics.
  5176. */
  5177. icsk->icsk_af_ops->rebuild_header(sk);
  5178. tcp_init_congestion_control(sk);
  5179. tcp_mtup_init(sk);
  5180. tcp_init_buffer_space(sk);
  5181. tp->copied_seq = tp->rcv_nxt;
  5182. }
  5183. smp_mb();
  5184. tcp_set_state(sk, TCP_ESTABLISHED);
  5185. sk->sk_state_change(sk);
  5186. /* Note, that this wakeup is only for marginal
  5187. * crossed SYN case. Passively open sockets
  5188. * are not waked up, because sk->sk_sleep ==
  5189. * NULL and sk->sk_socket == NULL.
  5190. */
  5191. if (sk->sk_socket)
  5192. sk_wake_async(sk,
  5193. SOCK_WAKE_IO, POLL_OUT);
  5194. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5195. tp->snd_wnd = ntohs(th->window) <<
  5196. tp->rx_opt.snd_wscale;
  5197. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5198. if (tp->rx_opt.tstamp_ok)
  5199. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5200. if (req) {
  5201. /* Re-arm the timer because data may
  5202. * have been sent out. This is similar
  5203. * to the regular data transmission case
  5204. * when new data has just been ack'ed.
  5205. *
  5206. * (TFO) - we could try to be more
  5207. * aggressive and retranmitting any data
  5208. * sooner based on when they were sent
  5209. * out.
  5210. */
  5211. tcp_rearm_rto(sk);
  5212. } else
  5213. tcp_init_metrics(sk);
  5214. /* Prevent spurious tcp_cwnd_restart() on
  5215. * first data packet.
  5216. */
  5217. tp->lsndtime = tcp_time_stamp;
  5218. tcp_initialize_rcv_mss(sk);
  5219. tcp_fast_path_on(tp);
  5220. } else {
  5221. return 1;
  5222. }
  5223. break;
  5224. case TCP_FIN_WAIT1:
  5225. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5226. * Fast Open socket and this is the first acceptable
  5227. * ACK we have received, this would have acknowledged
  5228. * our SYNACK so stop the SYNACK timer.
  5229. */
  5230. if (acceptable && req != NULL) {
  5231. /* We no longer need the request sock. */
  5232. reqsk_fastopen_remove(sk, req, false);
  5233. tcp_rearm_rto(sk);
  5234. }
  5235. if (tp->snd_una == tp->write_seq) {
  5236. struct dst_entry *dst;
  5237. tcp_set_state(sk, TCP_FIN_WAIT2);
  5238. sk->sk_shutdown |= SEND_SHUTDOWN;
  5239. dst = __sk_dst_get(sk);
  5240. if (dst)
  5241. dst_confirm(dst);
  5242. if (!sock_flag(sk, SOCK_DEAD))
  5243. /* Wake up lingering close() */
  5244. sk->sk_state_change(sk);
  5245. else {
  5246. int tmo;
  5247. if (tp->linger2 < 0 ||
  5248. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5249. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5250. tcp_done(sk);
  5251. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5252. return 1;
  5253. }
  5254. tmo = tcp_fin_time(sk);
  5255. if (tmo > TCP_TIMEWAIT_LEN) {
  5256. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5257. } else if (th->fin || sock_owned_by_user(sk)) {
  5258. /* Bad case. We could lose such FIN otherwise.
  5259. * It is not a big problem, but it looks confusing
  5260. * and not so rare event. We still can lose it now,
  5261. * if it spins in bh_lock_sock(), but it is really
  5262. * marginal case.
  5263. */
  5264. inet_csk_reset_keepalive_timer(sk, tmo);
  5265. } else {
  5266. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5267. goto discard;
  5268. }
  5269. }
  5270. }
  5271. break;
  5272. case TCP_CLOSING:
  5273. if (tp->snd_una == tp->write_seq) {
  5274. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5275. goto discard;
  5276. }
  5277. break;
  5278. case TCP_LAST_ACK:
  5279. if (tp->snd_una == tp->write_seq) {
  5280. tcp_update_metrics(sk);
  5281. tcp_done(sk);
  5282. goto discard;
  5283. }
  5284. break;
  5285. }
  5286. } else
  5287. goto discard;
  5288. /* step 6: check the URG bit */
  5289. tcp_urg(sk, skb, th);
  5290. /* step 7: process the segment text */
  5291. switch (sk->sk_state) {
  5292. case TCP_CLOSE_WAIT:
  5293. case TCP_CLOSING:
  5294. case TCP_LAST_ACK:
  5295. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5296. break;
  5297. case TCP_FIN_WAIT1:
  5298. case TCP_FIN_WAIT2:
  5299. /* RFC 793 says to queue data in these states,
  5300. * RFC 1122 says we MUST send a reset.
  5301. * BSD 4.4 also does reset.
  5302. */
  5303. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5304. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5305. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5306. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5307. tcp_reset(sk);
  5308. return 1;
  5309. }
  5310. }
  5311. /* Fall through */
  5312. case TCP_ESTABLISHED:
  5313. tcp_data_queue(sk, skb);
  5314. queued = 1;
  5315. break;
  5316. }
  5317. /* tcp_data could move socket to TIME-WAIT */
  5318. if (sk->sk_state != TCP_CLOSE) {
  5319. tcp_data_snd_check(sk);
  5320. tcp_ack_snd_check(sk);
  5321. }
  5322. if (!queued) {
  5323. discard:
  5324. __kfree_skb(skb);
  5325. }
  5326. return 0;
  5327. }
  5328. EXPORT_SYMBOL(tcp_rcv_state_process);