smp.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/smp.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/irq.h>
  25. #include <linux/percpu.h>
  26. #include <linux/clockchips.h>
  27. #include <linux/completion.h>
  28. #include <linux/atomic.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu.h>
  31. #include <asm/cputype.h>
  32. #include <asm/exception.h>
  33. #include <asm/idmap.h>
  34. #include <asm/topology.h>
  35. #include <asm/mmu_context.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sections.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/ptrace.h>
  42. #include <asm/localtimer.h>
  43. #include <asm/smp_plat.h>
  44. /*
  45. * as from 2.5, kernels no longer have an init_tasks structure
  46. * so we need some other way of telling a new secondary core
  47. * where to place its SVC stack
  48. */
  49. struct secondary_data secondary_data;
  50. enum ipi_msg_type {
  51. IPI_TIMER = 2,
  52. IPI_RESCHEDULE,
  53. IPI_CALL_FUNC,
  54. IPI_CALL_FUNC_SINGLE,
  55. IPI_CPU_STOP,
  56. };
  57. static DECLARE_COMPLETION(cpu_running);
  58. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  59. {
  60. int ret;
  61. /*
  62. * We need to tell the secondary core where to find
  63. * its stack and the page tables.
  64. */
  65. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  66. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  67. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  68. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  69. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  70. /*
  71. * Now bring the CPU into our world.
  72. */
  73. ret = boot_secondary(cpu, idle);
  74. if (ret == 0) {
  75. /*
  76. * CPU was successfully started, wait for it
  77. * to come online or time out.
  78. */
  79. wait_for_completion_timeout(&cpu_running,
  80. msecs_to_jiffies(1000));
  81. if (!cpu_online(cpu)) {
  82. pr_crit("CPU%u: failed to come online\n", cpu);
  83. ret = -EIO;
  84. }
  85. } else {
  86. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  87. }
  88. secondary_data.stack = NULL;
  89. secondary_data.pgdir = 0;
  90. return ret;
  91. }
  92. #ifdef CONFIG_HOTPLUG_CPU
  93. static void percpu_timer_stop(void);
  94. /*
  95. * __cpu_disable runs on the processor to be shutdown.
  96. */
  97. int __cpu_disable(void)
  98. {
  99. unsigned int cpu = smp_processor_id();
  100. int ret;
  101. ret = platform_cpu_disable(cpu);
  102. if (ret)
  103. return ret;
  104. /*
  105. * Take this CPU offline. Once we clear this, we can't return,
  106. * and we must not schedule until we're ready to give up the cpu.
  107. */
  108. set_cpu_online(cpu, false);
  109. /*
  110. * OK - migrate IRQs away from this CPU
  111. */
  112. migrate_irqs();
  113. /*
  114. * Stop the local timer for this CPU.
  115. */
  116. percpu_timer_stop();
  117. /*
  118. * Flush user cache and TLB mappings, and then remove this CPU
  119. * from the vm mask set of all processes.
  120. *
  121. * Caches are flushed to the Level of Unification Inner Shareable
  122. * to write-back dirty lines to unified caches shared by all CPUs.
  123. */
  124. flush_cache_louis();
  125. local_flush_tlb_all();
  126. clear_tasks_mm_cpumask(cpu);
  127. return 0;
  128. }
  129. static DECLARE_COMPLETION(cpu_died);
  130. /*
  131. * called on the thread which is asking for a CPU to be shutdown -
  132. * waits until shutdown has completed, or it is timed out.
  133. */
  134. void __cpu_die(unsigned int cpu)
  135. {
  136. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  137. pr_err("CPU%u: cpu didn't die\n", cpu);
  138. return;
  139. }
  140. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  141. if (!platform_cpu_kill(cpu))
  142. printk("CPU%u: unable to kill\n", cpu);
  143. }
  144. /*
  145. * Called from the idle thread for the CPU which has been shutdown.
  146. *
  147. * Note that we disable IRQs here, but do not re-enable them
  148. * before returning to the caller. This is also the behaviour
  149. * of the other hotplug-cpu capable cores, so presumably coming
  150. * out of idle fixes this.
  151. */
  152. void __ref cpu_die(void)
  153. {
  154. unsigned int cpu = smp_processor_id();
  155. idle_task_exit();
  156. local_irq_disable();
  157. mb();
  158. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  159. RCU_NONIDLE(complete(&cpu_died));
  160. /*
  161. * actual CPU shutdown procedure is at least platform (if not
  162. * CPU) specific.
  163. */
  164. platform_cpu_die(cpu);
  165. /*
  166. * Do not return to the idle loop - jump back to the secondary
  167. * cpu initialisation. There's some initialisation which needs
  168. * to be repeated to undo the effects of taking the CPU offline.
  169. */
  170. __asm__("mov sp, %0\n"
  171. " mov fp, #0\n"
  172. " b secondary_start_kernel"
  173. :
  174. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  175. }
  176. #endif /* CONFIG_HOTPLUG_CPU */
  177. /*
  178. * Called by both boot and secondaries to move global data into
  179. * per-processor storage.
  180. */
  181. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  182. {
  183. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  184. cpu_info->loops_per_jiffy = loops_per_jiffy;
  185. store_cpu_topology(cpuid);
  186. }
  187. static void percpu_timer_setup(void);
  188. /*
  189. * This is the secondary CPU boot entry. We're using this CPUs
  190. * idle thread stack, but a set of temporary page tables.
  191. */
  192. asmlinkage void __cpuinit secondary_start_kernel(void)
  193. {
  194. struct mm_struct *mm = &init_mm;
  195. unsigned int cpu = smp_processor_id();
  196. /*
  197. * All kernel threads share the same mm context; grab a
  198. * reference and switch to it.
  199. */
  200. atomic_inc(&mm->mm_count);
  201. current->active_mm = mm;
  202. cpumask_set_cpu(cpu, mm_cpumask(mm));
  203. cpu_switch_mm(mm->pgd, mm);
  204. enter_lazy_tlb(mm, current);
  205. local_flush_tlb_all();
  206. printk("CPU%u: Booted secondary processor\n", cpu);
  207. cpu_init();
  208. preempt_disable();
  209. trace_hardirqs_off();
  210. /*
  211. * Give the platform a chance to do its own initialisation.
  212. */
  213. platform_secondary_init(cpu);
  214. notify_cpu_starting(cpu);
  215. calibrate_delay();
  216. smp_store_cpu_info(cpu);
  217. /*
  218. * OK, now it's safe to let the boot CPU continue. Wait for
  219. * the CPU migration code to notice that the CPU is online
  220. * before we continue - which happens after __cpu_up returns.
  221. */
  222. set_cpu_online(cpu, true);
  223. complete(&cpu_running);
  224. /*
  225. * Setup the percpu timer for this CPU.
  226. */
  227. percpu_timer_setup();
  228. local_irq_enable();
  229. local_fiq_enable();
  230. /*
  231. * OK, it's off to the idle thread for us
  232. */
  233. cpu_idle();
  234. }
  235. void __init smp_cpus_done(unsigned int max_cpus)
  236. {
  237. int cpu;
  238. unsigned long bogosum = 0;
  239. for_each_online_cpu(cpu)
  240. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  241. printk(KERN_INFO "SMP: Total of %d processors activated "
  242. "(%lu.%02lu BogoMIPS).\n",
  243. num_online_cpus(),
  244. bogosum / (500000/HZ),
  245. (bogosum / (5000/HZ)) % 100);
  246. }
  247. void __init smp_prepare_boot_cpu(void)
  248. {
  249. }
  250. void __init smp_prepare_cpus(unsigned int max_cpus)
  251. {
  252. unsigned int ncores = num_possible_cpus();
  253. init_cpu_topology();
  254. smp_store_cpu_info(smp_processor_id());
  255. /*
  256. * are we trying to boot more cores than exist?
  257. */
  258. if (max_cpus > ncores)
  259. max_cpus = ncores;
  260. if (ncores > 1 && max_cpus) {
  261. /*
  262. * Enable the local timer or broadcast device for the
  263. * boot CPU, but only if we have more than one CPU.
  264. */
  265. percpu_timer_setup();
  266. /*
  267. * Initialise the present map, which describes the set of CPUs
  268. * actually populated at the present time. A platform should
  269. * re-initialize the map in platform_smp_prepare_cpus() if
  270. * present != possible (e.g. physical hotplug).
  271. */
  272. init_cpu_present(cpu_possible_mask);
  273. /*
  274. * Initialise the SCU if there are more than one CPU
  275. * and let them know where to start.
  276. */
  277. platform_smp_prepare_cpus(max_cpus);
  278. }
  279. }
  280. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  281. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  282. {
  283. smp_cross_call = fn;
  284. }
  285. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  286. {
  287. smp_cross_call(mask, IPI_CALL_FUNC);
  288. }
  289. void arch_send_call_function_single_ipi(int cpu)
  290. {
  291. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  292. }
  293. static const char *ipi_types[NR_IPI] = {
  294. #define S(x,s) [x - IPI_TIMER] = s
  295. S(IPI_TIMER, "Timer broadcast interrupts"),
  296. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  297. S(IPI_CALL_FUNC, "Function call interrupts"),
  298. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  299. S(IPI_CPU_STOP, "CPU stop interrupts"),
  300. };
  301. void show_ipi_list(struct seq_file *p, int prec)
  302. {
  303. unsigned int cpu, i;
  304. for (i = 0; i < NR_IPI; i++) {
  305. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  306. for_each_present_cpu(cpu)
  307. seq_printf(p, "%10u ",
  308. __get_irq_stat(cpu, ipi_irqs[i]));
  309. seq_printf(p, " %s\n", ipi_types[i]);
  310. }
  311. }
  312. u64 smp_irq_stat_cpu(unsigned int cpu)
  313. {
  314. u64 sum = 0;
  315. int i;
  316. for (i = 0; i < NR_IPI; i++)
  317. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  318. return sum;
  319. }
  320. /*
  321. * Timer (local or broadcast) support
  322. */
  323. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  324. static void ipi_timer(void)
  325. {
  326. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  327. evt->event_handler(evt);
  328. }
  329. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  330. static void smp_timer_broadcast(const struct cpumask *mask)
  331. {
  332. smp_cross_call(mask, IPI_TIMER);
  333. }
  334. #else
  335. #define smp_timer_broadcast NULL
  336. #endif
  337. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  338. struct clock_event_device *evt)
  339. {
  340. }
  341. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  342. {
  343. evt->name = "dummy_timer";
  344. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  345. CLOCK_EVT_FEAT_PERIODIC |
  346. CLOCK_EVT_FEAT_DUMMY;
  347. evt->rating = 400;
  348. evt->mult = 1;
  349. evt->set_mode = broadcast_timer_set_mode;
  350. clockevents_register_device(evt);
  351. }
  352. static struct local_timer_ops *lt_ops;
  353. #ifdef CONFIG_LOCAL_TIMERS
  354. int local_timer_register(struct local_timer_ops *ops)
  355. {
  356. if (!is_smp() || !setup_max_cpus)
  357. return -ENXIO;
  358. if (lt_ops)
  359. return -EBUSY;
  360. lt_ops = ops;
  361. return 0;
  362. }
  363. #endif
  364. static void __cpuinit percpu_timer_setup(void)
  365. {
  366. unsigned int cpu = smp_processor_id();
  367. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  368. evt->cpumask = cpumask_of(cpu);
  369. evt->broadcast = smp_timer_broadcast;
  370. if (!lt_ops || lt_ops->setup(evt))
  371. broadcast_timer_setup(evt);
  372. }
  373. #ifdef CONFIG_HOTPLUG_CPU
  374. /*
  375. * The generic clock events code purposely does not stop the local timer
  376. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  377. * manually here.
  378. */
  379. static void percpu_timer_stop(void)
  380. {
  381. unsigned int cpu = smp_processor_id();
  382. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  383. if (lt_ops)
  384. lt_ops->stop(evt);
  385. }
  386. #endif
  387. static DEFINE_RAW_SPINLOCK(stop_lock);
  388. /*
  389. * ipi_cpu_stop - handle IPI from smp_send_stop()
  390. */
  391. static void ipi_cpu_stop(unsigned int cpu)
  392. {
  393. if (system_state == SYSTEM_BOOTING ||
  394. system_state == SYSTEM_RUNNING) {
  395. raw_spin_lock(&stop_lock);
  396. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  397. dump_stack();
  398. raw_spin_unlock(&stop_lock);
  399. }
  400. set_cpu_online(cpu, false);
  401. local_fiq_disable();
  402. local_irq_disable();
  403. while (1)
  404. cpu_relax();
  405. }
  406. /*
  407. * Main handler for inter-processor interrupts
  408. */
  409. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  410. {
  411. handle_IPI(ipinr, regs);
  412. }
  413. void handle_IPI(int ipinr, struct pt_regs *regs)
  414. {
  415. unsigned int cpu = smp_processor_id();
  416. struct pt_regs *old_regs = set_irq_regs(regs);
  417. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  418. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  419. switch (ipinr) {
  420. case IPI_TIMER:
  421. irq_enter();
  422. ipi_timer();
  423. irq_exit();
  424. break;
  425. case IPI_RESCHEDULE:
  426. scheduler_ipi();
  427. break;
  428. case IPI_CALL_FUNC:
  429. irq_enter();
  430. generic_smp_call_function_interrupt();
  431. irq_exit();
  432. break;
  433. case IPI_CALL_FUNC_SINGLE:
  434. irq_enter();
  435. generic_smp_call_function_single_interrupt();
  436. irq_exit();
  437. break;
  438. case IPI_CPU_STOP:
  439. irq_enter();
  440. ipi_cpu_stop(cpu);
  441. irq_exit();
  442. break;
  443. default:
  444. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  445. cpu, ipinr);
  446. break;
  447. }
  448. set_irq_regs(old_regs);
  449. }
  450. void smp_send_reschedule(int cpu)
  451. {
  452. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  453. }
  454. #ifdef CONFIG_HOTPLUG_CPU
  455. static void smp_kill_cpus(cpumask_t *mask)
  456. {
  457. unsigned int cpu;
  458. for_each_cpu(cpu, mask)
  459. platform_cpu_kill(cpu);
  460. }
  461. #else
  462. static void smp_kill_cpus(cpumask_t *mask) { }
  463. #endif
  464. void smp_send_stop(void)
  465. {
  466. unsigned long timeout;
  467. struct cpumask mask;
  468. cpumask_copy(&mask, cpu_online_mask);
  469. cpumask_clear_cpu(smp_processor_id(), &mask);
  470. if (!cpumask_empty(&mask))
  471. smp_cross_call(&mask, IPI_CPU_STOP);
  472. /* Wait up to one second for other CPUs to stop */
  473. timeout = USEC_PER_SEC;
  474. while (num_online_cpus() > 1 && timeout--)
  475. udelay(1);
  476. if (num_online_cpus() > 1)
  477. pr_warning("SMP: failed to stop secondary CPUs\n");
  478. smp_kill_cpus(&mask);
  479. }
  480. /*
  481. * not supported here
  482. */
  483. int setup_profiling_timer(unsigned int multiplier)
  484. {
  485. return -EINVAL;
  486. }