af_netlink.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216
  1. /*
  2. * NETLINK Kernel-user communication protocol.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  13. * added netlink_proto_exit
  14. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  15. * use nlk_sk, as sk->protinfo is on a diet 8)
  16. * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
  17. * - inc module use count of module that owns
  18. * the kernel socket in case userspace opens
  19. * socket of same protocol
  20. * - remove all module support, since netlink is
  21. * mandatory if CONFIG_NET=y these days
  22. */
  23. #include <linux/module.h>
  24. #include <linux/capability.h>
  25. #include <linux/kernel.h>
  26. #include <linux/init.h>
  27. #include <linux/signal.h>
  28. #include <linux/sched.h>
  29. #include <linux/errno.h>
  30. #include <linux/string.h>
  31. #include <linux/stat.h>
  32. #include <linux/socket.h>
  33. #include <linux/un.h>
  34. #include <linux/fcntl.h>
  35. #include <linux/termios.h>
  36. #include <linux/sockios.h>
  37. #include <linux/net.h>
  38. #include <linux/fs.h>
  39. #include <linux/slab.h>
  40. #include <asm/uaccess.h>
  41. #include <linux/skbuff.h>
  42. #include <linux/netdevice.h>
  43. #include <linux/rtnetlink.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/notifier.h>
  47. #include <linux/security.h>
  48. #include <linux/jhash.h>
  49. #include <linux/jiffies.h>
  50. #include <linux/random.h>
  51. #include <linux/bitops.h>
  52. #include <linux/mm.h>
  53. #include <linux/types.h>
  54. #include <linux/audit.h>
  55. #include <linux/mutex.h>
  56. #include <net/net_namespace.h>
  57. #include <net/sock.h>
  58. #include <net/scm.h>
  59. #include <net/netlink.h>
  60. #define NLGRPSZ(x) (ALIGN(x, sizeof(unsigned long) * 8) / 8)
  61. #define NLGRPLONGS(x) (NLGRPSZ(x)/sizeof(unsigned long))
  62. struct netlink_sock {
  63. /* struct sock has to be the first member of netlink_sock */
  64. struct sock sk;
  65. u32 pid;
  66. u32 dst_pid;
  67. u32 dst_group;
  68. u32 flags;
  69. u32 subscriptions;
  70. u32 ngroups;
  71. unsigned long *groups;
  72. unsigned long state;
  73. wait_queue_head_t wait;
  74. struct netlink_callback *cb;
  75. struct mutex *cb_mutex;
  76. struct mutex cb_def_mutex;
  77. void (*netlink_rcv)(struct sk_buff *skb);
  78. void (*netlink_bind)(int group);
  79. struct module *module;
  80. };
  81. struct listeners {
  82. struct rcu_head rcu;
  83. unsigned long masks[0];
  84. };
  85. #define NETLINK_KERNEL_SOCKET 0x1
  86. #define NETLINK_RECV_PKTINFO 0x2
  87. #define NETLINK_BROADCAST_SEND_ERROR 0x4
  88. #define NETLINK_RECV_NO_ENOBUFS 0x8
  89. static inline struct netlink_sock *nlk_sk(struct sock *sk)
  90. {
  91. return container_of(sk, struct netlink_sock, sk);
  92. }
  93. static inline int netlink_is_kernel(struct sock *sk)
  94. {
  95. return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
  96. }
  97. struct nl_pid_hash {
  98. struct hlist_head *table;
  99. unsigned long rehash_time;
  100. unsigned int mask;
  101. unsigned int shift;
  102. unsigned int entries;
  103. unsigned int max_shift;
  104. u32 rnd;
  105. };
  106. struct netlink_table {
  107. struct nl_pid_hash hash;
  108. struct hlist_head mc_list;
  109. struct listeners __rcu *listeners;
  110. unsigned int nl_nonroot;
  111. unsigned int groups;
  112. struct mutex *cb_mutex;
  113. struct module *module;
  114. void (*bind)(int group);
  115. int registered;
  116. };
  117. static struct netlink_table *nl_table;
  118. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  119. static int netlink_dump(struct sock *sk);
  120. static DEFINE_RWLOCK(nl_table_lock);
  121. static atomic_t nl_table_users = ATOMIC_INIT(0);
  122. static ATOMIC_NOTIFIER_HEAD(netlink_chain);
  123. static inline u32 netlink_group_mask(u32 group)
  124. {
  125. return group ? 1 << (group - 1) : 0;
  126. }
  127. static inline struct hlist_head *nl_pid_hashfn(struct nl_pid_hash *hash, u32 pid)
  128. {
  129. return &hash->table[jhash_1word(pid, hash->rnd) & hash->mask];
  130. }
  131. static void netlink_destroy_callback(struct netlink_callback *cb)
  132. {
  133. kfree_skb(cb->skb);
  134. kfree(cb);
  135. }
  136. static void netlink_consume_callback(struct netlink_callback *cb)
  137. {
  138. consume_skb(cb->skb);
  139. kfree(cb);
  140. }
  141. static void netlink_sock_destruct(struct sock *sk)
  142. {
  143. struct netlink_sock *nlk = nlk_sk(sk);
  144. if (nlk->cb) {
  145. if (nlk->cb->done)
  146. nlk->cb->done(nlk->cb);
  147. netlink_destroy_callback(nlk->cb);
  148. }
  149. skb_queue_purge(&sk->sk_receive_queue);
  150. if (!sock_flag(sk, SOCK_DEAD)) {
  151. printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
  152. return;
  153. }
  154. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  155. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  156. WARN_ON(nlk_sk(sk)->groups);
  157. }
  158. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
  159. * SMP. Look, when several writers sleep and reader wakes them up, all but one
  160. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  161. * this, _but_ remember, it adds useless work on UP machines.
  162. */
  163. void netlink_table_grab(void)
  164. __acquires(nl_table_lock)
  165. {
  166. might_sleep();
  167. write_lock_irq(&nl_table_lock);
  168. if (atomic_read(&nl_table_users)) {
  169. DECLARE_WAITQUEUE(wait, current);
  170. add_wait_queue_exclusive(&nl_table_wait, &wait);
  171. for (;;) {
  172. set_current_state(TASK_UNINTERRUPTIBLE);
  173. if (atomic_read(&nl_table_users) == 0)
  174. break;
  175. write_unlock_irq(&nl_table_lock);
  176. schedule();
  177. write_lock_irq(&nl_table_lock);
  178. }
  179. __set_current_state(TASK_RUNNING);
  180. remove_wait_queue(&nl_table_wait, &wait);
  181. }
  182. }
  183. void netlink_table_ungrab(void)
  184. __releases(nl_table_lock)
  185. {
  186. write_unlock_irq(&nl_table_lock);
  187. wake_up(&nl_table_wait);
  188. }
  189. static inline void
  190. netlink_lock_table(void)
  191. {
  192. /* read_lock() synchronizes us to netlink_table_grab */
  193. read_lock(&nl_table_lock);
  194. atomic_inc(&nl_table_users);
  195. read_unlock(&nl_table_lock);
  196. }
  197. static inline void
  198. netlink_unlock_table(void)
  199. {
  200. if (atomic_dec_and_test(&nl_table_users))
  201. wake_up(&nl_table_wait);
  202. }
  203. static struct sock *netlink_lookup(struct net *net, int protocol, u32 pid)
  204. {
  205. struct nl_pid_hash *hash = &nl_table[protocol].hash;
  206. struct hlist_head *head;
  207. struct sock *sk;
  208. struct hlist_node *node;
  209. read_lock(&nl_table_lock);
  210. head = nl_pid_hashfn(hash, pid);
  211. sk_for_each(sk, node, head) {
  212. if (net_eq(sock_net(sk), net) && (nlk_sk(sk)->pid == pid)) {
  213. sock_hold(sk);
  214. goto found;
  215. }
  216. }
  217. sk = NULL;
  218. found:
  219. read_unlock(&nl_table_lock);
  220. return sk;
  221. }
  222. static struct hlist_head *nl_pid_hash_zalloc(size_t size)
  223. {
  224. if (size <= PAGE_SIZE)
  225. return kzalloc(size, GFP_ATOMIC);
  226. else
  227. return (struct hlist_head *)
  228. __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
  229. get_order(size));
  230. }
  231. static void nl_pid_hash_free(struct hlist_head *table, size_t size)
  232. {
  233. if (size <= PAGE_SIZE)
  234. kfree(table);
  235. else
  236. free_pages((unsigned long)table, get_order(size));
  237. }
  238. static int nl_pid_hash_rehash(struct nl_pid_hash *hash, int grow)
  239. {
  240. unsigned int omask, mask, shift;
  241. size_t osize, size;
  242. struct hlist_head *otable, *table;
  243. int i;
  244. omask = mask = hash->mask;
  245. osize = size = (mask + 1) * sizeof(*table);
  246. shift = hash->shift;
  247. if (grow) {
  248. if (++shift > hash->max_shift)
  249. return 0;
  250. mask = mask * 2 + 1;
  251. size *= 2;
  252. }
  253. table = nl_pid_hash_zalloc(size);
  254. if (!table)
  255. return 0;
  256. otable = hash->table;
  257. hash->table = table;
  258. hash->mask = mask;
  259. hash->shift = shift;
  260. get_random_bytes(&hash->rnd, sizeof(hash->rnd));
  261. for (i = 0; i <= omask; i++) {
  262. struct sock *sk;
  263. struct hlist_node *node, *tmp;
  264. sk_for_each_safe(sk, node, tmp, &otable[i])
  265. __sk_add_node(sk, nl_pid_hashfn(hash, nlk_sk(sk)->pid));
  266. }
  267. nl_pid_hash_free(otable, osize);
  268. hash->rehash_time = jiffies + 10 * 60 * HZ;
  269. return 1;
  270. }
  271. static inline int nl_pid_hash_dilute(struct nl_pid_hash *hash, int len)
  272. {
  273. int avg = hash->entries >> hash->shift;
  274. if (unlikely(avg > 1) && nl_pid_hash_rehash(hash, 1))
  275. return 1;
  276. if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
  277. nl_pid_hash_rehash(hash, 0);
  278. return 1;
  279. }
  280. return 0;
  281. }
  282. static const struct proto_ops netlink_ops;
  283. static void
  284. netlink_update_listeners(struct sock *sk)
  285. {
  286. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  287. struct hlist_node *node;
  288. unsigned long mask;
  289. unsigned int i;
  290. for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
  291. mask = 0;
  292. sk_for_each_bound(sk, node, &tbl->mc_list) {
  293. if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
  294. mask |= nlk_sk(sk)->groups[i];
  295. }
  296. tbl->listeners->masks[i] = mask;
  297. }
  298. /* this function is only called with the netlink table "grabbed", which
  299. * makes sure updates are visible before bind or setsockopt return. */
  300. }
  301. static int netlink_insert(struct sock *sk, struct net *net, u32 pid)
  302. {
  303. struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
  304. struct hlist_head *head;
  305. int err = -EADDRINUSE;
  306. struct sock *osk;
  307. struct hlist_node *node;
  308. int len;
  309. netlink_table_grab();
  310. head = nl_pid_hashfn(hash, pid);
  311. len = 0;
  312. sk_for_each(osk, node, head) {
  313. if (net_eq(sock_net(osk), net) && (nlk_sk(osk)->pid == pid))
  314. break;
  315. len++;
  316. }
  317. if (node)
  318. goto err;
  319. err = -EBUSY;
  320. if (nlk_sk(sk)->pid)
  321. goto err;
  322. err = -ENOMEM;
  323. if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
  324. goto err;
  325. if (len && nl_pid_hash_dilute(hash, len))
  326. head = nl_pid_hashfn(hash, pid);
  327. hash->entries++;
  328. nlk_sk(sk)->pid = pid;
  329. sk_add_node(sk, head);
  330. err = 0;
  331. err:
  332. netlink_table_ungrab();
  333. return err;
  334. }
  335. static void netlink_remove(struct sock *sk)
  336. {
  337. netlink_table_grab();
  338. if (sk_del_node_init(sk))
  339. nl_table[sk->sk_protocol].hash.entries--;
  340. if (nlk_sk(sk)->subscriptions)
  341. __sk_del_bind_node(sk);
  342. netlink_table_ungrab();
  343. }
  344. static struct proto netlink_proto = {
  345. .name = "NETLINK",
  346. .owner = THIS_MODULE,
  347. .obj_size = sizeof(struct netlink_sock),
  348. };
  349. static int __netlink_create(struct net *net, struct socket *sock,
  350. struct mutex *cb_mutex, int protocol)
  351. {
  352. struct sock *sk;
  353. struct netlink_sock *nlk;
  354. sock->ops = &netlink_ops;
  355. sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
  356. if (!sk)
  357. return -ENOMEM;
  358. sock_init_data(sock, sk);
  359. nlk = nlk_sk(sk);
  360. if (cb_mutex) {
  361. nlk->cb_mutex = cb_mutex;
  362. } else {
  363. nlk->cb_mutex = &nlk->cb_def_mutex;
  364. mutex_init(nlk->cb_mutex);
  365. }
  366. init_waitqueue_head(&nlk->wait);
  367. sk->sk_destruct = netlink_sock_destruct;
  368. sk->sk_protocol = protocol;
  369. return 0;
  370. }
  371. static int netlink_create(struct net *net, struct socket *sock, int protocol,
  372. int kern)
  373. {
  374. struct module *module = NULL;
  375. struct mutex *cb_mutex;
  376. struct netlink_sock *nlk;
  377. void (*bind)(int group);
  378. int err = 0;
  379. sock->state = SS_UNCONNECTED;
  380. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  381. return -ESOCKTNOSUPPORT;
  382. if (protocol < 0 || protocol >= MAX_LINKS)
  383. return -EPROTONOSUPPORT;
  384. netlink_lock_table();
  385. #ifdef CONFIG_MODULES
  386. if (!nl_table[protocol].registered) {
  387. netlink_unlock_table();
  388. request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
  389. netlink_lock_table();
  390. }
  391. #endif
  392. if (nl_table[protocol].registered &&
  393. try_module_get(nl_table[protocol].module))
  394. module = nl_table[protocol].module;
  395. else
  396. err = -EPROTONOSUPPORT;
  397. cb_mutex = nl_table[protocol].cb_mutex;
  398. bind = nl_table[protocol].bind;
  399. netlink_unlock_table();
  400. if (err < 0)
  401. goto out;
  402. err = __netlink_create(net, sock, cb_mutex, protocol);
  403. if (err < 0)
  404. goto out_module;
  405. local_bh_disable();
  406. sock_prot_inuse_add(net, &netlink_proto, 1);
  407. local_bh_enable();
  408. nlk = nlk_sk(sock->sk);
  409. nlk->module = module;
  410. nlk->netlink_bind = bind;
  411. out:
  412. return err;
  413. out_module:
  414. module_put(module);
  415. goto out;
  416. }
  417. static int netlink_release(struct socket *sock)
  418. {
  419. struct sock *sk = sock->sk;
  420. struct netlink_sock *nlk;
  421. if (!sk)
  422. return 0;
  423. netlink_remove(sk);
  424. sock_orphan(sk);
  425. nlk = nlk_sk(sk);
  426. /*
  427. * OK. Socket is unlinked, any packets that arrive now
  428. * will be purged.
  429. */
  430. sock->sk = NULL;
  431. wake_up_interruptible_all(&nlk->wait);
  432. skb_queue_purge(&sk->sk_write_queue);
  433. if (nlk->pid) {
  434. struct netlink_notify n = {
  435. .net = sock_net(sk),
  436. .protocol = sk->sk_protocol,
  437. .pid = nlk->pid,
  438. };
  439. atomic_notifier_call_chain(&netlink_chain,
  440. NETLINK_URELEASE, &n);
  441. }
  442. module_put(nlk->module);
  443. netlink_table_grab();
  444. if (netlink_is_kernel(sk)) {
  445. BUG_ON(nl_table[sk->sk_protocol].registered == 0);
  446. if (--nl_table[sk->sk_protocol].registered == 0) {
  447. kfree(nl_table[sk->sk_protocol].listeners);
  448. nl_table[sk->sk_protocol].module = NULL;
  449. nl_table[sk->sk_protocol].registered = 0;
  450. }
  451. } else if (nlk->subscriptions) {
  452. netlink_update_listeners(sk);
  453. }
  454. netlink_table_ungrab();
  455. kfree(nlk->groups);
  456. nlk->groups = NULL;
  457. local_bh_disable();
  458. sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
  459. local_bh_enable();
  460. sock_put(sk);
  461. return 0;
  462. }
  463. static int netlink_autobind(struct socket *sock)
  464. {
  465. struct sock *sk = sock->sk;
  466. struct net *net = sock_net(sk);
  467. struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
  468. struct hlist_head *head;
  469. struct sock *osk;
  470. struct hlist_node *node;
  471. s32 pid = task_tgid_vnr(current);
  472. int err;
  473. static s32 rover = -4097;
  474. retry:
  475. cond_resched();
  476. netlink_table_grab();
  477. head = nl_pid_hashfn(hash, pid);
  478. sk_for_each(osk, node, head) {
  479. if (!net_eq(sock_net(osk), net))
  480. continue;
  481. if (nlk_sk(osk)->pid == pid) {
  482. /* Bind collision, search negative pid values. */
  483. pid = rover--;
  484. if (rover > -4097)
  485. rover = -4097;
  486. netlink_table_ungrab();
  487. goto retry;
  488. }
  489. }
  490. netlink_table_ungrab();
  491. err = netlink_insert(sk, net, pid);
  492. if (err == -EADDRINUSE)
  493. goto retry;
  494. /* If 2 threads race to autobind, that is fine. */
  495. if (err == -EBUSY)
  496. err = 0;
  497. return err;
  498. }
  499. static inline int netlink_capable(const struct socket *sock, unsigned int flag)
  500. {
  501. return (nl_table[sock->sk->sk_protocol].nl_nonroot & flag) ||
  502. capable(CAP_NET_ADMIN);
  503. }
  504. static void
  505. netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
  506. {
  507. struct netlink_sock *nlk = nlk_sk(sk);
  508. if (nlk->subscriptions && !subscriptions)
  509. __sk_del_bind_node(sk);
  510. else if (!nlk->subscriptions && subscriptions)
  511. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  512. nlk->subscriptions = subscriptions;
  513. }
  514. static int netlink_realloc_groups(struct sock *sk)
  515. {
  516. struct netlink_sock *nlk = nlk_sk(sk);
  517. unsigned int groups;
  518. unsigned long *new_groups;
  519. int err = 0;
  520. netlink_table_grab();
  521. groups = nl_table[sk->sk_protocol].groups;
  522. if (!nl_table[sk->sk_protocol].registered) {
  523. err = -ENOENT;
  524. goto out_unlock;
  525. }
  526. if (nlk->ngroups >= groups)
  527. goto out_unlock;
  528. new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
  529. if (new_groups == NULL) {
  530. err = -ENOMEM;
  531. goto out_unlock;
  532. }
  533. memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
  534. NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
  535. nlk->groups = new_groups;
  536. nlk->ngroups = groups;
  537. out_unlock:
  538. netlink_table_ungrab();
  539. return err;
  540. }
  541. static int netlink_bind(struct socket *sock, struct sockaddr *addr,
  542. int addr_len)
  543. {
  544. struct sock *sk = sock->sk;
  545. struct net *net = sock_net(sk);
  546. struct netlink_sock *nlk = nlk_sk(sk);
  547. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  548. int err;
  549. if (nladdr->nl_family != AF_NETLINK)
  550. return -EINVAL;
  551. /* Only superuser is allowed to listen multicasts */
  552. if (nladdr->nl_groups) {
  553. if (!netlink_capable(sock, NL_NONROOT_RECV))
  554. return -EPERM;
  555. err = netlink_realloc_groups(sk);
  556. if (err)
  557. return err;
  558. }
  559. if (nlk->pid) {
  560. if (nladdr->nl_pid != nlk->pid)
  561. return -EINVAL;
  562. } else {
  563. err = nladdr->nl_pid ?
  564. netlink_insert(sk, net, nladdr->nl_pid) :
  565. netlink_autobind(sock);
  566. if (err)
  567. return err;
  568. }
  569. if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
  570. return 0;
  571. netlink_table_grab();
  572. netlink_update_subscriptions(sk, nlk->subscriptions +
  573. hweight32(nladdr->nl_groups) -
  574. hweight32(nlk->groups[0]));
  575. nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
  576. netlink_update_listeners(sk);
  577. netlink_table_ungrab();
  578. if (nlk->netlink_bind && nlk->groups[0]) {
  579. int i;
  580. for (i=0; i<nlk->ngroups; i++) {
  581. if (test_bit(i, nlk->groups))
  582. nlk->netlink_bind(i);
  583. }
  584. }
  585. return 0;
  586. }
  587. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  588. int alen, int flags)
  589. {
  590. int err = 0;
  591. struct sock *sk = sock->sk;
  592. struct netlink_sock *nlk = nlk_sk(sk);
  593. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  594. if (alen < sizeof(addr->sa_family))
  595. return -EINVAL;
  596. if (addr->sa_family == AF_UNSPEC) {
  597. sk->sk_state = NETLINK_UNCONNECTED;
  598. nlk->dst_pid = 0;
  599. nlk->dst_group = 0;
  600. return 0;
  601. }
  602. if (addr->sa_family != AF_NETLINK)
  603. return -EINVAL;
  604. /* Only superuser is allowed to send multicasts */
  605. if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_SEND))
  606. return -EPERM;
  607. if (!nlk->pid)
  608. err = netlink_autobind(sock);
  609. if (err == 0) {
  610. sk->sk_state = NETLINK_CONNECTED;
  611. nlk->dst_pid = nladdr->nl_pid;
  612. nlk->dst_group = ffs(nladdr->nl_groups);
  613. }
  614. return err;
  615. }
  616. static int netlink_getname(struct socket *sock, struct sockaddr *addr,
  617. int *addr_len, int peer)
  618. {
  619. struct sock *sk = sock->sk;
  620. struct netlink_sock *nlk = nlk_sk(sk);
  621. DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
  622. nladdr->nl_family = AF_NETLINK;
  623. nladdr->nl_pad = 0;
  624. *addr_len = sizeof(*nladdr);
  625. if (peer) {
  626. nladdr->nl_pid = nlk->dst_pid;
  627. nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
  628. } else {
  629. nladdr->nl_pid = nlk->pid;
  630. nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
  631. }
  632. return 0;
  633. }
  634. static void netlink_overrun(struct sock *sk)
  635. {
  636. struct netlink_sock *nlk = nlk_sk(sk);
  637. if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
  638. if (!test_and_set_bit(0, &nlk_sk(sk)->state)) {
  639. sk->sk_err = ENOBUFS;
  640. sk->sk_error_report(sk);
  641. }
  642. }
  643. atomic_inc(&sk->sk_drops);
  644. }
  645. static struct sock *netlink_getsockbypid(struct sock *ssk, u32 pid)
  646. {
  647. struct sock *sock;
  648. struct netlink_sock *nlk;
  649. sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, pid);
  650. if (!sock)
  651. return ERR_PTR(-ECONNREFUSED);
  652. /* Don't bother queuing skb if kernel socket has no input function */
  653. nlk = nlk_sk(sock);
  654. if (sock->sk_state == NETLINK_CONNECTED &&
  655. nlk->dst_pid != nlk_sk(ssk)->pid) {
  656. sock_put(sock);
  657. return ERR_PTR(-ECONNREFUSED);
  658. }
  659. return sock;
  660. }
  661. struct sock *netlink_getsockbyfilp(struct file *filp)
  662. {
  663. struct inode *inode = filp->f_path.dentry->d_inode;
  664. struct sock *sock;
  665. if (!S_ISSOCK(inode->i_mode))
  666. return ERR_PTR(-ENOTSOCK);
  667. sock = SOCKET_I(inode)->sk;
  668. if (sock->sk_family != AF_NETLINK)
  669. return ERR_PTR(-EINVAL);
  670. sock_hold(sock);
  671. return sock;
  672. }
  673. /*
  674. * Attach a skb to a netlink socket.
  675. * The caller must hold a reference to the destination socket. On error, the
  676. * reference is dropped. The skb is not send to the destination, just all
  677. * all error checks are performed and memory in the queue is reserved.
  678. * Return values:
  679. * < 0: error. skb freed, reference to sock dropped.
  680. * 0: continue
  681. * 1: repeat lookup - reference dropped while waiting for socket memory.
  682. */
  683. int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
  684. long *timeo, struct sock *ssk)
  685. {
  686. struct netlink_sock *nlk;
  687. nlk = nlk_sk(sk);
  688. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  689. test_bit(0, &nlk->state)) {
  690. DECLARE_WAITQUEUE(wait, current);
  691. if (!*timeo) {
  692. if (!ssk || netlink_is_kernel(ssk))
  693. netlink_overrun(sk);
  694. sock_put(sk);
  695. kfree_skb(skb);
  696. return -EAGAIN;
  697. }
  698. __set_current_state(TASK_INTERRUPTIBLE);
  699. add_wait_queue(&nlk->wait, &wait);
  700. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  701. test_bit(0, &nlk->state)) &&
  702. !sock_flag(sk, SOCK_DEAD))
  703. *timeo = schedule_timeout(*timeo);
  704. __set_current_state(TASK_RUNNING);
  705. remove_wait_queue(&nlk->wait, &wait);
  706. sock_put(sk);
  707. if (signal_pending(current)) {
  708. kfree_skb(skb);
  709. return sock_intr_errno(*timeo);
  710. }
  711. return 1;
  712. }
  713. skb_set_owner_r(skb, sk);
  714. return 0;
  715. }
  716. static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  717. {
  718. int len = skb->len;
  719. skb_queue_tail(&sk->sk_receive_queue, skb);
  720. sk->sk_data_ready(sk, len);
  721. return len;
  722. }
  723. int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  724. {
  725. int len = __netlink_sendskb(sk, skb);
  726. sock_put(sk);
  727. return len;
  728. }
  729. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  730. {
  731. kfree_skb(skb);
  732. sock_put(sk);
  733. }
  734. static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
  735. {
  736. int delta;
  737. skb_orphan(skb);
  738. delta = skb->end - skb->tail;
  739. if (delta * 2 < skb->truesize)
  740. return skb;
  741. if (skb_shared(skb)) {
  742. struct sk_buff *nskb = skb_clone(skb, allocation);
  743. if (!nskb)
  744. return skb;
  745. consume_skb(skb);
  746. skb = nskb;
  747. }
  748. if (!pskb_expand_head(skb, 0, -delta, allocation))
  749. skb->truesize -= delta;
  750. return skb;
  751. }
  752. static void netlink_rcv_wake(struct sock *sk)
  753. {
  754. struct netlink_sock *nlk = nlk_sk(sk);
  755. if (skb_queue_empty(&sk->sk_receive_queue))
  756. clear_bit(0, &nlk->state);
  757. if (!test_bit(0, &nlk->state))
  758. wake_up_interruptible(&nlk->wait);
  759. }
  760. static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
  761. struct sock *ssk)
  762. {
  763. int ret;
  764. struct netlink_sock *nlk = nlk_sk(sk);
  765. ret = -ECONNREFUSED;
  766. if (nlk->netlink_rcv != NULL) {
  767. ret = skb->len;
  768. skb_set_owner_r(skb, sk);
  769. NETLINK_CB(skb).ssk = ssk;
  770. nlk->netlink_rcv(skb);
  771. consume_skb(skb);
  772. } else {
  773. kfree_skb(skb);
  774. }
  775. sock_put(sk);
  776. return ret;
  777. }
  778. int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
  779. u32 pid, int nonblock)
  780. {
  781. struct sock *sk;
  782. int err;
  783. long timeo;
  784. skb = netlink_trim(skb, gfp_any());
  785. timeo = sock_sndtimeo(ssk, nonblock);
  786. retry:
  787. sk = netlink_getsockbypid(ssk, pid);
  788. if (IS_ERR(sk)) {
  789. kfree_skb(skb);
  790. return PTR_ERR(sk);
  791. }
  792. if (netlink_is_kernel(sk))
  793. return netlink_unicast_kernel(sk, skb, ssk);
  794. if (sk_filter(sk, skb)) {
  795. err = skb->len;
  796. kfree_skb(skb);
  797. sock_put(sk);
  798. return err;
  799. }
  800. err = netlink_attachskb(sk, skb, &timeo, ssk);
  801. if (err == 1)
  802. goto retry;
  803. if (err)
  804. return err;
  805. return netlink_sendskb(sk, skb);
  806. }
  807. EXPORT_SYMBOL(netlink_unicast);
  808. int netlink_has_listeners(struct sock *sk, unsigned int group)
  809. {
  810. int res = 0;
  811. struct listeners *listeners;
  812. BUG_ON(!netlink_is_kernel(sk));
  813. rcu_read_lock();
  814. listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
  815. if (group - 1 < nl_table[sk->sk_protocol].groups)
  816. res = test_bit(group - 1, listeners->masks);
  817. rcu_read_unlock();
  818. return res;
  819. }
  820. EXPORT_SYMBOL_GPL(netlink_has_listeners);
  821. static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  822. {
  823. struct netlink_sock *nlk = nlk_sk(sk);
  824. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  825. !test_bit(0, &nlk->state)) {
  826. skb_set_owner_r(skb, sk);
  827. __netlink_sendskb(sk, skb);
  828. return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
  829. }
  830. return -1;
  831. }
  832. struct netlink_broadcast_data {
  833. struct sock *exclude_sk;
  834. struct net *net;
  835. u32 pid;
  836. u32 group;
  837. int failure;
  838. int delivery_failure;
  839. int congested;
  840. int delivered;
  841. gfp_t allocation;
  842. struct sk_buff *skb, *skb2;
  843. int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
  844. void *tx_data;
  845. };
  846. static int do_one_broadcast(struct sock *sk,
  847. struct netlink_broadcast_data *p)
  848. {
  849. struct netlink_sock *nlk = nlk_sk(sk);
  850. int val;
  851. if (p->exclude_sk == sk)
  852. goto out;
  853. if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
  854. !test_bit(p->group - 1, nlk->groups))
  855. goto out;
  856. if (!net_eq(sock_net(sk), p->net))
  857. goto out;
  858. if (p->failure) {
  859. netlink_overrun(sk);
  860. goto out;
  861. }
  862. sock_hold(sk);
  863. if (p->skb2 == NULL) {
  864. if (skb_shared(p->skb)) {
  865. p->skb2 = skb_clone(p->skb, p->allocation);
  866. } else {
  867. p->skb2 = skb_get(p->skb);
  868. /*
  869. * skb ownership may have been set when
  870. * delivered to a previous socket.
  871. */
  872. skb_orphan(p->skb2);
  873. }
  874. }
  875. if (p->skb2 == NULL) {
  876. netlink_overrun(sk);
  877. /* Clone failed. Notify ALL listeners. */
  878. p->failure = 1;
  879. if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
  880. p->delivery_failure = 1;
  881. } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
  882. kfree_skb(p->skb2);
  883. p->skb2 = NULL;
  884. } else if (sk_filter(sk, p->skb2)) {
  885. kfree_skb(p->skb2);
  886. p->skb2 = NULL;
  887. } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
  888. netlink_overrun(sk);
  889. if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
  890. p->delivery_failure = 1;
  891. } else {
  892. p->congested |= val;
  893. p->delivered = 1;
  894. p->skb2 = NULL;
  895. }
  896. sock_put(sk);
  897. out:
  898. return 0;
  899. }
  900. int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 pid,
  901. u32 group, gfp_t allocation,
  902. int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
  903. void *filter_data)
  904. {
  905. struct net *net = sock_net(ssk);
  906. struct netlink_broadcast_data info;
  907. struct hlist_node *node;
  908. struct sock *sk;
  909. skb = netlink_trim(skb, allocation);
  910. info.exclude_sk = ssk;
  911. info.net = net;
  912. info.pid = pid;
  913. info.group = group;
  914. info.failure = 0;
  915. info.delivery_failure = 0;
  916. info.congested = 0;
  917. info.delivered = 0;
  918. info.allocation = allocation;
  919. info.skb = skb;
  920. info.skb2 = NULL;
  921. info.tx_filter = filter;
  922. info.tx_data = filter_data;
  923. /* While we sleep in clone, do not allow to change socket list */
  924. netlink_lock_table();
  925. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  926. do_one_broadcast(sk, &info);
  927. consume_skb(skb);
  928. netlink_unlock_table();
  929. if (info.delivery_failure) {
  930. kfree_skb(info.skb2);
  931. return -ENOBUFS;
  932. }
  933. consume_skb(info.skb2);
  934. if (info.delivered) {
  935. if (info.congested && (allocation & __GFP_WAIT))
  936. yield();
  937. return 0;
  938. }
  939. return -ESRCH;
  940. }
  941. EXPORT_SYMBOL(netlink_broadcast_filtered);
  942. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid,
  943. u32 group, gfp_t allocation)
  944. {
  945. return netlink_broadcast_filtered(ssk, skb, pid, group, allocation,
  946. NULL, NULL);
  947. }
  948. EXPORT_SYMBOL(netlink_broadcast);
  949. struct netlink_set_err_data {
  950. struct sock *exclude_sk;
  951. u32 pid;
  952. u32 group;
  953. int code;
  954. };
  955. static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
  956. {
  957. struct netlink_sock *nlk = nlk_sk(sk);
  958. int ret = 0;
  959. if (sk == p->exclude_sk)
  960. goto out;
  961. if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
  962. goto out;
  963. if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
  964. !test_bit(p->group - 1, nlk->groups))
  965. goto out;
  966. if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
  967. ret = 1;
  968. goto out;
  969. }
  970. sk->sk_err = p->code;
  971. sk->sk_error_report(sk);
  972. out:
  973. return ret;
  974. }
  975. /**
  976. * netlink_set_err - report error to broadcast listeners
  977. * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
  978. * @pid: the PID of a process that we want to skip (if any)
  979. * @groups: the broadcast group that will notice the error
  980. * @code: error code, must be negative (as usual in kernelspace)
  981. *
  982. * This function returns the number of broadcast listeners that have set the
  983. * NETLINK_RECV_NO_ENOBUFS socket option.
  984. */
  985. int netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code)
  986. {
  987. struct netlink_set_err_data info;
  988. struct hlist_node *node;
  989. struct sock *sk;
  990. int ret = 0;
  991. info.exclude_sk = ssk;
  992. info.pid = pid;
  993. info.group = group;
  994. /* sk->sk_err wants a positive error value */
  995. info.code = -code;
  996. read_lock(&nl_table_lock);
  997. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  998. ret += do_one_set_err(sk, &info);
  999. read_unlock(&nl_table_lock);
  1000. return ret;
  1001. }
  1002. EXPORT_SYMBOL(netlink_set_err);
  1003. /* must be called with netlink table grabbed */
  1004. static void netlink_update_socket_mc(struct netlink_sock *nlk,
  1005. unsigned int group,
  1006. int is_new)
  1007. {
  1008. int old, new = !!is_new, subscriptions;
  1009. old = test_bit(group - 1, nlk->groups);
  1010. subscriptions = nlk->subscriptions - old + new;
  1011. if (new)
  1012. __set_bit(group - 1, nlk->groups);
  1013. else
  1014. __clear_bit(group - 1, nlk->groups);
  1015. netlink_update_subscriptions(&nlk->sk, subscriptions);
  1016. netlink_update_listeners(&nlk->sk);
  1017. }
  1018. static int netlink_setsockopt(struct socket *sock, int level, int optname,
  1019. char __user *optval, unsigned int optlen)
  1020. {
  1021. struct sock *sk = sock->sk;
  1022. struct netlink_sock *nlk = nlk_sk(sk);
  1023. unsigned int val = 0;
  1024. int err;
  1025. if (level != SOL_NETLINK)
  1026. return -ENOPROTOOPT;
  1027. if (optlen >= sizeof(int) &&
  1028. get_user(val, (unsigned int __user *)optval))
  1029. return -EFAULT;
  1030. switch (optname) {
  1031. case NETLINK_PKTINFO:
  1032. if (val)
  1033. nlk->flags |= NETLINK_RECV_PKTINFO;
  1034. else
  1035. nlk->flags &= ~NETLINK_RECV_PKTINFO;
  1036. err = 0;
  1037. break;
  1038. case NETLINK_ADD_MEMBERSHIP:
  1039. case NETLINK_DROP_MEMBERSHIP: {
  1040. if (!netlink_capable(sock, NL_NONROOT_RECV))
  1041. return -EPERM;
  1042. err = netlink_realloc_groups(sk);
  1043. if (err)
  1044. return err;
  1045. if (!val || val - 1 >= nlk->ngroups)
  1046. return -EINVAL;
  1047. netlink_table_grab();
  1048. netlink_update_socket_mc(nlk, val,
  1049. optname == NETLINK_ADD_MEMBERSHIP);
  1050. netlink_table_ungrab();
  1051. if (nlk->netlink_bind)
  1052. nlk->netlink_bind(val);
  1053. err = 0;
  1054. break;
  1055. }
  1056. case NETLINK_BROADCAST_ERROR:
  1057. if (val)
  1058. nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
  1059. else
  1060. nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
  1061. err = 0;
  1062. break;
  1063. case NETLINK_NO_ENOBUFS:
  1064. if (val) {
  1065. nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
  1066. clear_bit(0, &nlk->state);
  1067. wake_up_interruptible(&nlk->wait);
  1068. } else {
  1069. nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
  1070. }
  1071. err = 0;
  1072. break;
  1073. default:
  1074. err = -ENOPROTOOPT;
  1075. }
  1076. return err;
  1077. }
  1078. static int netlink_getsockopt(struct socket *sock, int level, int optname,
  1079. char __user *optval, int __user *optlen)
  1080. {
  1081. struct sock *sk = sock->sk;
  1082. struct netlink_sock *nlk = nlk_sk(sk);
  1083. int len, val, err;
  1084. if (level != SOL_NETLINK)
  1085. return -ENOPROTOOPT;
  1086. if (get_user(len, optlen))
  1087. return -EFAULT;
  1088. if (len < 0)
  1089. return -EINVAL;
  1090. switch (optname) {
  1091. case NETLINK_PKTINFO:
  1092. if (len < sizeof(int))
  1093. return -EINVAL;
  1094. len = sizeof(int);
  1095. val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
  1096. if (put_user(len, optlen) ||
  1097. put_user(val, optval))
  1098. return -EFAULT;
  1099. err = 0;
  1100. break;
  1101. case NETLINK_BROADCAST_ERROR:
  1102. if (len < sizeof(int))
  1103. return -EINVAL;
  1104. len = sizeof(int);
  1105. val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
  1106. if (put_user(len, optlen) ||
  1107. put_user(val, optval))
  1108. return -EFAULT;
  1109. err = 0;
  1110. break;
  1111. case NETLINK_NO_ENOBUFS:
  1112. if (len < sizeof(int))
  1113. return -EINVAL;
  1114. len = sizeof(int);
  1115. val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
  1116. if (put_user(len, optlen) ||
  1117. put_user(val, optval))
  1118. return -EFAULT;
  1119. err = 0;
  1120. break;
  1121. default:
  1122. err = -ENOPROTOOPT;
  1123. }
  1124. return err;
  1125. }
  1126. static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  1127. {
  1128. struct nl_pktinfo info;
  1129. info.group = NETLINK_CB(skb).dst_group;
  1130. put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
  1131. }
  1132. static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
  1133. struct msghdr *msg, size_t len)
  1134. {
  1135. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  1136. struct sock *sk = sock->sk;
  1137. struct netlink_sock *nlk = nlk_sk(sk);
  1138. struct sockaddr_nl *addr = msg->msg_name;
  1139. u32 dst_pid;
  1140. u32 dst_group;
  1141. struct sk_buff *skb;
  1142. int err;
  1143. struct scm_cookie scm;
  1144. if (msg->msg_flags&MSG_OOB)
  1145. return -EOPNOTSUPP;
  1146. if (NULL == siocb->scm)
  1147. siocb->scm = &scm;
  1148. err = scm_send(sock, msg, siocb->scm, true);
  1149. if (err < 0)
  1150. return err;
  1151. if (msg->msg_namelen) {
  1152. err = -EINVAL;
  1153. if (addr->nl_family != AF_NETLINK)
  1154. goto out;
  1155. dst_pid = addr->nl_pid;
  1156. dst_group = ffs(addr->nl_groups);
  1157. err = -EPERM;
  1158. if (dst_group && !netlink_capable(sock, NL_NONROOT_SEND))
  1159. goto out;
  1160. } else {
  1161. dst_pid = nlk->dst_pid;
  1162. dst_group = nlk->dst_group;
  1163. }
  1164. if (!nlk->pid) {
  1165. err = netlink_autobind(sock);
  1166. if (err)
  1167. goto out;
  1168. }
  1169. err = -EMSGSIZE;
  1170. if (len > sk->sk_sndbuf - 32)
  1171. goto out;
  1172. err = -ENOBUFS;
  1173. skb = alloc_skb(len, GFP_KERNEL);
  1174. if (skb == NULL)
  1175. goto out;
  1176. NETLINK_CB(skb).pid = nlk->pid;
  1177. NETLINK_CB(skb).dst_group = dst_group;
  1178. memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred));
  1179. err = -EFAULT;
  1180. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  1181. kfree_skb(skb);
  1182. goto out;
  1183. }
  1184. err = security_netlink_send(sk, skb);
  1185. if (err) {
  1186. kfree_skb(skb);
  1187. goto out;
  1188. }
  1189. if (dst_group) {
  1190. atomic_inc(&skb->users);
  1191. netlink_broadcast(sk, skb, dst_pid, dst_group, GFP_KERNEL);
  1192. }
  1193. err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT);
  1194. out:
  1195. scm_destroy(siocb->scm);
  1196. return err;
  1197. }
  1198. static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
  1199. struct msghdr *msg, size_t len,
  1200. int flags)
  1201. {
  1202. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  1203. struct scm_cookie scm;
  1204. struct sock *sk = sock->sk;
  1205. struct netlink_sock *nlk = nlk_sk(sk);
  1206. int noblock = flags&MSG_DONTWAIT;
  1207. size_t copied;
  1208. struct sk_buff *skb, *data_skb;
  1209. int err, ret;
  1210. if (flags&MSG_OOB)
  1211. return -EOPNOTSUPP;
  1212. copied = 0;
  1213. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1214. if (skb == NULL)
  1215. goto out;
  1216. data_skb = skb;
  1217. #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
  1218. if (unlikely(skb_shinfo(skb)->frag_list)) {
  1219. /*
  1220. * If this skb has a frag_list, then here that means that we
  1221. * will have to use the frag_list skb's data for compat tasks
  1222. * and the regular skb's data for normal (non-compat) tasks.
  1223. *
  1224. * If we need to send the compat skb, assign it to the
  1225. * 'data_skb' variable so that it will be used below for data
  1226. * copying. We keep 'skb' for everything else, including
  1227. * freeing both later.
  1228. */
  1229. if (flags & MSG_CMSG_COMPAT)
  1230. data_skb = skb_shinfo(skb)->frag_list;
  1231. }
  1232. #endif
  1233. msg->msg_namelen = 0;
  1234. copied = data_skb->len;
  1235. if (len < copied) {
  1236. msg->msg_flags |= MSG_TRUNC;
  1237. copied = len;
  1238. }
  1239. skb_reset_transport_header(data_skb);
  1240. err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied);
  1241. if (msg->msg_name) {
  1242. struct sockaddr_nl *addr = (struct sockaddr_nl *)msg->msg_name;
  1243. addr->nl_family = AF_NETLINK;
  1244. addr->nl_pad = 0;
  1245. addr->nl_pid = NETLINK_CB(skb).pid;
  1246. addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
  1247. msg->msg_namelen = sizeof(*addr);
  1248. }
  1249. if (nlk->flags & NETLINK_RECV_PKTINFO)
  1250. netlink_cmsg_recv_pktinfo(msg, skb);
  1251. if (NULL == siocb->scm) {
  1252. memset(&scm, 0, sizeof(scm));
  1253. siocb->scm = &scm;
  1254. }
  1255. siocb->scm->creds = *NETLINK_CREDS(skb);
  1256. if (flags & MSG_TRUNC)
  1257. copied = data_skb->len;
  1258. skb_free_datagram(sk, skb);
  1259. if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
  1260. ret = netlink_dump(sk);
  1261. if (ret) {
  1262. sk->sk_err = ret;
  1263. sk->sk_error_report(sk);
  1264. }
  1265. }
  1266. scm_recv(sock, msg, siocb->scm, flags);
  1267. out:
  1268. netlink_rcv_wake(sk);
  1269. return err ? : copied;
  1270. }
  1271. static void netlink_data_ready(struct sock *sk, int len)
  1272. {
  1273. BUG();
  1274. }
  1275. /*
  1276. * We export these functions to other modules. They provide a
  1277. * complete set of kernel non-blocking support for message
  1278. * queueing.
  1279. */
  1280. struct sock *
  1281. netlink_kernel_create(struct net *net, int unit,
  1282. struct module *module,
  1283. struct netlink_kernel_cfg *cfg)
  1284. {
  1285. struct socket *sock;
  1286. struct sock *sk;
  1287. struct netlink_sock *nlk;
  1288. struct listeners *listeners = NULL;
  1289. struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
  1290. unsigned int groups;
  1291. BUG_ON(!nl_table);
  1292. if (unit < 0 || unit >= MAX_LINKS)
  1293. return NULL;
  1294. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  1295. return NULL;
  1296. /*
  1297. * We have to just have a reference on the net from sk, but don't
  1298. * get_net it. Besides, we cannot get and then put the net here.
  1299. * So we create one inside init_net and the move it to net.
  1300. */
  1301. if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
  1302. goto out_sock_release_nosk;
  1303. sk = sock->sk;
  1304. sk_change_net(sk, net);
  1305. if (!cfg || cfg->groups < 32)
  1306. groups = 32;
  1307. else
  1308. groups = cfg->groups;
  1309. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1310. if (!listeners)
  1311. goto out_sock_release;
  1312. sk->sk_data_ready = netlink_data_ready;
  1313. if (cfg && cfg->input)
  1314. nlk_sk(sk)->netlink_rcv = cfg->input;
  1315. if (netlink_insert(sk, net, 0))
  1316. goto out_sock_release;
  1317. nlk = nlk_sk(sk);
  1318. nlk->flags |= NETLINK_KERNEL_SOCKET;
  1319. netlink_table_grab();
  1320. if (!nl_table[unit].registered) {
  1321. nl_table[unit].groups = groups;
  1322. rcu_assign_pointer(nl_table[unit].listeners, listeners);
  1323. nl_table[unit].cb_mutex = cb_mutex;
  1324. nl_table[unit].module = module;
  1325. nl_table[unit].bind = cfg ? cfg->bind : NULL;
  1326. nl_table[unit].registered = 1;
  1327. } else {
  1328. kfree(listeners);
  1329. nl_table[unit].registered++;
  1330. }
  1331. netlink_table_ungrab();
  1332. return sk;
  1333. out_sock_release:
  1334. kfree(listeners);
  1335. netlink_kernel_release(sk);
  1336. return NULL;
  1337. out_sock_release_nosk:
  1338. sock_release(sock);
  1339. return NULL;
  1340. }
  1341. EXPORT_SYMBOL(netlink_kernel_create);
  1342. void
  1343. netlink_kernel_release(struct sock *sk)
  1344. {
  1345. sk_release_kernel(sk);
  1346. }
  1347. EXPORT_SYMBOL(netlink_kernel_release);
  1348. int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1349. {
  1350. struct listeners *new, *old;
  1351. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  1352. if (groups < 32)
  1353. groups = 32;
  1354. if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
  1355. new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
  1356. if (!new)
  1357. return -ENOMEM;
  1358. old = rcu_dereference_protected(tbl->listeners, 1);
  1359. memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
  1360. rcu_assign_pointer(tbl->listeners, new);
  1361. kfree_rcu(old, rcu);
  1362. }
  1363. tbl->groups = groups;
  1364. return 0;
  1365. }
  1366. /**
  1367. * netlink_change_ngroups - change number of multicast groups
  1368. *
  1369. * This changes the number of multicast groups that are available
  1370. * on a certain netlink family. Note that it is not possible to
  1371. * change the number of groups to below 32. Also note that it does
  1372. * not implicitly call netlink_clear_multicast_users() when the
  1373. * number of groups is reduced.
  1374. *
  1375. * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
  1376. * @groups: The new number of groups.
  1377. */
  1378. int netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1379. {
  1380. int err;
  1381. netlink_table_grab();
  1382. err = __netlink_change_ngroups(sk, groups);
  1383. netlink_table_ungrab();
  1384. return err;
  1385. }
  1386. void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1387. {
  1388. struct sock *sk;
  1389. struct hlist_node *node;
  1390. struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
  1391. sk_for_each_bound(sk, node, &tbl->mc_list)
  1392. netlink_update_socket_mc(nlk_sk(sk), group, 0);
  1393. }
  1394. /**
  1395. * netlink_clear_multicast_users - kick off multicast listeners
  1396. *
  1397. * This function removes all listeners from the given group.
  1398. * @ksk: The kernel netlink socket, as returned by
  1399. * netlink_kernel_create().
  1400. * @group: The multicast group to clear.
  1401. */
  1402. void netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1403. {
  1404. netlink_table_grab();
  1405. __netlink_clear_multicast_users(ksk, group);
  1406. netlink_table_ungrab();
  1407. }
  1408. void netlink_set_nonroot(int protocol, unsigned int flags)
  1409. {
  1410. if ((unsigned int)protocol < MAX_LINKS)
  1411. nl_table[protocol].nl_nonroot = flags;
  1412. }
  1413. EXPORT_SYMBOL(netlink_set_nonroot);
  1414. struct nlmsghdr *
  1415. __nlmsg_put(struct sk_buff *skb, u32 pid, u32 seq, int type, int len, int flags)
  1416. {
  1417. struct nlmsghdr *nlh;
  1418. int size = NLMSG_LENGTH(len);
  1419. nlh = (struct nlmsghdr*)skb_put(skb, NLMSG_ALIGN(size));
  1420. nlh->nlmsg_type = type;
  1421. nlh->nlmsg_len = size;
  1422. nlh->nlmsg_flags = flags;
  1423. nlh->nlmsg_pid = pid;
  1424. nlh->nlmsg_seq = seq;
  1425. if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
  1426. memset(NLMSG_DATA(nlh) + len, 0, NLMSG_ALIGN(size) - size);
  1427. return nlh;
  1428. }
  1429. EXPORT_SYMBOL(__nlmsg_put);
  1430. /*
  1431. * It looks a bit ugly.
  1432. * It would be better to create kernel thread.
  1433. */
  1434. static int netlink_dump(struct sock *sk)
  1435. {
  1436. struct netlink_sock *nlk = nlk_sk(sk);
  1437. struct netlink_callback *cb;
  1438. struct sk_buff *skb = NULL;
  1439. struct nlmsghdr *nlh;
  1440. int len, err = -ENOBUFS;
  1441. int alloc_size;
  1442. mutex_lock(nlk->cb_mutex);
  1443. cb = nlk->cb;
  1444. if (cb == NULL) {
  1445. err = -EINVAL;
  1446. goto errout_skb;
  1447. }
  1448. alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
  1449. skb = sock_rmalloc(sk, alloc_size, 0, GFP_KERNEL);
  1450. if (!skb)
  1451. goto errout_skb;
  1452. len = cb->dump(skb, cb);
  1453. if (len > 0) {
  1454. mutex_unlock(nlk->cb_mutex);
  1455. if (sk_filter(sk, skb))
  1456. kfree_skb(skb);
  1457. else
  1458. __netlink_sendskb(sk, skb);
  1459. return 0;
  1460. }
  1461. nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
  1462. if (!nlh)
  1463. goto errout_skb;
  1464. nl_dump_check_consistent(cb, nlh);
  1465. memcpy(nlmsg_data(nlh), &len, sizeof(len));
  1466. if (sk_filter(sk, skb))
  1467. kfree_skb(skb);
  1468. else
  1469. __netlink_sendskb(sk, skb);
  1470. if (cb->done)
  1471. cb->done(cb);
  1472. nlk->cb = NULL;
  1473. mutex_unlock(nlk->cb_mutex);
  1474. netlink_consume_callback(cb);
  1475. return 0;
  1476. errout_skb:
  1477. mutex_unlock(nlk->cb_mutex);
  1478. kfree_skb(skb);
  1479. return err;
  1480. }
  1481. int netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  1482. const struct nlmsghdr *nlh,
  1483. struct netlink_dump_control *control)
  1484. {
  1485. struct netlink_callback *cb;
  1486. struct sock *sk;
  1487. struct netlink_sock *nlk;
  1488. int ret;
  1489. cb = kzalloc(sizeof(*cb), GFP_KERNEL);
  1490. if (cb == NULL)
  1491. return -ENOBUFS;
  1492. cb->dump = control->dump;
  1493. cb->done = control->done;
  1494. cb->nlh = nlh;
  1495. cb->data = control->data;
  1496. cb->min_dump_alloc = control->min_dump_alloc;
  1497. atomic_inc(&skb->users);
  1498. cb->skb = skb;
  1499. sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).pid);
  1500. if (sk == NULL) {
  1501. netlink_destroy_callback(cb);
  1502. return -ECONNREFUSED;
  1503. }
  1504. nlk = nlk_sk(sk);
  1505. /* A dump is in progress... */
  1506. mutex_lock(nlk->cb_mutex);
  1507. if (nlk->cb) {
  1508. mutex_unlock(nlk->cb_mutex);
  1509. netlink_destroy_callback(cb);
  1510. sock_put(sk);
  1511. return -EBUSY;
  1512. }
  1513. nlk->cb = cb;
  1514. mutex_unlock(nlk->cb_mutex);
  1515. ret = netlink_dump(sk);
  1516. sock_put(sk);
  1517. if (ret)
  1518. return ret;
  1519. /* We successfully started a dump, by returning -EINTR we
  1520. * signal not to send ACK even if it was requested.
  1521. */
  1522. return -EINTR;
  1523. }
  1524. EXPORT_SYMBOL(netlink_dump_start);
  1525. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
  1526. {
  1527. struct sk_buff *skb;
  1528. struct nlmsghdr *rep;
  1529. struct nlmsgerr *errmsg;
  1530. size_t payload = sizeof(*errmsg);
  1531. /* error messages get the original request appened */
  1532. if (err)
  1533. payload += nlmsg_len(nlh);
  1534. skb = nlmsg_new(payload, GFP_KERNEL);
  1535. if (!skb) {
  1536. struct sock *sk;
  1537. sk = netlink_lookup(sock_net(in_skb->sk),
  1538. in_skb->sk->sk_protocol,
  1539. NETLINK_CB(in_skb).pid);
  1540. if (sk) {
  1541. sk->sk_err = ENOBUFS;
  1542. sk->sk_error_report(sk);
  1543. sock_put(sk);
  1544. }
  1545. return;
  1546. }
  1547. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
  1548. NLMSG_ERROR, payload, 0);
  1549. errmsg = nlmsg_data(rep);
  1550. errmsg->error = err;
  1551. memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
  1552. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT);
  1553. }
  1554. EXPORT_SYMBOL(netlink_ack);
  1555. int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
  1556. struct nlmsghdr *))
  1557. {
  1558. struct nlmsghdr *nlh;
  1559. int err;
  1560. while (skb->len >= nlmsg_total_size(0)) {
  1561. int msglen;
  1562. nlh = nlmsg_hdr(skb);
  1563. err = 0;
  1564. if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
  1565. return 0;
  1566. /* Only requests are handled by the kernel */
  1567. if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
  1568. goto ack;
  1569. /* Skip control messages */
  1570. if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
  1571. goto ack;
  1572. err = cb(skb, nlh);
  1573. if (err == -EINTR)
  1574. goto skip;
  1575. ack:
  1576. if (nlh->nlmsg_flags & NLM_F_ACK || err)
  1577. netlink_ack(skb, nlh, err);
  1578. skip:
  1579. msglen = NLMSG_ALIGN(nlh->nlmsg_len);
  1580. if (msglen > skb->len)
  1581. msglen = skb->len;
  1582. skb_pull(skb, msglen);
  1583. }
  1584. return 0;
  1585. }
  1586. EXPORT_SYMBOL(netlink_rcv_skb);
  1587. /**
  1588. * nlmsg_notify - send a notification netlink message
  1589. * @sk: netlink socket to use
  1590. * @skb: notification message
  1591. * @pid: destination netlink pid for reports or 0
  1592. * @group: destination multicast group or 0
  1593. * @report: 1 to report back, 0 to disable
  1594. * @flags: allocation flags
  1595. */
  1596. int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 pid,
  1597. unsigned int group, int report, gfp_t flags)
  1598. {
  1599. int err = 0;
  1600. if (group) {
  1601. int exclude_pid = 0;
  1602. if (report) {
  1603. atomic_inc(&skb->users);
  1604. exclude_pid = pid;
  1605. }
  1606. /* errors reported via destination sk->sk_err, but propagate
  1607. * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
  1608. err = nlmsg_multicast(sk, skb, exclude_pid, group, flags);
  1609. }
  1610. if (report) {
  1611. int err2;
  1612. err2 = nlmsg_unicast(sk, skb, pid);
  1613. if (!err || err == -ESRCH)
  1614. err = err2;
  1615. }
  1616. return err;
  1617. }
  1618. EXPORT_SYMBOL(nlmsg_notify);
  1619. #ifdef CONFIG_PROC_FS
  1620. struct nl_seq_iter {
  1621. struct seq_net_private p;
  1622. int link;
  1623. int hash_idx;
  1624. };
  1625. static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
  1626. {
  1627. struct nl_seq_iter *iter = seq->private;
  1628. int i, j;
  1629. struct sock *s;
  1630. struct hlist_node *node;
  1631. loff_t off = 0;
  1632. for (i = 0; i < MAX_LINKS; i++) {
  1633. struct nl_pid_hash *hash = &nl_table[i].hash;
  1634. for (j = 0; j <= hash->mask; j++) {
  1635. sk_for_each(s, node, &hash->table[j]) {
  1636. if (sock_net(s) != seq_file_net(seq))
  1637. continue;
  1638. if (off == pos) {
  1639. iter->link = i;
  1640. iter->hash_idx = j;
  1641. return s;
  1642. }
  1643. ++off;
  1644. }
  1645. }
  1646. }
  1647. return NULL;
  1648. }
  1649. static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
  1650. __acquires(nl_table_lock)
  1651. {
  1652. read_lock(&nl_table_lock);
  1653. return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
  1654. }
  1655. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1656. {
  1657. struct sock *s;
  1658. struct nl_seq_iter *iter;
  1659. int i, j;
  1660. ++*pos;
  1661. if (v == SEQ_START_TOKEN)
  1662. return netlink_seq_socket_idx(seq, 0);
  1663. iter = seq->private;
  1664. s = v;
  1665. do {
  1666. s = sk_next(s);
  1667. } while (s && sock_net(s) != seq_file_net(seq));
  1668. if (s)
  1669. return s;
  1670. i = iter->link;
  1671. j = iter->hash_idx + 1;
  1672. do {
  1673. struct nl_pid_hash *hash = &nl_table[i].hash;
  1674. for (; j <= hash->mask; j++) {
  1675. s = sk_head(&hash->table[j]);
  1676. while (s && sock_net(s) != seq_file_net(seq))
  1677. s = sk_next(s);
  1678. if (s) {
  1679. iter->link = i;
  1680. iter->hash_idx = j;
  1681. return s;
  1682. }
  1683. }
  1684. j = 0;
  1685. } while (++i < MAX_LINKS);
  1686. return NULL;
  1687. }
  1688. static void netlink_seq_stop(struct seq_file *seq, void *v)
  1689. __releases(nl_table_lock)
  1690. {
  1691. read_unlock(&nl_table_lock);
  1692. }
  1693. static int netlink_seq_show(struct seq_file *seq, void *v)
  1694. {
  1695. if (v == SEQ_START_TOKEN) {
  1696. seq_puts(seq,
  1697. "sk Eth Pid Groups "
  1698. "Rmem Wmem Dump Locks Drops Inode\n");
  1699. } else {
  1700. struct sock *s = v;
  1701. struct netlink_sock *nlk = nlk_sk(s);
  1702. seq_printf(seq, "%pK %-3d %-6d %08x %-8d %-8d %pK %-8d %-8d %-8lu\n",
  1703. s,
  1704. s->sk_protocol,
  1705. nlk->pid,
  1706. nlk->groups ? (u32)nlk->groups[0] : 0,
  1707. sk_rmem_alloc_get(s),
  1708. sk_wmem_alloc_get(s),
  1709. nlk->cb,
  1710. atomic_read(&s->sk_refcnt),
  1711. atomic_read(&s->sk_drops),
  1712. sock_i_ino(s)
  1713. );
  1714. }
  1715. return 0;
  1716. }
  1717. static const struct seq_operations netlink_seq_ops = {
  1718. .start = netlink_seq_start,
  1719. .next = netlink_seq_next,
  1720. .stop = netlink_seq_stop,
  1721. .show = netlink_seq_show,
  1722. };
  1723. static int netlink_seq_open(struct inode *inode, struct file *file)
  1724. {
  1725. return seq_open_net(inode, file, &netlink_seq_ops,
  1726. sizeof(struct nl_seq_iter));
  1727. }
  1728. static const struct file_operations netlink_seq_fops = {
  1729. .owner = THIS_MODULE,
  1730. .open = netlink_seq_open,
  1731. .read = seq_read,
  1732. .llseek = seq_lseek,
  1733. .release = seq_release_net,
  1734. };
  1735. #endif
  1736. int netlink_register_notifier(struct notifier_block *nb)
  1737. {
  1738. return atomic_notifier_chain_register(&netlink_chain, nb);
  1739. }
  1740. EXPORT_SYMBOL(netlink_register_notifier);
  1741. int netlink_unregister_notifier(struct notifier_block *nb)
  1742. {
  1743. return atomic_notifier_chain_unregister(&netlink_chain, nb);
  1744. }
  1745. EXPORT_SYMBOL(netlink_unregister_notifier);
  1746. static const struct proto_ops netlink_ops = {
  1747. .family = PF_NETLINK,
  1748. .owner = THIS_MODULE,
  1749. .release = netlink_release,
  1750. .bind = netlink_bind,
  1751. .connect = netlink_connect,
  1752. .socketpair = sock_no_socketpair,
  1753. .accept = sock_no_accept,
  1754. .getname = netlink_getname,
  1755. .poll = datagram_poll,
  1756. .ioctl = sock_no_ioctl,
  1757. .listen = sock_no_listen,
  1758. .shutdown = sock_no_shutdown,
  1759. .setsockopt = netlink_setsockopt,
  1760. .getsockopt = netlink_getsockopt,
  1761. .sendmsg = netlink_sendmsg,
  1762. .recvmsg = netlink_recvmsg,
  1763. .mmap = sock_no_mmap,
  1764. .sendpage = sock_no_sendpage,
  1765. };
  1766. static const struct net_proto_family netlink_family_ops = {
  1767. .family = PF_NETLINK,
  1768. .create = netlink_create,
  1769. .owner = THIS_MODULE, /* for consistency 8) */
  1770. };
  1771. static int __net_init netlink_net_init(struct net *net)
  1772. {
  1773. #ifdef CONFIG_PROC_FS
  1774. if (!proc_net_fops_create(net, "netlink", 0, &netlink_seq_fops))
  1775. return -ENOMEM;
  1776. #endif
  1777. return 0;
  1778. }
  1779. static void __net_exit netlink_net_exit(struct net *net)
  1780. {
  1781. #ifdef CONFIG_PROC_FS
  1782. proc_net_remove(net, "netlink");
  1783. #endif
  1784. }
  1785. static void __init netlink_add_usersock_entry(void)
  1786. {
  1787. struct listeners *listeners;
  1788. int groups = 32;
  1789. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1790. if (!listeners)
  1791. panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
  1792. netlink_table_grab();
  1793. nl_table[NETLINK_USERSOCK].groups = groups;
  1794. rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
  1795. nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
  1796. nl_table[NETLINK_USERSOCK].registered = 1;
  1797. netlink_table_ungrab();
  1798. }
  1799. static struct pernet_operations __net_initdata netlink_net_ops = {
  1800. .init = netlink_net_init,
  1801. .exit = netlink_net_exit,
  1802. };
  1803. static int __init netlink_proto_init(void)
  1804. {
  1805. struct sk_buff *dummy_skb;
  1806. int i;
  1807. unsigned long limit;
  1808. unsigned int order;
  1809. int err = proto_register(&netlink_proto, 0);
  1810. if (err != 0)
  1811. goto out;
  1812. BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb));
  1813. nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
  1814. if (!nl_table)
  1815. goto panic;
  1816. if (totalram_pages >= (128 * 1024))
  1817. limit = totalram_pages >> (21 - PAGE_SHIFT);
  1818. else
  1819. limit = totalram_pages >> (23 - PAGE_SHIFT);
  1820. order = get_bitmask_order(limit) - 1 + PAGE_SHIFT;
  1821. limit = (1UL << order) / sizeof(struct hlist_head);
  1822. order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1;
  1823. for (i = 0; i < MAX_LINKS; i++) {
  1824. struct nl_pid_hash *hash = &nl_table[i].hash;
  1825. hash->table = nl_pid_hash_zalloc(1 * sizeof(*hash->table));
  1826. if (!hash->table) {
  1827. while (i-- > 0)
  1828. nl_pid_hash_free(nl_table[i].hash.table,
  1829. 1 * sizeof(*hash->table));
  1830. kfree(nl_table);
  1831. goto panic;
  1832. }
  1833. hash->max_shift = order;
  1834. hash->shift = 0;
  1835. hash->mask = 0;
  1836. hash->rehash_time = jiffies;
  1837. }
  1838. netlink_add_usersock_entry();
  1839. sock_register(&netlink_family_ops);
  1840. register_pernet_subsys(&netlink_net_ops);
  1841. /* The netlink device handler may be needed early. */
  1842. rtnetlink_init();
  1843. out:
  1844. return err;
  1845. panic:
  1846. panic("netlink_init: Cannot allocate nl_table\n");
  1847. }
  1848. core_initcall(netlink_proto_init);