paging_tmpl.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. /*
  53. * The guest_walker structure emulates the behavior of the hardware page
  54. * table walker.
  55. */
  56. struct guest_walker {
  57. int level;
  58. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  59. pt_element_t *table;
  60. pt_element_t *ptep;
  61. pt_element_t inherited_ar;
  62. gfn_t gfn;
  63. u32 error_code;
  64. };
  65. /*
  66. * Fetch a guest pte for a guest virtual address
  67. */
  68. static int FNAME(walk_addr)(struct guest_walker *walker,
  69. struct kvm_vcpu *vcpu, gva_t addr,
  70. int write_fault, int user_fault, int fetch_fault)
  71. {
  72. hpa_t hpa;
  73. struct kvm_memory_slot *slot;
  74. pt_element_t *ptep;
  75. pt_element_t root;
  76. gfn_t table_gfn;
  77. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  78. walker->level = vcpu->mmu.root_level;
  79. walker->table = NULL;
  80. root = vcpu->cr3;
  81. #if PTTYPE == 64
  82. if (!is_long_mode(vcpu)) {
  83. walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
  84. root = *walker->ptep;
  85. if (!(root & PT_PRESENT_MASK))
  86. goto not_present;
  87. --walker->level;
  88. }
  89. #endif
  90. table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  91. walker->table_gfn[walker->level - 1] = table_gfn;
  92. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  93. walker->level - 1, table_gfn);
  94. slot = gfn_to_memslot(vcpu->kvm, table_gfn);
  95. hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
  96. walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
  97. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  98. (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
  99. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  100. for (;;) {
  101. int index = PT_INDEX(addr, walker->level);
  102. hpa_t paddr;
  103. ptep = &walker->table[index];
  104. ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
  105. ((unsigned long)ptep & PAGE_MASK));
  106. if (!is_present_pte(*ptep))
  107. goto not_present;
  108. if (write_fault && !is_writeble_pte(*ptep))
  109. if (user_fault || is_write_protection(vcpu))
  110. goto access_error;
  111. if (user_fault && !(*ptep & PT_USER_MASK))
  112. goto access_error;
  113. #if PTTYPE == 64
  114. if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
  115. goto access_error;
  116. #endif
  117. if (!(*ptep & PT_ACCESSED_MASK)) {
  118. mark_page_dirty(vcpu->kvm, table_gfn);
  119. *ptep |= PT_ACCESSED_MASK;
  120. }
  121. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  122. walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
  123. >> PAGE_SHIFT;
  124. break;
  125. }
  126. if (walker->level == PT_DIRECTORY_LEVEL
  127. && (*ptep & PT_PAGE_SIZE_MASK)
  128. && (PTTYPE == 64 || is_pse(vcpu))) {
  129. walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
  130. >> PAGE_SHIFT;
  131. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  132. break;
  133. }
  134. walker->inherited_ar &= walker->table[index];
  135. table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  136. paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
  137. kunmap_atomic(walker->table, KM_USER0);
  138. walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
  139. KM_USER0);
  140. --walker->level;
  141. walker->table_gfn[walker->level - 1 ] = table_gfn;
  142. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  143. walker->level - 1, table_gfn);
  144. }
  145. walker->ptep = ptep;
  146. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
  147. return 1;
  148. not_present:
  149. walker->error_code = 0;
  150. goto err;
  151. access_error:
  152. walker->error_code = PFERR_PRESENT_MASK;
  153. err:
  154. if (write_fault)
  155. walker->error_code |= PFERR_WRITE_MASK;
  156. if (user_fault)
  157. walker->error_code |= PFERR_USER_MASK;
  158. if (fetch_fault)
  159. walker->error_code |= PFERR_FETCH_MASK;
  160. return 0;
  161. }
  162. static void FNAME(release_walker)(struct guest_walker *walker)
  163. {
  164. if (walker->table)
  165. kunmap_atomic(walker->table, KM_USER0);
  166. }
  167. static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
  168. struct guest_walker *walker)
  169. {
  170. mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
  171. }
  172. static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
  173. u64 *shadow_pte,
  174. gpa_t gaddr,
  175. pt_element_t *gpte,
  176. u64 access_bits,
  177. int user_fault,
  178. int write_fault,
  179. int *ptwrite,
  180. struct guest_walker *walker,
  181. gfn_t gfn)
  182. {
  183. hpa_t paddr;
  184. int dirty = *gpte & PT_DIRTY_MASK;
  185. u64 spte = *shadow_pte;
  186. int was_rmapped = is_rmap_pte(spte);
  187. pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
  188. " user_fault %d gfn %lx\n",
  189. __FUNCTION__, spte, (u64)*gpte, access_bits,
  190. write_fault, user_fault, gfn);
  191. if (write_fault && !dirty) {
  192. *gpte |= PT_DIRTY_MASK;
  193. dirty = 1;
  194. FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
  195. }
  196. spte |= *gpte & PT_PTE_COPY_MASK;
  197. spte |= access_bits << PT_SHADOW_BITS_OFFSET;
  198. if (!dirty)
  199. access_bits &= ~PT_WRITABLE_MASK;
  200. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  201. spte |= PT_PRESENT_MASK;
  202. if (access_bits & PT_USER_MASK)
  203. spte |= PT_USER_MASK;
  204. if (is_error_hpa(paddr)) {
  205. spte |= gaddr;
  206. spte |= PT_SHADOW_IO_MARK;
  207. spte &= ~PT_PRESENT_MASK;
  208. set_shadow_pte(shadow_pte, spte);
  209. return;
  210. }
  211. spte |= paddr;
  212. if (!write_fault && (spte & PT_SHADOW_USER_MASK) &&
  213. !(spte & PT_USER_MASK)) {
  214. /*
  215. * If supervisor write protect is disabled, we shadow kernel
  216. * pages as user pages so we can trap the write access.
  217. */
  218. spte |= PT_USER_MASK;
  219. spte &= ~PT_WRITABLE_MASK;
  220. access_bits &= ~PT_WRITABLE_MASK;
  221. }
  222. if ((access_bits & PT_WRITABLE_MASK)
  223. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  224. struct kvm_mmu_page *shadow;
  225. spte |= PT_WRITABLE_MASK;
  226. if (user_fault) {
  227. mmu_unshadow(vcpu, gfn);
  228. goto unshadowed;
  229. }
  230. shadow = kvm_mmu_lookup_page(vcpu, gfn);
  231. if (shadow) {
  232. pgprintk("%s: found shadow page for %lx, marking ro\n",
  233. __FUNCTION__, gfn);
  234. access_bits &= ~PT_WRITABLE_MASK;
  235. if (is_writeble_pte(spte)) {
  236. spte &= ~PT_WRITABLE_MASK;
  237. kvm_arch_ops->tlb_flush(vcpu);
  238. }
  239. if (write_fault)
  240. *ptwrite = 1;
  241. }
  242. }
  243. unshadowed:
  244. if (access_bits & PT_WRITABLE_MASK)
  245. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  246. set_shadow_pte(shadow_pte, spte);
  247. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  248. if (!was_rmapped)
  249. rmap_add(vcpu, shadow_pte);
  250. }
  251. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte,
  252. u64 *shadow_pte, u64 access_bits,
  253. int user_fault, int write_fault, int *ptwrite,
  254. struct guest_walker *walker, gfn_t gfn)
  255. {
  256. access_bits &= *gpte;
  257. FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK,
  258. gpte, access_bits, user_fault, write_fault,
  259. ptwrite, walker, gfn);
  260. }
  261. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  262. u64 *spte, const void *pte, int bytes)
  263. {
  264. pt_element_t gpte;
  265. if (bytes < sizeof(pt_element_t))
  266. return;
  267. gpte = *(const pt_element_t *)pte;
  268. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
  269. return;
  270. pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
  271. FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
  272. 0, NULL, NULL,
  273. (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
  274. }
  275. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde,
  276. u64 *shadow_pte, u64 access_bits,
  277. int user_fault, int write_fault, int *ptwrite,
  278. struct guest_walker *walker, gfn_t gfn)
  279. {
  280. gpa_t gaddr;
  281. access_bits &= *gpde;
  282. gaddr = (gpa_t)gfn << PAGE_SHIFT;
  283. if (PTTYPE == 32 && is_cpuid_PSE36())
  284. gaddr |= (*gpde & PT32_DIR_PSE36_MASK) <<
  285. (32 - PT32_DIR_PSE36_SHIFT);
  286. FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
  287. gpde, access_bits, user_fault, write_fault,
  288. ptwrite, walker, gfn);
  289. }
  290. /*
  291. * Fetch a shadow pte for a specific level in the paging hierarchy.
  292. */
  293. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  294. struct guest_walker *walker,
  295. int user_fault, int write_fault, int *ptwrite)
  296. {
  297. hpa_t shadow_addr;
  298. int level;
  299. u64 *shadow_ent;
  300. u64 *prev_shadow_ent = NULL;
  301. pt_element_t *guest_ent = walker->ptep;
  302. if (!is_present_pte(*guest_ent))
  303. return NULL;
  304. shadow_addr = vcpu->mmu.root_hpa;
  305. level = vcpu->mmu.shadow_root_level;
  306. if (level == PT32E_ROOT_LEVEL) {
  307. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  308. shadow_addr &= PT64_BASE_ADDR_MASK;
  309. --level;
  310. }
  311. for (; ; level--) {
  312. u32 index = SHADOW_PT_INDEX(addr, level);
  313. struct kvm_mmu_page *shadow_page;
  314. u64 shadow_pte;
  315. int metaphysical;
  316. gfn_t table_gfn;
  317. unsigned hugepage_access = 0;
  318. shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  319. if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
  320. if (level == PT_PAGE_TABLE_LEVEL)
  321. break;
  322. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  323. prev_shadow_ent = shadow_ent;
  324. continue;
  325. }
  326. if (level == PT_PAGE_TABLE_LEVEL)
  327. break;
  328. if (level - 1 == PT_PAGE_TABLE_LEVEL
  329. && walker->level == PT_DIRECTORY_LEVEL) {
  330. metaphysical = 1;
  331. hugepage_access = *guest_ent;
  332. hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
  333. hugepage_access >>= PT_WRITABLE_SHIFT;
  334. table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
  335. >> PAGE_SHIFT;
  336. } else {
  337. metaphysical = 0;
  338. table_gfn = walker->table_gfn[level - 2];
  339. }
  340. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  341. metaphysical, hugepage_access,
  342. shadow_ent);
  343. shadow_addr = __pa(shadow_page->spt);
  344. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  345. | PT_WRITABLE_MASK | PT_USER_MASK;
  346. *shadow_ent = shadow_pte;
  347. prev_shadow_ent = shadow_ent;
  348. }
  349. if (walker->level == PT_DIRECTORY_LEVEL) {
  350. if (prev_shadow_ent)
  351. *prev_shadow_ent |= PT_SHADOW_PS_MARK;
  352. FNAME(set_pde)(vcpu, guest_ent, shadow_ent,
  353. walker->inherited_ar, user_fault, write_fault,
  354. ptwrite, walker, walker->gfn);
  355. } else {
  356. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  357. FNAME(set_pte)(vcpu, guest_ent, shadow_ent,
  358. walker->inherited_ar, user_fault, write_fault,
  359. ptwrite, walker, walker->gfn);
  360. }
  361. return shadow_ent;
  362. }
  363. /*
  364. * Page fault handler. There are several causes for a page fault:
  365. * - there is no shadow pte for the guest pte
  366. * - write access through a shadow pte marked read only so that we can set
  367. * the dirty bit
  368. * - write access to a shadow pte marked read only so we can update the page
  369. * dirty bitmap, when userspace requests it
  370. * - mmio access; in this case we will never install a present shadow pte
  371. * - normal guest page fault due to the guest pte marked not present, not
  372. * writable, or not executable
  373. *
  374. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  375. * a negative value on error.
  376. */
  377. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  378. u32 error_code)
  379. {
  380. int write_fault = error_code & PFERR_WRITE_MASK;
  381. int user_fault = error_code & PFERR_USER_MASK;
  382. int fetch_fault = error_code & PFERR_FETCH_MASK;
  383. struct guest_walker walker;
  384. u64 *shadow_pte;
  385. int write_pt = 0;
  386. int r;
  387. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  388. kvm_mmu_audit(vcpu, "pre page fault");
  389. r = mmu_topup_memory_caches(vcpu);
  390. if (r)
  391. return r;
  392. /*
  393. * Look up the shadow pte for the faulting address.
  394. */
  395. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  396. fetch_fault);
  397. /*
  398. * The page is not mapped by the guest. Let the guest handle it.
  399. */
  400. if (!r) {
  401. pgprintk("%s: guest page fault\n", __FUNCTION__);
  402. inject_page_fault(vcpu, addr, walker.error_code);
  403. FNAME(release_walker)(&walker);
  404. vcpu->last_pt_write_count = 0; /* reset fork detector */
  405. return 0;
  406. }
  407. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  408. &write_pt);
  409. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
  410. shadow_pte, *shadow_pte, write_pt);
  411. FNAME(release_walker)(&walker);
  412. if (!write_pt)
  413. vcpu->last_pt_write_count = 0; /* reset fork detector */
  414. /*
  415. * mmio: emulate if accessible, otherwise its a guest fault.
  416. */
  417. if (is_io_pte(*shadow_pte))
  418. return 1;
  419. ++vcpu->stat.pf_fixed;
  420. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  421. return write_pt;
  422. }
  423. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  424. {
  425. struct guest_walker walker;
  426. gpa_t gpa = UNMAPPED_GVA;
  427. int r;
  428. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  429. if (r) {
  430. gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
  431. gpa |= vaddr & ~PAGE_MASK;
  432. }
  433. FNAME(release_walker)(&walker);
  434. return gpa;
  435. }
  436. #undef pt_element_t
  437. #undef guest_walker
  438. #undef FNAME
  439. #undef PT_BASE_ADDR_MASK
  440. #undef PT_INDEX
  441. #undef SHADOW_PT_INDEX
  442. #undef PT_LEVEL_MASK
  443. #undef PT_PTE_COPY_MASK
  444. #undef PT_NON_PTE_COPY_MASK
  445. #undef PT_DIR_BASE_ADDR_MASK
  446. #undef PT_MAX_FULL_LEVELS