extent-tree.c 203 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/sort.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/kthread.h>
  25. #include <linux/slab.h>
  26. #include <linux/ratelimit.h>
  27. #include "compat.h"
  28. #include "hash.h"
  29. #include "ctree.h"
  30. #include "disk-io.h"
  31. #include "print-tree.h"
  32. #include "transaction.h"
  33. #include "volumes.h"
  34. #include "locking.h"
  35. #include "free-space-cache.h"
  36. /* control flags for do_chunk_alloc's force field
  37. * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  38. * if we really need one.
  39. *
  40. * CHUNK_ALLOC_FORCE means it must try to allocate one
  41. *
  42. * CHUNK_ALLOC_LIMITED means to only try and allocate one
  43. * if we have very few chunks already allocated. This is
  44. * used as part of the clustering code to help make sure
  45. * we have a good pool of storage to cluster in, without
  46. * filling the FS with empty chunks
  47. *
  48. */
  49. enum {
  50. CHUNK_ALLOC_NO_FORCE = 0,
  51. CHUNK_ALLOC_FORCE = 1,
  52. CHUNK_ALLOC_LIMITED = 2,
  53. };
  54. /*
  55. * Control how reservations are dealt with.
  56. *
  57. * RESERVE_FREE - freeing a reservation.
  58. * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  59. * ENOSPC accounting
  60. * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  61. * bytes_may_use as the ENOSPC accounting is done elsewhere
  62. */
  63. enum {
  64. RESERVE_FREE = 0,
  65. RESERVE_ALLOC = 1,
  66. RESERVE_ALLOC_NO_ACCOUNT = 2,
  67. };
  68. static int update_block_group(struct btrfs_trans_handle *trans,
  69. struct btrfs_root *root,
  70. u64 bytenr, u64 num_bytes, int alloc);
  71. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  72. struct btrfs_root *root,
  73. u64 bytenr, u64 num_bytes, u64 parent,
  74. u64 root_objectid, u64 owner_objectid,
  75. u64 owner_offset, int refs_to_drop,
  76. struct btrfs_delayed_extent_op *extra_op);
  77. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  78. struct extent_buffer *leaf,
  79. struct btrfs_extent_item *ei);
  80. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  81. struct btrfs_root *root,
  82. u64 parent, u64 root_objectid,
  83. u64 flags, u64 owner, u64 offset,
  84. struct btrfs_key *ins, int ref_mod);
  85. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  86. struct btrfs_root *root,
  87. u64 parent, u64 root_objectid,
  88. u64 flags, struct btrfs_disk_key *key,
  89. int level, struct btrfs_key *ins);
  90. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  91. struct btrfs_root *extent_root, u64 alloc_bytes,
  92. u64 flags, int force);
  93. static int find_next_key(struct btrfs_path *path, int level,
  94. struct btrfs_key *key);
  95. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  96. int dump_block_groups);
  97. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  98. u64 num_bytes, int reserve);
  99. static noinline int
  100. block_group_cache_done(struct btrfs_block_group_cache *cache)
  101. {
  102. smp_mb();
  103. return cache->cached == BTRFS_CACHE_FINISHED;
  104. }
  105. static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  106. {
  107. return (cache->flags & bits) == bits;
  108. }
  109. static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  110. {
  111. atomic_inc(&cache->count);
  112. }
  113. void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  114. {
  115. if (atomic_dec_and_test(&cache->count)) {
  116. WARN_ON(cache->pinned > 0);
  117. WARN_ON(cache->reserved > 0);
  118. kfree(cache->free_space_ctl);
  119. kfree(cache);
  120. }
  121. }
  122. /*
  123. * this adds the block group to the fs_info rb tree for the block group
  124. * cache
  125. */
  126. static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  127. struct btrfs_block_group_cache *block_group)
  128. {
  129. struct rb_node **p;
  130. struct rb_node *parent = NULL;
  131. struct btrfs_block_group_cache *cache;
  132. spin_lock(&info->block_group_cache_lock);
  133. p = &info->block_group_cache_tree.rb_node;
  134. while (*p) {
  135. parent = *p;
  136. cache = rb_entry(parent, struct btrfs_block_group_cache,
  137. cache_node);
  138. if (block_group->key.objectid < cache->key.objectid) {
  139. p = &(*p)->rb_left;
  140. } else if (block_group->key.objectid > cache->key.objectid) {
  141. p = &(*p)->rb_right;
  142. } else {
  143. spin_unlock(&info->block_group_cache_lock);
  144. return -EEXIST;
  145. }
  146. }
  147. rb_link_node(&block_group->cache_node, parent, p);
  148. rb_insert_color(&block_group->cache_node,
  149. &info->block_group_cache_tree);
  150. spin_unlock(&info->block_group_cache_lock);
  151. return 0;
  152. }
  153. /*
  154. * This will return the block group at or after bytenr if contains is 0, else
  155. * it will return the block group that contains the bytenr
  156. */
  157. static struct btrfs_block_group_cache *
  158. block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  159. int contains)
  160. {
  161. struct btrfs_block_group_cache *cache, *ret = NULL;
  162. struct rb_node *n;
  163. u64 end, start;
  164. spin_lock(&info->block_group_cache_lock);
  165. n = info->block_group_cache_tree.rb_node;
  166. while (n) {
  167. cache = rb_entry(n, struct btrfs_block_group_cache,
  168. cache_node);
  169. end = cache->key.objectid + cache->key.offset - 1;
  170. start = cache->key.objectid;
  171. if (bytenr < start) {
  172. if (!contains && (!ret || start < ret->key.objectid))
  173. ret = cache;
  174. n = n->rb_left;
  175. } else if (bytenr > start) {
  176. if (contains && bytenr <= end) {
  177. ret = cache;
  178. break;
  179. }
  180. n = n->rb_right;
  181. } else {
  182. ret = cache;
  183. break;
  184. }
  185. }
  186. if (ret)
  187. btrfs_get_block_group(ret);
  188. spin_unlock(&info->block_group_cache_lock);
  189. return ret;
  190. }
  191. static int add_excluded_extent(struct btrfs_root *root,
  192. u64 start, u64 num_bytes)
  193. {
  194. u64 end = start + num_bytes - 1;
  195. set_extent_bits(&root->fs_info->freed_extents[0],
  196. start, end, EXTENT_UPTODATE, GFP_NOFS);
  197. set_extent_bits(&root->fs_info->freed_extents[1],
  198. start, end, EXTENT_UPTODATE, GFP_NOFS);
  199. return 0;
  200. }
  201. static void free_excluded_extents(struct btrfs_root *root,
  202. struct btrfs_block_group_cache *cache)
  203. {
  204. u64 start, end;
  205. start = cache->key.objectid;
  206. end = start + cache->key.offset - 1;
  207. clear_extent_bits(&root->fs_info->freed_extents[0],
  208. start, end, EXTENT_UPTODATE, GFP_NOFS);
  209. clear_extent_bits(&root->fs_info->freed_extents[1],
  210. start, end, EXTENT_UPTODATE, GFP_NOFS);
  211. }
  212. static int exclude_super_stripes(struct btrfs_root *root,
  213. struct btrfs_block_group_cache *cache)
  214. {
  215. u64 bytenr;
  216. u64 *logical;
  217. int stripe_len;
  218. int i, nr, ret;
  219. if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  220. stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  221. cache->bytes_super += stripe_len;
  222. ret = add_excluded_extent(root, cache->key.objectid,
  223. stripe_len);
  224. BUG_ON(ret);
  225. }
  226. for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  227. bytenr = btrfs_sb_offset(i);
  228. ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
  229. cache->key.objectid, bytenr,
  230. 0, &logical, &nr, &stripe_len);
  231. BUG_ON(ret);
  232. while (nr--) {
  233. cache->bytes_super += stripe_len;
  234. ret = add_excluded_extent(root, logical[nr],
  235. stripe_len);
  236. BUG_ON(ret);
  237. }
  238. kfree(logical);
  239. }
  240. return 0;
  241. }
  242. static struct btrfs_caching_control *
  243. get_caching_control(struct btrfs_block_group_cache *cache)
  244. {
  245. struct btrfs_caching_control *ctl;
  246. spin_lock(&cache->lock);
  247. if (cache->cached != BTRFS_CACHE_STARTED) {
  248. spin_unlock(&cache->lock);
  249. return NULL;
  250. }
  251. /* We're loading it the fast way, so we don't have a caching_ctl. */
  252. if (!cache->caching_ctl) {
  253. spin_unlock(&cache->lock);
  254. return NULL;
  255. }
  256. ctl = cache->caching_ctl;
  257. atomic_inc(&ctl->count);
  258. spin_unlock(&cache->lock);
  259. return ctl;
  260. }
  261. static void put_caching_control(struct btrfs_caching_control *ctl)
  262. {
  263. if (atomic_dec_and_test(&ctl->count))
  264. kfree(ctl);
  265. }
  266. /*
  267. * this is only called by cache_block_group, since we could have freed extents
  268. * we need to check the pinned_extents for any extents that can't be used yet
  269. * since their free space will be released as soon as the transaction commits.
  270. */
  271. static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  272. struct btrfs_fs_info *info, u64 start, u64 end)
  273. {
  274. u64 extent_start, extent_end, size, total_added = 0;
  275. int ret;
  276. while (start < end) {
  277. ret = find_first_extent_bit(info->pinned_extents, start,
  278. &extent_start, &extent_end,
  279. EXTENT_DIRTY | EXTENT_UPTODATE);
  280. if (ret)
  281. break;
  282. if (extent_start <= start) {
  283. start = extent_end + 1;
  284. } else if (extent_start > start && extent_start < end) {
  285. size = extent_start - start;
  286. total_added += size;
  287. ret = btrfs_add_free_space(block_group, start,
  288. size);
  289. BUG_ON(ret);
  290. start = extent_end + 1;
  291. } else {
  292. break;
  293. }
  294. }
  295. if (start < end) {
  296. size = end - start;
  297. total_added += size;
  298. ret = btrfs_add_free_space(block_group, start, size);
  299. BUG_ON(ret);
  300. }
  301. return total_added;
  302. }
  303. static noinline void caching_thread(struct btrfs_work *work)
  304. {
  305. struct btrfs_block_group_cache *block_group;
  306. struct btrfs_fs_info *fs_info;
  307. struct btrfs_caching_control *caching_ctl;
  308. struct btrfs_root *extent_root;
  309. struct btrfs_path *path;
  310. struct extent_buffer *leaf;
  311. struct btrfs_key key;
  312. u64 total_found = 0;
  313. u64 last = 0;
  314. u32 nritems;
  315. int ret = 0;
  316. caching_ctl = container_of(work, struct btrfs_caching_control, work);
  317. block_group = caching_ctl->block_group;
  318. fs_info = block_group->fs_info;
  319. extent_root = fs_info->extent_root;
  320. path = btrfs_alloc_path();
  321. if (!path)
  322. goto out;
  323. last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  324. /*
  325. * We don't want to deadlock with somebody trying to allocate a new
  326. * extent for the extent root while also trying to search the extent
  327. * root to add free space. So we skip locking and search the commit
  328. * root, since its read-only
  329. */
  330. path->skip_locking = 1;
  331. path->search_commit_root = 1;
  332. path->reada = 1;
  333. key.objectid = last;
  334. key.offset = 0;
  335. key.type = BTRFS_EXTENT_ITEM_KEY;
  336. again:
  337. mutex_lock(&caching_ctl->mutex);
  338. /* need to make sure the commit_root doesn't disappear */
  339. down_read(&fs_info->extent_commit_sem);
  340. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  341. if (ret < 0)
  342. goto err;
  343. leaf = path->nodes[0];
  344. nritems = btrfs_header_nritems(leaf);
  345. while (1) {
  346. if (btrfs_fs_closing(fs_info) > 1) {
  347. last = (u64)-1;
  348. break;
  349. }
  350. if (path->slots[0] < nritems) {
  351. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  352. } else {
  353. ret = find_next_key(path, 0, &key);
  354. if (ret)
  355. break;
  356. if (need_resched() ||
  357. btrfs_next_leaf(extent_root, path)) {
  358. caching_ctl->progress = last;
  359. btrfs_release_path(path);
  360. up_read(&fs_info->extent_commit_sem);
  361. mutex_unlock(&caching_ctl->mutex);
  362. cond_resched();
  363. goto again;
  364. }
  365. leaf = path->nodes[0];
  366. nritems = btrfs_header_nritems(leaf);
  367. continue;
  368. }
  369. if (key.objectid < block_group->key.objectid) {
  370. path->slots[0]++;
  371. continue;
  372. }
  373. if (key.objectid >= block_group->key.objectid +
  374. block_group->key.offset)
  375. break;
  376. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  377. total_found += add_new_free_space(block_group,
  378. fs_info, last,
  379. key.objectid);
  380. last = key.objectid + key.offset;
  381. if (total_found > (1024 * 1024 * 2)) {
  382. total_found = 0;
  383. wake_up(&caching_ctl->wait);
  384. }
  385. }
  386. path->slots[0]++;
  387. }
  388. ret = 0;
  389. total_found += add_new_free_space(block_group, fs_info, last,
  390. block_group->key.objectid +
  391. block_group->key.offset);
  392. caching_ctl->progress = (u64)-1;
  393. spin_lock(&block_group->lock);
  394. block_group->caching_ctl = NULL;
  395. block_group->cached = BTRFS_CACHE_FINISHED;
  396. spin_unlock(&block_group->lock);
  397. err:
  398. btrfs_free_path(path);
  399. up_read(&fs_info->extent_commit_sem);
  400. free_excluded_extents(extent_root, block_group);
  401. mutex_unlock(&caching_ctl->mutex);
  402. out:
  403. wake_up(&caching_ctl->wait);
  404. put_caching_control(caching_ctl);
  405. btrfs_put_block_group(block_group);
  406. }
  407. static int cache_block_group(struct btrfs_block_group_cache *cache,
  408. struct btrfs_trans_handle *trans,
  409. struct btrfs_root *root,
  410. int load_cache_only)
  411. {
  412. DEFINE_WAIT(wait);
  413. struct btrfs_fs_info *fs_info = cache->fs_info;
  414. struct btrfs_caching_control *caching_ctl;
  415. int ret = 0;
  416. caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  417. BUG_ON(!caching_ctl);
  418. INIT_LIST_HEAD(&caching_ctl->list);
  419. mutex_init(&caching_ctl->mutex);
  420. init_waitqueue_head(&caching_ctl->wait);
  421. caching_ctl->block_group = cache;
  422. caching_ctl->progress = cache->key.objectid;
  423. atomic_set(&caching_ctl->count, 1);
  424. caching_ctl->work.func = caching_thread;
  425. spin_lock(&cache->lock);
  426. /*
  427. * This should be a rare occasion, but this could happen I think in the
  428. * case where one thread starts to load the space cache info, and then
  429. * some other thread starts a transaction commit which tries to do an
  430. * allocation while the other thread is still loading the space cache
  431. * info. The previous loop should have kept us from choosing this block
  432. * group, but if we've moved to the state where we will wait on caching
  433. * block groups we need to first check if we're doing a fast load here,
  434. * so we can wait for it to finish, otherwise we could end up allocating
  435. * from a block group who's cache gets evicted for one reason or
  436. * another.
  437. */
  438. while (cache->cached == BTRFS_CACHE_FAST) {
  439. struct btrfs_caching_control *ctl;
  440. ctl = cache->caching_ctl;
  441. atomic_inc(&ctl->count);
  442. prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  443. spin_unlock(&cache->lock);
  444. schedule();
  445. finish_wait(&ctl->wait, &wait);
  446. put_caching_control(ctl);
  447. spin_lock(&cache->lock);
  448. }
  449. if (cache->cached != BTRFS_CACHE_NO) {
  450. spin_unlock(&cache->lock);
  451. kfree(caching_ctl);
  452. return 0;
  453. }
  454. WARN_ON(cache->caching_ctl);
  455. cache->caching_ctl = caching_ctl;
  456. cache->cached = BTRFS_CACHE_FAST;
  457. spin_unlock(&cache->lock);
  458. /*
  459. * We can't do the read from on-disk cache during a commit since we need
  460. * to have the normal tree locking. Also if we are currently trying to
  461. * allocate blocks for the tree root we can't do the fast caching since
  462. * we likely hold important locks.
  463. */
  464. if (trans && (!trans->transaction->in_commit) &&
  465. (root && root != root->fs_info->tree_root) &&
  466. btrfs_test_opt(root, SPACE_CACHE)) {
  467. ret = load_free_space_cache(fs_info, cache);
  468. spin_lock(&cache->lock);
  469. if (ret == 1) {
  470. cache->caching_ctl = NULL;
  471. cache->cached = BTRFS_CACHE_FINISHED;
  472. cache->last_byte_to_unpin = (u64)-1;
  473. } else {
  474. if (load_cache_only) {
  475. cache->caching_ctl = NULL;
  476. cache->cached = BTRFS_CACHE_NO;
  477. } else {
  478. cache->cached = BTRFS_CACHE_STARTED;
  479. }
  480. }
  481. spin_unlock(&cache->lock);
  482. wake_up(&caching_ctl->wait);
  483. if (ret == 1) {
  484. put_caching_control(caching_ctl);
  485. free_excluded_extents(fs_info->extent_root, cache);
  486. return 0;
  487. }
  488. } else {
  489. /*
  490. * We are not going to do the fast caching, set cached to the
  491. * appropriate value and wakeup any waiters.
  492. */
  493. spin_lock(&cache->lock);
  494. if (load_cache_only) {
  495. cache->caching_ctl = NULL;
  496. cache->cached = BTRFS_CACHE_NO;
  497. } else {
  498. cache->cached = BTRFS_CACHE_STARTED;
  499. }
  500. spin_unlock(&cache->lock);
  501. wake_up(&caching_ctl->wait);
  502. }
  503. if (load_cache_only) {
  504. put_caching_control(caching_ctl);
  505. return 0;
  506. }
  507. down_write(&fs_info->extent_commit_sem);
  508. atomic_inc(&caching_ctl->count);
  509. list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  510. up_write(&fs_info->extent_commit_sem);
  511. btrfs_get_block_group(cache);
  512. btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
  513. return ret;
  514. }
  515. /*
  516. * return the block group that starts at or after bytenr
  517. */
  518. static struct btrfs_block_group_cache *
  519. btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  520. {
  521. struct btrfs_block_group_cache *cache;
  522. cache = block_group_cache_tree_search(info, bytenr, 0);
  523. return cache;
  524. }
  525. /*
  526. * return the block group that contains the given bytenr
  527. */
  528. struct btrfs_block_group_cache *btrfs_lookup_block_group(
  529. struct btrfs_fs_info *info,
  530. u64 bytenr)
  531. {
  532. struct btrfs_block_group_cache *cache;
  533. cache = block_group_cache_tree_search(info, bytenr, 1);
  534. return cache;
  535. }
  536. static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  537. u64 flags)
  538. {
  539. struct list_head *head = &info->space_info;
  540. struct btrfs_space_info *found;
  541. flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
  542. BTRFS_BLOCK_GROUP_METADATA;
  543. rcu_read_lock();
  544. list_for_each_entry_rcu(found, head, list) {
  545. if (found->flags & flags) {
  546. rcu_read_unlock();
  547. return found;
  548. }
  549. }
  550. rcu_read_unlock();
  551. return NULL;
  552. }
  553. /*
  554. * after adding space to the filesystem, we need to clear the full flags
  555. * on all the space infos.
  556. */
  557. void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  558. {
  559. struct list_head *head = &info->space_info;
  560. struct btrfs_space_info *found;
  561. rcu_read_lock();
  562. list_for_each_entry_rcu(found, head, list)
  563. found->full = 0;
  564. rcu_read_unlock();
  565. }
  566. static u64 div_factor(u64 num, int factor)
  567. {
  568. if (factor == 10)
  569. return num;
  570. num *= factor;
  571. do_div(num, 10);
  572. return num;
  573. }
  574. static u64 div_factor_fine(u64 num, int factor)
  575. {
  576. if (factor == 100)
  577. return num;
  578. num *= factor;
  579. do_div(num, 100);
  580. return num;
  581. }
  582. u64 btrfs_find_block_group(struct btrfs_root *root,
  583. u64 search_start, u64 search_hint, int owner)
  584. {
  585. struct btrfs_block_group_cache *cache;
  586. u64 used;
  587. u64 last = max(search_hint, search_start);
  588. u64 group_start = 0;
  589. int full_search = 0;
  590. int factor = 9;
  591. int wrapped = 0;
  592. again:
  593. while (1) {
  594. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  595. if (!cache)
  596. break;
  597. spin_lock(&cache->lock);
  598. last = cache->key.objectid + cache->key.offset;
  599. used = btrfs_block_group_used(&cache->item);
  600. if ((full_search || !cache->ro) &&
  601. block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
  602. if (used + cache->pinned + cache->reserved <
  603. div_factor(cache->key.offset, factor)) {
  604. group_start = cache->key.objectid;
  605. spin_unlock(&cache->lock);
  606. btrfs_put_block_group(cache);
  607. goto found;
  608. }
  609. }
  610. spin_unlock(&cache->lock);
  611. btrfs_put_block_group(cache);
  612. cond_resched();
  613. }
  614. if (!wrapped) {
  615. last = search_start;
  616. wrapped = 1;
  617. goto again;
  618. }
  619. if (!full_search && factor < 10) {
  620. last = search_start;
  621. full_search = 1;
  622. factor = 10;
  623. goto again;
  624. }
  625. found:
  626. return group_start;
  627. }
  628. /* simple helper to search for an existing extent at a given offset */
  629. int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
  630. {
  631. int ret;
  632. struct btrfs_key key;
  633. struct btrfs_path *path;
  634. path = btrfs_alloc_path();
  635. if (!path)
  636. return -ENOMEM;
  637. key.objectid = start;
  638. key.offset = len;
  639. btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
  640. ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
  641. 0, 0);
  642. btrfs_free_path(path);
  643. return ret;
  644. }
  645. /*
  646. * helper function to lookup reference count and flags of extent.
  647. *
  648. * the head node for delayed ref is used to store the sum of all the
  649. * reference count modifications queued up in the rbtree. the head
  650. * node may also store the extent flags to set. This way you can check
  651. * to see what the reference count and extent flags would be if all of
  652. * the delayed refs are not processed.
  653. */
  654. int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  655. struct btrfs_root *root, u64 bytenr,
  656. u64 num_bytes, u64 *refs, u64 *flags)
  657. {
  658. struct btrfs_delayed_ref_head *head;
  659. struct btrfs_delayed_ref_root *delayed_refs;
  660. struct btrfs_path *path;
  661. struct btrfs_extent_item *ei;
  662. struct extent_buffer *leaf;
  663. struct btrfs_key key;
  664. u32 item_size;
  665. u64 num_refs;
  666. u64 extent_flags;
  667. int ret;
  668. path = btrfs_alloc_path();
  669. if (!path)
  670. return -ENOMEM;
  671. key.objectid = bytenr;
  672. key.type = BTRFS_EXTENT_ITEM_KEY;
  673. key.offset = num_bytes;
  674. if (!trans) {
  675. path->skip_locking = 1;
  676. path->search_commit_root = 1;
  677. }
  678. again:
  679. ret = btrfs_search_slot(trans, root->fs_info->extent_root,
  680. &key, path, 0, 0);
  681. if (ret < 0)
  682. goto out_free;
  683. if (ret == 0) {
  684. leaf = path->nodes[0];
  685. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  686. if (item_size >= sizeof(*ei)) {
  687. ei = btrfs_item_ptr(leaf, path->slots[0],
  688. struct btrfs_extent_item);
  689. num_refs = btrfs_extent_refs(leaf, ei);
  690. extent_flags = btrfs_extent_flags(leaf, ei);
  691. } else {
  692. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  693. struct btrfs_extent_item_v0 *ei0;
  694. BUG_ON(item_size != sizeof(*ei0));
  695. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  696. struct btrfs_extent_item_v0);
  697. num_refs = btrfs_extent_refs_v0(leaf, ei0);
  698. /* FIXME: this isn't correct for data */
  699. extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  700. #else
  701. BUG();
  702. #endif
  703. }
  704. BUG_ON(num_refs == 0);
  705. } else {
  706. num_refs = 0;
  707. extent_flags = 0;
  708. ret = 0;
  709. }
  710. if (!trans)
  711. goto out;
  712. delayed_refs = &trans->transaction->delayed_refs;
  713. spin_lock(&delayed_refs->lock);
  714. head = btrfs_find_delayed_ref_head(trans, bytenr);
  715. if (head) {
  716. if (!mutex_trylock(&head->mutex)) {
  717. atomic_inc(&head->node.refs);
  718. spin_unlock(&delayed_refs->lock);
  719. btrfs_release_path(path);
  720. /*
  721. * Mutex was contended, block until it's released and try
  722. * again
  723. */
  724. mutex_lock(&head->mutex);
  725. mutex_unlock(&head->mutex);
  726. btrfs_put_delayed_ref(&head->node);
  727. goto again;
  728. }
  729. if (head->extent_op && head->extent_op->update_flags)
  730. extent_flags |= head->extent_op->flags_to_set;
  731. else
  732. BUG_ON(num_refs == 0);
  733. num_refs += head->node.ref_mod;
  734. mutex_unlock(&head->mutex);
  735. }
  736. spin_unlock(&delayed_refs->lock);
  737. out:
  738. WARN_ON(num_refs == 0);
  739. if (refs)
  740. *refs = num_refs;
  741. if (flags)
  742. *flags = extent_flags;
  743. out_free:
  744. btrfs_free_path(path);
  745. return ret;
  746. }
  747. /*
  748. * Back reference rules. Back refs have three main goals:
  749. *
  750. * 1) differentiate between all holders of references to an extent so that
  751. * when a reference is dropped we can make sure it was a valid reference
  752. * before freeing the extent.
  753. *
  754. * 2) Provide enough information to quickly find the holders of an extent
  755. * if we notice a given block is corrupted or bad.
  756. *
  757. * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  758. * maintenance. This is actually the same as #2, but with a slightly
  759. * different use case.
  760. *
  761. * There are two kinds of back refs. The implicit back refs is optimized
  762. * for pointers in non-shared tree blocks. For a given pointer in a block,
  763. * back refs of this kind provide information about the block's owner tree
  764. * and the pointer's key. These information allow us to find the block by
  765. * b-tree searching. The full back refs is for pointers in tree blocks not
  766. * referenced by their owner trees. The location of tree block is recorded
  767. * in the back refs. Actually the full back refs is generic, and can be
  768. * used in all cases the implicit back refs is used. The major shortcoming
  769. * of the full back refs is its overhead. Every time a tree block gets
  770. * COWed, we have to update back refs entry for all pointers in it.
  771. *
  772. * For a newly allocated tree block, we use implicit back refs for
  773. * pointers in it. This means most tree related operations only involve
  774. * implicit back refs. For a tree block created in old transaction, the
  775. * only way to drop a reference to it is COW it. So we can detect the
  776. * event that tree block loses its owner tree's reference and do the
  777. * back refs conversion.
  778. *
  779. * When a tree block is COW'd through a tree, there are four cases:
  780. *
  781. * The reference count of the block is one and the tree is the block's
  782. * owner tree. Nothing to do in this case.
  783. *
  784. * The reference count of the block is one and the tree is not the
  785. * block's owner tree. In this case, full back refs is used for pointers
  786. * in the block. Remove these full back refs, add implicit back refs for
  787. * every pointers in the new block.
  788. *
  789. * The reference count of the block is greater than one and the tree is
  790. * the block's owner tree. In this case, implicit back refs is used for
  791. * pointers in the block. Add full back refs for every pointers in the
  792. * block, increase lower level extents' reference counts. The original
  793. * implicit back refs are entailed to the new block.
  794. *
  795. * The reference count of the block is greater than one and the tree is
  796. * not the block's owner tree. Add implicit back refs for every pointer in
  797. * the new block, increase lower level extents' reference count.
  798. *
  799. * Back Reference Key composing:
  800. *
  801. * The key objectid corresponds to the first byte in the extent,
  802. * The key type is used to differentiate between types of back refs.
  803. * There are different meanings of the key offset for different types
  804. * of back refs.
  805. *
  806. * File extents can be referenced by:
  807. *
  808. * - multiple snapshots, subvolumes, or different generations in one subvol
  809. * - different files inside a single subvolume
  810. * - different offsets inside a file (bookend extents in file.c)
  811. *
  812. * The extent ref structure for the implicit back refs has fields for:
  813. *
  814. * - Objectid of the subvolume root
  815. * - objectid of the file holding the reference
  816. * - original offset in the file
  817. * - how many bookend extents
  818. *
  819. * The key offset for the implicit back refs is hash of the first
  820. * three fields.
  821. *
  822. * The extent ref structure for the full back refs has field for:
  823. *
  824. * - number of pointers in the tree leaf
  825. *
  826. * The key offset for the implicit back refs is the first byte of
  827. * the tree leaf
  828. *
  829. * When a file extent is allocated, The implicit back refs is used.
  830. * the fields are filled in:
  831. *
  832. * (root_key.objectid, inode objectid, offset in file, 1)
  833. *
  834. * When a file extent is removed file truncation, we find the
  835. * corresponding implicit back refs and check the following fields:
  836. *
  837. * (btrfs_header_owner(leaf), inode objectid, offset in file)
  838. *
  839. * Btree extents can be referenced by:
  840. *
  841. * - Different subvolumes
  842. *
  843. * Both the implicit back refs and the full back refs for tree blocks
  844. * only consist of key. The key offset for the implicit back refs is
  845. * objectid of block's owner tree. The key offset for the full back refs
  846. * is the first byte of parent block.
  847. *
  848. * When implicit back refs is used, information about the lowest key and
  849. * level of the tree block are required. These information are stored in
  850. * tree block info structure.
  851. */
  852. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  853. static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
  854. struct btrfs_root *root,
  855. struct btrfs_path *path,
  856. u64 owner, u32 extra_size)
  857. {
  858. struct btrfs_extent_item *item;
  859. struct btrfs_extent_item_v0 *ei0;
  860. struct btrfs_extent_ref_v0 *ref0;
  861. struct btrfs_tree_block_info *bi;
  862. struct extent_buffer *leaf;
  863. struct btrfs_key key;
  864. struct btrfs_key found_key;
  865. u32 new_size = sizeof(*item);
  866. u64 refs;
  867. int ret;
  868. leaf = path->nodes[0];
  869. BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
  870. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  871. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  872. struct btrfs_extent_item_v0);
  873. refs = btrfs_extent_refs_v0(leaf, ei0);
  874. if (owner == (u64)-1) {
  875. while (1) {
  876. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  877. ret = btrfs_next_leaf(root, path);
  878. if (ret < 0)
  879. return ret;
  880. BUG_ON(ret > 0);
  881. leaf = path->nodes[0];
  882. }
  883. btrfs_item_key_to_cpu(leaf, &found_key,
  884. path->slots[0]);
  885. BUG_ON(key.objectid != found_key.objectid);
  886. if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
  887. path->slots[0]++;
  888. continue;
  889. }
  890. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  891. struct btrfs_extent_ref_v0);
  892. owner = btrfs_ref_objectid_v0(leaf, ref0);
  893. break;
  894. }
  895. }
  896. btrfs_release_path(path);
  897. if (owner < BTRFS_FIRST_FREE_OBJECTID)
  898. new_size += sizeof(*bi);
  899. new_size -= sizeof(*ei0);
  900. ret = btrfs_search_slot(trans, root, &key, path,
  901. new_size + extra_size, 1);
  902. if (ret < 0)
  903. return ret;
  904. BUG_ON(ret);
  905. ret = btrfs_extend_item(trans, root, path, new_size);
  906. leaf = path->nodes[0];
  907. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  908. btrfs_set_extent_refs(leaf, item, refs);
  909. /* FIXME: get real generation */
  910. btrfs_set_extent_generation(leaf, item, 0);
  911. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  912. btrfs_set_extent_flags(leaf, item,
  913. BTRFS_EXTENT_FLAG_TREE_BLOCK |
  914. BTRFS_BLOCK_FLAG_FULL_BACKREF);
  915. bi = (struct btrfs_tree_block_info *)(item + 1);
  916. /* FIXME: get first key of the block */
  917. memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
  918. btrfs_set_tree_block_level(leaf, bi, (int)owner);
  919. } else {
  920. btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
  921. }
  922. btrfs_mark_buffer_dirty(leaf);
  923. return 0;
  924. }
  925. #endif
  926. static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
  927. {
  928. u32 high_crc = ~(u32)0;
  929. u32 low_crc = ~(u32)0;
  930. __le64 lenum;
  931. lenum = cpu_to_le64(root_objectid);
  932. high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
  933. lenum = cpu_to_le64(owner);
  934. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  935. lenum = cpu_to_le64(offset);
  936. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  937. return ((u64)high_crc << 31) ^ (u64)low_crc;
  938. }
  939. static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
  940. struct btrfs_extent_data_ref *ref)
  941. {
  942. return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
  943. btrfs_extent_data_ref_objectid(leaf, ref),
  944. btrfs_extent_data_ref_offset(leaf, ref));
  945. }
  946. static int match_extent_data_ref(struct extent_buffer *leaf,
  947. struct btrfs_extent_data_ref *ref,
  948. u64 root_objectid, u64 owner, u64 offset)
  949. {
  950. if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
  951. btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
  952. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  953. return 0;
  954. return 1;
  955. }
  956. static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
  957. struct btrfs_root *root,
  958. struct btrfs_path *path,
  959. u64 bytenr, u64 parent,
  960. u64 root_objectid,
  961. u64 owner, u64 offset)
  962. {
  963. struct btrfs_key key;
  964. struct btrfs_extent_data_ref *ref;
  965. struct extent_buffer *leaf;
  966. u32 nritems;
  967. int ret;
  968. int recow;
  969. int err = -ENOENT;
  970. key.objectid = bytenr;
  971. if (parent) {
  972. key.type = BTRFS_SHARED_DATA_REF_KEY;
  973. key.offset = parent;
  974. } else {
  975. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  976. key.offset = hash_extent_data_ref(root_objectid,
  977. owner, offset);
  978. }
  979. again:
  980. recow = 0;
  981. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  982. if (ret < 0) {
  983. err = ret;
  984. goto fail;
  985. }
  986. if (parent) {
  987. if (!ret)
  988. return 0;
  989. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  990. key.type = BTRFS_EXTENT_REF_V0_KEY;
  991. btrfs_release_path(path);
  992. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  993. if (ret < 0) {
  994. err = ret;
  995. goto fail;
  996. }
  997. if (!ret)
  998. return 0;
  999. #endif
  1000. goto fail;
  1001. }
  1002. leaf = path->nodes[0];
  1003. nritems = btrfs_header_nritems(leaf);
  1004. while (1) {
  1005. if (path->slots[0] >= nritems) {
  1006. ret = btrfs_next_leaf(root, path);
  1007. if (ret < 0)
  1008. err = ret;
  1009. if (ret)
  1010. goto fail;
  1011. leaf = path->nodes[0];
  1012. nritems = btrfs_header_nritems(leaf);
  1013. recow = 1;
  1014. }
  1015. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1016. if (key.objectid != bytenr ||
  1017. key.type != BTRFS_EXTENT_DATA_REF_KEY)
  1018. goto fail;
  1019. ref = btrfs_item_ptr(leaf, path->slots[0],
  1020. struct btrfs_extent_data_ref);
  1021. if (match_extent_data_ref(leaf, ref, root_objectid,
  1022. owner, offset)) {
  1023. if (recow) {
  1024. btrfs_release_path(path);
  1025. goto again;
  1026. }
  1027. err = 0;
  1028. break;
  1029. }
  1030. path->slots[0]++;
  1031. }
  1032. fail:
  1033. return err;
  1034. }
  1035. static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
  1036. struct btrfs_root *root,
  1037. struct btrfs_path *path,
  1038. u64 bytenr, u64 parent,
  1039. u64 root_objectid, u64 owner,
  1040. u64 offset, int refs_to_add)
  1041. {
  1042. struct btrfs_key key;
  1043. struct extent_buffer *leaf;
  1044. u32 size;
  1045. u32 num_refs;
  1046. int ret;
  1047. key.objectid = bytenr;
  1048. if (parent) {
  1049. key.type = BTRFS_SHARED_DATA_REF_KEY;
  1050. key.offset = parent;
  1051. size = sizeof(struct btrfs_shared_data_ref);
  1052. } else {
  1053. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  1054. key.offset = hash_extent_data_ref(root_objectid,
  1055. owner, offset);
  1056. size = sizeof(struct btrfs_extent_data_ref);
  1057. }
  1058. ret = btrfs_insert_empty_item(trans, root, path, &key, size);
  1059. if (ret && ret != -EEXIST)
  1060. goto fail;
  1061. leaf = path->nodes[0];
  1062. if (parent) {
  1063. struct btrfs_shared_data_ref *ref;
  1064. ref = btrfs_item_ptr(leaf, path->slots[0],
  1065. struct btrfs_shared_data_ref);
  1066. if (ret == 0) {
  1067. btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
  1068. } else {
  1069. num_refs = btrfs_shared_data_ref_count(leaf, ref);
  1070. num_refs += refs_to_add;
  1071. btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
  1072. }
  1073. } else {
  1074. struct btrfs_extent_data_ref *ref;
  1075. while (ret == -EEXIST) {
  1076. ref = btrfs_item_ptr(leaf, path->slots[0],
  1077. struct btrfs_extent_data_ref);
  1078. if (match_extent_data_ref(leaf, ref, root_objectid,
  1079. owner, offset))
  1080. break;
  1081. btrfs_release_path(path);
  1082. key.offset++;
  1083. ret = btrfs_insert_empty_item(trans, root, path, &key,
  1084. size);
  1085. if (ret && ret != -EEXIST)
  1086. goto fail;
  1087. leaf = path->nodes[0];
  1088. }
  1089. ref = btrfs_item_ptr(leaf, path->slots[0],
  1090. struct btrfs_extent_data_ref);
  1091. if (ret == 0) {
  1092. btrfs_set_extent_data_ref_root(leaf, ref,
  1093. root_objectid);
  1094. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  1095. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  1096. btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
  1097. } else {
  1098. num_refs = btrfs_extent_data_ref_count(leaf, ref);
  1099. num_refs += refs_to_add;
  1100. btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
  1101. }
  1102. }
  1103. btrfs_mark_buffer_dirty(leaf);
  1104. ret = 0;
  1105. fail:
  1106. btrfs_release_path(path);
  1107. return ret;
  1108. }
  1109. static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
  1110. struct btrfs_root *root,
  1111. struct btrfs_path *path,
  1112. int refs_to_drop)
  1113. {
  1114. struct btrfs_key key;
  1115. struct btrfs_extent_data_ref *ref1 = NULL;
  1116. struct btrfs_shared_data_ref *ref2 = NULL;
  1117. struct extent_buffer *leaf;
  1118. u32 num_refs = 0;
  1119. int ret = 0;
  1120. leaf = path->nodes[0];
  1121. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1122. if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1123. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1124. struct btrfs_extent_data_ref);
  1125. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1126. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1127. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1128. struct btrfs_shared_data_ref);
  1129. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1130. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1131. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1132. struct btrfs_extent_ref_v0 *ref0;
  1133. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1134. struct btrfs_extent_ref_v0);
  1135. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1136. #endif
  1137. } else {
  1138. BUG();
  1139. }
  1140. BUG_ON(num_refs < refs_to_drop);
  1141. num_refs -= refs_to_drop;
  1142. if (num_refs == 0) {
  1143. ret = btrfs_del_item(trans, root, path);
  1144. } else {
  1145. if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
  1146. btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
  1147. else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
  1148. btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
  1149. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1150. else {
  1151. struct btrfs_extent_ref_v0 *ref0;
  1152. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1153. struct btrfs_extent_ref_v0);
  1154. btrfs_set_ref_count_v0(leaf, ref0, num_refs);
  1155. }
  1156. #endif
  1157. btrfs_mark_buffer_dirty(leaf);
  1158. }
  1159. return ret;
  1160. }
  1161. static noinline u32 extent_data_ref_count(struct btrfs_root *root,
  1162. struct btrfs_path *path,
  1163. struct btrfs_extent_inline_ref *iref)
  1164. {
  1165. struct btrfs_key key;
  1166. struct extent_buffer *leaf;
  1167. struct btrfs_extent_data_ref *ref1;
  1168. struct btrfs_shared_data_ref *ref2;
  1169. u32 num_refs = 0;
  1170. leaf = path->nodes[0];
  1171. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1172. if (iref) {
  1173. if (btrfs_extent_inline_ref_type(leaf, iref) ==
  1174. BTRFS_EXTENT_DATA_REF_KEY) {
  1175. ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
  1176. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1177. } else {
  1178. ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
  1179. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1180. }
  1181. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1182. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1183. struct btrfs_extent_data_ref);
  1184. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1185. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1186. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1187. struct btrfs_shared_data_ref);
  1188. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1189. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1190. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1191. struct btrfs_extent_ref_v0 *ref0;
  1192. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1193. struct btrfs_extent_ref_v0);
  1194. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1195. #endif
  1196. } else {
  1197. WARN_ON(1);
  1198. }
  1199. return num_refs;
  1200. }
  1201. static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
  1202. struct btrfs_root *root,
  1203. struct btrfs_path *path,
  1204. u64 bytenr, u64 parent,
  1205. u64 root_objectid)
  1206. {
  1207. struct btrfs_key key;
  1208. int ret;
  1209. key.objectid = bytenr;
  1210. if (parent) {
  1211. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1212. key.offset = parent;
  1213. } else {
  1214. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1215. key.offset = root_objectid;
  1216. }
  1217. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1218. if (ret > 0)
  1219. ret = -ENOENT;
  1220. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1221. if (ret == -ENOENT && parent) {
  1222. btrfs_release_path(path);
  1223. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1224. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1225. if (ret > 0)
  1226. ret = -ENOENT;
  1227. }
  1228. #endif
  1229. return ret;
  1230. }
  1231. static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
  1232. struct btrfs_root *root,
  1233. struct btrfs_path *path,
  1234. u64 bytenr, u64 parent,
  1235. u64 root_objectid)
  1236. {
  1237. struct btrfs_key key;
  1238. int ret;
  1239. key.objectid = bytenr;
  1240. if (parent) {
  1241. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1242. key.offset = parent;
  1243. } else {
  1244. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1245. key.offset = root_objectid;
  1246. }
  1247. ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
  1248. btrfs_release_path(path);
  1249. return ret;
  1250. }
  1251. static inline int extent_ref_type(u64 parent, u64 owner)
  1252. {
  1253. int type;
  1254. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1255. if (parent > 0)
  1256. type = BTRFS_SHARED_BLOCK_REF_KEY;
  1257. else
  1258. type = BTRFS_TREE_BLOCK_REF_KEY;
  1259. } else {
  1260. if (parent > 0)
  1261. type = BTRFS_SHARED_DATA_REF_KEY;
  1262. else
  1263. type = BTRFS_EXTENT_DATA_REF_KEY;
  1264. }
  1265. return type;
  1266. }
  1267. static int find_next_key(struct btrfs_path *path, int level,
  1268. struct btrfs_key *key)
  1269. {
  1270. for (; level < BTRFS_MAX_LEVEL; level++) {
  1271. if (!path->nodes[level])
  1272. break;
  1273. if (path->slots[level] + 1 >=
  1274. btrfs_header_nritems(path->nodes[level]))
  1275. continue;
  1276. if (level == 0)
  1277. btrfs_item_key_to_cpu(path->nodes[level], key,
  1278. path->slots[level] + 1);
  1279. else
  1280. btrfs_node_key_to_cpu(path->nodes[level], key,
  1281. path->slots[level] + 1);
  1282. return 0;
  1283. }
  1284. return 1;
  1285. }
  1286. /*
  1287. * look for inline back ref. if back ref is found, *ref_ret is set
  1288. * to the address of inline back ref, and 0 is returned.
  1289. *
  1290. * if back ref isn't found, *ref_ret is set to the address where it
  1291. * should be inserted, and -ENOENT is returned.
  1292. *
  1293. * if insert is true and there are too many inline back refs, the path
  1294. * points to the extent item, and -EAGAIN is returned.
  1295. *
  1296. * NOTE: inline back refs are ordered in the same way that back ref
  1297. * items in the tree are ordered.
  1298. */
  1299. static noinline_for_stack
  1300. int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1301. struct btrfs_root *root,
  1302. struct btrfs_path *path,
  1303. struct btrfs_extent_inline_ref **ref_ret,
  1304. u64 bytenr, u64 num_bytes,
  1305. u64 parent, u64 root_objectid,
  1306. u64 owner, u64 offset, int insert)
  1307. {
  1308. struct btrfs_key key;
  1309. struct extent_buffer *leaf;
  1310. struct btrfs_extent_item *ei;
  1311. struct btrfs_extent_inline_ref *iref;
  1312. u64 flags;
  1313. u64 item_size;
  1314. unsigned long ptr;
  1315. unsigned long end;
  1316. int extra_size;
  1317. int type;
  1318. int want;
  1319. int ret;
  1320. int err = 0;
  1321. key.objectid = bytenr;
  1322. key.type = BTRFS_EXTENT_ITEM_KEY;
  1323. key.offset = num_bytes;
  1324. want = extent_ref_type(parent, owner);
  1325. if (insert) {
  1326. extra_size = btrfs_extent_inline_ref_size(want);
  1327. path->keep_locks = 1;
  1328. } else
  1329. extra_size = -1;
  1330. ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
  1331. if (ret < 0) {
  1332. err = ret;
  1333. goto out;
  1334. }
  1335. BUG_ON(ret);
  1336. leaf = path->nodes[0];
  1337. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1338. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1339. if (item_size < sizeof(*ei)) {
  1340. if (!insert) {
  1341. err = -ENOENT;
  1342. goto out;
  1343. }
  1344. ret = convert_extent_item_v0(trans, root, path, owner,
  1345. extra_size);
  1346. if (ret < 0) {
  1347. err = ret;
  1348. goto out;
  1349. }
  1350. leaf = path->nodes[0];
  1351. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1352. }
  1353. #endif
  1354. BUG_ON(item_size < sizeof(*ei));
  1355. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1356. flags = btrfs_extent_flags(leaf, ei);
  1357. ptr = (unsigned long)(ei + 1);
  1358. end = (unsigned long)ei + item_size;
  1359. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1360. ptr += sizeof(struct btrfs_tree_block_info);
  1361. BUG_ON(ptr > end);
  1362. } else {
  1363. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  1364. }
  1365. err = -ENOENT;
  1366. while (1) {
  1367. if (ptr >= end) {
  1368. WARN_ON(ptr > end);
  1369. break;
  1370. }
  1371. iref = (struct btrfs_extent_inline_ref *)ptr;
  1372. type = btrfs_extent_inline_ref_type(leaf, iref);
  1373. if (want < type)
  1374. break;
  1375. if (want > type) {
  1376. ptr += btrfs_extent_inline_ref_size(type);
  1377. continue;
  1378. }
  1379. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1380. struct btrfs_extent_data_ref *dref;
  1381. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1382. if (match_extent_data_ref(leaf, dref, root_objectid,
  1383. owner, offset)) {
  1384. err = 0;
  1385. break;
  1386. }
  1387. if (hash_extent_data_ref_item(leaf, dref) <
  1388. hash_extent_data_ref(root_objectid, owner, offset))
  1389. break;
  1390. } else {
  1391. u64 ref_offset;
  1392. ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
  1393. if (parent > 0) {
  1394. if (parent == ref_offset) {
  1395. err = 0;
  1396. break;
  1397. }
  1398. if (ref_offset < parent)
  1399. break;
  1400. } else {
  1401. if (root_objectid == ref_offset) {
  1402. err = 0;
  1403. break;
  1404. }
  1405. if (ref_offset < root_objectid)
  1406. break;
  1407. }
  1408. }
  1409. ptr += btrfs_extent_inline_ref_size(type);
  1410. }
  1411. if (err == -ENOENT && insert) {
  1412. if (item_size + extra_size >=
  1413. BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
  1414. err = -EAGAIN;
  1415. goto out;
  1416. }
  1417. /*
  1418. * To add new inline back ref, we have to make sure
  1419. * there is no corresponding back ref item.
  1420. * For simplicity, we just do not add new inline back
  1421. * ref if there is any kind of item for this block
  1422. */
  1423. if (find_next_key(path, 0, &key) == 0 &&
  1424. key.objectid == bytenr &&
  1425. key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
  1426. err = -EAGAIN;
  1427. goto out;
  1428. }
  1429. }
  1430. *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
  1431. out:
  1432. if (insert) {
  1433. path->keep_locks = 0;
  1434. btrfs_unlock_up_safe(path, 1);
  1435. }
  1436. return err;
  1437. }
  1438. /*
  1439. * helper to add new inline back ref
  1440. */
  1441. static noinline_for_stack
  1442. int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1443. struct btrfs_root *root,
  1444. struct btrfs_path *path,
  1445. struct btrfs_extent_inline_ref *iref,
  1446. u64 parent, u64 root_objectid,
  1447. u64 owner, u64 offset, int refs_to_add,
  1448. struct btrfs_delayed_extent_op *extent_op)
  1449. {
  1450. struct extent_buffer *leaf;
  1451. struct btrfs_extent_item *ei;
  1452. unsigned long ptr;
  1453. unsigned long end;
  1454. unsigned long item_offset;
  1455. u64 refs;
  1456. int size;
  1457. int type;
  1458. int ret;
  1459. leaf = path->nodes[0];
  1460. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1461. item_offset = (unsigned long)iref - (unsigned long)ei;
  1462. type = extent_ref_type(parent, owner);
  1463. size = btrfs_extent_inline_ref_size(type);
  1464. ret = btrfs_extend_item(trans, root, path, size);
  1465. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1466. refs = btrfs_extent_refs(leaf, ei);
  1467. refs += refs_to_add;
  1468. btrfs_set_extent_refs(leaf, ei, refs);
  1469. if (extent_op)
  1470. __run_delayed_extent_op(extent_op, leaf, ei);
  1471. ptr = (unsigned long)ei + item_offset;
  1472. end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
  1473. if (ptr < end - size)
  1474. memmove_extent_buffer(leaf, ptr + size, ptr,
  1475. end - size - ptr);
  1476. iref = (struct btrfs_extent_inline_ref *)ptr;
  1477. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  1478. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1479. struct btrfs_extent_data_ref *dref;
  1480. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1481. btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
  1482. btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
  1483. btrfs_set_extent_data_ref_offset(leaf, dref, offset);
  1484. btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
  1485. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1486. struct btrfs_shared_data_ref *sref;
  1487. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1488. btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
  1489. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1490. } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
  1491. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1492. } else {
  1493. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  1494. }
  1495. btrfs_mark_buffer_dirty(leaf);
  1496. return 0;
  1497. }
  1498. static int lookup_extent_backref(struct btrfs_trans_handle *trans,
  1499. struct btrfs_root *root,
  1500. struct btrfs_path *path,
  1501. struct btrfs_extent_inline_ref **ref_ret,
  1502. u64 bytenr, u64 num_bytes, u64 parent,
  1503. u64 root_objectid, u64 owner, u64 offset)
  1504. {
  1505. int ret;
  1506. ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
  1507. bytenr, num_bytes, parent,
  1508. root_objectid, owner, offset, 0);
  1509. if (ret != -ENOENT)
  1510. return ret;
  1511. btrfs_release_path(path);
  1512. *ref_ret = NULL;
  1513. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1514. ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
  1515. root_objectid);
  1516. } else {
  1517. ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
  1518. root_objectid, owner, offset);
  1519. }
  1520. return ret;
  1521. }
  1522. /*
  1523. * helper to update/remove inline back ref
  1524. */
  1525. static noinline_for_stack
  1526. int update_inline_extent_backref(struct btrfs_trans_handle *trans,
  1527. struct btrfs_root *root,
  1528. struct btrfs_path *path,
  1529. struct btrfs_extent_inline_ref *iref,
  1530. int refs_to_mod,
  1531. struct btrfs_delayed_extent_op *extent_op)
  1532. {
  1533. struct extent_buffer *leaf;
  1534. struct btrfs_extent_item *ei;
  1535. struct btrfs_extent_data_ref *dref = NULL;
  1536. struct btrfs_shared_data_ref *sref = NULL;
  1537. unsigned long ptr;
  1538. unsigned long end;
  1539. u32 item_size;
  1540. int size;
  1541. int type;
  1542. int ret;
  1543. u64 refs;
  1544. leaf = path->nodes[0];
  1545. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1546. refs = btrfs_extent_refs(leaf, ei);
  1547. WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
  1548. refs += refs_to_mod;
  1549. btrfs_set_extent_refs(leaf, ei, refs);
  1550. if (extent_op)
  1551. __run_delayed_extent_op(extent_op, leaf, ei);
  1552. type = btrfs_extent_inline_ref_type(leaf, iref);
  1553. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1554. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1555. refs = btrfs_extent_data_ref_count(leaf, dref);
  1556. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1557. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1558. refs = btrfs_shared_data_ref_count(leaf, sref);
  1559. } else {
  1560. refs = 1;
  1561. BUG_ON(refs_to_mod != -1);
  1562. }
  1563. BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
  1564. refs += refs_to_mod;
  1565. if (refs > 0) {
  1566. if (type == BTRFS_EXTENT_DATA_REF_KEY)
  1567. btrfs_set_extent_data_ref_count(leaf, dref, refs);
  1568. else
  1569. btrfs_set_shared_data_ref_count(leaf, sref, refs);
  1570. } else {
  1571. size = btrfs_extent_inline_ref_size(type);
  1572. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1573. ptr = (unsigned long)iref;
  1574. end = (unsigned long)ei + item_size;
  1575. if (ptr + size < end)
  1576. memmove_extent_buffer(leaf, ptr, ptr + size,
  1577. end - ptr - size);
  1578. item_size -= size;
  1579. ret = btrfs_truncate_item(trans, root, path, item_size, 1);
  1580. }
  1581. btrfs_mark_buffer_dirty(leaf);
  1582. return 0;
  1583. }
  1584. static noinline_for_stack
  1585. int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
  1586. struct btrfs_root *root,
  1587. struct btrfs_path *path,
  1588. u64 bytenr, u64 num_bytes, u64 parent,
  1589. u64 root_objectid, u64 owner,
  1590. u64 offset, int refs_to_add,
  1591. struct btrfs_delayed_extent_op *extent_op)
  1592. {
  1593. struct btrfs_extent_inline_ref *iref;
  1594. int ret;
  1595. ret = lookup_inline_extent_backref(trans, root, path, &iref,
  1596. bytenr, num_bytes, parent,
  1597. root_objectid, owner, offset, 1);
  1598. if (ret == 0) {
  1599. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
  1600. ret = update_inline_extent_backref(trans, root, path, iref,
  1601. refs_to_add, extent_op);
  1602. } else if (ret == -ENOENT) {
  1603. ret = setup_inline_extent_backref(trans, root, path, iref,
  1604. parent, root_objectid,
  1605. owner, offset, refs_to_add,
  1606. extent_op);
  1607. }
  1608. return ret;
  1609. }
  1610. static int insert_extent_backref(struct btrfs_trans_handle *trans,
  1611. struct btrfs_root *root,
  1612. struct btrfs_path *path,
  1613. u64 bytenr, u64 parent, u64 root_objectid,
  1614. u64 owner, u64 offset, int refs_to_add)
  1615. {
  1616. int ret;
  1617. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1618. BUG_ON(refs_to_add != 1);
  1619. ret = insert_tree_block_ref(trans, root, path, bytenr,
  1620. parent, root_objectid);
  1621. } else {
  1622. ret = insert_extent_data_ref(trans, root, path, bytenr,
  1623. parent, root_objectid,
  1624. owner, offset, refs_to_add);
  1625. }
  1626. return ret;
  1627. }
  1628. static int remove_extent_backref(struct btrfs_trans_handle *trans,
  1629. struct btrfs_root *root,
  1630. struct btrfs_path *path,
  1631. struct btrfs_extent_inline_ref *iref,
  1632. int refs_to_drop, int is_data)
  1633. {
  1634. int ret;
  1635. BUG_ON(!is_data && refs_to_drop != 1);
  1636. if (iref) {
  1637. ret = update_inline_extent_backref(trans, root, path, iref,
  1638. -refs_to_drop, NULL);
  1639. } else if (is_data) {
  1640. ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
  1641. } else {
  1642. ret = btrfs_del_item(trans, root, path);
  1643. }
  1644. return ret;
  1645. }
  1646. static int btrfs_issue_discard(struct block_device *bdev,
  1647. u64 start, u64 len)
  1648. {
  1649. return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
  1650. }
  1651. static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
  1652. u64 num_bytes, u64 *actual_bytes)
  1653. {
  1654. int ret;
  1655. u64 discarded_bytes = 0;
  1656. struct btrfs_bio *bbio = NULL;
  1657. /* Tell the block device(s) that the sectors can be discarded */
  1658. ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
  1659. bytenr, &num_bytes, &bbio, 0);
  1660. if (!ret) {
  1661. struct btrfs_bio_stripe *stripe = bbio->stripes;
  1662. int i;
  1663. for (i = 0; i < bbio->num_stripes; i++, stripe++) {
  1664. if (!stripe->dev->can_discard)
  1665. continue;
  1666. ret = btrfs_issue_discard(stripe->dev->bdev,
  1667. stripe->physical,
  1668. stripe->length);
  1669. if (!ret)
  1670. discarded_bytes += stripe->length;
  1671. else if (ret != -EOPNOTSUPP)
  1672. break;
  1673. /*
  1674. * Just in case we get back EOPNOTSUPP for some reason,
  1675. * just ignore the return value so we don't screw up
  1676. * people calling discard_extent.
  1677. */
  1678. ret = 0;
  1679. }
  1680. kfree(bbio);
  1681. }
  1682. if (actual_bytes)
  1683. *actual_bytes = discarded_bytes;
  1684. return ret;
  1685. }
  1686. int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1687. struct btrfs_root *root,
  1688. u64 bytenr, u64 num_bytes, u64 parent,
  1689. u64 root_objectid, u64 owner, u64 offset)
  1690. {
  1691. int ret;
  1692. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
  1693. root_objectid == BTRFS_TREE_LOG_OBJECTID);
  1694. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1695. ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
  1696. parent, root_objectid, (int)owner,
  1697. BTRFS_ADD_DELAYED_REF, NULL);
  1698. } else {
  1699. ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
  1700. parent, root_objectid, owner, offset,
  1701. BTRFS_ADD_DELAYED_REF, NULL);
  1702. }
  1703. return ret;
  1704. }
  1705. static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1706. struct btrfs_root *root,
  1707. u64 bytenr, u64 num_bytes,
  1708. u64 parent, u64 root_objectid,
  1709. u64 owner, u64 offset, int refs_to_add,
  1710. struct btrfs_delayed_extent_op *extent_op)
  1711. {
  1712. struct btrfs_path *path;
  1713. struct extent_buffer *leaf;
  1714. struct btrfs_extent_item *item;
  1715. u64 refs;
  1716. int ret;
  1717. int err = 0;
  1718. path = btrfs_alloc_path();
  1719. if (!path)
  1720. return -ENOMEM;
  1721. path->reada = 1;
  1722. path->leave_spinning = 1;
  1723. /* this will setup the path even if it fails to insert the back ref */
  1724. ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
  1725. path, bytenr, num_bytes, parent,
  1726. root_objectid, owner, offset,
  1727. refs_to_add, extent_op);
  1728. if (ret == 0)
  1729. goto out;
  1730. if (ret != -EAGAIN) {
  1731. err = ret;
  1732. goto out;
  1733. }
  1734. leaf = path->nodes[0];
  1735. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1736. refs = btrfs_extent_refs(leaf, item);
  1737. btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
  1738. if (extent_op)
  1739. __run_delayed_extent_op(extent_op, leaf, item);
  1740. btrfs_mark_buffer_dirty(leaf);
  1741. btrfs_release_path(path);
  1742. path->reada = 1;
  1743. path->leave_spinning = 1;
  1744. /* now insert the actual backref */
  1745. ret = insert_extent_backref(trans, root->fs_info->extent_root,
  1746. path, bytenr, parent, root_objectid,
  1747. owner, offset, refs_to_add);
  1748. BUG_ON(ret);
  1749. out:
  1750. btrfs_free_path(path);
  1751. return err;
  1752. }
  1753. static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
  1754. struct btrfs_root *root,
  1755. struct btrfs_delayed_ref_node *node,
  1756. struct btrfs_delayed_extent_op *extent_op,
  1757. int insert_reserved)
  1758. {
  1759. int ret = 0;
  1760. struct btrfs_delayed_data_ref *ref;
  1761. struct btrfs_key ins;
  1762. u64 parent = 0;
  1763. u64 ref_root = 0;
  1764. u64 flags = 0;
  1765. ins.objectid = node->bytenr;
  1766. ins.offset = node->num_bytes;
  1767. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1768. ref = btrfs_delayed_node_to_data_ref(node);
  1769. if (node->type == BTRFS_SHARED_DATA_REF_KEY)
  1770. parent = ref->parent;
  1771. else
  1772. ref_root = ref->root;
  1773. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1774. if (extent_op) {
  1775. BUG_ON(extent_op->update_key);
  1776. flags |= extent_op->flags_to_set;
  1777. }
  1778. ret = alloc_reserved_file_extent(trans, root,
  1779. parent, ref_root, flags,
  1780. ref->objectid, ref->offset,
  1781. &ins, node->ref_mod);
  1782. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1783. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1784. node->num_bytes, parent,
  1785. ref_root, ref->objectid,
  1786. ref->offset, node->ref_mod,
  1787. extent_op);
  1788. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1789. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1790. node->num_bytes, parent,
  1791. ref_root, ref->objectid,
  1792. ref->offset, node->ref_mod,
  1793. extent_op);
  1794. } else {
  1795. BUG();
  1796. }
  1797. return ret;
  1798. }
  1799. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  1800. struct extent_buffer *leaf,
  1801. struct btrfs_extent_item *ei)
  1802. {
  1803. u64 flags = btrfs_extent_flags(leaf, ei);
  1804. if (extent_op->update_flags) {
  1805. flags |= extent_op->flags_to_set;
  1806. btrfs_set_extent_flags(leaf, ei, flags);
  1807. }
  1808. if (extent_op->update_key) {
  1809. struct btrfs_tree_block_info *bi;
  1810. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  1811. bi = (struct btrfs_tree_block_info *)(ei + 1);
  1812. btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
  1813. }
  1814. }
  1815. static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
  1816. struct btrfs_root *root,
  1817. struct btrfs_delayed_ref_node *node,
  1818. struct btrfs_delayed_extent_op *extent_op)
  1819. {
  1820. struct btrfs_key key;
  1821. struct btrfs_path *path;
  1822. struct btrfs_extent_item *ei;
  1823. struct extent_buffer *leaf;
  1824. u32 item_size;
  1825. int ret;
  1826. int err = 0;
  1827. path = btrfs_alloc_path();
  1828. if (!path)
  1829. return -ENOMEM;
  1830. key.objectid = node->bytenr;
  1831. key.type = BTRFS_EXTENT_ITEM_KEY;
  1832. key.offset = node->num_bytes;
  1833. path->reada = 1;
  1834. path->leave_spinning = 1;
  1835. ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
  1836. path, 0, 1);
  1837. if (ret < 0) {
  1838. err = ret;
  1839. goto out;
  1840. }
  1841. if (ret > 0) {
  1842. err = -EIO;
  1843. goto out;
  1844. }
  1845. leaf = path->nodes[0];
  1846. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1847. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1848. if (item_size < sizeof(*ei)) {
  1849. ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
  1850. path, (u64)-1, 0);
  1851. if (ret < 0) {
  1852. err = ret;
  1853. goto out;
  1854. }
  1855. leaf = path->nodes[0];
  1856. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1857. }
  1858. #endif
  1859. BUG_ON(item_size < sizeof(*ei));
  1860. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1861. __run_delayed_extent_op(extent_op, leaf, ei);
  1862. btrfs_mark_buffer_dirty(leaf);
  1863. out:
  1864. btrfs_free_path(path);
  1865. return err;
  1866. }
  1867. static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
  1868. struct btrfs_root *root,
  1869. struct btrfs_delayed_ref_node *node,
  1870. struct btrfs_delayed_extent_op *extent_op,
  1871. int insert_reserved)
  1872. {
  1873. int ret = 0;
  1874. struct btrfs_delayed_tree_ref *ref;
  1875. struct btrfs_key ins;
  1876. u64 parent = 0;
  1877. u64 ref_root = 0;
  1878. ins.objectid = node->bytenr;
  1879. ins.offset = node->num_bytes;
  1880. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1881. ref = btrfs_delayed_node_to_tree_ref(node);
  1882. if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1883. parent = ref->parent;
  1884. else
  1885. ref_root = ref->root;
  1886. BUG_ON(node->ref_mod != 1);
  1887. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1888. BUG_ON(!extent_op || !extent_op->update_flags ||
  1889. !extent_op->update_key);
  1890. ret = alloc_reserved_tree_block(trans, root,
  1891. parent, ref_root,
  1892. extent_op->flags_to_set,
  1893. &extent_op->key,
  1894. ref->level, &ins);
  1895. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1896. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1897. node->num_bytes, parent, ref_root,
  1898. ref->level, 0, 1, extent_op);
  1899. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1900. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1901. node->num_bytes, parent, ref_root,
  1902. ref->level, 0, 1, extent_op);
  1903. } else {
  1904. BUG();
  1905. }
  1906. return ret;
  1907. }
  1908. /* helper function to actually process a single delayed ref entry */
  1909. static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
  1910. struct btrfs_root *root,
  1911. struct btrfs_delayed_ref_node *node,
  1912. struct btrfs_delayed_extent_op *extent_op,
  1913. int insert_reserved)
  1914. {
  1915. int ret;
  1916. if (btrfs_delayed_ref_is_head(node)) {
  1917. struct btrfs_delayed_ref_head *head;
  1918. /*
  1919. * we've hit the end of the chain and we were supposed
  1920. * to insert this extent into the tree. But, it got
  1921. * deleted before we ever needed to insert it, so all
  1922. * we have to do is clean up the accounting
  1923. */
  1924. BUG_ON(extent_op);
  1925. head = btrfs_delayed_node_to_head(node);
  1926. if (insert_reserved) {
  1927. btrfs_pin_extent(root, node->bytenr,
  1928. node->num_bytes, 1);
  1929. if (head->is_data) {
  1930. ret = btrfs_del_csums(trans, root,
  1931. node->bytenr,
  1932. node->num_bytes);
  1933. BUG_ON(ret);
  1934. }
  1935. }
  1936. mutex_unlock(&head->mutex);
  1937. return 0;
  1938. }
  1939. if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
  1940. node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1941. ret = run_delayed_tree_ref(trans, root, node, extent_op,
  1942. insert_reserved);
  1943. else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
  1944. node->type == BTRFS_SHARED_DATA_REF_KEY)
  1945. ret = run_delayed_data_ref(trans, root, node, extent_op,
  1946. insert_reserved);
  1947. else
  1948. BUG();
  1949. return ret;
  1950. }
  1951. static noinline struct btrfs_delayed_ref_node *
  1952. select_delayed_ref(struct btrfs_delayed_ref_head *head)
  1953. {
  1954. struct rb_node *node;
  1955. struct btrfs_delayed_ref_node *ref;
  1956. int action = BTRFS_ADD_DELAYED_REF;
  1957. again:
  1958. /*
  1959. * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
  1960. * this prevents ref count from going down to zero when
  1961. * there still are pending delayed ref.
  1962. */
  1963. node = rb_prev(&head->node.rb_node);
  1964. while (1) {
  1965. if (!node)
  1966. break;
  1967. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  1968. rb_node);
  1969. if (ref->bytenr != head->node.bytenr)
  1970. break;
  1971. if (ref->action == action)
  1972. return ref;
  1973. node = rb_prev(node);
  1974. }
  1975. if (action == BTRFS_ADD_DELAYED_REF) {
  1976. action = BTRFS_DROP_DELAYED_REF;
  1977. goto again;
  1978. }
  1979. return NULL;
  1980. }
  1981. static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
  1982. struct btrfs_root *root,
  1983. struct list_head *cluster)
  1984. {
  1985. struct btrfs_delayed_ref_root *delayed_refs;
  1986. struct btrfs_delayed_ref_node *ref;
  1987. struct btrfs_delayed_ref_head *locked_ref = NULL;
  1988. struct btrfs_delayed_extent_op *extent_op;
  1989. int ret;
  1990. int count = 0;
  1991. int must_insert_reserved = 0;
  1992. delayed_refs = &trans->transaction->delayed_refs;
  1993. while (1) {
  1994. if (!locked_ref) {
  1995. /* pick a new head ref from the cluster list */
  1996. if (list_empty(cluster))
  1997. break;
  1998. locked_ref = list_entry(cluster->next,
  1999. struct btrfs_delayed_ref_head, cluster);
  2000. /* grab the lock that says we are going to process
  2001. * all the refs for this head */
  2002. ret = btrfs_delayed_ref_lock(trans, locked_ref);
  2003. /*
  2004. * we may have dropped the spin lock to get the head
  2005. * mutex lock, and that might have given someone else
  2006. * time to free the head. If that's true, it has been
  2007. * removed from our list and we can move on.
  2008. */
  2009. if (ret == -EAGAIN) {
  2010. locked_ref = NULL;
  2011. count++;
  2012. continue;
  2013. }
  2014. }
  2015. /*
  2016. * record the must insert reserved flag before we
  2017. * drop the spin lock.
  2018. */
  2019. must_insert_reserved = locked_ref->must_insert_reserved;
  2020. locked_ref->must_insert_reserved = 0;
  2021. extent_op = locked_ref->extent_op;
  2022. locked_ref->extent_op = NULL;
  2023. /*
  2024. * locked_ref is the head node, so we have to go one
  2025. * node back for any delayed ref updates
  2026. */
  2027. ref = select_delayed_ref(locked_ref);
  2028. if (!ref) {
  2029. /* All delayed refs have been processed, Go ahead
  2030. * and send the head node to run_one_delayed_ref,
  2031. * so that any accounting fixes can happen
  2032. */
  2033. ref = &locked_ref->node;
  2034. if (extent_op && must_insert_reserved) {
  2035. kfree(extent_op);
  2036. extent_op = NULL;
  2037. }
  2038. if (extent_op) {
  2039. spin_unlock(&delayed_refs->lock);
  2040. ret = run_delayed_extent_op(trans, root,
  2041. ref, extent_op);
  2042. BUG_ON(ret);
  2043. kfree(extent_op);
  2044. cond_resched();
  2045. spin_lock(&delayed_refs->lock);
  2046. continue;
  2047. }
  2048. list_del_init(&locked_ref->cluster);
  2049. locked_ref = NULL;
  2050. }
  2051. ref->in_tree = 0;
  2052. rb_erase(&ref->rb_node, &delayed_refs->root);
  2053. delayed_refs->num_entries--;
  2054. spin_unlock(&delayed_refs->lock);
  2055. ret = run_one_delayed_ref(trans, root, ref, extent_op,
  2056. must_insert_reserved);
  2057. BUG_ON(ret);
  2058. btrfs_put_delayed_ref(ref);
  2059. kfree(extent_op);
  2060. count++;
  2061. cond_resched();
  2062. spin_lock(&delayed_refs->lock);
  2063. }
  2064. return count;
  2065. }
  2066. /*
  2067. * this starts processing the delayed reference count updates and
  2068. * extent insertions we have queued up so far. count can be
  2069. * 0, which means to process everything in the tree at the start
  2070. * of the run (but not newly added entries), or it can be some target
  2071. * number you'd like to process.
  2072. */
  2073. int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  2074. struct btrfs_root *root, unsigned long count)
  2075. {
  2076. struct rb_node *node;
  2077. struct btrfs_delayed_ref_root *delayed_refs;
  2078. struct btrfs_delayed_ref_node *ref;
  2079. struct list_head cluster;
  2080. int ret;
  2081. int run_all = count == (unsigned long)-1;
  2082. int run_most = 0;
  2083. if (root == root->fs_info->extent_root)
  2084. root = root->fs_info->tree_root;
  2085. delayed_refs = &trans->transaction->delayed_refs;
  2086. INIT_LIST_HEAD(&cluster);
  2087. again:
  2088. spin_lock(&delayed_refs->lock);
  2089. if (count == 0) {
  2090. count = delayed_refs->num_entries * 2;
  2091. run_most = 1;
  2092. }
  2093. while (1) {
  2094. if (!(run_all || run_most) &&
  2095. delayed_refs->num_heads_ready < 64)
  2096. break;
  2097. /*
  2098. * go find something we can process in the rbtree. We start at
  2099. * the beginning of the tree, and then build a cluster
  2100. * of refs to process starting at the first one we are able to
  2101. * lock
  2102. */
  2103. ret = btrfs_find_ref_cluster(trans, &cluster,
  2104. delayed_refs->run_delayed_start);
  2105. if (ret)
  2106. break;
  2107. ret = run_clustered_refs(trans, root, &cluster);
  2108. BUG_ON(ret < 0);
  2109. count -= min_t(unsigned long, ret, count);
  2110. if (count == 0)
  2111. break;
  2112. }
  2113. if (run_all) {
  2114. node = rb_first(&delayed_refs->root);
  2115. if (!node)
  2116. goto out;
  2117. count = (unsigned long)-1;
  2118. while (node) {
  2119. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  2120. rb_node);
  2121. if (btrfs_delayed_ref_is_head(ref)) {
  2122. struct btrfs_delayed_ref_head *head;
  2123. head = btrfs_delayed_node_to_head(ref);
  2124. atomic_inc(&ref->refs);
  2125. spin_unlock(&delayed_refs->lock);
  2126. /*
  2127. * Mutex was contended, block until it's
  2128. * released and try again
  2129. */
  2130. mutex_lock(&head->mutex);
  2131. mutex_unlock(&head->mutex);
  2132. btrfs_put_delayed_ref(ref);
  2133. cond_resched();
  2134. goto again;
  2135. }
  2136. node = rb_next(node);
  2137. }
  2138. spin_unlock(&delayed_refs->lock);
  2139. schedule_timeout(1);
  2140. goto again;
  2141. }
  2142. out:
  2143. spin_unlock(&delayed_refs->lock);
  2144. return 0;
  2145. }
  2146. int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
  2147. struct btrfs_root *root,
  2148. u64 bytenr, u64 num_bytes, u64 flags,
  2149. int is_data)
  2150. {
  2151. struct btrfs_delayed_extent_op *extent_op;
  2152. int ret;
  2153. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  2154. if (!extent_op)
  2155. return -ENOMEM;
  2156. extent_op->flags_to_set = flags;
  2157. extent_op->update_flags = 1;
  2158. extent_op->update_key = 0;
  2159. extent_op->is_data = is_data ? 1 : 0;
  2160. ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
  2161. if (ret)
  2162. kfree(extent_op);
  2163. return ret;
  2164. }
  2165. static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
  2166. struct btrfs_root *root,
  2167. struct btrfs_path *path,
  2168. u64 objectid, u64 offset, u64 bytenr)
  2169. {
  2170. struct btrfs_delayed_ref_head *head;
  2171. struct btrfs_delayed_ref_node *ref;
  2172. struct btrfs_delayed_data_ref *data_ref;
  2173. struct btrfs_delayed_ref_root *delayed_refs;
  2174. struct rb_node *node;
  2175. int ret = 0;
  2176. ret = -ENOENT;
  2177. delayed_refs = &trans->transaction->delayed_refs;
  2178. spin_lock(&delayed_refs->lock);
  2179. head = btrfs_find_delayed_ref_head(trans, bytenr);
  2180. if (!head)
  2181. goto out;
  2182. if (!mutex_trylock(&head->mutex)) {
  2183. atomic_inc(&head->node.refs);
  2184. spin_unlock(&delayed_refs->lock);
  2185. btrfs_release_path(path);
  2186. /*
  2187. * Mutex was contended, block until it's released and let
  2188. * caller try again
  2189. */
  2190. mutex_lock(&head->mutex);
  2191. mutex_unlock(&head->mutex);
  2192. btrfs_put_delayed_ref(&head->node);
  2193. return -EAGAIN;
  2194. }
  2195. node = rb_prev(&head->node.rb_node);
  2196. if (!node)
  2197. goto out_unlock;
  2198. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2199. if (ref->bytenr != bytenr)
  2200. goto out_unlock;
  2201. ret = 1;
  2202. if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
  2203. goto out_unlock;
  2204. data_ref = btrfs_delayed_node_to_data_ref(ref);
  2205. node = rb_prev(node);
  2206. if (node) {
  2207. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2208. if (ref->bytenr == bytenr)
  2209. goto out_unlock;
  2210. }
  2211. if (data_ref->root != root->root_key.objectid ||
  2212. data_ref->objectid != objectid || data_ref->offset != offset)
  2213. goto out_unlock;
  2214. ret = 0;
  2215. out_unlock:
  2216. mutex_unlock(&head->mutex);
  2217. out:
  2218. spin_unlock(&delayed_refs->lock);
  2219. return ret;
  2220. }
  2221. static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
  2222. struct btrfs_root *root,
  2223. struct btrfs_path *path,
  2224. u64 objectid, u64 offset, u64 bytenr)
  2225. {
  2226. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2227. struct extent_buffer *leaf;
  2228. struct btrfs_extent_data_ref *ref;
  2229. struct btrfs_extent_inline_ref *iref;
  2230. struct btrfs_extent_item *ei;
  2231. struct btrfs_key key;
  2232. u32 item_size;
  2233. int ret;
  2234. key.objectid = bytenr;
  2235. key.offset = (u64)-1;
  2236. key.type = BTRFS_EXTENT_ITEM_KEY;
  2237. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  2238. if (ret < 0)
  2239. goto out;
  2240. BUG_ON(ret == 0);
  2241. ret = -ENOENT;
  2242. if (path->slots[0] == 0)
  2243. goto out;
  2244. path->slots[0]--;
  2245. leaf = path->nodes[0];
  2246. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2247. if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
  2248. goto out;
  2249. ret = 1;
  2250. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2251. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2252. if (item_size < sizeof(*ei)) {
  2253. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2254. goto out;
  2255. }
  2256. #endif
  2257. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  2258. if (item_size != sizeof(*ei) +
  2259. btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
  2260. goto out;
  2261. if (btrfs_extent_generation(leaf, ei) <=
  2262. btrfs_root_last_snapshot(&root->root_item))
  2263. goto out;
  2264. iref = (struct btrfs_extent_inline_ref *)(ei + 1);
  2265. if (btrfs_extent_inline_ref_type(leaf, iref) !=
  2266. BTRFS_EXTENT_DATA_REF_KEY)
  2267. goto out;
  2268. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2269. if (btrfs_extent_refs(leaf, ei) !=
  2270. btrfs_extent_data_ref_count(leaf, ref) ||
  2271. btrfs_extent_data_ref_root(leaf, ref) !=
  2272. root->root_key.objectid ||
  2273. btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
  2274. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  2275. goto out;
  2276. ret = 0;
  2277. out:
  2278. return ret;
  2279. }
  2280. int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
  2281. struct btrfs_root *root,
  2282. u64 objectid, u64 offset, u64 bytenr)
  2283. {
  2284. struct btrfs_path *path;
  2285. int ret;
  2286. int ret2;
  2287. path = btrfs_alloc_path();
  2288. if (!path)
  2289. return -ENOENT;
  2290. do {
  2291. ret = check_committed_ref(trans, root, path, objectid,
  2292. offset, bytenr);
  2293. if (ret && ret != -ENOENT)
  2294. goto out;
  2295. ret2 = check_delayed_ref(trans, root, path, objectid,
  2296. offset, bytenr);
  2297. } while (ret2 == -EAGAIN);
  2298. if (ret2 && ret2 != -ENOENT) {
  2299. ret = ret2;
  2300. goto out;
  2301. }
  2302. if (ret != -ENOENT || ret2 != -ENOENT)
  2303. ret = 0;
  2304. out:
  2305. btrfs_free_path(path);
  2306. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  2307. WARN_ON(ret > 0);
  2308. return ret;
  2309. }
  2310. static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
  2311. struct btrfs_root *root,
  2312. struct extent_buffer *buf,
  2313. int full_backref, int inc)
  2314. {
  2315. u64 bytenr;
  2316. u64 num_bytes;
  2317. u64 parent;
  2318. u64 ref_root;
  2319. u32 nritems;
  2320. struct btrfs_key key;
  2321. struct btrfs_file_extent_item *fi;
  2322. int i;
  2323. int level;
  2324. int ret = 0;
  2325. int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
  2326. u64, u64, u64, u64, u64, u64);
  2327. ref_root = btrfs_header_owner(buf);
  2328. nritems = btrfs_header_nritems(buf);
  2329. level = btrfs_header_level(buf);
  2330. if (!root->ref_cows && level == 0)
  2331. return 0;
  2332. if (inc)
  2333. process_func = btrfs_inc_extent_ref;
  2334. else
  2335. process_func = btrfs_free_extent;
  2336. if (full_backref)
  2337. parent = buf->start;
  2338. else
  2339. parent = 0;
  2340. for (i = 0; i < nritems; i++) {
  2341. if (level == 0) {
  2342. btrfs_item_key_to_cpu(buf, &key, i);
  2343. if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
  2344. continue;
  2345. fi = btrfs_item_ptr(buf, i,
  2346. struct btrfs_file_extent_item);
  2347. if (btrfs_file_extent_type(buf, fi) ==
  2348. BTRFS_FILE_EXTENT_INLINE)
  2349. continue;
  2350. bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
  2351. if (bytenr == 0)
  2352. continue;
  2353. num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
  2354. key.offset -= btrfs_file_extent_offset(buf, fi);
  2355. ret = process_func(trans, root, bytenr, num_bytes,
  2356. parent, ref_root, key.objectid,
  2357. key.offset);
  2358. if (ret)
  2359. goto fail;
  2360. } else {
  2361. bytenr = btrfs_node_blockptr(buf, i);
  2362. num_bytes = btrfs_level_size(root, level - 1);
  2363. ret = process_func(trans, root, bytenr, num_bytes,
  2364. parent, ref_root, level - 1, 0);
  2365. if (ret)
  2366. goto fail;
  2367. }
  2368. }
  2369. return 0;
  2370. fail:
  2371. BUG();
  2372. return ret;
  2373. }
  2374. int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2375. struct extent_buffer *buf, int full_backref)
  2376. {
  2377. return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
  2378. }
  2379. int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2380. struct extent_buffer *buf, int full_backref)
  2381. {
  2382. return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
  2383. }
  2384. static int write_one_cache_group(struct btrfs_trans_handle *trans,
  2385. struct btrfs_root *root,
  2386. struct btrfs_path *path,
  2387. struct btrfs_block_group_cache *cache)
  2388. {
  2389. int ret;
  2390. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2391. unsigned long bi;
  2392. struct extent_buffer *leaf;
  2393. ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
  2394. if (ret < 0)
  2395. goto fail;
  2396. BUG_ON(ret);
  2397. leaf = path->nodes[0];
  2398. bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2399. write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
  2400. btrfs_mark_buffer_dirty(leaf);
  2401. btrfs_release_path(path);
  2402. fail:
  2403. if (ret)
  2404. return ret;
  2405. return 0;
  2406. }
  2407. static struct btrfs_block_group_cache *
  2408. next_block_group(struct btrfs_root *root,
  2409. struct btrfs_block_group_cache *cache)
  2410. {
  2411. struct rb_node *node;
  2412. spin_lock(&root->fs_info->block_group_cache_lock);
  2413. node = rb_next(&cache->cache_node);
  2414. btrfs_put_block_group(cache);
  2415. if (node) {
  2416. cache = rb_entry(node, struct btrfs_block_group_cache,
  2417. cache_node);
  2418. btrfs_get_block_group(cache);
  2419. } else
  2420. cache = NULL;
  2421. spin_unlock(&root->fs_info->block_group_cache_lock);
  2422. return cache;
  2423. }
  2424. static int cache_save_setup(struct btrfs_block_group_cache *block_group,
  2425. struct btrfs_trans_handle *trans,
  2426. struct btrfs_path *path)
  2427. {
  2428. struct btrfs_root *root = block_group->fs_info->tree_root;
  2429. struct inode *inode = NULL;
  2430. u64 alloc_hint = 0;
  2431. int dcs = BTRFS_DC_ERROR;
  2432. int num_pages = 0;
  2433. int retries = 0;
  2434. int ret = 0;
  2435. /*
  2436. * If this block group is smaller than 100 megs don't bother caching the
  2437. * block group.
  2438. */
  2439. if (block_group->key.offset < (100 * 1024 * 1024)) {
  2440. spin_lock(&block_group->lock);
  2441. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  2442. spin_unlock(&block_group->lock);
  2443. return 0;
  2444. }
  2445. again:
  2446. inode = lookup_free_space_inode(root, block_group, path);
  2447. if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
  2448. ret = PTR_ERR(inode);
  2449. btrfs_release_path(path);
  2450. goto out;
  2451. }
  2452. if (IS_ERR(inode)) {
  2453. BUG_ON(retries);
  2454. retries++;
  2455. if (block_group->ro)
  2456. goto out_free;
  2457. ret = create_free_space_inode(root, trans, block_group, path);
  2458. if (ret)
  2459. goto out_free;
  2460. goto again;
  2461. }
  2462. /* We've already setup this transaction, go ahead and exit */
  2463. if (block_group->cache_generation == trans->transid &&
  2464. i_size_read(inode)) {
  2465. dcs = BTRFS_DC_SETUP;
  2466. goto out_put;
  2467. }
  2468. /*
  2469. * We want to set the generation to 0, that way if anything goes wrong
  2470. * from here on out we know not to trust this cache when we load up next
  2471. * time.
  2472. */
  2473. BTRFS_I(inode)->generation = 0;
  2474. ret = btrfs_update_inode(trans, root, inode);
  2475. WARN_ON(ret);
  2476. if (i_size_read(inode) > 0) {
  2477. ret = btrfs_truncate_free_space_cache(root, trans, path,
  2478. inode);
  2479. if (ret)
  2480. goto out_put;
  2481. }
  2482. spin_lock(&block_group->lock);
  2483. if (block_group->cached != BTRFS_CACHE_FINISHED) {
  2484. /* We're not cached, don't bother trying to write stuff out */
  2485. dcs = BTRFS_DC_WRITTEN;
  2486. spin_unlock(&block_group->lock);
  2487. goto out_put;
  2488. }
  2489. spin_unlock(&block_group->lock);
  2490. num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
  2491. if (!num_pages)
  2492. num_pages = 1;
  2493. /*
  2494. * Just to make absolutely sure we have enough space, we're going to
  2495. * preallocate 12 pages worth of space for each block group. In
  2496. * practice we ought to use at most 8, but we need extra space so we can
  2497. * add our header and have a terminator between the extents and the
  2498. * bitmaps.
  2499. */
  2500. num_pages *= 16;
  2501. num_pages *= PAGE_CACHE_SIZE;
  2502. ret = btrfs_check_data_free_space(inode, num_pages);
  2503. if (ret)
  2504. goto out_put;
  2505. ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
  2506. num_pages, num_pages,
  2507. &alloc_hint);
  2508. if (!ret)
  2509. dcs = BTRFS_DC_SETUP;
  2510. btrfs_free_reserved_data_space(inode, num_pages);
  2511. out_put:
  2512. iput(inode);
  2513. out_free:
  2514. btrfs_release_path(path);
  2515. out:
  2516. spin_lock(&block_group->lock);
  2517. if (!ret && dcs == BTRFS_DC_SETUP)
  2518. block_group->cache_generation = trans->transid;
  2519. block_group->disk_cache_state = dcs;
  2520. spin_unlock(&block_group->lock);
  2521. return ret;
  2522. }
  2523. int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
  2524. struct btrfs_root *root)
  2525. {
  2526. struct btrfs_block_group_cache *cache;
  2527. int err = 0;
  2528. struct btrfs_path *path;
  2529. u64 last = 0;
  2530. path = btrfs_alloc_path();
  2531. if (!path)
  2532. return -ENOMEM;
  2533. again:
  2534. while (1) {
  2535. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2536. while (cache) {
  2537. if (cache->disk_cache_state == BTRFS_DC_CLEAR)
  2538. break;
  2539. cache = next_block_group(root, cache);
  2540. }
  2541. if (!cache) {
  2542. if (last == 0)
  2543. break;
  2544. last = 0;
  2545. continue;
  2546. }
  2547. err = cache_save_setup(cache, trans, path);
  2548. last = cache->key.objectid + cache->key.offset;
  2549. btrfs_put_block_group(cache);
  2550. }
  2551. while (1) {
  2552. if (last == 0) {
  2553. err = btrfs_run_delayed_refs(trans, root,
  2554. (unsigned long)-1);
  2555. BUG_ON(err);
  2556. }
  2557. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2558. while (cache) {
  2559. if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
  2560. btrfs_put_block_group(cache);
  2561. goto again;
  2562. }
  2563. if (cache->dirty)
  2564. break;
  2565. cache = next_block_group(root, cache);
  2566. }
  2567. if (!cache) {
  2568. if (last == 0)
  2569. break;
  2570. last = 0;
  2571. continue;
  2572. }
  2573. if (cache->disk_cache_state == BTRFS_DC_SETUP)
  2574. cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
  2575. cache->dirty = 0;
  2576. last = cache->key.objectid + cache->key.offset;
  2577. err = write_one_cache_group(trans, root, path, cache);
  2578. BUG_ON(err);
  2579. btrfs_put_block_group(cache);
  2580. }
  2581. while (1) {
  2582. /*
  2583. * I don't think this is needed since we're just marking our
  2584. * preallocated extent as written, but just in case it can't
  2585. * hurt.
  2586. */
  2587. if (last == 0) {
  2588. err = btrfs_run_delayed_refs(trans, root,
  2589. (unsigned long)-1);
  2590. BUG_ON(err);
  2591. }
  2592. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2593. while (cache) {
  2594. /*
  2595. * Really this shouldn't happen, but it could if we
  2596. * couldn't write the entire preallocated extent and
  2597. * splitting the extent resulted in a new block.
  2598. */
  2599. if (cache->dirty) {
  2600. btrfs_put_block_group(cache);
  2601. goto again;
  2602. }
  2603. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2604. break;
  2605. cache = next_block_group(root, cache);
  2606. }
  2607. if (!cache) {
  2608. if (last == 0)
  2609. break;
  2610. last = 0;
  2611. continue;
  2612. }
  2613. btrfs_write_out_cache(root, trans, cache, path);
  2614. /*
  2615. * If we didn't have an error then the cache state is still
  2616. * NEED_WRITE, so we can set it to WRITTEN.
  2617. */
  2618. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2619. cache->disk_cache_state = BTRFS_DC_WRITTEN;
  2620. last = cache->key.objectid + cache->key.offset;
  2621. btrfs_put_block_group(cache);
  2622. }
  2623. btrfs_free_path(path);
  2624. return 0;
  2625. }
  2626. int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
  2627. {
  2628. struct btrfs_block_group_cache *block_group;
  2629. int readonly = 0;
  2630. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  2631. if (!block_group || block_group->ro)
  2632. readonly = 1;
  2633. if (block_group)
  2634. btrfs_put_block_group(block_group);
  2635. return readonly;
  2636. }
  2637. static int update_space_info(struct btrfs_fs_info *info, u64 flags,
  2638. u64 total_bytes, u64 bytes_used,
  2639. struct btrfs_space_info **space_info)
  2640. {
  2641. struct btrfs_space_info *found;
  2642. int i;
  2643. int factor;
  2644. if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
  2645. BTRFS_BLOCK_GROUP_RAID10))
  2646. factor = 2;
  2647. else
  2648. factor = 1;
  2649. found = __find_space_info(info, flags);
  2650. if (found) {
  2651. spin_lock(&found->lock);
  2652. found->total_bytes += total_bytes;
  2653. found->disk_total += total_bytes * factor;
  2654. found->bytes_used += bytes_used;
  2655. found->disk_used += bytes_used * factor;
  2656. found->full = 0;
  2657. spin_unlock(&found->lock);
  2658. *space_info = found;
  2659. return 0;
  2660. }
  2661. found = kzalloc(sizeof(*found), GFP_NOFS);
  2662. if (!found)
  2663. return -ENOMEM;
  2664. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  2665. INIT_LIST_HEAD(&found->block_groups[i]);
  2666. init_rwsem(&found->groups_sem);
  2667. spin_lock_init(&found->lock);
  2668. found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
  2669. BTRFS_BLOCK_GROUP_SYSTEM |
  2670. BTRFS_BLOCK_GROUP_METADATA);
  2671. found->total_bytes = total_bytes;
  2672. found->disk_total = total_bytes * factor;
  2673. found->bytes_used = bytes_used;
  2674. found->disk_used = bytes_used * factor;
  2675. found->bytes_pinned = 0;
  2676. found->bytes_reserved = 0;
  2677. found->bytes_readonly = 0;
  2678. found->bytes_may_use = 0;
  2679. found->full = 0;
  2680. found->force_alloc = CHUNK_ALLOC_NO_FORCE;
  2681. found->chunk_alloc = 0;
  2682. found->flush = 0;
  2683. init_waitqueue_head(&found->wait);
  2684. *space_info = found;
  2685. list_add_rcu(&found->list, &info->space_info);
  2686. return 0;
  2687. }
  2688. static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  2689. {
  2690. u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
  2691. BTRFS_BLOCK_GROUP_RAID1 |
  2692. BTRFS_BLOCK_GROUP_RAID10 |
  2693. BTRFS_BLOCK_GROUP_DUP);
  2694. if (extra_flags) {
  2695. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2696. fs_info->avail_data_alloc_bits |= extra_flags;
  2697. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2698. fs_info->avail_metadata_alloc_bits |= extra_flags;
  2699. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2700. fs_info->avail_system_alloc_bits |= extra_flags;
  2701. }
  2702. }
  2703. u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
  2704. {
  2705. /*
  2706. * we add in the count of missing devices because we want
  2707. * to make sure that any RAID levels on a degraded FS
  2708. * continue to be honored.
  2709. */
  2710. u64 num_devices = root->fs_info->fs_devices->rw_devices +
  2711. root->fs_info->fs_devices->missing_devices;
  2712. if (num_devices == 1)
  2713. flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
  2714. if (num_devices < 4)
  2715. flags &= ~BTRFS_BLOCK_GROUP_RAID10;
  2716. if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
  2717. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2718. BTRFS_BLOCK_GROUP_RAID10))) {
  2719. flags &= ~BTRFS_BLOCK_GROUP_DUP;
  2720. }
  2721. if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
  2722. (flags & BTRFS_BLOCK_GROUP_RAID10)) {
  2723. flags &= ~BTRFS_BLOCK_GROUP_RAID1;
  2724. }
  2725. if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
  2726. ((flags & BTRFS_BLOCK_GROUP_RAID1) |
  2727. (flags & BTRFS_BLOCK_GROUP_RAID10) |
  2728. (flags & BTRFS_BLOCK_GROUP_DUP)))
  2729. flags &= ~BTRFS_BLOCK_GROUP_RAID0;
  2730. return flags;
  2731. }
  2732. static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
  2733. {
  2734. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2735. flags |= root->fs_info->avail_data_alloc_bits &
  2736. root->fs_info->data_alloc_profile;
  2737. else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2738. flags |= root->fs_info->avail_system_alloc_bits &
  2739. root->fs_info->system_alloc_profile;
  2740. else if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2741. flags |= root->fs_info->avail_metadata_alloc_bits &
  2742. root->fs_info->metadata_alloc_profile;
  2743. return btrfs_reduce_alloc_profile(root, flags);
  2744. }
  2745. u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
  2746. {
  2747. u64 flags;
  2748. if (data)
  2749. flags = BTRFS_BLOCK_GROUP_DATA;
  2750. else if (root == root->fs_info->chunk_root)
  2751. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  2752. else
  2753. flags = BTRFS_BLOCK_GROUP_METADATA;
  2754. return get_alloc_profile(root, flags);
  2755. }
  2756. void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
  2757. {
  2758. BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
  2759. BTRFS_BLOCK_GROUP_DATA);
  2760. }
  2761. /*
  2762. * This will check the space that the inode allocates from to make sure we have
  2763. * enough space for bytes.
  2764. */
  2765. int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
  2766. {
  2767. struct btrfs_space_info *data_sinfo;
  2768. struct btrfs_root *root = BTRFS_I(inode)->root;
  2769. u64 used;
  2770. int ret = 0, committed = 0, alloc_chunk = 1;
  2771. /* make sure bytes are sectorsize aligned */
  2772. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  2773. if (root == root->fs_info->tree_root ||
  2774. BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
  2775. alloc_chunk = 0;
  2776. committed = 1;
  2777. }
  2778. data_sinfo = BTRFS_I(inode)->space_info;
  2779. if (!data_sinfo)
  2780. goto alloc;
  2781. again:
  2782. /* make sure we have enough space to handle the data first */
  2783. spin_lock(&data_sinfo->lock);
  2784. used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
  2785. data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
  2786. data_sinfo->bytes_may_use;
  2787. if (used + bytes > data_sinfo->total_bytes) {
  2788. struct btrfs_trans_handle *trans;
  2789. /*
  2790. * if we don't have enough free bytes in this space then we need
  2791. * to alloc a new chunk.
  2792. */
  2793. if (!data_sinfo->full && alloc_chunk) {
  2794. u64 alloc_target;
  2795. data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
  2796. spin_unlock(&data_sinfo->lock);
  2797. alloc:
  2798. alloc_target = btrfs_get_alloc_profile(root, 1);
  2799. trans = btrfs_join_transaction(root);
  2800. if (IS_ERR(trans))
  2801. return PTR_ERR(trans);
  2802. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  2803. bytes + 2 * 1024 * 1024,
  2804. alloc_target,
  2805. CHUNK_ALLOC_NO_FORCE);
  2806. btrfs_end_transaction(trans, root);
  2807. if (ret < 0) {
  2808. if (ret != -ENOSPC)
  2809. return ret;
  2810. else
  2811. goto commit_trans;
  2812. }
  2813. if (!data_sinfo) {
  2814. btrfs_set_inode_space_info(root, inode);
  2815. data_sinfo = BTRFS_I(inode)->space_info;
  2816. }
  2817. goto again;
  2818. }
  2819. /*
  2820. * If we have less pinned bytes than we want to allocate then
  2821. * don't bother committing the transaction, it won't help us.
  2822. */
  2823. if (data_sinfo->bytes_pinned < bytes)
  2824. committed = 1;
  2825. spin_unlock(&data_sinfo->lock);
  2826. /* commit the current transaction and try again */
  2827. commit_trans:
  2828. if (!committed &&
  2829. !atomic_read(&root->fs_info->open_ioctl_trans)) {
  2830. committed = 1;
  2831. trans = btrfs_join_transaction(root);
  2832. if (IS_ERR(trans))
  2833. return PTR_ERR(trans);
  2834. ret = btrfs_commit_transaction(trans, root);
  2835. if (ret)
  2836. return ret;
  2837. goto again;
  2838. }
  2839. return -ENOSPC;
  2840. }
  2841. data_sinfo->bytes_may_use += bytes;
  2842. spin_unlock(&data_sinfo->lock);
  2843. return 0;
  2844. }
  2845. /*
  2846. * Called if we need to clear a data reservation for this inode.
  2847. */
  2848. void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
  2849. {
  2850. struct btrfs_root *root = BTRFS_I(inode)->root;
  2851. struct btrfs_space_info *data_sinfo;
  2852. /* make sure bytes are sectorsize aligned */
  2853. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  2854. data_sinfo = BTRFS_I(inode)->space_info;
  2855. spin_lock(&data_sinfo->lock);
  2856. data_sinfo->bytes_may_use -= bytes;
  2857. spin_unlock(&data_sinfo->lock);
  2858. }
  2859. static void force_metadata_allocation(struct btrfs_fs_info *info)
  2860. {
  2861. struct list_head *head = &info->space_info;
  2862. struct btrfs_space_info *found;
  2863. rcu_read_lock();
  2864. list_for_each_entry_rcu(found, head, list) {
  2865. if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
  2866. found->force_alloc = CHUNK_ALLOC_FORCE;
  2867. }
  2868. rcu_read_unlock();
  2869. }
  2870. static int should_alloc_chunk(struct btrfs_root *root,
  2871. struct btrfs_space_info *sinfo, u64 alloc_bytes,
  2872. int force)
  2873. {
  2874. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  2875. u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
  2876. u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
  2877. u64 thresh;
  2878. if (force == CHUNK_ALLOC_FORCE)
  2879. return 1;
  2880. /*
  2881. * We need to take into account the global rsv because for all intents
  2882. * and purposes it's used space. Don't worry about locking the
  2883. * global_rsv, it doesn't change except when the transaction commits.
  2884. */
  2885. num_allocated += global_rsv->size;
  2886. /*
  2887. * in limited mode, we want to have some free space up to
  2888. * about 1% of the FS size.
  2889. */
  2890. if (force == CHUNK_ALLOC_LIMITED) {
  2891. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  2892. thresh = max_t(u64, 64 * 1024 * 1024,
  2893. div_factor_fine(thresh, 1));
  2894. if (num_bytes - num_allocated < thresh)
  2895. return 1;
  2896. }
  2897. /*
  2898. * we have two similar checks here, one based on percentage
  2899. * and once based on a hard number of 256MB. The idea
  2900. * is that if we have a good amount of free
  2901. * room, don't allocate a chunk. A good mount is
  2902. * less than 80% utilized of the chunks we have allocated,
  2903. * or more than 256MB free
  2904. */
  2905. if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
  2906. return 0;
  2907. if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
  2908. return 0;
  2909. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  2910. /* 256MB or 5% of the FS */
  2911. thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
  2912. if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
  2913. return 0;
  2914. return 1;
  2915. }
  2916. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  2917. struct btrfs_root *extent_root, u64 alloc_bytes,
  2918. u64 flags, int force)
  2919. {
  2920. struct btrfs_space_info *space_info;
  2921. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  2922. int wait_for_alloc = 0;
  2923. int ret = 0;
  2924. flags = btrfs_reduce_alloc_profile(extent_root, flags);
  2925. space_info = __find_space_info(extent_root->fs_info, flags);
  2926. if (!space_info) {
  2927. ret = update_space_info(extent_root->fs_info, flags,
  2928. 0, 0, &space_info);
  2929. BUG_ON(ret);
  2930. }
  2931. BUG_ON(!space_info);
  2932. again:
  2933. spin_lock(&space_info->lock);
  2934. if (space_info->force_alloc)
  2935. force = space_info->force_alloc;
  2936. if (space_info->full) {
  2937. spin_unlock(&space_info->lock);
  2938. return 0;
  2939. }
  2940. if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
  2941. spin_unlock(&space_info->lock);
  2942. return 0;
  2943. } else if (space_info->chunk_alloc) {
  2944. wait_for_alloc = 1;
  2945. } else {
  2946. space_info->chunk_alloc = 1;
  2947. }
  2948. spin_unlock(&space_info->lock);
  2949. mutex_lock(&fs_info->chunk_mutex);
  2950. /*
  2951. * The chunk_mutex is held throughout the entirety of a chunk
  2952. * allocation, so once we've acquired the chunk_mutex we know that the
  2953. * other guy is done and we need to recheck and see if we should
  2954. * allocate.
  2955. */
  2956. if (wait_for_alloc) {
  2957. mutex_unlock(&fs_info->chunk_mutex);
  2958. wait_for_alloc = 0;
  2959. goto again;
  2960. }
  2961. /*
  2962. * If we have mixed data/metadata chunks we want to make sure we keep
  2963. * allocating mixed chunks instead of individual chunks.
  2964. */
  2965. if (btrfs_mixed_space_info(space_info))
  2966. flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
  2967. /*
  2968. * if we're doing a data chunk, go ahead and make sure that
  2969. * we keep a reasonable number of metadata chunks allocated in the
  2970. * FS as well.
  2971. */
  2972. if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
  2973. fs_info->data_chunk_allocations++;
  2974. if (!(fs_info->data_chunk_allocations %
  2975. fs_info->metadata_ratio))
  2976. force_metadata_allocation(fs_info);
  2977. }
  2978. ret = btrfs_alloc_chunk(trans, extent_root, flags);
  2979. if (ret < 0 && ret != -ENOSPC)
  2980. goto out;
  2981. spin_lock(&space_info->lock);
  2982. if (ret)
  2983. space_info->full = 1;
  2984. else
  2985. ret = 1;
  2986. space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  2987. space_info->chunk_alloc = 0;
  2988. spin_unlock(&space_info->lock);
  2989. out:
  2990. mutex_unlock(&extent_root->fs_info->chunk_mutex);
  2991. return ret;
  2992. }
  2993. /*
  2994. * shrink metadata reservation for delalloc
  2995. */
  2996. static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
  2997. bool wait_ordered)
  2998. {
  2999. struct btrfs_block_rsv *block_rsv;
  3000. struct btrfs_space_info *space_info;
  3001. struct btrfs_trans_handle *trans;
  3002. u64 reserved;
  3003. u64 max_reclaim;
  3004. u64 reclaimed = 0;
  3005. long time_left;
  3006. unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
  3007. int loops = 0;
  3008. unsigned long progress;
  3009. trans = (struct btrfs_trans_handle *)current->journal_info;
  3010. block_rsv = &root->fs_info->delalloc_block_rsv;
  3011. space_info = block_rsv->space_info;
  3012. smp_mb();
  3013. reserved = space_info->bytes_may_use;
  3014. progress = space_info->reservation_progress;
  3015. if (reserved == 0)
  3016. return 0;
  3017. smp_mb();
  3018. if (root->fs_info->delalloc_bytes == 0) {
  3019. if (trans)
  3020. return 0;
  3021. btrfs_wait_ordered_extents(root, 0, 0);
  3022. return 0;
  3023. }
  3024. max_reclaim = min(reserved, to_reclaim);
  3025. nr_pages = max_t(unsigned long, nr_pages,
  3026. max_reclaim >> PAGE_CACHE_SHIFT);
  3027. while (loops < 1024) {
  3028. /* have the flusher threads jump in and do some IO */
  3029. smp_mb();
  3030. nr_pages = min_t(unsigned long, nr_pages,
  3031. root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
  3032. writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
  3033. spin_lock(&space_info->lock);
  3034. if (reserved > space_info->bytes_may_use)
  3035. reclaimed += reserved - space_info->bytes_may_use;
  3036. reserved = space_info->bytes_may_use;
  3037. spin_unlock(&space_info->lock);
  3038. loops++;
  3039. if (reserved == 0 || reclaimed >= max_reclaim)
  3040. break;
  3041. if (trans && trans->transaction->blocked)
  3042. return -EAGAIN;
  3043. if (wait_ordered && !trans) {
  3044. btrfs_wait_ordered_extents(root, 0, 0);
  3045. } else {
  3046. time_left = schedule_timeout_interruptible(1);
  3047. /* We were interrupted, exit */
  3048. if (time_left)
  3049. break;
  3050. }
  3051. /* we've kicked the IO a few times, if anything has been freed,
  3052. * exit. There is no sense in looping here for a long time
  3053. * when we really need to commit the transaction, or there are
  3054. * just too many writers without enough free space
  3055. */
  3056. if (loops > 3) {
  3057. smp_mb();
  3058. if (progress != space_info->reservation_progress)
  3059. break;
  3060. }
  3061. }
  3062. return reclaimed >= to_reclaim;
  3063. }
  3064. /**
  3065. * maybe_commit_transaction - possibly commit the transaction if its ok to
  3066. * @root - the root we're allocating for
  3067. * @bytes - the number of bytes we want to reserve
  3068. * @force - force the commit
  3069. *
  3070. * This will check to make sure that committing the transaction will actually
  3071. * get us somewhere and then commit the transaction if it does. Otherwise it
  3072. * will return -ENOSPC.
  3073. */
  3074. static int may_commit_transaction(struct btrfs_root *root,
  3075. struct btrfs_space_info *space_info,
  3076. u64 bytes, int force)
  3077. {
  3078. struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
  3079. struct btrfs_trans_handle *trans;
  3080. trans = (struct btrfs_trans_handle *)current->journal_info;
  3081. if (trans)
  3082. return -EAGAIN;
  3083. if (force)
  3084. goto commit;
  3085. /* See if there is enough pinned space to make this reservation */
  3086. spin_lock(&space_info->lock);
  3087. if (space_info->bytes_pinned >= bytes) {
  3088. spin_unlock(&space_info->lock);
  3089. goto commit;
  3090. }
  3091. spin_unlock(&space_info->lock);
  3092. /*
  3093. * See if there is some space in the delayed insertion reservation for
  3094. * this reservation.
  3095. */
  3096. if (space_info != delayed_rsv->space_info)
  3097. return -ENOSPC;
  3098. spin_lock(&delayed_rsv->lock);
  3099. if (delayed_rsv->size < bytes) {
  3100. spin_unlock(&delayed_rsv->lock);
  3101. return -ENOSPC;
  3102. }
  3103. spin_unlock(&delayed_rsv->lock);
  3104. commit:
  3105. trans = btrfs_join_transaction(root);
  3106. if (IS_ERR(trans))
  3107. return -ENOSPC;
  3108. return btrfs_commit_transaction(trans, root);
  3109. }
  3110. /**
  3111. * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
  3112. * @root - the root we're allocating for
  3113. * @block_rsv - the block_rsv we're allocating for
  3114. * @orig_bytes - the number of bytes we want
  3115. * @flush - wether or not we can flush to make our reservation
  3116. *
  3117. * This will reserve orgi_bytes number of bytes from the space info associated
  3118. * with the block_rsv. If there is not enough space it will make an attempt to
  3119. * flush out space to make room. It will do this by flushing delalloc if
  3120. * possible or committing the transaction. If flush is 0 then no attempts to
  3121. * regain reservations will be made and this will fail if there is not enough
  3122. * space already.
  3123. */
  3124. static int reserve_metadata_bytes(struct btrfs_root *root,
  3125. struct btrfs_block_rsv *block_rsv,
  3126. u64 orig_bytes, int flush)
  3127. {
  3128. struct btrfs_space_info *space_info = block_rsv->space_info;
  3129. u64 used;
  3130. u64 num_bytes = orig_bytes;
  3131. int retries = 0;
  3132. int ret = 0;
  3133. bool committed = false;
  3134. bool flushing = false;
  3135. bool wait_ordered = false;
  3136. again:
  3137. ret = 0;
  3138. spin_lock(&space_info->lock);
  3139. /*
  3140. * We only want to wait if somebody other than us is flushing and we are
  3141. * actually alloed to flush.
  3142. */
  3143. while (flush && !flushing && space_info->flush) {
  3144. spin_unlock(&space_info->lock);
  3145. /*
  3146. * If we have a trans handle we can't wait because the flusher
  3147. * may have to commit the transaction, which would mean we would
  3148. * deadlock since we are waiting for the flusher to finish, but
  3149. * hold the current transaction open.
  3150. */
  3151. if (current->journal_info)
  3152. return -EAGAIN;
  3153. ret = wait_event_interruptible(space_info->wait,
  3154. !space_info->flush);
  3155. /* Must have been interrupted, return */
  3156. if (ret)
  3157. return -EINTR;
  3158. spin_lock(&space_info->lock);
  3159. }
  3160. ret = -ENOSPC;
  3161. used = space_info->bytes_used + space_info->bytes_reserved +
  3162. space_info->bytes_pinned + space_info->bytes_readonly +
  3163. space_info->bytes_may_use;
  3164. /*
  3165. * The idea here is that we've not already over-reserved the block group
  3166. * then we can go ahead and save our reservation first and then start
  3167. * flushing if we need to. Otherwise if we've already overcommitted
  3168. * lets start flushing stuff first and then come back and try to make
  3169. * our reservation.
  3170. */
  3171. if (used <= space_info->total_bytes) {
  3172. if (used + orig_bytes <= space_info->total_bytes) {
  3173. space_info->bytes_may_use += orig_bytes;
  3174. ret = 0;
  3175. } else {
  3176. /*
  3177. * Ok set num_bytes to orig_bytes since we aren't
  3178. * overocmmitted, this way we only try and reclaim what
  3179. * we need.
  3180. */
  3181. num_bytes = orig_bytes;
  3182. }
  3183. } else {
  3184. /*
  3185. * Ok we're over committed, set num_bytes to the overcommitted
  3186. * amount plus the amount of bytes that we need for this
  3187. * reservation.
  3188. */
  3189. wait_ordered = true;
  3190. num_bytes = used - space_info->total_bytes +
  3191. (orig_bytes * (retries + 1));
  3192. }
  3193. if (ret) {
  3194. u64 profile = btrfs_get_alloc_profile(root, 0);
  3195. u64 avail;
  3196. /*
  3197. * If we have a lot of space that's pinned, don't bother doing
  3198. * the overcommit dance yet and just commit the transaction.
  3199. */
  3200. avail = (space_info->total_bytes - space_info->bytes_used) * 8;
  3201. do_div(avail, 10);
  3202. if (space_info->bytes_pinned >= avail && flush && !committed) {
  3203. space_info->flush = 1;
  3204. flushing = true;
  3205. spin_unlock(&space_info->lock);
  3206. ret = may_commit_transaction(root, space_info,
  3207. orig_bytes, 1);
  3208. if (ret)
  3209. goto out;
  3210. committed = true;
  3211. goto again;
  3212. }
  3213. spin_lock(&root->fs_info->free_chunk_lock);
  3214. avail = root->fs_info->free_chunk_space;
  3215. /*
  3216. * If we have dup, raid1 or raid10 then only half of the free
  3217. * space is actually useable.
  3218. */
  3219. if (profile & (BTRFS_BLOCK_GROUP_DUP |
  3220. BTRFS_BLOCK_GROUP_RAID1 |
  3221. BTRFS_BLOCK_GROUP_RAID10))
  3222. avail >>= 1;
  3223. /*
  3224. * If we aren't flushing don't let us overcommit too much, say
  3225. * 1/8th of the space. If we can flush, let it overcommit up to
  3226. * 1/2 of the space.
  3227. */
  3228. if (flush)
  3229. avail >>= 3;
  3230. else
  3231. avail >>= 1;
  3232. spin_unlock(&root->fs_info->free_chunk_lock);
  3233. if (used + num_bytes < space_info->total_bytes + avail) {
  3234. space_info->bytes_may_use += orig_bytes;
  3235. ret = 0;
  3236. } else {
  3237. wait_ordered = true;
  3238. }
  3239. }
  3240. /*
  3241. * Couldn't make our reservation, save our place so while we're trying
  3242. * to reclaim space we can actually use it instead of somebody else
  3243. * stealing it from us.
  3244. */
  3245. if (ret && flush) {
  3246. flushing = true;
  3247. space_info->flush = 1;
  3248. }
  3249. spin_unlock(&space_info->lock);
  3250. if (!ret || !flush)
  3251. goto out;
  3252. /*
  3253. * We do synchronous shrinking since we don't actually unreserve
  3254. * metadata until after the IO is completed.
  3255. */
  3256. ret = shrink_delalloc(root, num_bytes, wait_ordered);
  3257. if (ret < 0)
  3258. goto out;
  3259. ret = 0;
  3260. /*
  3261. * So if we were overcommitted it's possible that somebody else flushed
  3262. * out enough space and we simply didn't have enough space to reclaim,
  3263. * so go back around and try again.
  3264. */
  3265. if (retries < 2) {
  3266. wait_ordered = true;
  3267. retries++;
  3268. goto again;
  3269. }
  3270. ret = -ENOSPC;
  3271. if (committed)
  3272. goto out;
  3273. ret = may_commit_transaction(root, space_info, orig_bytes, 0);
  3274. if (!ret) {
  3275. committed = true;
  3276. goto again;
  3277. }
  3278. out:
  3279. if (flushing) {
  3280. spin_lock(&space_info->lock);
  3281. space_info->flush = 0;
  3282. wake_up_all(&space_info->wait);
  3283. spin_unlock(&space_info->lock);
  3284. }
  3285. return ret;
  3286. }
  3287. static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
  3288. struct btrfs_root *root)
  3289. {
  3290. struct btrfs_block_rsv *block_rsv = NULL;
  3291. if (root->ref_cows || root == root->fs_info->csum_root)
  3292. block_rsv = trans->block_rsv;
  3293. if (!block_rsv)
  3294. block_rsv = root->block_rsv;
  3295. if (!block_rsv)
  3296. block_rsv = &root->fs_info->empty_block_rsv;
  3297. return block_rsv;
  3298. }
  3299. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  3300. u64 num_bytes)
  3301. {
  3302. int ret = -ENOSPC;
  3303. spin_lock(&block_rsv->lock);
  3304. if (block_rsv->reserved >= num_bytes) {
  3305. block_rsv->reserved -= num_bytes;
  3306. if (block_rsv->reserved < block_rsv->size)
  3307. block_rsv->full = 0;
  3308. ret = 0;
  3309. }
  3310. spin_unlock(&block_rsv->lock);
  3311. return ret;
  3312. }
  3313. static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
  3314. u64 num_bytes, int update_size)
  3315. {
  3316. spin_lock(&block_rsv->lock);
  3317. block_rsv->reserved += num_bytes;
  3318. if (update_size)
  3319. block_rsv->size += num_bytes;
  3320. else if (block_rsv->reserved >= block_rsv->size)
  3321. block_rsv->full = 1;
  3322. spin_unlock(&block_rsv->lock);
  3323. }
  3324. static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
  3325. struct btrfs_block_rsv *dest, u64 num_bytes)
  3326. {
  3327. struct btrfs_space_info *space_info = block_rsv->space_info;
  3328. spin_lock(&block_rsv->lock);
  3329. if (num_bytes == (u64)-1)
  3330. num_bytes = block_rsv->size;
  3331. block_rsv->size -= num_bytes;
  3332. if (block_rsv->reserved >= block_rsv->size) {
  3333. num_bytes = block_rsv->reserved - block_rsv->size;
  3334. block_rsv->reserved = block_rsv->size;
  3335. block_rsv->full = 1;
  3336. } else {
  3337. num_bytes = 0;
  3338. }
  3339. spin_unlock(&block_rsv->lock);
  3340. if (num_bytes > 0) {
  3341. if (dest) {
  3342. spin_lock(&dest->lock);
  3343. if (!dest->full) {
  3344. u64 bytes_to_add;
  3345. bytes_to_add = dest->size - dest->reserved;
  3346. bytes_to_add = min(num_bytes, bytes_to_add);
  3347. dest->reserved += bytes_to_add;
  3348. if (dest->reserved >= dest->size)
  3349. dest->full = 1;
  3350. num_bytes -= bytes_to_add;
  3351. }
  3352. spin_unlock(&dest->lock);
  3353. }
  3354. if (num_bytes) {
  3355. spin_lock(&space_info->lock);
  3356. space_info->bytes_may_use -= num_bytes;
  3357. space_info->reservation_progress++;
  3358. spin_unlock(&space_info->lock);
  3359. }
  3360. }
  3361. }
  3362. static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
  3363. struct btrfs_block_rsv *dst, u64 num_bytes)
  3364. {
  3365. int ret;
  3366. ret = block_rsv_use_bytes(src, num_bytes);
  3367. if (ret)
  3368. return ret;
  3369. block_rsv_add_bytes(dst, num_bytes, 1);
  3370. return 0;
  3371. }
  3372. void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
  3373. {
  3374. memset(rsv, 0, sizeof(*rsv));
  3375. spin_lock_init(&rsv->lock);
  3376. }
  3377. struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
  3378. {
  3379. struct btrfs_block_rsv *block_rsv;
  3380. struct btrfs_fs_info *fs_info = root->fs_info;
  3381. block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
  3382. if (!block_rsv)
  3383. return NULL;
  3384. btrfs_init_block_rsv(block_rsv);
  3385. block_rsv->space_info = __find_space_info(fs_info,
  3386. BTRFS_BLOCK_GROUP_METADATA);
  3387. return block_rsv;
  3388. }
  3389. void btrfs_free_block_rsv(struct btrfs_root *root,
  3390. struct btrfs_block_rsv *rsv)
  3391. {
  3392. btrfs_block_rsv_release(root, rsv, (u64)-1);
  3393. kfree(rsv);
  3394. }
  3395. static inline int __block_rsv_add(struct btrfs_root *root,
  3396. struct btrfs_block_rsv *block_rsv,
  3397. u64 num_bytes, int flush)
  3398. {
  3399. int ret;
  3400. if (num_bytes == 0)
  3401. return 0;
  3402. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3403. if (!ret) {
  3404. block_rsv_add_bytes(block_rsv, num_bytes, 1);
  3405. return 0;
  3406. }
  3407. return ret;
  3408. }
  3409. int btrfs_block_rsv_add(struct btrfs_root *root,
  3410. struct btrfs_block_rsv *block_rsv,
  3411. u64 num_bytes)
  3412. {
  3413. return __block_rsv_add(root, block_rsv, num_bytes, 1);
  3414. }
  3415. int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
  3416. struct btrfs_block_rsv *block_rsv,
  3417. u64 num_bytes)
  3418. {
  3419. return __block_rsv_add(root, block_rsv, num_bytes, 0);
  3420. }
  3421. int btrfs_block_rsv_check(struct btrfs_root *root,
  3422. struct btrfs_block_rsv *block_rsv, int min_factor)
  3423. {
  3424. u64 num_bytes = 0;
  3425. int ret = -ENOSPC;
  3426. if (!block_rsv)
  3427. return 0;
  3428. spin_lock(&block_rsv->lock);
  3429. num_bytes = div_factor(block_rsv->size, min_factor);
  3430. if (block_rsv->reserved >= num_bytes)
  3431. ret = 0;
  3432. spin_unlock(&block_rsv->lock);
  3433. return ret;
  3434. }
  3435. static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
  3436. struct btrfs_block_rsv *block_rsv,
  3437. u64 min_reserved, int flush)
  3438. {
  3439. u64 num_bytes = 0;
  3440. int ret = -ENOSPC;
  3441. if (!block_rsv)
  3442. return 0;
  3443. spin_lock(&block_rsv->lock);
  3444. num_bytes = min_reserved;
  3445. if (block_rsv->reserved >= num_bytes)
  3446. ret = 0;
  3447. else
  3448. num_bytes -= block_rsv->reserved;
  3449. spin_unlock(&block_rsv->lock);
  3450. if (!ret)
  3451. return 0;
  3452. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3453. if (!ret) {
  3454. block_rsv_add_bytes(block_rsv, num_bytes, 0);
  3455. return 0;
  3456. }
  3457. return ret;
  3458. }
  3459. int btrfs_block_rsv_refill(struct btrfs_root *root,
  3460. struct btrfs_block_rsv *block_rsv,
  3461. u64 min_reserved)
  3462. {
  3463. return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
  3464. }
  3465. int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
  3466. struct btrfs_block_rsv *block_rsv,
  3467. u64 min_reserved)
  3468. {
  3469. return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
  3470. }
  3471. int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
  3472. struct btrfs_block_rsv *dst_rsv,
  3473. u64 num_bytes)
  3474. {
  3475. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3476. }
  3477. void btrfs_block_rsv_release(struct btrfs_root *root,
  3478. struct btrfs_block_rsv *block_rsv,
  3479. u64 num_bytes)
  3480. {
  3481. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3482. if (global_rsv->full || global_rsv == block_rsv ||
  3483. block_rsv->space_info != global_rsv->space_info)
  3484. global_rsv = NULL;
  3485. block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
  3486. }
  3487. /*
  3488. * helper to calculate size of global block reservation.
  3489. * the desired value is sum of space used by extent tree,
  3490. * checksum tree and root tree
  3491. */
  3492. static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
  3493. {
  3494. struct btrfs_space_info *sinfo;
  3495. u64 num_bytes;
  3496. u64 meta_used;
  3497. u64 data_used;
  3498. int csum_size = btrfs_super_csum_size(fs_info->super_copy);
  3499. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
  3500. spin_lock(&sinfo->lock);
  3501. data_used = sinfo->bytes_used;
  3502. spin_unlock(&sinfo->lock);
  3503. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3504. spin_lock(&sinfo->lock);
  3505. if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
  3506. data_used = 0;
  3507. meta_used = sinfo->bytes_used;
  3508. spin_unlock(&sinfo->lock);
  3509. num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
  3510. csum_size * 2;
  3511. num_bytes += div64_u64(data_used + meta_used, 50);
  3512. if (num_bytes * 3 > meta_used)
  3513. num_bytes = div64_u64(meta_used, 3);
  3514. return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
  3515. }
  3516. static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
  3517. {
  3518. struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
  3519. struct btrfs_space_info *sinfo = block_rsv->space_info;
  3520. u64 num_bytes;
  3521. num_bytes = calc_global_metadata_size(fs_info);
  3522. spin_lock(&block_rsv->lock);
  3523. spin_lock(&sinfo->lock);
  3524. block_rsv->size = num_bytes;
  3525. num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
  3526. sinfo->bytes_reserved + sinfo->bytes_readonly +
  3527. sinfo->bytes_may_use;
  3528. if (sinfo->total_bytes > num_bytes) {
  3529. num_bytes = sinfo->total_bytes - num_bytes;
  3530. block_rsv->reserved += num_bytes;
  3531. sinfo->bytes_may_use += num_bytes;
  3532. }
  3533. if (block_rsv->reserved >= block_rsv->size) {
  3534. num_bytes = block_rsv->reserved - block_rsv->size;
  3535. sinfo->bytes_may_use -= num_bytes;
  3536. sinfo->reservation_progress++;
  3537. block_rsv->reserved = block_rsv->size;
  3538. block_rsv->full = 1;
  3539. }
  3540. spin_unlock(&sinfo->lock);
  3541. spin_unlock(&block_rsv->lock);
  3542. }
  3543. static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
  3544. {
  3545. struct btrfs_space_info *space_info;
  3546. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3547. fs_info->chunk_block_rsv.space_info = space_info;
  3548. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3549. fs_info->global_block_rsv.space_info = space_info;
  3550. fs_info->delalloc_block_rsv.space_info = space_info;
  3551. fs_info->trans_block_rsv.space_info = space_info;
  3552. fs_info->empty_block_rsv.space_info = space_info;
  3553. fs_info->delayed_block_rsv.space_info = space_info;
  3554. fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
  3555. fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
  3556. fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
  3557. fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
  3558. fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
  3559. update_global_block_rsv(fs_info);
  3560. }
  3561. static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
  3562. {
  3563. block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
  3564. WARN_ON(fs_info->delalloc_block_rsv.size > 0);
  3565. WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
  3566. WARN_ON(fs_info->trans_block_rsv.size > 0);
  3567. WARN_ON(fs_info->trans_block_rsv.reserved > 0);
  3568. WARN_ON(fs_info->chunk_block_rsv.size > 0);
  3569. WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
  3570. WARN_ON(fs_info->delayed_block_rsv.size > 0);
  3571. WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
  3572. }
  3573. void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
  3574. struct btrfs_root *root)
  3575. {
  3576. if (!trans->bytes_reserved)
  3577. return;
  3578. btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
  3579. trans->bytes_reserved = 0;
  3580. }
  3581. int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
  3582. struct inode *inode)
  3583. {
  3584. struct btrfs_root *root = BTRFS_I(inode)->root;
  3585. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3586. struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
  3587. /*
  3588. * We need to hold space in order to delete our orphan item once we've
  3589. * added it, so this takes the reservation so we can release it later
  3590. * when we are truly done with the orphan item.
  3591. */
  3592. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  3593. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3594. }
  3595. void btrfs_orphan_release_metadata(struct inode *inode)
  3596. {
  3597. struct btrfs_root *root = BTRFS_I(inode)->root;
  3598. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  3599. btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
  3600. }
  3601. int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
  3602. struct btrfs_pending_snapshot *pending)
  3603. {
  3604. struct btrfs_root *root = pending->root;
  3605. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3606. struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
  3607. /*
  3608. * two for root back/forward refs, two for directory entries
  3609. * and one for root of the snapshot.
  3610. */
  3611. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
  3612. dst_rsv->space_info = src_rsv->space_info;
  3613. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3614. }
  3615. /**
  3616. * drop_outstanding_extent - drop an outstanding extent
  3617. * @inode: the inode we're dropping the extent for
  3618. *
  3619. * This is called when we are freeing up an outstanding extent, either called
  3620. * after an error or after an extent is written. This will return the number of
  3621. * reserved extents that need to be freed. This must be called with
  3622. * BTRFS_I(inode)->lock held.
  3623. */
  3624. static unsigned drop_outstanding_extent(struct inode *inode)
  3625. {
  3626. unsigned drop_inode_space = 0;
  3627. unsigned dropped_extents = 0;
  3628. BUG_ON(!BTRFS_I(inode)->outstanding_extents);
  3629. BTRFS_I(inode)->outstanding_extents--;
  3630. if (BTRFS_I(inode)->outstanding_extents == 0 &&
  3631. BTRFS_I(inode)->delalloc_meta_reserved) {
  3632. drop_inode_space = 1;
  3633. BTRFS_I(inode)->delalloc_meta_reserved = 0;
  3634. }
  3635. /*
  3636. * If we have more or the same amount of outsanding extents than we have
  3637. * reserved then we need to leave the reserved extents count alone.
  3638. */
  3639. if (BTRFS_I(inode)->outstanding_extents >=
  3640. BTRFS_I(inode)->reserved_extents)
  3641. return drop_inode_space;
  3642. dropped_extents = BTRFS_I(inode)->reserved_extents -
  3643. BTRFS_I(inode)->outstanding_extents;
  3644. BTRFS_I(inode)->reserved_extents -= dropped_extents;
  3645. return dropped_extents + drop_inode_space;
  3646. }
  3647. /**
  3648. * calc_csum_metadata_size - return the amount of metada space that must be
  3649. * reserved/free'd for the given bytes.
  3650. * @inode: the inode we're manipulating
  3651. * @num_bytes: the number of bytes in question
  3652. * @reserve: 1 if we are reserving space, 0 if we are freeing space
  3653. *
  3654. * This adjusts the number of csum_bytes in the inode and then returns the
  3655. * correct amount of metadata that must either be reserved or freed. We
  3656. * calculate how many checksums we can fit into one leaf and then divide the
  3657. * number of bytes that will need to be checksumed by this value to figure out
  3658. * how many checksums will be required. If we are adding bytes then the number
  3659. * may go up and we will return the number of additional bytes that must be
  3660. * reserved. If it is going down we will return the number of bytes that must
  3661. * be freed.
  3662. *
  3663. * This must be called with BTRFS_I(inode)->lock held.
  3664. */
  3665. static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
  3666. int reserve)
  3667. {
  3668. struct btrfs_root *root = BTRFS_I(inode)->root;
  3669. u64 csum_size;
  3670. int num_csums_per_leaf;
  3671. int num_csums;
  3672. int old_csums;
  3673. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
  3674. BTRFS_I(inode)->csum_bytes == 0)
  3675. return 0;
  3676. old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  3677. if (reserve)
  3678. BTRFS_I(inode)->csum_bytes += num_bytes;
  3679. else
  3680. BTRFS_I(inode)->csum_bytes -= num_bytes;
  3681. csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
  3682. num_csums_per_leaf = (int)div64_u64(csum_size,
  3683. sizeof(struct btrfs_csum_item) +
  3684. sizeof(struct btrfs_disk_key));
  3685. num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  3686. num_csums = num_csums + num_csums_per_leaf - 1;
  3687. num_csums = num_csums / num_csums_per_leaf;
  3688. old_csums = old_csums + num_csums_per_leaf - 1;
  3689. old_csums = old_csums / num_csums_per_leaf;
  3690. /* No change, no need to reserve more */
  3691. if (old_csums == num_csums)
  3692. return 0;
  3693. if (reserve)
  3694. return btrfs_calc_trans_metadata_size(root,
  3695. num_csums - old_csums);
  3696. return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
  3697. }
  3698. int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
  3699. {
  3700. struct btrfs_root *root = BTRFS_I(inode)->root;
  3701. struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
  3702. u64 to_reserve = 0;
  3703. u64 csum_bytes;
  3704. unsigned nr_extents = 0;
  3705. int extra_reserve = 0;
  3706. int flush = 1;
  3707. int ret;
  3708. /* Need to be holding the i_mutex here if we aren't free space cache */
  3709. if (btrfs_is_free_space_inode(root, inode))
  3710. flush = 0;
  3711. else
  3712. WARN_ON(!mutex_is_locked(&inode->i_mutex));
  3713. if (flush && btrfs_transaction_in_commit(root->fs_info))
  3714. schedule_timeout(1);
  3715. num_bytes = ALIGN(num_bytes, root->sectorsize);
  3716. spin_lock(&BTRFS_I(inode)->lock);
  3717. BTRFS_I(inode)->outstanding_extents++;
  3718. if (BTRFS_I(inode)->outstanding_extents >
  3719. BTRFS_I(inode)->reserved_extents)
  3720. nr_extents = BTRFS_I(inode)->outstanding_extents -
  3721. BTRFS_I(inode)->reserved_extents;
  3722. /*
  3723. * Add an item to reserve for updating the inode when we complete the
  3724. * delalloc io.
  3725. */
  3726. if (!BTRFS_I(inode)->delalloc_meta_reserved) {
  3727. nr_extents++;
  3728. extra_reserve = 1;
  3729. }
  3730. to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
  3731. to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
  3732. csum_bytes = BTRFS_I(inode)->csum_bytes;
  3733. spin_unlock(&BTRFS_I(inode)->lock);
  3734. ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
  3735. if (ret) {
  3736. u64 to_free = 0;
  3737. unsigned dropped;
  3738. spin_lock(&BTRFS_I(inode)->lock);
  3739. dropped = drop_outstanding_extent(inode);
  3740. /*
  3741. * If the inodes csum_bytes is the same as the original
  3742. * csum_bytes then we know we haven't raced with any free()ers
  3743. * so we can just reduce our inodes csum bytes and carry on.
  3744. * Otherwise we have to do the normal free thing to account for
  3745. * the case that the free side didn't free up its reserve
  3746. * because of this outstanding reservation.
  3747. */
  3748. if (BTRFS_I(inode)->csum_bytes == csum_bytes)
  3749. calc_csum_metadata_size(inode, num_bytes, 0);
  3750. else
  3751. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  3752. spin_unlock(&BTRFS_I(inode)->lock);
  3753. if (dropped)
  3754. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  3755. if (to_free)
  3756. btrfs_block_rsv_release(root, block_rsv, to_free);
  3757. return ret;
  3758. }
  3759. spin_lock(&BTRFS_I(inode)->lock);
  3760. if (extra_reserve) {
  3761. BTRFS_I(inode)->delalloc_meta_reserved = 1;
  3762. nr_extents--;
  3763. }
  3764. BTRFS_I(inode)->reserved_extents += nr_extents;
  3765. spin_unlock(&BTRFS_I(inode)->lock);
  3766. block_rsv_add_bytes(block_rsv, to_reserve, 1);
  3767. return 0;
  3768. }
  3769. /**
  3770. * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
  3771. * @inode: the inode to release the reservation for
  3772. * @num_bytes: the number of bytes we're releasing
  3773. *
  3774. * This will release the metadata reservation for an inode. This can be called
  3775. * once we complete IO for a given set of bytes to release their metadata
  3776. * reservations.
  3777. */
  3778. void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
  3779. {
  3780. struct btrfs_root *root = BTRFS_I(inode)->root;
  3781. u64 to_free = 0;
  3782. unsigned dropped;
  3783. num_bytes = ALIGN(num_bytes, root->sectorsize);
  3784. spin_lock(&BTRFS_I(inode)->lock);
  3785. dropped = drop_outstanding_extent(inode);
  3786. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  3787. spin_unlock(&BTRFS_I(inode)->lock);
  3788. if (dropped > 0)
  3789. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  3790. btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
  3791. to_free);
  3792. }
  3793. /**
  3794. * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
  3795. * @inode: inode we're writing to
  3796. * @num_bytes: the number of bytes we want to allocate
  3797. *
  3798. * This will do the following things
  3799. *
  3800. * o reserve space in the data space info for num_bytes
  3801. * o reserve space in the metadata space info based on number of outstanding
  3802. * extents and how much csums will be needed
  3803. * o add to the inodes ->delalloc_bytes
  3804. * o add it to the fs_info's delalloc inodes list.
  3805. *
  3806. * This will return 0 for success and -ENOSPC if there is no space left.
  3807. */
  3808. int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
  3809. {
  3810. int ret;
  3811. ret = btrfs_check_data_free_space(inode, num_bytes);
  3812. if (ret)
  3813. return ret;
  3814. ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
  3815. if (ret) {
  3816. btrfs_free_reserved_data_space(inode, num_bytes);
  3817. return ret;
  3818. }
  3819. return 0;
  3820. }
  3821. /**
  3822. * btrfs_delalloc_release_space - release data and metadata space for delalloc
  3823. * @inode: inode we're releasing space for
  3824. * @num_bytes: the number of bytes we want to free up
  3825. *
  3826. * This must be matched with a call to btrfs_delalloc_reserve_space. This is
  3827. * called in the case that we don't need the metadata AND data reservations
  3828. * anymore. So if there is an error or we insert an inline extent.
  3829. *
  3830. * This function will release the metadata space that was not used and will
  3831. * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
  3832. * list if there are no delalloc bytes left.
  3833. */
  3834. void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
  3835. {
  3836. btrfs_delalloc_release_metadata(inode, num_bytes);
  3837. btrfs_free_reserved_data_space(inode, num_bytes);
  3838. }
  3839. static int update_block_group(struct btrfs_trans_handle *trans,
  3840. struct btrfs_root *root,
  3841. u64 bytenr, u64 num_bytes, int alloc)
  3842. {
  3843. struct btrfs_block_group_cache *cache = NULL;
  3844. struct btrfs_fs_info *info = root->fs_info;
  3845. u64 total = num_bytes;
  3846. u64 old_val;
  3847. u64 byte_in_group;
  3848. int factor;
  3849. /* block accounting for super block */
  3850. spin_lock(&info->delalloc_lock);
  3851. old_val = btrfs_super_bytes_used(info->super_copy);
  3852. if (alloc)
  3853. old_val += num_bytes;
  3854. else
  3855. old_val -= num_bytes;
  3856. btrfs_set_super_bytes_used(info->super_copy, old_val);
  3857. spin_unlock(&info->delalloc_lock);
  3858. while (total) {
  3859. cache = btrfs_lookup_block_group(info, bytenr);
  3860. if (!cache)
  3861. return -1;
  3862. if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
  3863. BTRFS_BLOCK_GROUP_RAID1 |
  3864. BTRFS_BLOCK_GROUP_RAID10))
  3865. factor = 2;
  3866. else
  3867. factor = 1;
  3868. /*
  3869. * If this block group has free space cache written out, we
  3870. * need to make sure to load it if we are removing space. This
  3871. * is because we need the unpinning stage to actually add the
  3872. * space back to the block group, otherwise we will leak space.
  3873. */
  3874. if (!alloc && cache->cached == BTRFS_CACHE_NO)
  3875. cache_block_group(cache, trans, NULL, 1);
  3876. byte_in_group = bytenr - cache->key.objectid;
  3877. WARN_ON(byte_in_group > cache->key.offset);
  3878. spin_lock(&cache->space_info->lock);
  3879. spin_lock(&cache->lock);
  3880. if (btrfs_test_opt(root, SPACE_CACHE) &&
  3881. cache->disk_cache_state < BTRFS_DC_CLEAR)
  3882. cache->disk_cache_state = BTRFS_DC_CLEAR;
  3883. cache->dirty = 1;
  3884. old_val = btrfs_block_group_used(&cache->item);
  3885. num_bytes = min(total, cache->key.offset - byte_in_group);
  3886. if (alloc) {
  3887. old_val += num_bytes;
  3888. btrfs_set_block_group_used(&cache->item, old_val);
  3889. cache->reserved -= num_bytes;
  3890. cache->space_info->bytes_reserved -= num_bytes;
  3891. cache->space_info->bytes_used += num_bytes;
  3892. cache->space_info->disk_used += num_bytes * factor;
  3893. spin_unlock(&cache->lock);
  3894. spin_unlock(&cache->space_info->lock);
  3895. } else {
  3896. old_val -= num_bytes;
  3897. btrfs_set_block_group_used(&cache->item, old_val);
  3898. cache->pinned += num_bytes;
  3899. cache->space_info->bytes_pinned += num_bytes;
  3900. cache->space_info->bytes_used -= num_bytes;
  3901. cache->space_info->disk_used -= num_bytes * factor;
  3902. spin_unlock(&cache->lock);
  3903. spin_unlock(&cache->space_info->lock);
  3904. set_extent_dirty(info->pinned_extents,
  3905. bytenr, bytenr + num_bytes - 1,
  3906. GFP_NOFS | __GFP_NOFAIL);
  3907. }
  3908. btrfs_put_block_group(cache);
  3909. total -= num_bytes;
  3910. bytenr += num_bytes;
  3911. }
  3912. return 0;
  3913. }
  3914. static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
  3915. {
  3916. struct btrfs_block_group_cache *cache;
  3917. u64 bytenr;
  3918. cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
  3919. if (!cache)
  3920. return 0;
  3921. bytenr = cache->key.objectid;
  3922. btrfs_put_block_group(cache);
  3923. return bytenr;
  3924. }
  3925. static int pin_down_extent(struct btrfs_root *root,
  3926. struct btrfs_block_group_cache *cache,
  3927. u64 bytenr, u64 num_bytes, int reserved)
  3928. {
  3929. spin_lock(&cache->space_info->lock);
  3930. spin_lock(&cache->lock);
  3931. cache->pinned += num_bytes;
  3932. cache->space_info->bytes_pinned += num_bytes;
  3933. if (reserved) {
  3934. cache->reserved -= num_bytes;
  3935. cache->space_info->bytes_reserved -= num_bytes;
  3936. }
  3937. spin_unlock(&cache->lock);
  3938. spin_unlock(&cache->space_info->lock);
  3939. set_extent_dirty(root->fs_info->pinned_extents, bytenr,
  3940. bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
  3941. return 0;
  3942. }
  3943. /*
  3944. * this function must be called within transaction
  3945. */
  3946. int btrfs_pin_extent(struct btrfs_root *root,
  3947. u64 bytenr, u64 num_bytes, int reserved)
  3948. {
  3949. struct btrfs_block_group_cache *cache;
  3950. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  3951. BUG_ON(!cache);
  3952. pin_down_extent(root, cache, bytenr, num_bytes, reserved);
  3953. btrfs_put_block_group(cache);
  3954. return 0;
  3955. }
  3956. /*
  3957. * this function must be called within transaction
  3958. */
  3959. int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
  3960. struct btrfs_root *root,
  3961. u64 bytenr, u64 num_bytes)
  3962. {
  3963. struct btrfs_block_group_cache *cache;
  3964. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  3965. BUG_ON(!cache);
  3966. /*
  3967. * pull in the free space cache (if any) so that our pin
  3968. * removes the free space from the cache. We have load_only set
  3969. * to one because the slow code to read in the free extents does check
  3970. * the pinned extents.
  3971. */
  3972. cache_block_group(cache, trans, root, 1);
  3973. pin_down_extent(root, cache, bytenr, num_bytes, 0);
  3974. /* remove us from the free space cache (if we're there at all) */
  3975. btrfs_remove_free_space(cache, bytenr, num_bytes);
  3976. btrfs_put_block_group(cache);
  3977. return 0;
  3978. }
  3979. /**
  3980. * btrfs_update_reserved_bytes - update the block_group and space info counters
  3981. * @cache: The cache we are manipulating
  3982. * @num_bytes: The number of bytes in question
  3983. * @reserve: One of the reservation enums
  3984. *
  3985. * This is called by the allocator when it reserves space, or by somebody who is
  3986. * freeing space that was never actually used on disk. For example if you
  3987. * reserve some space for a new leaf in transaction A and before transaction A
  3988. * commits you free that leaf, you call this with reserve set to 0 in order to
  3989. * clear the reservation.
  3990. *
  3991. * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
  3992. * ENOSPC accounting. For data we handle the reservation through clearing the
  3993. * delalloc bits in the io_tree. We have to do this since we could end up
  3994. * allocating less disk space for the amount of data we have reserved in the
  3995. * case of compression.
  3996. *
  3997. * If this is a reservation and the block group has become read only we cannot
  3998. * make the reservation and return -EAGAIN, otherwise this function always
  3999. * succeeds.
  4000. */
  4001. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  4002. u64 num_bytes, int reserve)
  4003. {
  4004. struct btrfs_space_info *space_info = cache->space_info;
  4005. int ret = 0;
  4006. spin_lock(&space_info->lock);
  4007. spin_lock(&cache->lock);
  4008. if (reserve != RESERVE_FREE) {
  4009. if (cache->ro) {
  4010. ret = -EAGAIN;
  4011. } else {
  4012. cache->reserved += num_bytes;
  4013. space_info->bytes_reserved += num_bytes;
  4014. if (reserve == RESERVE_ALLOC) {
  4015. BUG_ON(space_info->bytes_may_use < num_bytes);
  4016. space_info->bytes_may_use -= num_bytes;
  4017. }
  4018. }
  4019. } else {
  4020. if (cache->ro)
  4021. space_info->bytes_readonly += num_bytes;
  4022. cache->reserved -= num_bytes;
  4023. space_info->bytes_reserved -= num_bytes;
  4024. space_info->reservation_progress++;
  4025. }
  4026. spin_unlock(&cache->lock);
  4027. spin_unlock(&space_info->lock);
  4028. return ret;
  4029. }
  4030. int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
  4031. struct btrfs_root *root)
  4032. {
  4033. struct btrfs_fs_info *fs_info = root->fs_info;
  4034. struct btrfs_caching_control *next;
  4035. struct btrfs_caching_control *caching_ctl;
  4036. struct btrfs_block_group_cache *cache;
  4037. down_write(&fs_info->extent_commit_sem);
  4038. list_for_each_entry_safe(caching_ctl, next,
  4039. &fs_info->caching_block_groups, list) {
  4040. cache = caching_ctl->block_group;
  4041. if (block_group_cache_done(cache)) {
  4042. cache->last_byte_to_unpin = (u64)-1;
  4043. list_del_init(&caching_ctl->list);
  4044. put_caching_control(caching_ctl);
  4045. } else {
  4046. cache->last_byte_to_unpin = caching_ctl->progress;
  4047. }
  4048. }
  4049. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4050. fs_info->pinned_extents = &fs_info->freed_extents[1];
  4051. else
  4052. fs_info->pinned_extents = &fs_info->freed_extents[0];
  4053. up_write(&fs_info->extent_commit_sem);
  4054. update_global_block_rsv(fs_info);
  4055. return 0;
  4056. }
  4057. static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  4058. {
  4059. struct btrfs_fs_info *fs_info = root->fs_info;
  4060. struct btrfs_block_group_cache *cache = NULL;
  4061. u64 len;
  4062. while (start <= end) {
  4063. if (!cache ||
  4064. start >= cache->key.objectid + cache->key.offset) {
  4065. if (cache)
  4066. btrfs_put_block_group(cache);
  4067. cache = btrfs_lookup_block_group(fs_info, start);
  4068. BUG_ON(!cache);
  4069. }
  4070. len = cache->key.objectid + cache->key.offset - start;
  4071. len = min(len, end + 1 - start);
  4072. if (start < cache->last_byte_to_unpin) {
  4073. len = min(len, cache->last_byte_to_unpin - start);
  4074. btrfs_add_free_space(cache, start, len);
  4075. }
  4076. start += len;
  4077. spin_lock(&cache->space_info->lock);
  4078. spin_lock(&cache->lock);
  4079. cache->pinned -= len;
  4080. cache->space_info->bytes_pinned -= len;
  4081. if (cache->ro)
  4082. cache->space_info->bytes_readonly += len;
  4083. spin_unlock(&cache->lock);
  4084. spin_unlock(&cache->space_info->lock);
  4085. }
  4086. if (cache)
  4087. btrfs_put_block_group(cache);
  4088. return 0;
  4089. }
  4090. int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
  4091. struct btrfs_root *root)
  4092. {
  4093. struct btrfs_fs_info *fs_info = root->fs_info;
  4094. struct extent_io_tree *unpin;
  4095. u64 start;
  4096. u64 end;
  4097. int ret;
  4098. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4099. unpin = &fs_info->freed_extents[1];
  4100. else
  4101. unpin = &fs_info->freed_extents[0];
  4102. while (1) {
  4103. ret = find_first_extent_bit(unpin, 0, &start, &end,
  4104. EXTENT_DIRTY);
  4105. if (ret)
  4106. break;
  4107. if (btrfs_test_opt(root, DISCARD))
  4108. ret = btrfs_discard_extent(root, start,
  4109. end + 1 - start, NULL);
  4110. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  4111. unpin_extent_range(root, start, end);
  4112. cond_resched();
  4113. }
  4114. return 0;
  4115. }
  4116. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  4117. struct btrfs_root *root,
  4118. u64 bytenr, u64 num_bytes, u64 parent,
  4119. u64 root_objectid, u64 owner_objectid,
  4120. u64 owner_offset, int refs_to_drop,
  4121. struct btrfs_delayed_extent_op *extent_op)
  4122. {
  4123. struct btrfs_key key;
  4124. struct btrfs_path *path;
  4125. struct btrfs_fs_info *info = root->fs_info;
  4126. struct btrfs_root *extent_root = info->extent_root;
  4127. struct extent_buffer *leaf;
  4128. struct btrfs_extent_item *ei;
  4129. struct btrfs_extent_inline_ref *iref;
  4130. int ret;
  4131. int is_data;
  4132. int extent_slot = 0;
  4133. int found_extent = 0;
  4134. int num_to_del = 1;
  4135. u32 item_size;
  4136. u64 refs;
  4137. path = btrfs_alloc_path();
  4138. if (!path)
  4139. return -ENOMEM;
  4140. path->reada = 1;
  4141. path->leave_spinning = 1;
  4142. is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
  4143. BUG_ON(!is_data && refs_to_drop != 1);
  4144. ret = lookup_extent_backref(trans, extent_root, path, &iref,
  4145. bytenr, num_bytes, parent,
  4146. root_objectid, owner_objectid,
  4147. owner_offset);
  4148. if (ret == 0) {
  4149. extent_slot = path->slots[0];
  4150. while (extent_slot >= 0) {
  4151. btrfs_item_key_to_cpu(path->nodes[0], &key,
  4152. extent_slot);
  4153. if (key.objectid != bytenr)
  4154. break;
  4155. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  4156. key.offset == num_bytes) {
  4157. found_extent = 1;
  4158. break;
  4159. }
  4160. if (path->slots[0] - extent_slot > 5)
  4161. break;
  4162. extent_slot--;
  4163. }
  4164. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4165. item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
  4166. if (found_extent && item_size < sizeof(*ei))
  4167. found_extent = 0;
  4168. #endif
  4169. if (!found_extent) {
  4170. BUG_ON(iref);
  4171. ret = remove_extent_backref(trans, extent_root, path,
  4172. NULL, refs_to_drop,
  4173. is_data);
  4174. BUG_ON(ret);
  4175. btrfs_release_path(path);
  4176. path->leave_spinning = 1;
  4177. key.objectid = bytenr;
  4178. key.type = BTRFS_EXTENT_ITEM_KEY;
  4179. key.offset = num_bytes;
  4180. ret = btrfs_search_slot(trans, extent_root,
  4181. &key, path, -1, 1);
  4182. if (ret) {
  4183. printk(KERN_ERR "umm, got %d back from search"
  4184. ", was looking for %llu\n", ret,
  4185. (unsigned long long)bytenr);
  4186. if (ret > 0)
  4187. btrfs_print_leaf(extent_root,
  4188. path->nodes[0]);
  4189. }
  4190. BUG_ON(ret);
  4191. extent_slot = path->slots[0];
  4192. }
  4193. } else {
  4194. btrfs_print_leaf(extent_root, path->nodes[0]);
  4195. WARN_ON(1);
  4196. printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
  4197. "parent %llu root %llu owner %llu offset %llu\n",
  4198. (unsigned long long)bytenr,
  4199. (unsigned long long)parent,
  4200. (unsigned long long)root_objectid,
  4201. (unsigned long long)owner_objectid,
  4202. (unsigned long long)owner_offset);
  4203. }
  4204. leaf = path->nodes[0];
  4205. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4206. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4207. if (item_size < sizeof(*ei)) {
  4208. BUG_ON(found_extent || extent_slot != path->slots[0]);
  4209. ret = convert_extent_item_v0(trans, extent_root, path,
  4210. owner_objectid, 0);
  4211. BUG_ON(ret < 0);
  4212. btrfs_release_path(path);
  4213. path->leave_spinning = 1;
  4214. key.objectid = bytenr;
  4215. key.type = BTRFS_EXTENT_ITEM_KEY;
  4216. key.offset = num_bytes;
  4217. ret = btrfs_search_slot(trans, extent_root, &key, path,
  4218. -1, 1);
  4219. if (ret) {
  4220. printk(KERN_ERR "umm, got %d back from search"
  4221. ", was looking for %llu\n", ret,
  4222. (unsigned long long)bytenr);
  4223. btrfs_print_leaf(extent_root, path->nodes[0]);
  4224. }
  4225. BUG_ON(ret);
  4226. extent_slot = path->slots[0];
  4227. leaf = path->nodes[0];
  4228. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4229. }
  4230. #endif
  4231. BUG_ON(item_size < sizeof(*ei));
  4232. ei = btrfs_item_ptr(leaf, extent_slot,
  4233. struct btrfs_extent_item);
  4234. if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
  4235. struct btrfs_tree_block_info *bi;
  4236. BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
  4237. bi = (struct btrfs_tree_block_info *)(ei + 1);
  4238. WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
  4239. }
  4240. refs = btrfs_extent_refs(leaf, ei);
  4241. BUG_ON(refs < refs_to_drop);
  4242. refs -= refs_to_drop;
  4243. if (refs > 0) {
  4244. if (extent_op)
  4245. __run_delayed_extent_op(extent_op, leaf, ei);
  4246. /*
  4247. * In the case of inline back ref, reference count will
  4248. * be updated by remove_extent_backref
  4249. */
  4250. if (iref) {
  4251. BUG_ON(!found_extent);
  4252. } else {
  4253. btrfs_set_extent_refs(leaf, ei, refs);
  4254. btrfs_mark_buffer_dirty(leaf);
  4255. }
  4256. if (found_extent) {
  4257. ret = remove_extent_backref(trans, extent_root, path,
  4258. iref, refs_to_drop,
  4259. is_data);
  4260. BUG_ON(ret);
  4261. }
  4262. } else {
  4263. if (found_extent) {
  4264. BUG_ON(is_data && refs_to_drop !=
  4265. extent_data_ref_count(root, path, iref));
  4266. if (iref) {
  4267. BUG_ON(path->slots[0] != extent_slot);
  4268. } else {
  4269. BUG_ON(path->slots[0] != extent_slot + 1);
  4270. path->slots[0] = extent_slot;
  4271. num_to_del = 2;
  4272. }
  4273. }
  4274. ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
  4275. num_to_del);
  4276. BUG_ON(ret);
  4277. btrfs_release_path(path);
  4278. if (is_data) {
  4279. ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
  4280. BUG_ON(ret);
  4281. } else {
  4282. invalidate_mapping_pages(info->btree_inode->i_mapping,
  4283. bytenr >> PAGE_CACHE_SHIFT,
  4284. (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
  4285. }
  4286. ret = update_block_group(trans, root, bytenr, num_bytes, 0);
  4287. BUG_ON(ret);
  4288. }
  4289. btrfs_free_path(path);
  4290. return ret;
  4291. }
  4292. /*
  4293. * when we free an block, it is possible (and likely) that we free the last
  4294. * delayed ref for that extent as well. This searches the delayed ref tree for
  4295. * a given extent, and if there are no other delayed refs to be processed, it
  4296. * removes it from the tree.
  4297. */
  4298. static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
  4299. struct btrfs_root *root, u64 bytenr)
  4300. {
  4301. struct btrfs_delayed_ref_head *head;
  4302. struct btrfs_delayed_ref_root *delayed_refs;
  4303. struct btrfs_delayed_ref_node *ref;
  4304. struct rb_node *node;
  4305. int ret = 0;
  4306. delayed_refs = &trans->transaction->delayed_refs;
  4307. spin_lock(&delayed_refs->lock);
  4308. head = btrfs_find_delayed_ref_head(trans, bytenr);
  4309. if (!head)
  4310. goto out;
  4311. node = rb_prev(&head->node.rb_node);
  4312. if (!node)
  4313. goto out;
  4314. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  4315. /* there are still entries for this ref, we can't drop it */
  4316. if (ref->bytenr == bytenr)
  4317. goto out;
  4318. if (head->extent_op) {
  4319. if (!head->must_insert_reserved)
  4320. goto out;
  4321. kfree(head->extent_op);
  4322. head->extent_op = NULL;
  4323. }
  4324. /*
  4325. * waiting for the lock here would deadlock. If someone else has it
  4326. * locked they are already in the process of dropping it anyway
  4327. */
  4328. if (!mutex_trylock(&head->mutex))
  4329. goto out;
  4330. /*
  4331. * at this point we have a head with no other entries. Go
  4332. * ahead and process it.
  4333. */
  4334. head->node.in_tree = 0;
  4335. rb_erase(&head->node.rb_node, &delayed_refs->root);
  4336. delayed_refs->num_entries--;
  4337. /*
  4338. * we don't take a ref on the node because we're removing it from the
  4339. * tree, so we just steal the ref the tree was holding.
  4340. */
  4341. delayed_refs->num_heads--;
  4342. if (list_empty(&head->cluster))
  4343. delayed_refs->num_heads_ready--;
  4344. list_del_init(&head->cluster);
  4345. spin_unlock(&delayed_refs->lock);
  4346. BUG_ON(head->extent_op);
  4347. if (head->must_insert_reserved)
  4348. ret = 1;
  4349. mutex_unlock(&head->mutex);
  4350. btrfs_put_delayed_ref(&head->node);
  4351. return ret;
  4352. out:
  4353. spin_unlock(&delayed_refs->lock);
  4354. return 0;
  4355. }
  4356. void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
  4357. struct btrfs_root *root,
  4358. struct extent_buffer *buf,
  4359. u64 parent, int last_ref)
  4360. {
  4361. struct btrfs_block_group_cache *cache = NULL;
  4362. int ret;
  4363. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4364. ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
  4365. parent, root->root_key.objectid,
  4366. btrfs_header_level(buf),
  4367. BTRFS_DROP_DELAYED_REF, NULL);
  4368. BUG_ON(ret);
  4369. }
  4370. if (!last_ref)
  4371. return;
  4372. cache = btrfs_lookup_block_group(root->fs_info, buf->start);
  4373. if (btrfs_header_generation(buf) == trans->transid) {
  4374. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4375. ret = check_ref_cleanup(trans, root, buf->start);
  4376. if (!ret)
  4377. goto out;
  4378. }
  4379. if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  4380. pin_down_extent(root, cache, buf->start, buf->len, 1);
  4381. goto out;
  4382. }
  4383. WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
  4384. btrfs_add_free_space(cache, buf->start, buf->len);
  4385. btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
  4386. }
  4387. out:
  4388. /*
  4389. * Deleting the buffer, clear the corrupt flag since it doesn't matter
  4390. * anymore.
  4391. */
  4392. clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
  4393. btrfs_put_block_group(cache);
  4394. }
  4395. int btrfs_free_extent(struct btrfs_trans_handle *trans,
  4396. struct btrfs_root *root,
  4397. u64 bytenr, u64 num_bytes, u64 parent,
  4398. u64 root_objectid, u64 owner, u64 offset)
  4399. {
  4400. int ret;
  4401. /*
  4402. * tree log blocks never actually go into the extent allocation
  4403. * tree, just update pinning info and exit early.
  4404. */
  4405. if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
  4406. WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
  4407. /* unlocks the pinned mutex */
  4408. btrfs_pin_extent(root, bytenr, num_bytes, 1);
  4409. ret = 0;
  4410. } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  4411. ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
  4412. parent, root_objectid, (int)owner,
  4413. BTRFS_DROP_DELAYED_REF, NULL);
  4414. BUG_ON(ret);
  4415. } else {
  4416. ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
  4417. parent, root_objectid, owner,
  4418. offset, BTRFS_DROP_DELAYED_REF, NULL);
  4419. BUG_ON(ret);
  4420. }
  4421. return ret;
  4422. }
  4423. static u64 stripe_align(struct btrfs_root *root, u64 val)
  4424. {
  4425. u64 mask = ((u64)root->stripesize - 1);
  4426. u64 ret = (val + mask) & ~mask;
  4427. return ret;
  4428. }
  4429. /*
  4430. * when we wait for progress in the block group caching, its because
  4431. * our allocation attempt failed at least once. So, we must sleep
  4432. * and let some progress happen before we try again.
  4433. *
  4434. * This function will sleep at least once waiting for new free space to
  4435. * show up, and then it will check the block group free space numbers
  4436. * for our min num_bytes. Another option is to have it go ahead
  4437. * and look in the rbtree for a free extent of a given size, but this
  4438. * is a good start.
  4439. */
  4440. static noinline int
  4441. wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
  4442. u64 num_bytes)
  4443. {
  4444. struct btrfs_caching_control *caching_ctl;
  4445. DEFINE_WAIT(wait);
  4446. caching_ctl = get_caching_control(cache);
  4447. if (!caching_ctl)
  4448. return 0;
  4449. wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
  4450. (cache->free_space_ctl->free_space >= num_bytes));
  4451. put_caching_control(caching_ctl);
  4452. return 0;
  4453. }
  4454. static noinline int
  4455. wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
  4456. {
  4457. struct btrfs_caching_control *caching_ctl;
  4458. DEFINE_WAIT(wait);
  4459. caching_ctl = get_caching_control(cache);
  4460. if (!caching_ctl)
  4461. return 0;
  4462. wait_event(caching_ctl->wait, block_group_cache_done(cache));
  4463. put_caching_control(caching_ctl);
  4464. return 0;
  4465. }
  4466. static int get_block_group_index(struct btrfs_block_group_cache *cache)
  4467. {
  4468. int index;
  4469. if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
  4470. index = 0;
  4471. else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
  4472. index = 1;
  4473. else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
  4474. index = 2;
  4475. else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
  4476. index = 3;
  4477. else
  4478. index = 4;
  4479. return index;
  4480. }
  4481. enum btrfs_loop_type {
  4482. LOOP_FIND_IDEAL = 0,
  4483. LOOP_CACHING_NOWAIT = 1,
  4484. LOOP_CACHING_WAIT = 2,
  4485. LOOP_ALLOC_CHUNK = 3,
  4486. LOOP_NO_EMPTY_SIZE = 4,
  4487. };
  4488. /*
  4489. * walks the btree of allocated extents and find a hole of a given size.
  4490. * The key ins is changed to record the hole:
  4491. * ins->objectid == block start
  4492. * ins->flags = BTRFS_EXTENT_ITEM_KEY
  4493. * ins->offset == number of blocks
  4494. * Any available blocks before search_start are skipped.
  4495. */
  4496. static noinline int find_free_extent(struct btrfs_trans_handle *trans,
  4497. struct btrfs_root *orig_root,
  4498. u64 num_bytes, u64 empty_size,
  4499. u64 search_start, u64 search_end,
  4500. u64 hint_byte, struct btrfs_key *ins,
  4501. u64 data)
  4502. {
  4503. int ret = 0;
  4504. struct btrfs_root *root = orig_root->fs_info->extent_root;
  4505. struct btrfs_free_cluster *last_ptr = NULL;
  4506. struct btrfs_block_group_cache *block_group = NULL;
  4507. struct btrfs_block_group_cache *used_block_group;
  4508. int empty_cluster = 2 * 1024 * 1024;
  4509. int allowed_chunk_alloc = 0;
  4510. int done_chunk_alloc = 0;
  4511. struct btrfs_space_info *space_info;
  4512. int loop = 0;
  4513. int index = 0;
  4514. int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
  4515. RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
  4516. bool found_uncached_bg = false;
  4517. bool failed_cluster_refill = false;
  4518. bool failed_alloc = false;
  4519. bool use_cluster = true;
  4520. bool have_caching_bg = false;
  4521. u64 ideal_cache_percent = 0;
  4522. u64 ideal_cache_offset = 0;
  4523. WARN_ON(num_bytes < root->sectorsize);
  4524. btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
  4525. ins->objectid = 0;
  4526. ins->offset = 0;
  4527. space_info = __find_space_info(root->fs_info, data);
  4528. if (!space_info) {
  4529. printk(KERN_ERR "No space info for %llu\n", data);
  4530. return -ENOSPC;
  4531. }
  4532. /*
  4533. * If the space info is for both data and metadata it means we have a
  4534. * small filesystem and we can't use the clustering stuff.
  4535. */
  4536. if (btrfs_mixed_space_info(space_info))
  4537. use_cluster = false;
  4538. if (orig_root->ref_cows || empty_size)
  4539. allowed_chunk_alloc = 1;
  4540. if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
  4541. last_ptr = &root->fs_info->meta_alloc_cluster;
  4542. if (!btrfs_test_opt(root, SSD))
  4543. empty_cluster = 64 * 1024;
  4544. }
  4545. if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
  4546. btrfs_test_opt(root, SSD)) {
  4547. last_ptr = &root->fs_info->data_alloc_cluster;
  4548. }
  4549. if (last_ptr) {
  4550. spin_lock(&last_ptr->lock);
  4551. if (last_ptr->block_group)
  4552. hint_byte = last_ptr->window_start;
  4553. spin_unlock(&last_ptr->lock);
  4554. }
  4555. search_start = max(search_start, first_logical_byte(root, 0));
  4556. search_start = max(search_start, hint_byte);
  4557. if (!last_ptr)
  4558. empty_cluster = 0;
  4559. if (search_start == hint_byte) {
  4560. ideal_cache:
  4561. block_group = btrfs_lookup_block_group(root->fs_info,
  4562. search_start);
  4563. used_block_group = block_group;
  4564. /*
  4565. * we don't want to use the block group if it doesn't match our
  4566. * allocation bits, or if its not cached.
  4567. *
  4568. * However if we are re-searching with an ideal block group
  4569. * picked out then we don't care that the block group is cached.
  4570. */
  4571. if (block_group && block_group_bits(block_group, data) &&
  4572. (block_group->cached != BTRFS_CACHE_NO ||
  4573. search_start == ideal_cache_offset)) {
  4574. down_read(&space_info->groups_sem);
  4575. if (list_empty(&block_group->list) ||
  4576. block_group->ro) {
  4577. /*
  4578. * someone is removing this block group,
  4579. * we can't jump into the have_block_group
  4580. * target because our list pointers are not
  4581. * valid
  4582. */
  4583. btrfs_put_block_group(block_group);
  4584. up_read(&space_info->groups_sem);
  4585. } else {
  4586. index = get_block_group_index(block_group);
  4587. goto have_block_group;
  4588. }
  4589. } else if (block_group) {
  4590. btrfs_put_block_group(block_group);
  4591. }
  4592. }
  4593. search:
  4594. have_caching_bg = false;
  4595. down_read(&space_info->groups_sem);
  4596. list_for_each_entry(block_group, &space_info->block_groups[index],
  4597. list) {
  4598. u64 offset;
  4599. int cached;
  4600. used_block_group = block_group;
  4601. btrfs_get_block_group(block_group);
  4602. search_start = block_group->key.objectid;
  4603. /*
  4604. * this can happen if we end up cycling through all the
  4605. * raid types, but we want to make sure we only allocate
  4606. * for the proper type.
  4607. */
  4608. if (!block_group_bits(block_group, data)) {
  4609. u64 extra = BTRFS_BLOCK_GROUP_DUP |
  4610. BTRFS_BLOCK_GROUP_RAID1 |
  4611. BTRFS_BLOCK_GROUP_RAID10;
  4612. /*
  4613. * if they asked for extra copies and this block group
  4614. * doesn't provide them, bail. This does allow us to
  4615. * fill raid0 from raid1.
  4616. */
  4617. if ((data & extra) && !(block_group->flags & extra))
  4618. goto loop;
  4619. }
  4620. have_block_group:
  4621. cached = block_group_cache_done(block_group);
  4622. if (unlikely(!cached)) {
  4623. u64 free_percent;
  4624. found_uncached_bg = true;
  4625. ret = cache_block_group(block_group, trans,
  4626. orig_root, 1);
  4627. if (block_group->cached == BTRFS_CACHE_FINISHED)
  4628. goto alloc;
  4629. free_percent = btrfs_block_group_used(&block_group->item);
  4630. free_percent *= 100;
  4631. free_percent = div64_u64(free_percent,
  4632. block_group->key.offset);
  4633. free_percent = 100 - free_percent;
  4634. if (free_percent > ideal_cache_percent &&
  4635. likely(!block_group->ro)) {
  4636. ideal_cache_offset = block_group->key.objectid;
  4637. ideal_cache_percent = free_percent;
  4638. }
  4639. /*
  4640. * The caching workers are limited to 2 threads, so we
  4641. * can queue as much work as we care to.
  4642. */
  4643. if (loop > LOOP_FIND_IDEAL) {
  4644. ret = cache_block_group(block_group, trans,
  4645. orig_root, 0);
  4646. BUG_ON(ret);
  4647. }
  4648. /*
  4649. * If loop is set for cached only, try the next block
  4650. * group.
  4651. */
  4652. if (loop == LOOP_FIND_IDEAL)
  4653. goto loop;
  4654. }
  4655. alloc:
  4656. if (unlikely(block_group->ro))
  4657. goto loop;
  4658. spin_lock(&block_group->free_space_ctl->tree_lock);
  4659. if (cached &&
  4660. block_group->free_space_ctl->free_space <
  4661. num_bytes + empty_cluster + empty_size) {
  4662. spin_unlock(&block_group->free_space_ctl->tree_lock);
  4663. goto loop;
  4664. }
  4665. spin_unlock(&block_group->free_space_ctl->tree_lock);
  4666. /*
  4667. * Ok we want to try and use the cluster allocator, so
  4668. * lets look there
  4669. */
  4670. if (last_ptr) {
  4671. /*
  4672. * the refill lock keeps out other
  4673. * people trying to start a new cluster
  4674. */
  4675. spin_lock(&last_ptr->refill_lock);
  4676. used_block_group = last_ptr->block_group;
  4677. if (used_block_group != block_group &&
  4678. (!used_block_group ||
  4679. used_block_group->ro ||
  4680. !block_group_bits(used_block_group, data))) {
  4681. used_block_group = block_group;
  4682. goto refill_cluster;
  4683. }
  4684. if (used_block_group != block_group)
  4685. btrfs_get_block_group(used_block_group);
  4686. offset = btrfs_alloc_from_cluster(used_block_group,
  4687. last_ptr, num_bytes, used_block_group->key.objectid);
  4688. if (offset) {
  4689. /* we have a block, we're done */
  4690. spin_unlock(&last_ptr->refill_lock);
  4691. goto checks;
  4692. }
  4693. WARN_ON(last_ptr->block_group != used_block_group);
  4694. if (used_block_group != block_group) {
  4695. btrfs_put_block_group(used_block_group);
  4696. used_block_group = block_group;
  4697. }
  4698. refill_cluster:
  4699. BUG_ON(used_block_group != block_group);
  4700. /* If we are on LOOP_NO_EMPTY_SIZE, we can't
  4701. * set up a new clusters, so lets just skip it
  4702. * and let the allocator find whatever block
  4703. * it can find. If we reach this point, we
  4704. * will have tried the cluster allocator
  4705. * plenty of times and not have found
  4706. * anything, so we are likely way too
  4707. * fragmented for the clustering stuff to find
  4708. * anything. */
  4709. if (loop >= LOOP_NO_EMPTY_SIZE) {
  4710. spin_unlock(&last_ptr->refill_lock);
  4711. goto unclustered_alloc;
  4712. }
  4713. /*
  4714. * this cluster didn't work out, free it and
  4715. * start over
  4716. */
  4717. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  4718. /* allocate a cluster in this block group */
  4719. ret = btrfs_find_space_cluster(trans, root,
  4720. block_group, last_ptr,
  4721. search_start, num_bytes,
  4722. empty_cluster + empty_size);
  4723. if (ret == 0) {
  4724. /*
  4725. * now pull our allocation out of this
  4726. * cluster
  4727. */
  4728. offset = btrfs_alloc_from_cluster(block_group,
  4729. last_ptr, num_bytes,
  4730. search_start);
  4731. if (offset) {
  4732. /* we found one, proceed */
  4733. spin_unlock(&last_ptr->refill_lock);
  4734. goto checks;
  4735. }
  4736. } else if (!cached && loop > LOOP_CACHING_NOWAIT
  4737. && !failed_cluster_refill) {
  4738. spin_unlock(&last_ptr->refill_lock);
  4739. failed_cluster_refill = true;
  4740. wait_block_group_cache_progress(block_group,
  4741. num_bytes + empty_cluster + empty_size);
  4742. goto have_block_group;
  4743. }
  4744. /*
  4745. * at this point we either didn't find a cluster
  4746. * or we weren't able to allocate a block from our
  4747. * cluster. Free the cluster we've been trying
  4748. * to use, and go to the next block group
  4749. */
  4750. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  4751. spin_unlock(&last_ptr->refill_lock);
  4752. goto loop;
  4753. }
  4754. unclustered_alloc:
  4755. offset = btrfs_find_space_for_alloc(block_group, search_start,
  4756. num_bytes, empty_size);
  4757. /*
  4758. * If we didn't find a chunk, and we haven't failed on this
  4759. * block group before, and this block group is in the middle of
  4760. * caching and we are ok with waiting, then go ahead and wait
  4761. * for progress to be made, and set failed_alloc to true.
  4762. *
  4763. * If failed_alloc is true then we've already waited on this
  4764. * block group once and should move on to the next block group.
  4765. */
  4766. if (!offset && !failed_alloc && !cached &&
  4767. loop > LOOP_CACHING_NOWAIT) {
  4768. wait_block_group_cache_progress(block_group,
  4769. num_bytes + empty_size);
  4770. failed_alloc = true;
  4771. goto have_block_group;
  4772. } else if (!offset) {
  4773. if (!cached)
  4774. have_caching_bg = true;
  4775. goto loop;
  4776. }
  4777. checks:
  4778. search_start = stripe_align(root, offset);
  4779. /* move on to the next group */
  4780. if (search_start + num_bytes >= search_end) {
  4781. btrfs_add_free_space(used_block_group, offset, num_bytes);
  4782. goto loop;
  4783. }
  4784. /* move on to the next group */
  4785. if (search_start + num_bytes >
  4786. used_block_group->key.objectid + used_block_group->key.offset) {
  4787. btrfs_add_free_space(used_block_group, offset, num_bytes);
  4788. goto loop;
  4789. }
  4790. ins->objectid = search_start;
  4791. ins->offset = num_bytes;
  4792. if (offset < search_start)
  4793. btrfs_add_free_space(used_block_group, offset,
  4794. search_start - offset);
  4795. BUG_ON(offset > search_start);
  4796. ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
  4797. alloc_type);
  4798. if (ret == -EAGAIN) {
  4799. btrfs_add_free_space(used_block_group, offset, num_bytes);
  4800. goto loop;
  4801. }
  4802. /* we are all good, lets return */
  4803. ins->objectid = search_start;
  4804. ins->offset = num_bytes;
  4805. if (offset < search_start)
  4806. btrfs_add_free_space(used_block_group, offset,
  4807. search_start - offset);
  4808. BUG_ON(offset > search_start);
  4809. if (used_block_group != block_group)
  4810. btrfs_put_block_group(used_block_group);
  4811. btrfs_put_block_group(block_group);
  4812. break;
  4813. loop:
  4814. failed_cluster_refill = false;
  4815. failed_alloc = false;
  4816. BUG_ON(index != get_block_group_index(block_group));
  4817. if (used_block_group != block_group)
  4818. btrfs_put_block_group(used_block_group);
  4819. btrfs_put_block_group(block_group);
  4820. }
  4821. up_read(&space_info->groups_sem);
  4822. if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
  4823. goto search;
  4824. if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
  4825. goto search;
  4826. /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
  4827. * for them to make caching progress. Also
  4828. * determine the best possible bg to cache
  4829. * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
  4830. * caching kthreads as we move along
  4831. * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
  4832. * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
  4833. * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
  4834. * again
  4835. */
  4836. if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
  4837. index = 0;
  4838. if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
  4839. found_uncached_bg = false;
  4840. loop++;
  4841. if (!ideal_cache_percent)
  4842. goto search;
  4843. /*
  4844. * 1 of the following 2 things have happened so far
  4845. *
  4846. * 1) We found an ideal block group for caching that
  4847. * is mostly full and will cache quickly, so we might
  4848. * as well wait for it.
  4849. *
  4850. * 2) We searched for cached only and we didn't find
  4851. * anything, and we didn't start any caching kthreads
  4852. * either, so chances are we will loop through and
  4853. * start a couple caching kthreads, and then come back
  4854. * around and just wait for them. This will be slower
  4855. * because we will have 2 caching kthreads reading at
  4856. * the same time when we could have just started one
  4857. * and waited for it to get far enough to give us an
  4858. * allocation, so go ahead and go to the wait caching
  4859. * loop.
  4860. */
  4861. loop = LOOP_CACHING_WAIT;
  4862. search_start = ideal_cache_offset;
  4863. ideal_cache_percent = 0;
  4864. goto ideal_cache;
  4865. } else if (loop == LOOP_FIND_IDEAL) {
  4866. /*
  4867. * Didn't find a uncached bg, wait on anything we find
  4868. * next.
  4869. */
  4870. loop = LOOP_CACHING_WAIT;
  4871. goto search;
  4872. }
  4873. loop++;
  4874. if (loop == LOOP_ALLOC_CHUNK) {
  4875. if (allowed_chunk_alloc) {
  4876. ret = do_chunk_alloc(trans, root, num_bytes +
  4877. 2 * 1024 * 1024, data,
  4878. CHUNK_ALLOC_LIMITED);
  4879. allowed_chunk_alloc = 0;
  4880. if (ret == 1)
  4881. done_chunk_alloc = 1;
  4882. } else if (!done_chunk_alloc &&
  4883. space_info->force_alloc ==
  4884. CHUNK_ALLOC_NO_FORCE) {
  4885. space_info->force_alloc = CHUNK_ALLOC_LIMITED;
  4886. }
  4887. /*
  4888. * We didn't allocate a chunk, go ahead and drop the
  4889. * empty size and loop again.
  4890. */
  4891. if (!done_chunk_alloc)
  4892. loop = LOOP_NO_EMPTY_SIZE;
  4893. }
  4894. if (loop == LOOP_NO_EMPTY_SIZE) {
  4895. empty_size = 0;
  4896. empty_cluster = 0;
  4897. }
  4898. goto search;
  4899. } else if (!ins->objectid) {
  4900. ret = -ENOSPC;
  4901. } else if (ins->objectid) {
  4902. ret = 0;
  4903. }
  4904. return ret;
  4905. }
  4906. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  4907. int dump_block_groups)
  4908. {
  4909. struct btrfs_block_group_cache *cache;
  4910. int index = 0;
  4911. spin_lock(&info->lock);
  4912. printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
  4913. (unsigned long long)info->flags,
  4914. (unsigned long long)(info->total_bytes - info->bytes_used -
  4915. info->bytes_pinned - info->bytes_reserved -
  4916. info->bytes_readonly),
  4917. (info->full) ? "" : "not ");
  4918. printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
  4919. "reserved=%llu, may_use=%llu, readonly=%llu\n",
  4920. (unsigned long long)info->total_bytes,
  4921. (unsigned long long)info->bytes_used,
  4922. (unsigned long long)info->bytes_pinned,
  4923. (unsigned long long)info->bytes_reserved,
  4924. (unsigned long long)info->bytes_may_use,
  4925. (unsigned long long)info->bytes_readonly);
  4926. spin_unlock(&info->lock);
  4927. if (!dump_block_groups)
  4928. return;
  4929. down_read(&info->groups_sem);
  4930. again:
  4931. list_for_each_entry(cache, &info->block_groups[index], list) {
  4932. spin_lock(&cache->lock);
  4933. printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
  4934. "%llu pinned %llu reserved\n",
  4935. (unsigned long long)cache->key.objectid,
  4936. (unsigned long long)cache->key.offset,
  4937. (unsigned long long)btrfs_block_group_used(&cache->item),
  4938. (unsigned long long)cache->pinned,
  4939. (unsigned long long)cache->reserved);
  4940. btrfs_dump_free_space(cache, bytes);
  4941. spin_unlock(&cache->lock);
  4942. }
  4943. if (++index < BTRFS_NR_RAID_TYPES)
  4944. goto again;
  4945. up_read(&info->groups_sem);
  4946. }
  4947. int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
  4948. struct btrfs_root *root,
  4949. u64 num_bytes, u64 min_alloc_size,
  4950. u64 empty_size, u64 hint_byte,
  4951. u64 search_end, struct btrfs_key *ins,
  4952. u64 data)
  4953. {
  4954. int ret;
  4955. u64 search_start = 0;
  4956. data = btrfs_get_alloc_profile(root, data);
  4957. again:
  4958. /*
  4959. * the only place that sets empty_size is btrfs_realloc_node, which
  4960. * is not called recursively on allocations
  4961. */
  4962. if (empty_size || root->ref_cows)
  4963. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  4964. num_bytes + 2 * 1024 * 1024, data,
  4965. CHUNK_ALLOC_NO_FORCE);
  4966. WARN_ON(num_bytes < root->sectorsize);
  4967. ret = find_free_extent(trans, root, num_bytes, empty_size,
  4968. search_start, search_end, hint_byte,
  4969. ins, data);
  4970. if (ret == -ENOSPC && num_bytes > min_alloc_size) {
  4971. num_bytes = num_bytes >> 1;
  4972. num_bytes = num_bytes & ~(root->sectorsize - 1);
  4973. num_bytes = max(num_bytes, min_alloc_size);
  4974. do_chunk_alloc(trans, root->fs_info->extent_root,
  4975. num_bytes, data, CHUNK_ALLOC_FORCE);
  4976. goto again;
  4977. }
  4978. if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
  4979. struct btrfs_space_info *sinfo;
  4980. sinfo = __find_space_info(root->fs_info, data);
  4981. printk(KERN_ERR "btrfs allocation failed flags %llu, "
  4982. "wanted %llu\n", (unsigned long long)data,
  4983. (unsigned long long)num_bytes);
  4984. dump_space_info(sinfo, num_bytes, 1);
  4985. }
  4986. trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
  4987. return ret;
  4988. }
  4989. static int __btrfs_free_reserved_extent(struct btrfs_root *root,
  4990. u64 start, u64 len, int pin)
  4991. {
  4992. struct btrfs_block_group_cache *cache;
  4993. int ret = 0;
  4994. cache = btrfs_lookup_block_group(root->fs_info, start);
  4995. if (!cache) {
  4996. printk(KERN_ERR "Unable to find block group for %llu\n",
  4997. (unsigned long long)start);
  4998. return -ENOSPC;
  4999. }
  5000. if (btrfs_test_opt(root, DISCARD))
  5001. ret = btrfs_discard_extent(root, start, len, NULL);
  5002. if (pin)
  5003. pin_down_extent(root, cache, start, len, 1);
  5004. else {
  5005. btrfs_add_free_space(cache, start, len);
  5006. btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
  5007. }
  5008. btrfs_put_block_group(cache);
  5009. trace_btrfs_reserved_extent_free(root, start, len);
  5010. return ret;
  5011. }
  5012. int btrfs_free_reserved_extent(struct btrfs_root *root,
  5013. u64 start, u64 len)
  5014. {
  5015. return __btrfs_free_reserved_extent(root, start, len, 0);
  5016. }
  5017. int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
  5018. u64 start, u64 len)
  5019. {
  5020. return __btrfs_free_reserved_extent(root, start, len, 1);
  5021. }
  5022. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5023. struct btrfs_root *root,
  5024. u64 parent, u64 root_objectid,
  5025. u64 flags, u64 owner, u64 offset,
  5026. struct btrfs_key *ins, int ref_mod)
  5027. {
  5028. int ret;
  5029. struct btrfs_fs_info *fs_info = root->fs_info;
  5030. struct btrfs_extent_item *extent_item;
  5031. struct btrfs_extent_inline_ref *iref;
  5032. struct btrfs_path *path;
  5033. struct extent_buffer *leaf;
  5034. int type;
  5035. u32 size;
  5036. if (parent > 0)
  5037. type = BTRFS_SHARED_DATA_REF_KEY;
  5038. else
  5039. type = BTRFS_EXTENT_DATA_REF_KEY;
  5040. size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
  5041. path = btrfs_alloc_path();
  5042. if (!path)
  5043. return -ENOMEM;
  5044. path->leave_spinning = 1;
  5045. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5046. ins, size);
  5047. BUG_ON(ret);
  5048. leaf = path->nodes[0];
  5049. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5050. struct btrfs_extent_item);
  5051. btrfs_set_extent_refs(leaf, extent_item, ref_mod);
  5052. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5053. btrfs_set_extent_flags(leaf, extent_item,
  5054. flags | BTRFS_EXTENT_FLAG_DATA);
  5055. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  5056. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  5057. if (parent > 0) {
  5058. struct btrfs_shared_data_ref *ref;
  5059. ref = (struct btrfs_shared_data_ref *)(iref + 1);
  5060. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5061. btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
  5062. } else {
  5063. struct btrfs_extent_data_ref *ref;
  5064. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  5065. btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
  5066. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  5067. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  5068. btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
  5069. }
  5070. btrfs_mark_buffer_dirty(path->nodes[0]);
  5071. btrfs_free_path(path);
  5072. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  5073. if (ret) {
  5074. printk(KERN_ERR "btrfs update block group failed for %llu "
  5075. "%llu\n", (unsigned long long)ins->objectid,
  5076. (unsigned long long)ins->offset);
  5077. BUG();
  5078. }
  5079. return ret;
  5080. }
  5081. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  5082. struct btrfs_root *root,
  5083. u64 parent, u64 root_objectid,
  5084. u64 flags, struct btrfs_disk_key *key,
  5085. int level, struct btrfs_key *ins)
  5086. {
  5087. int ret;
  5088. struct btrfs_fs_info *fs_info = root->fs_info;
  5089. struct btrfs_extent_item *extent_item;
  5090. struct btrfs_tree_block_info *block_info;
  5091. struct btrfs_extent_inline_ref *iref;
  5092. struct btrfs_path *path;
  5093. struct extent_buffer *leaf;
  5094. u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
  5095. path = btrfs_alloc_path();
  5096. if (!path)
  5097. return -ENOMEM;
  5098. path->leave_spinning = 1;
  5099. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5100. ins, size);
  5101. BUG_ON(ret);
  5102. leaf = path->nodes[0];
  5103. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5104. struct btrfs_extent_item);
  5105. btrfs_set_extent_refs(leaf, extent_item, 1);
  5106. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5107. btrfs_set_extent_flags(leaf, extent_item,
  5108. flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
  5109. block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
  5110. btrfs_set_tree_block_key(leaf, block_info, key);
  5111. btrfs_set_tree_block_level(leaf, block_info, level);
  5112. iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
  5113. if (parent > 0) {
  5114. BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  5115. btrfs_set_extent_inline_ref_type(leaf, iref,
  5116. BTRFS_SHARED_BLOCK_REF_KEY);
  5117. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5118. } else {
  5119. btrfs_set_extent_inline_ref_type(leaf, iref,
  5120. BTRFS_TREE_BLOCK_REF_KEY);
  5121. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  5122. }
  5123. btrfs_mark_buffer_dirty(leaf);
  5124. btrfs_free_path(path);
  5125. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  5126. if (ret) {
  5127. printk(KERN_ERR "btrfs update block group failed for %llu "
  5128. "%llu\n", (unsigned long long)ins->objectid,
  5129. (unsigned long long)ins->offset);
  5130. BUG();
  5131. }
  5132. return ret;
  5133. }
  5134. int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5135. struct btrfs_root *root,
  5136. u64 root_objectid, u64 owner,
  5137. u64 offset, struct btrfs_key *ins)
  5138. {
  5139. int ret;
  5140. BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
  5141. ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
  5142. 0, root_objectid, owner, offset,
  5143. BTRFS_ADD_DELAYED_EXTENT, NULL);
  5144. return ret;
  5145. }
  5146. /*
  5147. * this is used by the tree logging recovery code. It records that
  5148. * an extent has been allocated and makes sure to clear the free
  5149. * space cache bits as well
  5150. */
  5151. int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
  5152. struct btrfs_root *root,
  5153. u64 root_objectid, u64 owner, u64 offset,
  5154. struct btrfs_key *ins)
  5155. {
  5156. int ret;
  5157. struct btrfs_block_group_cache *block_group;
  5158. struct btrfs_caching_control *caching_ctl;
  5159. u64 start = ins->objectid;
  5160. u64 num_bytes = ins->offset;
  5161. block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
  5162. cache_block_group(block_group, trans, NULL, 0);
  5163. caching_ctl = get_caching_control(block_group);
  5164. if (!caching_ctl) {
  5165. BUG_ON(!block_group_cache_done(block_group));
  5166. ret = btrfs_remove_free_space(block_group, start, num_bytes);
  5167. BUG_ON(ret);
  5168. } else {
  5169. mutex_lock(&caching_ctl->mutex);
  5170. if (start >= caching_ctl->progress) {
  5171. ret = add_excluded_extent(root, start, num_bytes);
  5172. BUG_ON(ret);
  5173. } else if (start + num_bytes <= caching_ctl->progress) {
  5174. ret = btrfs_remove_free_space(block_group,
  5175. start, num_bytes);
  5176. BUG_ON(ret);
  5177. } else {
  5178. num_bytes = caching_ctl->progress - start;
  5179. ret = btrfs_remove_free_space(block_group,
  5180. start, num_bytes);
  5181. BUG_ON(ret);
  5182. start = caching_ctl->progress;
  5183. num_bytes = ins->objectid + ins->offset -
  5184. caching_ctl->progress;
  5185. ret = add_excluded_extent(root, start, num_bytes);
  5186. BUG_ON(ret);
  5187. }
  5188. mutex_unlock(&caching_ctl->mutex);
  5189. put_caching_control(caching_ctl);
  5190. }
  5191. ret = btrfs_update_reserved_bytes(block_group, ins->offset,
  5192. RESERVE_ALLOC_NO_ACCOUNT);
  5193. BUG_ON(ret);
  5194. btrfs_put_block_group(block_group);
  5195. ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
  5196. 0, owner, offset, ins, 1);
  5197. return ret;
  5198. }
  5199. struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
  5200. struct btrfs_root *root,
  5201. u64 bytenr, u32 blocksize,
  5202. int level)
  5203. {
  5204. struct extent_buffer *buf;
  5205. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5206. if (!buf)
  5207. return ERR_PTR(-ENOMEM);
  5208. btrfs_set_header_generation(buf, trans->transid);
  5209. btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
  5210. btrfs_tree_lock(buf);
  5211. clean_tree_block(trans, root, buf);
  5212. btrfs_set_lock_blocking(buf);
  5213. btrfs_set_buffer_uptodate(buf);
  5214. if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
  5215. /*
  5216. * we allow two log transactions at a time, use different
  5217. * EXENT bit to differentiate dirty pages.
  5218. */
  5219. if (root->log_transid % 2 == 0)
  5220. set_extent_dirty(&root->dirty_log_pages, buf->start,
  5221. buf->start + buf->len - 1, GFP_NOFS);
  5222. else
  5223. set_extent_new(&root->dirty_log_pages, buf->start,
  5224. buf->start + buf->len - 1, GFP_NOFS);
  5225. } else {
  5226. set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
  5227. buf->start + buf->len - 1, GFP_NOFS);
  5228. }
  5229. trans->blocks_used++;
  5230. /* this returns a buffer locked for blocking */
  5231. return buf;
  5232. }
  5233. static struct btrfs_block_rsv *
  5234. use_block_rsv(struct btrfs_trans_handle *trans,
  5235. struct btrfs_root *root, u32 blocksize)
  5236. {
  5237. struct btrfs_block_rsv *block_rsv;
  5238. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  5239. int ret;
  5240. block_rsv = get_block_rsv(trans, root);
  5241. if (block_rsv->size == 0) {
  5242. ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
  5243. /*
  5244. * If we couldn't reserve metadata bytes try and use some from
  5245. * the global reserve.
  5246. */
  5247. if (ret && block_rsv != global_rsv) {
  5248. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5249. if (!ret)
  5250. return global_rsv;
  5251. return ERR_PTR(ret);
  5252. } else if (ret) {
  5253. return ERR_PTR(ret);
  5254. }
  5255. return block_rsv;
  5256. }
  5257. ret = block_rsv_use_bytes(block_rsv, blocksize);
  5258. if (!ret)
  5259. return block_rsv;
  5260. if (ret) {
  5261. static DEFINE_RATELIMIT_STATE(_rs,
  5262. DEFAULT_RATELIMIT_INTERVAL,
  5263. /*DEFAULT_RATELIMIT_BURST*/ 2);
  5264. if (__ratelimit(&_rs)) {
  5265. printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
  5266. WARN_ON(1);
  5267. }
  5268. ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
  5269. if (!ret) {
  5270. return block_rsv;
  5271. } else if (ret && block_rsv != global_rsv) {
  5272. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5273. if (!ret)
  5274. return global_rsv;
  5275. }
  5276. }
  5277. return ERR_PTR(-ENOSPC);
  5278. }
  5279. static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
  5280. {
  5281. block_rsv_add_bytes(block_rsv, blocksize, 0);
  5282. block_rsv_release_bytes(block_rsv, NULL, 0);
  5283. }
  5284. /*
  5285. * finds a free extent and does all the dirty work required for allocation
  5286. * returns the key for the extent through ins, and a tree buffer for
  5287. * the first block of the extent through buf.
  5288. *
  5289. * returns the tree buffer or NULL.
  5290. */
  5291. struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
  5292. struct btrfs_root *root, u32 blocksize,
  5293. u64 parent, u64 root_objectid,
  5294. struct btrfs_disk_key *key, int level,
  5295. u64 hint, u64 empty_size)
  5296. {
  5297. struct btrfs_key ins;
  5298. struct btrfs_block_rsv *block_rsv;
  5299. struct extent_buffer *buf;
  5300. u64 flags = 0;
  5301. int ret;
  5302. block_rsv = use_block_rsv(trans, root, blocksize);
  5303. if (IS_ERR(block_rsv))
  5304. return ERR_CAST(block_rsv);
  5305. ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
  5306. empty_size, hint, (u64)-1, &ins, 0);
  5307. if (ret) {
  5308. unuse_block_rsv(block_rsv, blocksize);
  5309. return ERR_PTR(ret);
  5310. }
  5311. buf = btrfs_init_new_buffer(trans, root, ins.objectid,
  5312. blocksize, level);
  5313. BUG_ON(IS_ERR(buf));
  5314. if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
  5315. if (parent == 0)
  5316. parent = ins.objectid;
  5317. flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5318. } else
  5319. BUG_ON(parent > 0);
  5320. if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
  5321. struct btrfs_delayed_extent_op *extent_op;
  5322. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  5323. BUG_ON(!extent_op);
  5324. if (key)
  5325. memcpy(&extent_op->key, key, sizeof(extent_op->key));
  5326. else
  5327. memset(&extent_op->key, 0, sizeof(extent_op->key));
  5328. extent_op->flags_to_set = flags;
  5329. extent_op->update_key = 1;
  5330. extent_op->update_flags = 1;
  5331. extent_op->is_data = 0;
  5332. ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
  5333. ins.offset, parent, root_objectid,
  5334. level, BTRFS_ADD_DELAYED_EXTENT,
  5335. extent_op);
  5336. BUG_ON(ret);
  5337. }
  5338. return buf;
  5339. }
  5340. struct walk_control {
  5341. u64 refs[BTRFS_MAX_LEVEL];
  5342. u64 flags[BTRFS_MAX_LEVEL];
  5343. struct btrfs_key update_progress;
  5344. int stage;
  5345. int level;
  5346. int shared_level;
  5347. int update_ref;
  5348. int keep_locks;
  5349. int reada_slot;
  5350. int reada_count;
  5351. };
  5352. #define DROP_REFERENCE 1
  5353. #define UPDATE_BACKREF 2
  5354. static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
  5355. struct btrfs_root *root,
  5356. struct walk_control *wc,
  5357. struct btrfs_path *path)
  5358. {
  5359. u64 bytenr;
  5360. u64 generation;
  5361. u64 refs;
  5362. u64 flags;
  5363. u32 nritems;
  5364. u32 blocksize;
  5365. struct btrfs_key key;
  5366. struct extent_buffer *eb;
  5367. int ret;
  5368. int slot;
  5369. int nread = 0;
  5370. if (path->slots[wc->level] < wc->reada_slot) {
  5371. wc->reada_count = wc->reada_count * 2 / 3;
  5372. wc->reada_count = max(wc->reada_count, 2);
  5373. } else {
  5374. wc->reada_count = wc->reada_count * 3 / 2;
  5375. wc->reada_count = min_t(int, wc->reada_count,
  5376. BTRFS_NODEPTRS_PER_BLOCK(root));
  5377. }
  5378. eb = path->nodes[wc->level];
  5379. nritems = btrfs_header_nritems(eb);
  5380. blocksize = btrfs_level_size(root, wc->level - 1);
  5381. for (slot = path->slots[wc->level]; slot < nritems; slot++) {
  5382. if (nread >= wc->reada_count)
  5383. break;
  5384. cond_resched();
  5385. bytenr = btrfs_node_blockptr(eb, slot);
  5386. generation = btrfs_node_ptr_generation(eb, slot);
  5387. if (slot == path->slots[wc->level])
  5388. goto reada;
  5389. if (wc->stage == UPDATE_BACKREF &&
  5390. generation <= root->root_key.offset)
  5391. continue;
  5392. /* We don't lock the tree block, it's OK to be racy here */
  5393. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5394. &refs, &flags);
  5395. BUG_ON(ret);
  5396. BUG_ON(refs == 0);
  5397. if (wc->stage == DROP_REFERENCE) {
  5398. if (refs == 1)
  5399. goto reada;
  5400. if (wc->level == 1 &&
  5401. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5402. continue;
  5403. if (!wc->update_ref ||
  5404. generation <= root->root_key.offset)
  5405. continue;
  5406. btrfs_node_key_to_cpu(eb, &key, slot);
  5407. ret = btrfs_comp_cpu_keys(&key,
  5408. &wc->update_progress);
  5409. if (ret < 0)
  5410. continue;
  5411. } else {
  5412. if (wc->level == 1 &&
  5413. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5414. continue;
  5415. }
  5416. reada:
  5417. ret = readahead_tree_block(root, bytenr, blocksize,
  5418. generation);
  5419. if (ret)
  5420. break;
  5421. nread++;
  5422. }
  5423. wc->reada_slot = slot;
  5424. }
  5425. /*
  5426. * hepler to process tree block while walking down the tree.
  5427. *
  5428. * when wc->stage == UPDATE_BACKREF, this function updates
  5429. * back refs for pointers in the block.
  5430. *
  5431. * NOTE: return value 1 means we should stop walking down.
  5432. */
  5433. static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
  5434. struct btrfs_root *root,
  5435. struct btrfs_path *path,
  5436. struct walk_control *wc, int lookup_info)
  5437. {
  5438. int level = wc->level;
  5439. struct extent_buffer *eb = path->nodes[level];
  5440. u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5441. int ret;
  5442. if (wc->stage == UPDATE_BACKREF &&
  5443. btrfs_header_owner(eb) != root->root_key.objectid)
  5444. return 1;
  5445. /*
  5446. * when reference count of tree block is 1, it won't increase
  5447. * again. once full backref flag is set, we never clear it.
  5448. */
  5449. if (lookup_info &&
  5450. ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
  5451. (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
  5452. BUG_ON(!path->locks[level]);
  5453. ret = btrfs_lookup_extent_info(trans, root,
  5454. eb->start, eb->len,
  5455. &wc->refs[level],
  5456. &wc->flags[level]);
  5457. BUG_ON(ret);
  5458. BUG_ON(wc->refs[level] == 0);
  5459. }
  5460. if (wc->stage == DROP_REFERENCE) {
  5461. if (wc->refs[level] > 1)
  5462. return 1;
  5463. if (path->locks[level] && !wc->keep_locks) {
  5464. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5465. path->locks[level] = 0;
  5466. }
  5467. return 0;
  5468. }
  5469. /* wc->stage == UPDATE_BACKREF */
  5470. if (!(wc->flags[level] & flag)) {
  5471. BUG_ON(!path->locks[level]);
  5472. ret = btrfs_inc_ref(trans, root, eb, 1);
  5473. BUG_ON(ret);
  5474. ret = btrfs_dec_ref(trans, root, eb, 0);
  5475. BUG_ON(ret);
  5476. ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
  5477. eb->len, flag, 0);
  5478. BUG_ON(ret);
  5479. wc->flags[level] |= flag;
  5480. }
  5481. /*
  5482. * the block is shared by multiple trees, so it's not good to
  5483. * keep the tree lock
  5484. */
  5485. if (path->locks[level] && level > 0) {
  5486. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5487. path->locks[level] = 0;
  5488. }
  5489. return 0;
  5490. }
  5491. /*
  5492. * hepler to process tree block pointer.
  5493. *
  5494. * when wc->stage == DROP_REFERENCE, this function checks
  5495. * reference count of the block pointed to. if the block
  5496. * is shared and we need update back refs for the subtree
  5497. * rooted at the block, this function changes wc->stage to
  5498. * UPDATE_BACKREF. if the block is shared and there is no
  5499. * need to update back, this function drops the reference
  5500. * to the block.
  5501. *
  5502. * NOTE: return value 1 means we should stop walking down.
  5503. */
  5504. static noinline int do_walk_down(struct btrfs_trans_handle *trans,
  5505. struct btrfs_root *root,
  5506. struct btrfs_path *path,
  5507. struct walk_control *wc, int *lookup_info)
  5508. {
  5509. u64 bytenr;
  5510. u64 generation;
  5511. u64 parent;
  5512. u32 blocksize;
  5513. struct btrfs_key key;
  5514. struct extent_buffer *next;
  5515. int level = wc->level;
  5516. int reada = 0;
  5517. int ret = 0;
  5518. generation = btrfs_node_ptr_generation(path->nodes[level],
  5519. path->slots[level]);
  5520. /*
  5521. * if the lower level block was created before the snapshot
  5522. * was created, we know there is no need to update back refs
  5523. * for the subtree
  5524. */
  5525. if (wc->stage == UPDATE_BACKREF &&
  5526. generation <= root->root_key.offset) {
  5527. *lookup_info = 1;
  5528. return 1;
  5529. }
  5530. bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
  5531. blocksize = btrfs_level_size(root, level - 1);
  5532. next = btrfs_find_tree_block(root, bytenr, blocksize);
  5533. if (!next) {
  5534. next = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5535. if (!next)
  5536. return -ENOMEM;
  5537. reada = 1;
  5538. }
  5539. btrfs_tree_lock(next);
  5540. btrfs_set_lock_blocking(next);
  5541. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5542. &wc->refs[level - 1],
  5543. &wc->flags[level - 1]);
  5544. BUG_ON(ret);
  5545. BUG_ON(wc->refs[level - 1] == 0);
  5546. *lookup_info = 0;
  5547. if (wc->stage == DROP_REFERENCE) {
  5548. if (wc->refs[level - 1] > 1) {
  5549. if (level == 1 &&
  5550. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5551. goto skip;
  5552. if (!wc->update_ref ||
  5553. generation <= root->root_key.offset)
  5554. goto skip;
  5555. btrfs_node_key_to_cpu(path->nodes[level], &key,
  5556. path->slots[level]);
  5557. ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
  5558. if (ret < 0)
  5559. goto skip;
  5560. wc->stage = UPDATE_BACKREF;
  5561. wc->shared_level = level - 1;
  5562. }
  5563. } else {
  5564. if (level == 1 &&
  5565. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5566. goto skip;
  5567. }
  5568. if (!btrfs_buffer_uptodate(next, generation)) {
  5569. btrfs_tree_unlock(next);
  5570. free_extent_buffer(next);
  5571. next = NULL;
  5572. *lookup_info = 1;
  5573. }
  5574. if (!next) {
  5575. if (reada && level == 1)
  5576. reada_walk_down(trans, root, wc, path);
  5577. next = read_tree_block(root, bytenr, blocksize, generation);
  5578. if (!next)
  5579. return -EIO;
  5580. btrfs_tree_lock(next);
  5581. btrfs_set_lock_blocking(next);
  5582. }
  5583. level--;
  5584. BUG_ON(level != btrfs_header_level(next));
  5585. path->nodes[level] = next;
  5586. path->slots[level] = 0;
  5587. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5588. wc->level = level;
  5589. if (wc->level == 1)
  5590. wc->reada_slot = 0;
  5591. return 0;
  5592. skip:
  5593. wc->refs[level - 1] = 0;
  5594. wc->flags[level - 1] = 0;
  5595. if (wc->stage == DROP_REFERENCE) {
  5596. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  5597. parent = path->nodes[level]->start;
  5598. } else {
  5599. BUG_ON(root->root_key.objectid !=
  5600. btrfs_header_owner(path->nodes[level]));
  5601. parent = 0;
  5602. }
  5603. ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
  5604. root->root_key.objectid, level - 1, 0);
  5605. BUG_ON(ret);
  5606. }
  5607. btrfs_tree_unlock(next);
  5608. free_extent_buffer(next);
  5609. *lookup_info = 1;
  5610. return 1;
  5611. }
  5612. /*
  5613. * hepler to process tree block while walking up the tree.
  5614. *
  5615. * when wc->stage == DROP_REFERENCE, this function drops
  5616. * reference count on the block.
  5617. *
  5618. * when wc->stage == UPDATE_BACKREF, this function changes
  5619. * wc->stage back to DROP_REFERENCE if we changed wc->stage
  5620. * to UPDATE_BACKREF previously while processing the block.
  5621. *
  5622. * NOTE: return value 1 means we should stop walking up.
  5623. */
  5624. static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
  5625. struct btrfs_root *root,
  5626. struct btrfs_path *path,
  5627. struct walk_control *wc)
  5628. {
  5629. int ret;
  5630. int level = wc->level;
  5631. struct extent_buffer *eb = path->nodes[level];
  5632. u64 parent = 0;
  5633. if (wc->stage == UPDATE_BACKREF) {
  5634. BUG_ON(wc->shared_level < level);
  5635. if (level < wc->shared_level)
  5636. goto out;
  5637. ret = find_next_key(path, level + 1, &wc->update_progress);
  5638. if (ret > 0)
  5639. wc->update_ref = 0;
  5640. wc->stage = DROP_REFERENCE;
  5641. wc->shared_level = -1;
  5642. path->slots[level] = 0;
  5643. /*
  5644. * check reference count again if the block isn't locked.
  5645. * we should start walking down the tree again if reference
  5646. * count is one.
  5647. */
  5648. if (!path->locks[level]) {
  5649. BUG_ON(level == 0);
  5650. btrfs_tree_lock(eb);
  5651. btrfs_set_lock_blocking(eb);
  5652. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5653. ret = btrfs_lookup_extent_info(trans, root,
  5654. eb->start, eb->len,
  5655. &wc->refs[level],
  5656. &wc->flags[level]);
  5657. BUG_ON(ret);
  5658. BUG_ON(wc->refs[level] == 0);
  5659. if (wc->refs[level] == 1) {
  5660. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5661. return 1;
  5662. }
  5663. }
  5664. }
  5665. /* wc->stage == DROP_REFERENCE */
  5666. BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
  5667. if (wc->refs[level] == 1) {
  5668. if (level == 0) {
  5669. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5670. ret = btrfs_dec_ref(trans, root, eb, 1);
  5671. else
  5672. ret = btrfs_dec_ref(trans, root, eb, 0);
  5673. BUG_ON(ret);
  5674. }
  5675. /* make block locked assertion in clean_tree_block happy */
  5676. if (!path->locks[level] &&
  5677. btrfs_header_generation(eb) == trans->transid) {
  5678. btrfs_tree_lock(eb);
  5679. btrfs_set_lock_blocking(eb);
  5680. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5681. }
  5682. clean_tree_block(trans, root, eb);
  5683. }
  5684. if (eb == root->node) {
  5685. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5686. parent = eb->start;
  5687. else
  5688. BUG_ON(root->root_key.objectid !=
  5689. btrfs_header_owner(eb));
  5690. } else {
  5691. if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5692. parent = path->nodes[level + 1]->start;
  5693. else
  5694. BUG_ON(root->root_key.objectid !=
  5695. btrfs_header_owner(path->nodes[level + 1]));
  5696. }
  5697. btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
  5698. out:
  5699. wc->refs[level] = 0;
  5700. wc->flags[level] = 0;
  5701. return 0;
  5702. }
  5703. static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
  5704. struct btrfs_root *root,
  5705. struct btrfs_path *path,
  5706. struct walk_control *wc)
  5707. {
  5708. int level = wc->level;
  5709. int lookup_info = 1;
  5710. int ret;
  5711. while (level >= 0) {
  5712. ret = walk_down_proc(trans, root, path, wc, lookup_info);
  5713. if (ret > 0)
  5714. break;
  5715. if (level == 0)
  5716. break;
  5717. if (path->slots[level] >=
  5718. btrfs_header_nritems(path->nodes[level]))
  5719. break;
  5720. ret = do_walk_down(trans, root, path, wc, &lookup_info);
  5721. if (ret > 0) {
  5722. path->slots[level]++;
  5723. continue;
  5724. } else if (ret < 0)
  5725. return ret;
  5726. level = wc->level;
  5727. }
  5728. return 0;
  5729. }
  5730. static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
  5731. struct btrfs_root *root,
  5732. struct btrfs_path *path,
  5733. struct walk_control *wc, int max_level)
  5734. {
  5735. int level = wc->level;
  5736. int ret;
  5737. path->slots[level] = btrfs_header_nritems(path->nodes[level]);
  5738. while (level < max_level && path->nodes[level]) {
  5739. wc->level = level;
  5740. if (path->slots[level] + 1 <
  5741. btrfs_header_nritems(path->nodes[level])) {
  5742. path->slots[level]++;
  5743. return 0;
  5744. } else {
  5745. ret = walk_up_proc(trans, root, path, wc);
  5746. if (ret > 0)
  5747. return 0;
  5748. if (path->locks[level]) {
  5749. btrfs_tree_unlock_rw(path->nodes[level],
  5750. path->locks[level]);
  5751. path->locks[level] = 0;
  5752. }
  5753. free_extent_buffer(path->nodes[level]);
  5754. path->nodes[level] = NULL;
  5755. level++;
  5756. }
  5757. }
  5758. return 1;
  5759. }
  5760. /*
  5761. * drop a subvolume tree.
  5762. *
  5763. * this function traverses the tree freeing any blocks that only
  5764. * referenced by the tree.
  5765. *
  5766. * when a shared tree block is found. this function decreases its
  5767. * reference count by one. if update_ref is true, this function
  5768. * also make sure backrefs for the shared block and all lower level
  5769. * blocks are properly updated.
  5770. */
  5771. void btrfs_drop_snapshot(struct btrfs_root *root,
  5772. struct btrfs_block_rsv *block_rsv, int update_ref)
  5773. {
  5774. struct btrfs_path *path;
  5775. struct btrfs_trans_handle *trans;
  5776. struct btrfs_root *tree_root = root->fs_info->tree_root;
  5777. struct btrfs_root_item *root_item = &root->root_item;
  5778. struct walk_control *wc;
  5779. struct btrfs_key key;
  5780. int err = 0;
  5781. int ret;
  5782. int level;
  5783. path = btrfs_alloc_path();
  5784. if (!path) {
  5785. err = -ENOMEM;
  5786. goto out;
  5787. }
  5788. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  5789. if (!wc) {
  5790. btrfs_free_path(path);
  5791. err = -ENOMEM;
  5792. goto out;
  5793. }
  5794. trans = btrfs_start_transaction(tree_root, 0);
  5795. BUG_ON(IS_ERR(trans));
  5796. if (block_rsv)
  5797. trans->block_rsv = block_rsv;
  5798. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  5799. level = btrfs_header_level(root->node);
  5800. path->nodes[level] = btrfs_lock_root_node(root);
  5801. btrfs_set_lock_blocking(path->nodes[level]);
  5802. path->slots[level] = 0;
  5803. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5804. memset(&wc->update_progress, 0,
  5805. sizeof(wc->update_progress));
  5806. } else {
  5807. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  5808. memcpy(&wc->update_progress, &key,
  5809. sizeof(wc->update_progress));
  5810. level = root_item->drop_level;
  5811. BUG_ON(level == 0);
  5812. path->lowest_level = level;
  5813. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  5814. path->lowest_level = 0;
  5815. if (ret < 0) {
  5816. err = ret;
  5817. goto out_free;
  5818. }
  5819. WARN_ON(ret > 0);
  5820. /*
  5821. * unlock our path, this is safe because only this
  5822. * function is allowed to delete this snapshot
  5823. */
  5824. btrfs_unlock_up_safe(path, 0);
  5825. level = btrfs_header_level(root->node);
  5826. while (1) {
  5827. btrfs_tree_lock(path->nodes[level]);
  5828. btrfs_set_lock_blocking(path->nodes[level]);
  5829. ret = btrfs_lookup_extent_info(trans, root,
  5830. path->nodes[level]->start,
  5831. path->nodes[level]->len,
  5832. &wc->refs[level],
  5833. &wc->flags[level]);
  5834. BUG_ON(ret);
  5835. BUG_ON(wc->refs[level] == 0);
  5836. if (level == root_item->drop_level)
  5837. break;
  5838. btrfs_tree_unlock(path->nodes[level]);
  5839. WARN_ON(wc->refs[level] != 1);
  5840. level--;
  5841. }
  5842. }
  5843. wc->level = level;
  5844. wc->shared_level = -1;
  5845. wc->stage = DROP_REFERENCE;
  5846. wc->update_ref = update_ref;
  5847. wc->keep_locks = 0;
  5848. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  5849. while (1) {
  5850. ret = walk_down_tree(trans, root, path, wc);
  5851. if (ret < 0) {
  5852. err = ret;
  5853. break;
  5854. }
  5855. ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
  5856. if (ret < 0) {
  5857. err = ret;
  5858. break;
  5859. }
  5860. if (ret > 0) {
  5861. BUG_ON(wc->stage != DROP_REFERENCE);
  5862. break;
  5863. }
  5864. if (wc->stage == DROP_REFERENCE) {
  5865. level = wc->level;
  5866. btrfs_node_key(path->nodes[level],
  5867. &root_item->drop_progress,
  5868. path->slots[level]);
  5869. root_item->drop_level = level;
  5870. }
  5871. BUG_ON(wc->level == 0);
  5872. if (btrfs_should_end_transaction(trans, tree_root)) {
  5873. ret = btrfs_update_root(trans, tree_root,
  5874. &root->root_key,
  5875. root_item);
  5876. BUG_ON(ret);
  5877. btrfs_end_transaction_throttle(trans, tree_root);
  5878. trans = btrfs_start_transaction(tree_root, 0);
  5879. BUG_ON(IS_ERR(trans));
  5880. if (block_rsv)
  5881. trans->block_rsv = block_rsv;
  5882. }
  5883. }
  5884. btrfs_release_path(path);
  5885. BUG_ON(err);
  5886. ret = btrfs_del_root(trans, tree_root, &root->root_key);
  5887. BUG_ON(ret);
  5888. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  5889. ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
  5890. NULL, NULL);
  5891. BUG_ON(ret < 0);
  5892. if (ret > 0) {
  5893. /* if we fail to delete the orphan item this time
  5894. * around, it'll get picked up the next time.
  5895. *
  5896. * The most common failure here is just -ENOENT.
  5897. */
  5898. btrfs_del_orphan_item(trans, tree_root,
  5899. root->root_key.objectid);
  5900. }
  5901. }
  5902. if (root->in_radix) {
  5903. btrfs_free_fs_root(tree_root->fs_info, root);
  5904. } else {
  5905. free_extent_buffer(root->node);
  5906. free_extent_buffer(root->commit_root);
  5907. kfree(root);
  5908. }
  5909. out_free:
  5910. btrfs_end_transaction_throttle(trans, tree_root);
  5911. kfree(wc);
  5912. btrfs_free_path(path);
  5913. out:
  5914. if (err)
  5915. btrfs_std_error(root->fs_info, err);
  5916. return;
  5917. }
  5918. /*
  5919. * drop subtree rooted at tree block 'node'.
  5920. *
  5921. * NOTE: this function will unlock and release tree block 'node'
  5922. */
  5923. int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
  5924. struct btrfs_root *root,
  5925. struct extent_buffer *node,
  5926. struct extent_buffer *parent)
  5927. {
  5928. struct btrfs_path *path;
  5929. struct walk_control *wc;
  5930. int level;
  5931. int parent_level;
  5932. int ret = 0;
  5933. int wret;
  5934. BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  5935. path = btrfs_alloc_path();
  5936. if (!path)
  5937. return -ENOMEM;
  5938. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  5939. if (!wc) {
  5940. btrfs_free_path(path);
  5941. return -ENOMEM;
  5942. }
  5943. btrfs_assert_tree_locked(parent);
  5944. parent_level = btrfs_header_level(parent);
  5945. extent_buffer_get(parent);
  5946. path->nodes[parent_level] = parent;
  5947. path->slots[parent_level] = btrfs_header_nritems(parent);
  5948. btrfs_assert_tree_locked(node);
  5949. level = btrfs_header_level(node);
  5950. path->nodes[level] = node;
  5951. path->slots[level] = 0;
  5952. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5953. wc->refs[parent_level] = 1;
  5954. wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5955. wc->level = level;
  5956. wc->shared_level = -1;
  5957. wc->stage = DROP_REFERENCE;
  5958. wc->update_ref = 0;
  5959. wc->keep_locks = 1;
  5960. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  5961. while (1) {
  5962. wret = walk_down_tree(trans, root, path, wc);
  5963. if (wret < 0) {
  5964. ret = wret;
  5965. break;
  5966. }
  5967. wret = walk_up_tree(trans, root, path, wc, parent_level);
  5968. if (wret < 0)
  5969. ret = wret;
  5970. if (wret != 0)
  5971. break;
  5972. }
  5973. kfree(wc);
  5974. btrfs_free_path(path);
  5975. return ret;
  5976. }
  5977. static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
  5978. {
  5979. u64 num_devices;
  5980. u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
  5981. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
  5982. /*
  5983. * we add in the count of missing devices because we want
  5984. * to make sure that any RAID levels on a degraded FS
  5985. * continue to be honored.
  5986. */
  5987. num_devices = root->fs_info->fs_devices->rw_devices +
  5988. root->fs_info->fs_devices->missing_devices;
  5989. if (num_devices == 1) {
  5990. stripped |= BTRFS_BLOCK_GROUP_DUP;
  5991. stripped = flags & ~stripped;
  5992. /* turn raid0 into single device chunks */
  5993. if (flags & BTRFS_BLOCK_GROUP_RAID0)
  5994. return stripped;
  5995. /* turn mirroring into duplication */
  5996. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  5997. BTRFS_BLOCK_GROUP_RAID10))
  5998. return stripped | BTRFS_BLOCK_GROUP_DUP;
  5999. return flags;
  6000. } else {
  6001. /* they already had raid on here, just return */
  6002. if (flags & stripped)
  6003. return flags;
  6004. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6005. stripped = flags & ~stripped;
  6006. /* switch duplicated blocks with raid1 */
  6007. if (flags & BTRFS_BLOCK_GROUP_DUP)
  6008. return stripped | BTRFS_BLOCK_GROUP_RAID1;
  6009. /* turn single device chunks into raid0 */
  6010. return stripped | BTRFS_BLOCK_GROUP_RAID0;
  6011. }
  6012. return flags;
  6013. }
  6014. static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
  6015. {
  6016. struct btrfs_space_info *sinfo = cache->space_info;
  6017. u64 num_bytes;
  6018. u64 min_allocable_bytes;
  6019. int ret = -ENOSPC;
  6020. /*
  6021. * We need some metadata space and system metadata space for
  6022. * allocating chunks in some corner cases until we force to set
  6023. * it to be readonly.
  6024. */
  6025. if ((sinfo->flags &
  6026. (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
  6027. !force)
  6028. min_allocable_bytes = 1 * 1024 * 1024;
  6029. else
  6030. min_allocable_bytes = 0;
  6031. spin_lock(&sinfo->lock);
  6032. spin_lock(&cache->lock);
  6033. if (cache->ro) {
  6034. ret = 0;
  6035. goto out;
  6036. }
  6037. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6038. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6039. if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
  6040. sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
  6041. min_allocable_bytes <= sinfo->total_bytes) {
  6042. sinfo->bytes_readonly += num_bytes;
  6043. cache->ro = 1;
  6044. ret = 0;
  6045. }
  6046. out:
  6047. spin_unlock(&cache->lock);
  6048. spin_unlock(&sinfo->lock);
  6049. return ret;
  6050. }
  6051. int btrfs_set_block_group_ro(struct btrfs_root *root,
  6052. struct btrfs_block_group_cache *cache)
  6053. {
  6054. struct btrfs_trans_handle *trans;
  6055. u64 alloc_flags;
  6056. int ret;
  6057. BUG_ON(cache->ro);
  6058. trans = btrfs_join_transaction(root);
  6059. BUG_ON(IS_ERR(trans));
  6060. alloc_flags = update_block_group_flags(root, cache->flags);
  6061. if (alloc_flags != cache->flags)
  6062. do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6063. CHUNK_ALLOC_FORCE);
  6064. ret = set_block_group_ro(cache, 0);
  6065. if (!ret)
  6066. goto out;
  6067. alloc_flags = get_alloc_profile(root, cache->space_info->flags);
  6068. ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6069. CHUNK_ALLOC_FORCE);
  6070. if (ret < 0)
  6071. goto out;
  6072. ret = set_block_group_ro(cache, 0);
  6073. out:
  6074. btrfs_end_transaction(trans, root);
  6075. return ret;
  6076. }
  6077. int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
  6078. struct btrfs_root *root, u64 type)
  6079. {
  6080. u64 alloc_flags = get_alloc_profile(root, type);
  6081. return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6082. CHUNK_ALLOC_FORCE);
  6083. }
  6084. /*
  6085. * helper to account the unused space of all the readonly block group in the
  6086. * list. takes mirrors into account.
  6087. */
  6088. static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
  6089. {
  6090. struct btrfs_block_group_cache *block_group;
  6091. u64 free_bytes = 0;
  6092. int factor;
  6093. list_for_each_entry(block_group, groups_list, list) {
  6094. spin_lock(&block_group->lock);
  6095. if (!block_group->ro) {
  6096. spin_unlock(&block_group->lock);
  6097. continue;
  6098. }
  6099. if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6100. BTRFS_BLOCK_GROUP_RAID10 |
  6101. BTRFS_BLOCK_GROUP_DUP))
  6102. factor = 2;
  6103. else
  6104. factor = 1;
  6105. free_bytes += (block_group->key.offset -
  6106. btrfs_block_group_used(&block_group->item)) *
  6107. factor;
  6108. spin_unlock(&block_group->lock);
  6109. }
  6110. return free_bytes;
  6111. }
  6112. /*
  6113. * helper to account the unused space of all the readonly block group in the
  6114. * space_info. takes mirrors into account.
  6115. */
  6116. u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
  6117. {
  6118. int i;
  6119. u64 free_bytes = 0;
  6120. spin_lock(&sinfo->lock);
  6121. for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  6122. if (!list_empty(&sinfo->block_groups[i]))
  6123. free_bytes += __btrfs_get_ro_block_group_free_space(
  6124. &sinfo->block_groups[i]);
  6125. spin_unlock(&sinfo->lock);
  6126. return free_bytes;
  6127. }
  6128. int btrfs_set_block_group_rw(struct btrfs_root *root,
  6129. struct btrfs_block_group_cache *cache)
  6130. {
  6131. struct btrfs_space_info *sinfo = cache->space_info;
  6132. u64 num_bytes;
  6133. BUG_ON(!cache->ro);
  6134. spin_lock(&sinfo->lock);
  6135. spin_lock(&cache->lock);
  6136. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6137. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6138. sinfo->bytes_readonly -= num_bytes;
  6139. cache->ro = 0;
  6140. spin_unlock(&cache->lock);
  6141. spin_unlock(&sinfo->lock);
  6142. return 0;
  6143. }
  6144. /*
  6145. * checks to see if its even possible to relocate this block group.
  6146. *
  6147. * @return - -1 if it's not a good idea to relocate this block group, 0 if its
  6148. * ok to go ahead and try.
  6149. */
  6150. int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
  6151. {
  6152. struct btrfs_block_group_cache *block_group;
  6153. struct btrfs_space_info *space_info;
  6154. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  6155. struct btrfs_device *device;
  6156. u64 min_free;
  6157. u64 dev_min = 1;
  6158. u64 dev_nr = 0;
  6159. int index;
  6160. int full = 0;
  6161. int ret = 0;
  6162. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  6163. /* odd, couldn't find the block group, leave it alone */
  6164. if (!block_group)
  6165. return -1;
  6166. min_free = btrfs_block_group_used(&block_group->item);
  6167. /* no bytes used, we're good */
  6168. if (!min_free)
  6169. goto out;
  6170. space_info = block_group->space_info;
  6171. spin_lock(&space_info->lock);
  6172. full = space_info->full;
  6173. /*
  6174. * if this is the last block group we have in this space, we can't
  6175. * relocate it unless we're able to allocate a new chunk below.
  6176. *
  6177. * Otherwise, we need to make sure we have room in the space to handle
  6178. * all of the extents from this block group. If we can, we're good
  6179. */
  6180. if ((space_info->total_bytes != block_group->key.offset) &&
  6181. (space_info->bytes_used + space_info->bytes_reserved +
  6182. space_info->bytes_pinned + space_info->bytes_readonly +
  6183. min_free < space_info->total_bytes)) {
  6184. spin_unlock(&space_info->lock);
  6185. goto out;
  6186. }
  6187. spin_unlock(&space_info->lock);
  6188. /*
  6189. * ok we don't have enough space, but maybe we have free space on our
  6190. * devices to allocate new chunks for relocation, so loop through our
  6191. * alloc devices and guess if we have enough space. However, if we
  6192. * were marked as full, then we know there aren't enough chunks, and we
  6193. * can just return.
  6194. */
  6195. ret = -1;
  6196. if (full)
  6197. goto out;
  6198. /*
  6199. * index:
  6200. * 0: raid10
  6201. * 1: raid1
  6202. * 2: dup
  6203. * 3: raid0
  6204. * 4: single
  6205. */
  6206. index = get_block_group_index(block_group);
  6207. if (index == 0) {
  6208. dev_min = 4;
  6209. /* Divide by 2 */
  6210. min_free >>= 1;
  6211. } else if (index == 1) {
  6212. dev_min = 2;
  6213. } else if (index == 2) {
  6214. /* Multiply by 2 */
  6215. min_free <<= 1;
  6216. } else if (index == 3) {
  6217. dev_min = fs_devices->rw_devices;
  6218. do_div(min_free, dev_min);
  6219. }
  6220. mutex_lock(&root->fs_info->chunk_mutex);
  6221. list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
  6222. u64 dev_offset;
  6223. /*
  6224. * check to make sure we can actually find a chunk with enough
  6225. * space to fit our block group in.
  6226. */
  6227. if (device->total_bytes > device->bytes_used + min_free) {
  6228. ret = find_free_dev_extent(NULL, device, min_free,
  6229. &dev_offset, NULL);
  6230. if (!ret)
  6231. dev_nr++;
  6232. if (dev_nr >= dev_min)
  6233. break;
  6234. ret = -1;
  6235. }
  6236. }
  6237. mutex_unlock(&root->fs_info->chunk_mutex);
  6238. out:
  6239. btrfs_put_block_group(block_group);
  6240. return ret;
  6241. }
  6242. static int find_first_block_group(struct btrfs_root *root,
  6243. struct btrfs_path *path, struct btrfs_key *key)
  6244. {
  6245. int ret = 0;
  6246. struct btrfs_key found_key;
  6247. struct extent_buffer *leaf;
  6248. int slot;
  6249. ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
  6250. if (ret < 0)
  6251. goto out;
  6252. while (1) {
  6253. slot = path->slots[0];
  6254. leaf = path->nodes[0];
  6255. if (slot >= btrfs_header_nritems(leaf)) {
  6256. ret = btrfs_next_leaf(root, path);
  6257. if (ret == 0)
  6258. continue;
  6259. if (ret < 0)
  6260. goto out;
  6261. break;
  6262. }
  6263. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  6264. if (found_key.objectid >= key->objectid &&
  6265. found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
  6266. ret = 0;
  6267. goto out;
  6268. }
  6269. path->slots[0]++;
  6270. }
  6271. out:
  6272. return ret;
  6273. }
  6274. void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
  6275. {
  6276. struct btrfs_block_group_cache *block_group;
  6277. u64 last = 0;
  6278. while (1) {
  6279. struct inode *inode;
  6280. block_group = btrfs_lookup_first_block_group(info, last);
  6281. while (block_group) {
  6282. spin_lock(&block_group->lock);
  6283. if (block_group->iref)
  6284. break;
  6285. spin_unlock(&block_group->lock);
  6286. block_group = next_block_group(info->tree_root,
  6287. block_group);
  6288. }
  6289. if (!block_group) {
  6290. if (last == 0)
  6291. break;
  6292. last = 0;
  6293. continue;
  6294. }
  6295. inode = block_group->inode;
  6296. block_group->iref = 0;
  6297. block_group->inode = NULL;
  6298. spin_unlock(&block_group->lock);
  6299. iput(inode);
  6300. last = block_group->key.objectid + block_group->key.offset;
  6301. btrfs_put_block_group(block_group);
  6302. }
  6303. }
  6304. int btrfs_free_block_groups(struct btrfs_fs_info *info)
  6305. {
  6306. struct btrfs_block_group_cache *block_group;
  6307. struct btrfs_space_info *space_info;
  6308. struct btrfs_caching_control *caching_ctl;
  6309. struct rb_node *n;
  6310. down_write(&info->extent_commit_sem);
  6311. while (!list_empty(&info->caching_block_groups)) {
  6312. caching_ctl = list_entry(info->caching_block_groups.next,
  6313. struct btrfs_caching_control, list);
  6314. list_del(&caching_ctl->list);
  6315. put_caching_control(caching_ctl);
  6316. }
  6317. up_write(&info->extent_commit_sem);
  6318. spin_lock(&info->block_group_cache_lock);
  6319. while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
  6320. block_group = rb_entry(n, struct btrfs_block_group_cache,
  6321. cache_node);
  6322. rb_erase(&block_group->cache_node,
  6323. &info->block_group_cache_tree);
  6324. spin_unlock(&info->block_group_cache_lock);
  6325. down_write(&block_group->space_info->groups_sem);
  6326. list_del(&block_group->list);
  6327. up_write(&block_group->space_info->groups_sem);
  6328. if (block_group->cached == BTRFS_CACHE_STARTED)
  6329. wait_block_group_cache_done(block_group);
  6330. /*
  6331. * We haven't cached this block group, which means we could
  6332. * possibly have excluded extents on this block group.
  6333. */
  6334. if (block_group->cached == BTRFS_CACHE_NO)
  6335. free_excluded_extents(info->extent_root, block_group);
  6336. btrfs_remove_free_space_cache(block_group);
  6337. btrfs_put_block_group(block_group);
  6338. spin_lock(&info->block_group_cache_lock);
  6339. }
  6340. spin_unlock(&info->block_group_cache_lock);
  6341. /* now that all the block groups are freed, go through and
  6342. * free all the space_info structs. This is only called during
  6343. * the final stages of unmount, and so we know nobody is
  6344. * using them. We call synchronize_rcu() once before we start,
  6345. * just to be on the safe side.
  6346. */
  6347. synchronize_rcu();
  6348. release_global_block_rsv(info);
  6349. while(!list_empty(&info->space_info)) {
  6350. space_info = list_entry(info->space_info.next,
  6351. struct btrfs_space_info,
  6352. list);
  6353. if (space_info->bytes_pinned > 0 ||
  6354. space_info->bytes_reserved > 0 ||
  6355. space_info->bytes_may_use > 0) {
  6356. WARN_ON(1);
  6357. dump_space_info(space_info, 0, 0);
  6358. }
  6359. list_del(&space_info->list);
  6360. kfree(space_info);
  6361. }
  6362. return 0;
  6363. }
  6364. static void __link_block_group(struct btrfs_space_info *space_info,
  6365. struct btrfs_block_group_cache *cache)
  6366. {
  6367. int index = get_block_group_index(cache);
  6368. down_write(&space_info->groups_sem);
  6369. list_add_tail(&cache->list, &space_info->block_groups[index]);
  6370. up_write(&space_info->groups_sem);
  6371. }
  6372. int btrfs_read_block_groups(struct btrfs_root *root)
  6373. {
  6374. struct btrfs_path *path;
  6375. int ret;
  6376. struct btrfs_block_group_cache *cache;
  6377. struct btrfs_fs_info *info = root->fs_info;
  6378. struct btrfs_space_info *space_info;
  6379. struct btrfs_key key;
  6380. struct btrfs_key found_key;
  6381. struct extent_buffer *leaf;
  6382. int need_clear = 0;
  6383. u64 cache_gen;
  6384. root = info->extent_root;
  6385. key.objectid = 0;
  6386. key.offset = 0;
  6387. btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
  6388. path = btrfs_alloc_path();
  6389. if (!path)
  6390. return -ENOMEM;
  6391. path->reada = 1;
  6392. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  6393. if (btrfs_test_opt(root, SPACE_CACHE) &&
  6394. btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
  6395. need_clear = 1;
  6396. if (btrfs_test_opt(root, CLEAR_CACHE))
  6397. need_clear = 1;
  6398. while (1) {
  6399. ret = find_first_block_group(root, path, &key);
  6400. if (ret > 0)
  6401. break;
  6402. if (ret != 0)
  6403. goto error;
  6404. leaf = path->nodes[0];
  6405. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  6406. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  6407. if (!cache) {
  6408. ret = -ENOMEM;
  6409. goto error;
  6410. }
  6411. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  6412. GFP_NOFS);
  6413. if (!cache->free_space_ctl) {
  6414. kfree(cache);
  6415. ret = -ENOMEM;
  6416. goto error;
  6417. }
  6418. atomic_set(&cache->count, 1);
  6419. spin_lock_init(&cache->lock);
  6420. cache->fs_info = info;
  6421. INIT_LIST_HEAD(&cache->list);
  6422. INIT_LIST_HEAD(&cache->cluster_list);
  6423. if (need_clear)
  6424. cache->disk_cache_state = BTRFS_DC_CLEAR;
  6425. read_extent_buffer(leaf, &cache->item,
  6426. btrfs_item_ptr_offset(leaf, path->slots[0]),
  6427. sizeof(cache->item));
  6428. memcpy(&cache->key, &found_key, sizeof(found_key));
  6429. key.objectid = found_key.objectid + found_key.offset;
  6430. btrfs_release_path(path);
  6431. cache->flags = btrfs_block_group_flags(&cache->item);
  6432. cache->sectorsize = root->sectorsize;
  6433. btrfs_init_free_space_ctl(cache);
  6434. /*
  6435. * We need to exclude the super stripes now so that the space
  6436. * info has super bytes accounted for, otherwise we'll think
  6437. * we have more space than we actually do.
  6438. */
  6439. exclude_super_stripes(root, cache);
  6440. /*
  6441. * check for two cases, either we are full, and therefore
  6442. * don't need to bother with the caching work since we won't
  6443. * find any space, or we are empty, and we can just add all
  6444. * the space in and be done with it. This saves us _alot_ of
  6445. * time, particularly in the full case.
  6446. */
  6447. if (found_key.offset == btrfs_block_group_used(&cache->item)) {
  6448. cache->last_byte_to_unpin = (u64)-1;
  6449. cache->cached = BTRFS_CACHE_FINISHED;
  6450. free_excluded_extents(root, cache);
  6451. } else if (btrfs_block_group_used(&cache->item) == 0) {
  6452. cache->last_byte_to_unpin = (u64)-1;
  6453. cache->cached = BTRFS_CACHE_FINISHED;
  6454. add_new_free_space(cache, root->fs_info,
  6455. found_key.objectid,
  6456. found_key.objectid +
  6457. found_key.offset);
  6458. free_excluded_extents(root, cache);
  6459. }
  6460. ret = update_space_info(info, cache->flags, found_key.offset,
  6461. btrfs_block_group_used(&cache->item),
  6462. &space_info);
  6463. BUG_ON(ret);
  6464. cache->space_info = space_info;
  6465. spin_lock(&cache->space_info->lock);
  6466. cache->space_info->bytes_readonly += cache->bytes_super;
  6467. spin_unlock(&cache->space_info->lock);
  6468. __link_block_group(space_info, cache);
  6469. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  6470. BUG_ON(ret);
  6471. set_avail_alloc_bits(root->fs_info, cache->flags);
  6472. if (btrfs_chunk_readonly(root, cache->key.objectid))
  6473. set_block_group_ro(cache, 1);
  6474. }
  6475. list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
  6476. if (!(get_alloc_profile(root, space_info->flags) &
  6477. (BTRFS_BLOCK_GROUP_RAID10 |
  6478. BTRFS_BLOCK_GROUP_RAID1 |
  6479. BTRFS_BLOCK_GROUP_DUP)))
  6480. continue;
  6481. /*
  6482. * avoid allocating from un-mirrored block group if there are
  6483. * mirrored block groups.
  6484. */
  6485. list_for_each_entry(cache, &space_info->block_groups[3], list)
  6486. set_block_group_ro(cache, 1);
  6487. list_for_each_entry(cache, &space_info->block_groups[4], list)
  6488. set_block_group_ro(cache, 1);
  6489. }
  6490. init_global_block_rsv(info);
  6491. ret = 0;
  6492. error:
  6493. btrfs_free_path(path);
  6494. return ret;
  6495. }
  6496. int btrfs_make_block_group(struct btrfs_trans_handle *trans,
  6497. struct btrfs_root *root, u64 bytes_used,
  6498. u64 type, u64 chunk_objectid, u64 chunk_offset,
  6499. u64 size)
  6500. {
  6501. int ret;
  6502. struct btrfs_root *extent_root;
  6503. struct btrfs_block_group_cache *cache;
  6504. extent_root = root->fs_info->extent_root;
  6505. root->fs_info->last_trans_log_full_commit = trans->transid;
  6506. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  6507. if (!cache)
  6508. return -ENOMEM;
  6509. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  6510. GFP_NOFS);
  6511. if (!cache->free_space_ctl) {
  6512. kfree(cache);
  6513. return -ENOMEM;
  6514. }
  6515. cache->key.objectid = chunk_offset;
  6516. cache->key.offset = size;
  6517. cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
  6518. cache->sectorsize = root->sectorsize;
  6519. cache->fs_info = root->fs_info;
  6520. atomic_set(&cache->count, 1);
  6521. spin_lock_init(&cache->lock);
  6522. INIT_LIST_HEAD(&cache->list);
  6523. INIT_LIST_HEAD(&cache->cluster_list);
  6524. btrfs_init_free_space_ctl(cache);
  6525. btrfs_set_block_group_used(&cache->item, bytes_used);
  6526. btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
  6527. cache->flags = type;
  6528. btrfs_set_block_group_flags(&cache->item, type);
  6529. cache->last_byte_to_unpin = (u64)-1;
  6530. cache->cached = BTRFS_CACHE_FINISHED;
  6531. exclude_super_stripes(root, cache);
  6532. add_new_free_space(cache, root->fs_info, chunk_offset,
  6533. chunk_offset + size);
  6534. free_excluded_extents(root, cache);
  6535. ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
  6536. &cache->space_info);
  6537. BUG_ON(ret);
  6538. spin_lock(&cache->space_info->lock);
  6539. cache->space_info->bytes_readonly += cache->bytes_super;
  6540. spin_unlock(&cache->space_info->lock);
  6541. __link_block_group(cache->space_info, cache);
  6542. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  6543. BUG_ON(ret);
  6544. ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
  6545. sizeof(cache->item));
  6546. BUG_ON(ret);
  6547. set_avail_alloc_bits(extent_root->fs_info, type);
  6548. return 0;
  6549. }
  6550. int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
  6551. struct btrfs_root *root, u64 group_start)
  6552. {
  6553. struct btrfs_path *path;
  6554. struct btrfs_block_group_cache *block_group;
  6555. struct btrfs_free_cluster *cluster;
  6556. struct btrfs_root *tree_root = root->fs_info->tree_root;
  6557. struct btrfs_key key;
  6558. struct inode *inode;
  6559. int ret;
  6560. int factor;
  6561. root = root->fs_info->extent_root;
  6562. block_group = btrfs_lookup_block_group(root->fs_info, group_start);
  6563. BUG_ON(!block_group);
  6564. BUG_ON(!block_group->ro);
  6565. /*
  6566. * Free the reserved super bytes from this block group before
  6567. * remove it.
  6568. */
  6569. free_excluded_extents(root, block_group);
  6570. memcpy(&key, &block_group->key, sizeof(key));
  6571. if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
  6572. BTRFS_BLOCK_GROUP_RAID1 |
  6573. BTRFS_BLOCK_GROUP_RAID10))
  6574. factor = 2;
  6575. else
  6576. factor = 1;
  6577. /* make sure this block group isn't part of an allocation cluster */
  6578. cluster = &root->fs_info->data_alloc_cluster;
  6579. spin_lock(&cluster->refill_lock);
  6580. btrfs_return_cluster_to_free_space(block_group, cluster);
  6581. spin_unlock(&cluster->refill_lock);
  6582. /*
  6583. * make sure this block group isn't part of a metadata
  6584. * allocation cluster
  6585. */
  6586. cluster = &root->fs_info->meta_alloc_cluster;
  6587. spin_lock(&cluster->refill_lock);
  6588. btrfs_return_cluster_to_free_space(block_group, cluster);
  6589. spin_unlock(&cluster->refill_lock);
  6590. path = btrfs_alloc_path();
  6591. if (!path) {
  6592. ret = -ENOMEM;
  6593. goto out;
  6594. }
  6595. inode = lookup_free_space_inode(tree_root, block_group, path);
  6596. if (!IS_ERR(inode)) {
  6597. ret = btrfs_orphan_add(trans, inode);
  6598. BUG_ON(ret);
  6599. clear_nlink(inode);
  6600. /* One for the block groups ref */
  6601. spin_lock(&block_group->lock);
  6602. if (block_group->iref) {
  6603. block_group->iref = 0;
  6604. block_group->inode = NULL;
  6605. spin_unlock(&block_group->lock);
  6606. iput(inode);
  6607. } else {
  6608. spin_unlock(&block_group->lock);
  6609. }
  6610. /* One for our lookup ref */
  6611. btrfs_add_delayed_iput(inode);
  6612. }
  6613. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  6614. key.offset = block_group->key.objectid;
  6615. key.type = 0;
  6616. ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
  6617. if (ret < 0)
  6618. goto out;
  6619. if (ret > 0)
  6620. btrfs_release_path(path);
  6621. if (ret == 0) {
  6622. ret = btrfs_del_item(trans, tree_root, path);
  6623. if (ret)
  6624. goto out;
  6625. btrfs_release_path(path);
  6626. }
  6627. spin_lock(&root->fs_info->block_group_cache_lock);
  6628. rb_erase(&block_group->cache_node,
  6629. &root->fs_info->block_group_cache_tree);
  6630. spin_unlock(&root->fs_info->block_group_cache_lock);
  6631. down_write(&block_group->space_info->groups_sem);
  6632. /*
  6633. * we must use list_del_init so people can check to see if they
  6634. * are still on the list after taking the semaphore
  6635. */
  6636. list_del_init(&block_group->list);
  6637. up_write(&block_group->space_info->groups_sem);
  6638. if (block_group->cached == BTRFS_CACHE_STARTED)
  6639. wait_block_group_cache_done(block_group);
  6640. btrfs_remove_free_space_cache(block_group);
  6641. spin_lock(&block_group->space_info->lock);
  6642. block_group->space_info->total_bytes -= block_group->key.offset;
  6643. block_group->space_info->bytes_readonly -= block_group->key.offset;
  6644. block_group->space_info->disk_total -= block_group->key.offset * factor;
  6645. spin_unlock(&block_group->space_info->lock);
  6646. memcpy(&key, &block_group->key, sizeof(key));
  6647. btrfs_clear_space_info_full(root->fs_info);
  6648. btrfs_put_block_group(block_group);
  6649. btrfs_put_block_group(block_group);
  6650. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  6651. if (ret > 0)
  6652. ret = -EIO;
  6653. if (ret < 0)
  6654. goto out;
  6655. ret = btrfs_del_item(trans, root, path);
  6656. out:
  6657. btrfs_free_path(path);
  6658. return ret;
  6659. }
  6660. int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  6661. {
  6662. struct btrfs_space_info *space_info;
  6663. struct btrfs_super_block *disk_super;
  6664. u64 features;
  6665. u64 flags;
  6666. int mixed = 0;
  6667. int ret;
  6668. disk_super = fs_info->super_copy;
  6669. if (!btrfs_super_root(disk_super))
  6670. return 1;
  6671. features = btrfs_super_incompat_flags(disk_super);
  6672. if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  6673. mixed = 1;
  6674. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  6675. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  6676. if (ret)
  6677. goto out;
  6678. if (mixed) {
  6679. flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
  6680. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  6681. } else {
  6682. flags = BTRFS_BLOCK_GROUP_METADATA;
  6683. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  6684. if (ret)
  6685. goto out;
  6686. flags = BTRFS_BLOCK_GROUP_DATA;
  6687. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  6688. }
  6689. out:
  6690. return ret;
  6691. }
  6692. int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  6693. {
  6694. return unpin_extent_range(root, start, end);
  6695. }
  6696. int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
  6697. u64 num_bytes, u64 *actual_bytes)
  6698. {
  6699. return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
  6700. }
  6701. int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
  6702. {
  6703. struct btrfs_fs_info *fs_info = root->fs_info;
  6704. struct btrfs_block_group_cache *cache = NULL;
  6705. u64 group_trimmed;
  6706. u64 start;
  6707. u64 end;
  6708. u64 trimmed = 0;
  6709. int ret = 0;
  6710. cache = btrfs_lookup_block_group(fs_info, range->start);
  6711. while (cache) {
  6712. if (cache->key.objectid >= (range->start + range->len)) {
  6713. btrfs_put_block_group(cache);
  6714. break;
  6715. }
  6716. start = max(range->start, cache->key.objectid);
  6717. end = min(range->start + range->len,
  6718. cache->key.objectid + cache->key.offset);
  6719. if (end - start >= range->minlen) {
  6720. if (!block_group_cache_done(cache)) {
  6721. ret = cache_block_group(cache, NULL, root, 0);
  6722. if (!ret)
  6723. wait_block_group_cache_done(cache);
  6724. }
  6725. ret = btrfs_trim_block_group(cache,
  6726. &group_trimmed,
  6727. start,
  6728. end,
  6729. range->minlen);
  6730. trimmed += group_trimmed;
  6731. if (ret) {
  6732. btrfs_put_block_group(cache);
  6733. break;
  6734. }
  6735. }
  6736. cache = next_block_group(fs_info->tree_root, cache);
  6737. }
  6738. range->len = trimmed;
  6739. return ret;
  6740. }