tcp_input.c 165 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_thin_dupack __read_mostly;
  91. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  92. int sysctl_tcp_early_retrans __read_mostly = 3;
  93. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  94. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  95. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  96. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  97. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  98. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  99. #define FLAG_ECE 0x40 /* ECE in this ACK */
  100. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  101. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  102. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  103. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  104. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  105. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  106. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  107. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  108. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  109. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  110. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  111. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  112. /* Adapt the MSS value used to make delayed ack decision to the
  113. * real world.
  114. */
  115. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  116. {
  117. struct inet_connection_sock *icsk = inet_csk(sk);
  118. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  119. unsigned int len;
  120. icsk->icsk_ack.last_seg_size = 0;
  121. /* skb->len may jitter because of SACKs, even if peer
  122. * sends good full-sized frames.
  123. */
  124. len = skb_shinfo(skb)->gso_size ? : skb->len;
  125. if (len >= icsk->icsk_ack.rcv_mss) {
  126. icsk->icsk_ack.rcv_mss = len;
  127. } else {
  128. /* Otherwise, we make more careful check taking into account,
  129. * that SACKs block is variable.
  130. *
  131. * "len" is invariant segment length, including TCP header.
  132. */
  133. len += skb->data - skb_transport_header(skb);
  134. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  135. /* If PSH is not set, packet should be
  136. * full sized, provided peer TCP is not badly broken.
  137. * This observation (if it is correct 8)) allows
  138. * to handle super-low mtu links fairly.
  139. */
  140. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  141. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  142. /* Subtract also invariant (if peer is RFC compliant),
  143. * tcp header plus fixed timestamp option length.
  144. * Resulting "len" is MSS free of SACK jitter.
  145. */
  146. len -= tcp_sk(sk)->tcp_header_len;
  147. icsk->icsk_ack.last_seg_size = len;
  148. if (len == lss) {
  149. icsk->icsk_ack.rcv_mss = len;
  150. return;
  151. }
  152. }
  153. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  154. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  155. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  156. }
  157. }
  158. static void tcp_incr_quickack(struct sock *sk)
  159. {
  160. struct inet_connection_sock *icsk = inet_csk(sk);
  161. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  162. if (quickacks == 0)
  163. quickacks = 2;
  164. if (quickacks > icsk->icsk_ack.quick)
  165. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  166. }
  167. static void tcp_enter_quickack_mode(struct sock *sk)
  168. {
  169. struct inet_connection_sock *icsk = inet_csk(sk);
  170. tcp_incr_quickack(sk);
  171. icsk->icsk_ack.pingpong = 0;
  172. icsk->icsk_ack.ato = TCP_ATO_MIN;
  173. }
  174. /* Send ACKs quickly, if "quick" count is not exhausted
  175. * and the session is not interactive.
  176. */
  177. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  178. {
  179. const struct inet_connection_sock *icsk = inet_csk(sk);
  180. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  181. }
  182. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  183. {
  184. if (tp->ecn_flags & TCP_ECN_OK)
  185. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  186. }
  187. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  188. {
  189. if (tcp_hdr(skb)->cwr)
  190. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  191. }
  192. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  193. {
  194. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  195. }
  196. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  197. {
  198. if (!(tp->ecn_flags & TCP_ECN_OK))
  199. return;
  200. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  201. case INET_ECN_NOT_ECT:
  202. /* Funny extension: if ECT is not set on a segment,
  203. * and we already seen ECT on a previous segment,
  204. * it is probably a retransmit.
  205. */
  206. if (tp->ecn_flags & TCP_ECN_SEEN)
  207. tcp_enter_quickack_mode((struct sock *)tp);
  208. break;
  209. case INET_ECN_CE:
  210. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  211. /* Better not delay acks, sender can have a very low cwnd */
  212. tcp_enter_quickack_mode((struct sock *)tp);
  213. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  214. }
  215. /* fallinto */
  216. default:
  217. tp->ecn_flags |= TCP_ECN_SEEN;
  218. }
  219. }
  220. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  221. {
  222. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  223. tp->ecn_flags &= ~TCP_ECN_OK;
  224. }
  225. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  226. {
  227. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  228. tp->ecn_flags &= ~TCP_ECN_OK;
  229. }
  230. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  231. {
  232. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  233. return true;
  234. return false;
  235. }
  236. /* Buffer size and advertised window tuning.
  237. *
  238. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  239. */
  240. static void tcp_fixup_sndbuf(struct sock *sk)
  241. {
  242. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  243. sndmem *= TCP_INIT_CWND;
  244. if (sk->sk_sndbuf < sndmem)
  245. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  246. }
  247. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  248. *
  249. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  250. * forward and advertised in receiver window (tp->rcv_wnd) and
  251. * "application buffer", required to isolate scheduling/application
  252. * latencies from network.
  253. * window_clamp is maximal advertised window. It can be less than
  254. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  255. * is reserved for "application" buffer. The less window_clamp is
  256. * the smoother our behaviour from viewpoint of network, but the lower
  257. * throughput and the higher sensitivity of the connection to losses. 8)
  258. *
  259. * rcv_ssthresh is more strict window_clamp used at "slow start"
  260. * phase to predict further behaviour of this connection.
  261. * It is used for two goals:
  262. * - to enforce header prediction at sender, even when application
  263. * requires some significant "application buffer". It is check #1.
  264. * - to prevent pruning of receive queue because of misprediction
  265. * of receiver window. Check #2.
  266. *
  267. * The scheme does not work when sender sends good segments opening
  268. * window and then starts to feed us spaghetti. But it should work
  269. * in common situations. Otherwise, we have to rely on queue collapsing.
  270. */
  271. /* Slow part of check#2. */
  272. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  273. {
  274. struct tcp_sock *tp = tcp_sk(sk);
  275. /* Optimize this! */
  276. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  277. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  278. while (tp->rcv_ssthresh <= window) {
  279. if (truesize <= skb->len)
  280. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  281. truesize >>= 1;
  282. window >>= 1;
  283. }
  284. return 0;
  285. }
  286. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  287. {
  288. struct tcp_sock *tp = tcp_sk(sk);
  289. /* Check #1 */
  290. if (tp->rcv_ssthresh < tp->window_clamp &&
  291. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  292. !sk_under_memory_pressure(sk)) {
  293. int incr;
  294. /* Check #2. Increase window, if skb with such overhead
  295. * will fit to rcvbuf in future.
  296. */
  297. if (tcp_win_from_space(skb->truesize) <= skb->len)
  298. incr = 2 * tp->advmss;
  299. else
  300. incr = __tcp_grow_window(sk, skb);
  301. if (incr) {
  302. incr = max_t(int, incr, 2 * skb->len);
  303. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  304. tp->window_clamp);
  305. inet_csk(sk)->icsk_ack.quick |= 1;
  306. }
  307. }
  308. }
  309. /* 3. Tuning rcvbuf, when connection enters established state. */
  310. static void tcp_fixup_rcvbuf(struct sock *sk)
  311. {
  312. u32 mss = tcp_sk(sk)->advmss;
  313. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  314. int rcvmem;
  315. /* Limit to 10 segments if mss <= 1460,
  316. * or 14600/mss segments, with a minimum of two segments.
  317. */
  318. if (mss > 1460)
  319. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  320. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  321. while (tcp_win_from_space(rcvmem) < mss)
  322. rcvmem += 128;
  323. rcvmem *= icwnd;
  324. if (sk->sk_rcvbuf < rcvmem)
  325. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  326. }
  327. /* 4. Try to fixup all. It is made immediately after connection enters
  328. * established state.
  329. */
  330. void tcp_init_buffer_space(struct sock *sk)
  331. {
  332. struct tcp_sock *tp = tcp_sk(sk);
  333. int maxwin;
  334. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  335. tcp_fixup_rcvbuf(sk);
  336. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  337. tcp_fixup_sndbuf(sk);
  338. tp->rcvq_space.space = tp->rcv_wnd;
  339. maxwin = tcp_full_space(sk);
  340. if (tp->window_clamp >= maxwin) {
  341. tp->window_clamp = maxwin;
  342. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  343. tp->window_clamp = max(maxwin -
  344. (maxwin >> sysctl_tcp_app_win),
  345. 4 * tp->advmss);
  346. }
  347. /* Force reservation of one segment. */
  348. if (sysctl_tcp_app_win &&
  349. tp->window_clamp > 2 * tp->advmss &&
  350. tp->window_clamp + tp->advmss > maxwin)
  351. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  352. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  353. tp->snd_cwnd_stamp = tcp_time_stamp;
  354. }
  355. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  356. static void tcp_clamp_window(struct sock *sk)
  357. {
  358. struct tcp_sock *tp = tcp_sk(sk);
  359. struct inet_connection_sock *icsk = inet_csk(sk);
  360. icsk->icsk_ack.quick = 0;
  361. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  362. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  363. !sk_under_memory_pressure(sk) &&
  364. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  365. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  366. sysctl_tcp_rmem[2]);
  367. }
  368. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  369. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  370. }
  371. /* Initialize RCV_MSS value.
  372. * RCV_MSS is an our guess about MSS used by the peer.
  373. * We haven't any direct information about the MSS.
  374. * It's better to underestimate the RCV_MSS rather than overestimate.
  375. * Overestimations make us ACKing less frequently than needed.
  376. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  377. */
  378. void tcp_initialize_rcv_mss(struct sock *sk)
  379. {
  380. const struct tcp_sock *tp = tcp_sk(sk);
  381. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  382. hint = min(hint, tp->rcv_wnd / 2);
  383. hint = min(hint, TCP_MSS_DEFAULT);
  384. hint = max(hint, TCP_MIN_MSS);
  385. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  386. }
  387. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  388. /* Receiver "autotuning" code.
  389. *
  390. * The algorithm for RTT estimation w/o timestamps is based on
  391. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  392. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  393. *
  394. * More detail on this code can be found at
  395. * <http://staff.psc.edu/jheffner/>,
  396. * though this reference is out of date. A new paper
  397. * is pending.
  398. */
  399. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  400. {
  401. u32 new_sample = tp->rcv_rtt_est.rtt;
  402. long m = sample;
  403. if (m == 0)
  404. m = 1;
  405. if (new_sample != 0) {
  406. /* If we sample in larger samples in the non-timestamp
  407. * case, we could grossly overestimate the RTT especially
  408. * with chatty applications or bulk transfer apps which
  409. * are stalled on filesystem I/O.
  410. *
  411. * Also, since we are only going for a minimum in the
  412. * non-timestamp case, we do not smooth things out
  413. * else with timestamps disabled convergence takes too
  414. * long.
  415. */
  416. if (!win_dep) {
  417. m -= (new_sample >> 3);
  418. new_sample += m;
  419. } else {
  420. m <<= 3;
  421. if (m < new_sample)
  422. new_sample = m;
  423. }
  424. } else {
  425. /* No previous measure. */
  426. new_sample = m << 3;
  427. }
  428. if (tp->rcv_rtt_est.rtt != new_sample)
  429. tp->rcv_rtt_est.rtt = new_sample;
  430. }
  431. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  432. {
  433. if (tp->rcv_rtt_est.time == 0)
  434. goto new_measure;
  435. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  436. return;
  437. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  438. new_measure:
  439. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  440. tp->rcv_rtt_est.time = tcp_time_stamp;
  441. }
  442. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  443. const struct sk_buff *skb)
  444. {
  445. struct tcp_sock *tp = tcp_sk(sk);
  446. if (tp->rx_opt.rcv_tsecr &&
  447. (TCP_SKB_CB(skb)->end_seq -
  448. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  449. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  450. }
  451. /*
  452. * This function should be called every time data is copied to user space.
  453. * It calculates the appropriate TCP receive buffer space.
  454. */
  455. void tcp_rcv_space_adjust(struct sock *sk)
  456. {
  457. struct tcp_sock *tp = tcp_sk(sk);
  458. int time;
  459. int space;
  460. if (tp->rcvq_space.time == 0)
  461. goto new_measure;
  462. time = tcp_time_stamp - tp->rcvq_space.time;
  463. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  464. return;
  465. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  466. space = max(tp->rcvq_space.space, space);
  467. if (tp->rcvq_space.space != space) {
  468. int rcvmem;
  469. tp->rcvq_space.space = space;
  470. if (sysctl_tcp_moderate_rcvbuf &&
  471. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  472. int new_clamp = space;
  473. /* Receive space grows, normalize in order to
  474. * take into account packet headers and sk_buff
  475. * structure overhead.
  476. */
  477. space /= tp->advmss;
  478. if (!space)
  479. space = 1;
  480. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  481. while (tcp_win_from_space(rcvmem) < tp->advmss)
  482. rcvmem += 128;
  483. space *= rcvmem;
  484. space = min(space, sysctl_tcp_rmem[2]);
  485. if (space > sk->sk_rcvbuf) {
  486. sk->sk_rcvbuf = space;
  487. /* Make the window clamp follow along. */
  488. tp->window_clamp = new_clamp;
  489. }
  490. }
  491. }
  492. new_measure:
  493. tp->rcvq_space.seq = tp->copied_seq;
  494. tp->rcvq_space.time = tcp_time_stamp;
  495. }
  496. /* There is something which you must keep in mind when you analyze the
  497. * behavior of the tp->ato delayed ack timeout interval. When a
  498. * connection starts up, we want to ack as quickly as possible. The
  499. * problem is that "good" TCP's do slow start at the beginning of data
  500. * transmission. The means that until we send the first few ACK's the
  501. * sender will sit on his end and only queue most of his data, because
  502. * he can only send snd_cwnd unacked packets at any given time. For
  503. * each ACK we send, he increments snd_cwnd and transmits more of his
  504. * queue. -DaveM
  505. */
  506. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  507. {
  508. struct tcp_sock *tp = tcp_sk(sk);
  509. struct inet_connection_sock *icsk = inet_csk(sk);
  510. u32 now;
  511. inet_csk_schedule_ack(sk);
  512. tcp_measure_rcv_mss(sk, skb);
  513. tcp_rcv_rtt_measure(tp);
  514. now = tcp_time_stamp;
  515. if (!icsk->icsk_ack.ato) {
  516. /* The _first_ data packet received, initialize
  517. * delayed ACK engine.
  518. */
  519. tcp_incr_quickack(sk);
  520. icsk->icsk_ack.ato = TCP_ATO_MIN;
  521. } else {
  522. int m = now - icsk->icsk_ack.lrcvtime;
  523. if (m <= TCP_ATO_MIN / 2) {
  524. /* The fastest case is the first. */
  525. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  526. } else if (m < icsk->icsk_ack.ato) {
  527. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  528. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  529. icsk->icsk_ack.ato = icsk->icsk_rto;
  530. } else if (m > icsk->icsk_rto) {
  531. /* Too long gap. Apparently sender failed to
  532. * restart window, so that we send ACKs quickly.
  533. */
  534. tcp_incr_quickack(sk);
  535. sk_mem_reclaim(sk);
  536. }
  537. }
  538. icsk->icsk_ack.lrcvtime = now;
  539. TCP_ECN_check_ce(tp, skb);
  540. if (skb->len >= 128)
  541. tcp_grow_window(sk, skb);
  542. }
  543. /* Called to compute a smoothed rtt estimate. The data fed to this
  544. * routine either comes from timestamps, or from segments that were
  545. * known _not_ to have been retransmitted [see Karn/Partridge
  546. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  547. * piece by Van Jacobson.
  548. * NOTE: the next three routines used to be one big routine.
  549. * To save cycles in the RFC 1323 implementation it was better to break
  550. * it up into three procedures. -- erics
  551. */
  552. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  553. {
  554. struct tcp_sock *tp = tcp_sk(sk);
  555. long m = mrtt; /* RTT */
  556. /* The following amusing code comes from Jacobson's
  557. * article in SIGCOMM '88. Note that rtt and mdev
  558. * are scaled versions of rtt and mean deviation.
  559. * This is designed to be as fast as possible
  560. * m stands for "measurement".
  561. *
  562. * On a 1990 paper the rto value is changed to:
  563. * RTO = rtt + 4 * mdev
  564. *
  565. * Funny. This algorithm seems to be very broken.
  566. * These formulae increase RTO, when it should be decreased, increase
  567. * too slowly, when it should be increased quickly, decrease too quickly
  568. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  569. * does not matter how to _calculate_ it. Seems, it was trap
  570. * that VJ failed to avoid. 8)
  571. */
  572. if (m == 0)
  573. m = 1;
  574. if (tp->srtt != 0) {
  575. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  576. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  577. if (m < 0) {
  578. m = -m; /* m is now abs(error) */
  579. m -= (tp->mdev >> 2); /* similar update on mdev */
  580. /* This is similar to one of Eifel findings.
  581. * Eifel blocks mdev updates when rtt decreases.
  582. * This solution is a bit different: we use finer gain
  583. * for mdev in this case (alpha*beta).
  584. * Like Eifel it also prevents growth of rto,
  585. * but also it limits too fast rto decreases,
  586. * happening in pure Eifel.
  587. */
  588. if (m > 0)
  589. m >>= 3;
  590. } else {
  591. m -= (tp->mdev >> 2); /* similar update on mdev */
  592. }
  593. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  594. if (tp->mdev > tp->mdev_max) {
  595. tp->mdev_max = tp->mdev;
  596. if (tp->mdev_max > tp->rttvar)
  597. tp->rttvar = tp->mdev_max;
  598. }
  599. if (after(tp->snd_una, tp->rtt_seq)) {
  600. if (tp->mdev_max < tp->rttvar)
  601. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  602. tp->rtt_seq = tp->snd_nxt;
  603. tp->mdev_max = tcp_rto_min(sk);
  604. }
  605. } else {
  606. /* no previous measure. */
  607. tp->srtt = m << 3; /* take the measured time to be rtt */
  608. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  609. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  610. tp->rtt_seq = tp->snd_nxt;
  611. }
  612. }
  613. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  614. * routine referred to above.
  615. */
  616. void tcp_set_rto(struct sock *sk)
  617. {
  618. const struct tcp_sock *tp = tcp_sk(sk);
  619. /* Old crap is replaced with new one. 8)
  620. *
  621. * More seriously:
  622. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  623. * It cannot be less due to utterly erratic ACK generation made
  624. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  625. * to do with delayed acks, because at cwnd>2 true delack timeout
  626. * is invisible. Actually, Linux-2.4 also generates erratic
  627. * ACKs in some circumstances.
  628. */
  629. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  630. /* 2. Fixups made earlier cannot be right.
  631. * If we do not estimate RTO correctly without them,
  632. * all the algo is pure shit and should be replaced
  633. * with correct one. It is exactly, which we pretend to do.
  634. */
  635. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  636. * guarantees that rto is higher.
  637. */
  638. tcp_bound_rto(sk);
  639. }
  640. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  641. {
  642. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  643. if (!cwnd)
  644. cwnd = TCP_INIT_CWND;
  645. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  646. }
  647. /*
  648. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  649. * disables it when reordering is detected
  650. */
  651. void tcp_disable_fack(struct tcp_sock *tp)
  652. {
  653. /* RFC3517 uses different metric in lost marker => reset on change */
  654. if (tcp_is_fack(tp))
  655. tp->lost_skb_hint = NULL;
  656. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  657. }
  658. /* Take a notice that peer is sending D-SACKs */
  659. static void tcp_dsack_seen(struct tcp_sock *tp)
  660. {
  661. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  662. }
  663. static void tcp_update_reordering(struct sock *sk, const int metric,
  664. const int ts)
  665. {
  666. struct tcp_sock *tp = tcp_sk(sk);
  667. if (metric > tp->reordering) {
  668. int mib_idx;
  669. tp->reordering = min(TCP_MAX_REORDERING, metric);
  670. /* This exciting event is worth to be remembered. 8) */
  671. if (ts)
  672. mib_idx = LINUX_MIB_TCPTSREORDER;
  673. else if (tcp_is_reno(tp))
  674. mib_idx = LINUX_MIB_TCPRENOREORDER;
  675. else if (tcp_is_fack(tp))
  676. mib_idx = LINUX_MIB_TCPFACKREORDER;
  677. else
  678. mib_idx = LINUX_MIB_TCPSACKREORDER;
  679. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  680. #if FASTRETRANS_DEBUG > 1
  681. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  682. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  683. tp->reordering,
  684. tp->fackets_out,
  685. tp->sacked_out,
  686. tp->undo_marker ? tp->undo_retrans : 0);
  687. #endif
  688. tcp_disable_fack(tp);
  689. }
  690. if (metric > 0)
  691. tcp_disable_early_retrans(tp);
  692. }
  693. /* This must be called before lost_out is incremented */
  694. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  695. {
  696. if ((tp->retransmit_skb_hint == NULL) ||
  697. before(TCP_SKB_CB(skb)->seq,
  698. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  699. tp->retransmit_skb_hint = skb;
  700. if (!tp->lost_out ||
  701. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  702. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  703. }
  704. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  705. {
  706. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  707. tcp_verify_retransmit_hint(tp, skb);
  708. tp->lost_out += tcp_skb_pcount(skb);
  709. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  710. }
  711. }
  712. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  713. struct sk_buff *skb)
  714. {
  715. tcp_verify_retransmit_hint(tp, skb);
  716. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  717. tp->lost_out += tcp_skb_pcount(skb);
  718. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  719. }
  720. }
  721. /* This procedure tags the retransmission queue when SACKs arrive.
  722. *
  723. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  724. * Packets in queue with these bits set are counted in variables
  725. * sacked_out, retrans_out and lost_out, correspondingly.
  726. *
  727. * Valid combinations are:
  728. * Tag InFlight Description
  729. * 0 1 - orig segment is in flight.
  730. * S 0 - nothing flies, orig reached receiver.
  731. * L 0 - nothing flies, orig lost by net.
  732. * R 2 - both orig and retransmit are in flight.
  733. * L|R 1 - orig is lost, retransmit is in flight.
  734. * S|R 1 - orig reached receiver, retrans is still in flight.
  735. * (L|S|R is logically valid, it could occur when L|R is sacked,
  736. * but it is equivalent to plain S and code short-curcuits it to S.
  737. * L|S is logically invalid, it would mean -1 packet in flight 8))
  738. *
  739. * These 6 states form finite state machine, controlled by the following events:
  740. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  741. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  742. * 3. Loss detection event of two flavors:
  743. * A. Scoreboard estimator decided the packet is lost.
  744. * A'. Reno "three dupacks" marks head of queue lost.
  745. * A''. Its FACK modification, head until snd.fack is lost.
  746. * B. SACK arrives sacking SND.NXT at the moment, when the
  747. * segment was retransmitted.
  748. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  749. *
  750. * It is pleasant to note, that state diagram turns out to be commutative,
  751. * so that we are allowed not to be bothered by order of our actions,
  752. * when multiple events arrive simultaneously. (see the function below).
  753. *
  754. * Reordering detection.
  755. * --------------------
  756. * Reordering metric is maximal distance, which a packet can be displaced
  757. * in packet stream. With SACKs we can estimate it:
  758. *
  759. * 1. SACK fills old hole and the corresponding segment was not
  760. * ever retransmitted -> reordering. Alas, we cannot use it
  761. * when segment was retransmitted.
  762. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  763. * for retransmitted and already SACKed segment -> reordering..
  764. * Both of these heuristics are not used in Loss state, when we cannot
  765. * account for retransmits accurately.
  766. *
  767. * SACK block validation.
  768. * ----------------------
  769. *
  770. * SACK block range validation checks that the received SACK block fits to
  771. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  772. * Note that SND.UNA is not included to the range though being valid because
  773. * it means that the receiver is rather inconsistent with itself reporting
  774. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  775. * perfectly valid, however, in light of RFC2018 which explicitly states
  776. * that "SACK block MUST reflect the newest segment. Even if the newest
  777. * segment is going to be discarded ...", not that it looks very clever
  778. * in case of head skb. Due to potentional receiver driven attacks, we
  779. * choose to avoid immediate execution of a walk in write queue due to
  780. * reneging and defer head skb's loss recovery to standard loss recovery
  781. * procedure that will eventually trigger (nothing forbids us doing this).
  782. *
  783. * Implements also blockage to start_seq wrap-around. Problem lies in the
  784. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  785. * there's no guarantee that it will be before snd_nxt (n). The problem
  786. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  787. * wrap (s_w):
  788. *
  789. * <- outs wnd -> <- wrapzone ->
  790. * u e n u_w e_w s n_w
  791. * | | | | | | |
  792. * |<------------+------+----- TCP seqno space --------------+---------->|
  793. * ...-- <2^31 ->| |<--------...
  794. * ...---- >2^31 ------>| |<--------...
  795. *
  796. * Current code wouldn't be vulnerable but it's better still to discard such
  797. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  798. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  799. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  800. * equal to the ideal case (infinite seqno space without wrap caused issues).
  801. *
  802. * With D-SACK the lower bound is extended to cover sequence space below
  803. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  804. * again, D-SACK block must not to go across snd_una (for the same reason as
  805. * for the normal SACK blocks, explained above). But there all simplicity
  806. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  807. * fully below undo_marker they do not affect behavior in anyway and can
  808. * therefore be safely ignored. In rare cases (which are more or less
  809. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  810. * fragmentation and packet reordering past skb's retransmission. To consider
  811. * them correctly, the acceptable range must be extended even more though
  812. * the exact amount is rather hard to quantify. However, tp->max_window can
  813. * be used as an exaggerated estimate.
  814. */
  815. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  816. u32 start_seq, u32 end_seq)
  817. {
  818. /* Too far in future, or reversed (interpretation is ambiguous) */
  819. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  820. return false;
  821. /* Nasty start_seq wrap-around check (see comments above) */
  822. if (!before(start_seq, tp->snd_nxt))
  823. return false;
  824. /* In outstanding window? ...This is valid exit for D-SACKs too.
  825. * start_seq == snd_una is non-sensical (see comments above)
  826. */
  827. if (after(start_seq, tp->snd_una))
  828. return true;
  829. if (!is_dsack || !tp->undo_marker)
  830. return false;
  831. /* ...Then it's D-SACK, and must reside below snd_una completely */
  832. if (after(end_seq, tp->snd_una))
  833. return false;
  834. if (!before(start_seq, tp->undo_marker))
  835. return true;
  836. /* Too old */
  837. if (!after(end_seq, tp->undo_marker))
  838. return false;
  839. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  840. * start_seq < undo_marker and end_seq >= undo_marker.
  841. */
  842. return !before(start_seq, end_seq - tp->max_window);
  843. }
  844. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  845. * Event "B". Later note: FACK people cheated me again 8), we have to account
  846. * for reordering! Ugly, but should help.
  847. *
  848. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  849. * less than what is now known to be received by the other end (derived from
  850. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  851. * retransmitted skbs to avoid some costly processing per ACKs.
  852. */
  853. static void tcp_mark_lost_retrans(struct sock *sk)
  854. {
  855. const struct inet_connection_sock *icsk = inet_csk(sk);
  856. struct tcp_sock *tp = tcp_sk(sk);
  857. struct sk_buff *skb;
  858. int cnt = 0;
  859. u32 new_low_seq = tp->snd_nxt;
  860. u32 received_upto = tcp_highest_sack_seq(tp);
  861. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  862. !after(received_upto, tp->lost_retrans_low) ||
  863. icsk->icsk_ca_state != TCP_CA_Recovery)
  864. return;
  865. tcp_for_write_queue(skb, sk) {
  866. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  867. if (skb == tcp_send_head(sk))
  868. break;
  869. if (cnt == tp->retrans_out)
  870. break;
  871. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  872. continue;
  873. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  874. continue;
  875. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  876. * constraint here (see above) but figuring out that at
  877. * least tp->reordering SACK blocks reside between ack_seq
  878. * and received_upto is not easy task to do cheaply with
  879. * the available datastructures.
  880. *
  881. * Whether FACK should check here for tp->reordering segs
  882. * in-between one could argue for either way (it would be
  883. * rather simple to implement as we could count fack_count
  884. * during the walk and do tp->fackets_out - fack_count).
  885. */
  886. if (after(received_upto, ack_seq)) {
  887. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  888. tp->retrans_out -= tcp_skb_pcount(skb);
  889. tcp_skb_mark_lost_uncond_verify(tp, skb);
  890. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  891. } else {
  892. if (before(ack_seq, new_low_seq))
  893. new_low_seq = ack_seq;
  894. cnt += tcp_skb_pcount(skb);
  895. }
  896. }
  897. if (tp->retrans_out)
  898. tp->lost_retrans_low = new_low_seq;
  899. }
  900. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  901. struct tcp_sack_block_wire *sp, int num_sacks,
  902. u32 prior_snd_una)
  903. {
  904. struct tcp_sock *tp = tcp_sk(sk);
  905. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  906. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  907. bool dup_sack = false;
  908. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  909. dup_sack = true;
  910. tcp_dsack_seen(tp);
  911. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  912. } else if (num_sacks > 1) {
  913. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  914. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  915. if (!after(end_seq_0, end_seq_1) &&
  916. !before(start_seq_0, start_seq_1)) {
  917. dup_sack = true;
  918. tcp_dsack_seen(tp);
  919. NET_INC_STATS_BH(sock_net(sk),
  920. LINUX_MIB_TCPDSACKOFORECV);
  921. }
  922. }
  923. /* D-SACK for already forgotten data... Do dumb counting. */
  924. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  925. !after(end_seq_0, prior_snd_una) &&
  926. after(end_seq_0, tp->undo_marker))
  927. tp->undo_retrans--;
  928. return dup_sack;
  929. }
  930. struct tcp_sacktag_state {
  931. int reord;
  932. int fack_count;
  933. int flag;
  934. };
  935. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  936. * the incoming SACK may not exactly match but we can find smaller MSS
  937. * aligned portion of it that matches. Therefore we might need to fragment
  938. * which may fail and creates some hassle (caller must handle error case
  939. * returns).
  940. *
  941. * FIXME: this could be merged to shift decision code
  942. */
  943. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  944. u32 start_seq, u32 end_seq)
  945. {
  946. int err;
  947. bool in_sack;
  948. unsigned int pkt_len;
  949. unsigned int mss;
  950. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  951. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  952. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  953. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  954. mss = tcp_skb_mss(skb);
  955. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  956. if (!in_sack) {
  957. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  958. if (pkt_len < mss)
  959. pkt_len = mss;
  960. } else {
  961. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  962. if (pkt_len < mss)
  963. return -EINVAL;
  964. }
  965. /* Round if necessary so that SACKs cover only full MSSes
  966. * and/or the remaining small portion (if present)
  967. */
  968. if (pkt_len > mss) {
  969. unsigned int new_len = (pkt_len / mss) * mss;
  970. if (!in_sack && new_len < pkt_len) {
  971. new_len += mss;
  972. if (new_len > skb->len)
  973. return 0;
  974. }
  975. pkt_len = new_len;
  976. }
  977. err = tcp_fragment(sk, skb, pkt_len, mss);
  978. if (err < 0)
  979. return err;
  980. }
  981. return in_sack;
  982. }
  983. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  984. static u8 tcp_sacktag_one(struct sock *sk,
  985. struct tcp_sacktag_state *state, u8 sacked,
  986. u32 start_seq, u32 end_seq,
  987. bool dup_sack, int pcount)
  988. {
  989. struct tcp_sock *tp = tcp_sk(sk);
  990. int fack_count = state->fack_count;
  991. /* Account D-SACK for retransmitted packet. */
  992. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  993. if (tp->undo_marker && tp->undo_retrans &&
  994. after(end_seq, tp->undo_marker))
  995. tp->undo_retrans--;
  996. if (sacked & TCPCB_SACKED_ACKED)
  997. state->reord = min(fack_count, state->reord);
  998. }
  999. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1000. if (!after(end_seq, tp->snd_una))
  1001. return sacked;
  1002. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1003. if (sacked & TCPCB_SACKED_RETRANS) {
  1004. /* If the segment is not tagged as lost,
  1005. * we do not clear RETRANS, believing
  1006. * that retransmission is still in flight.
  1007. */
  1008. if (sacked & TCPCB_LOST) {
  1009. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1010. tp->lost_out -= pcount;
  1011. tp->retrans_out -= pcount;
  1012. }
  1013. } else {
  1014. if (!(sacked & TCPCB_RETRANS)) {
  1015. /* New sack for not retransmitted frame,
  1016. * which was in hole. It is reordering.
  1017. */
  1018. if (before(start_seq,
  1019. tcp_highest_sack_seq(tp)))
  1020. state->reord = min(fack_count,
  1021. state->reord);
  1022. if (!after(end_seq, tp->high_seq))
  1023. state->flag |= FLAG_ORIG_SACK_ACKED;
  1024. }
  1025. if (sacked & TCPCB_LOST) {
  1026. sacked &= ~TCPCB_LOST;
  1027. tp->lost_out -= pcount;
  1028. }
  1029. }
  1030. sacked |= TCPCB_SACKED_ACKED;
  1031. state->flag |= FLAG_DATA_SACKED;
  1032. tp->sacked_out += pcount;
  1033. fack_count += pcount;
  1034. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1035. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1036. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1037. tp->lost_cnt_hint += pcount;
  1038. if (fack_count > tp->fackets_out)
  1039. tp->fackets_out = fack_count;
  1040. }
  1041. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1042. * frames and clear it. undo_retrans is decreased above, L|R frames
  1043. * are accounted above as well.
  1044. */
  1045. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1046. sacked &= ~TCPCB_SACKED_RETRANS;
  1047. tp->retrans_out -= pcount;
  1048. }
  1049. return sacked;
  1050. }
  1051. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1052. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1053. */
  1054. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1055. struct tcp_sacktag_state *state,
  1056. unsigned int pcount, int shifted, int mss,
  1057. bool dup_sack)
  1058. {
  1059. struct tcp_sock *tp = tcp_sk(sk);
  1060. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1061. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1062. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1063. BUG_ON(!pcount);
  1064. /* Adjust counters and hints for the newly sacked sequence
  1065. * range but discard the return value since prev is already
  1066. * marked. We must tag the range first because the seq
  1067. * advancement below implicitly advances
  1068. * tcp_highest_sack_seq() when skb is highest_sack.
  1069. */
  1070. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1071. start_seq, end_seq, dup_sack, pcount);
  1072. if (skb == tp->lost_skb_hint)
  1073. tp->lost_cnt_hint += pcount;
  1074. TCP_SKB_CB(prev)->end_seq += shifted;
  1075. TCP_SKB_CB(skb)->seq += shifted;
  1076. skb_shinfo(prev)->gso_segs += pcount;
  1077. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1078. skb_shinfo(skb)->gso_segs -= pcount;
  1079. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1080. * in theory this shouldn't be necessary but as long as DSACK
  1081. * code can come after this skb later on it's better to keep
  1082. * setting gso_size to something.
  1083. */
  1084. if (!skb_shinfo(prev)->gso_size) {
  1085. skb_shinfo(prev)->gso_size = mss;
  1086. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1087. }
  1088. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1089. if (skb_shinfo(skb)->gso_segs <= 1) {
  1090. skb_shinfo(skb)->gso_size = 0;
  1091. skb_shinfo(skb)->gso_type = 0;
  1092. }
  1093. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1094. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1095. if (skb->len > 0) {
  1096. BUG_ON(!tcp_skb_pcount(skb));
  1097. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1098. return false;
  1099. }
  1100. /* Whole SKB was eaten :-) */
  1101. if (skb == tp->retransmit_skb_hint)
  1102. tp->retransmit_skb_hint = prev;
  1103. if (skb == tp->scoreboard_skb_hint)
  1104. tp->scoreboard_skb_hint = prev;
  1105. if (skb == tp->lost_skb_hint) {
  1106. tp->lost_skb_hint = prev;
  1107. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1108. }
  1109. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1110. if (skb == tcp_highest_sack(sk))
  1111. tcp_advance_highest_sack(sk, skb);
  1112. tcp_unlink_write_queue(skb, sk);
  1113. sk_wmem_free_skb(sk, skb);
  1114. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1115. return true;
  1116. }
  1117. /* I wish gso_size would have a bit more sane initialization than
  1118. * something-or-zero which complicates things
  1119. */
  1120. static int tcp_skb_seglen(const struct sk_buff *skb)
  1121. {
  1122. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1123. }
  1124. /* Shifting pages past head area doesn't work */
  1125. static int skb_can_shift(const struct sk_buff *skb)
  1126. {
  1127. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1128. }
  1129. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1130. * skb.
  1131. */
  1132. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1133. struct tcp_sacktag_state *state,
  1134. u32 start_seq, u32 end_seq,
  1135. bool dup_sack)
  1136. {
  1137. struct tcp_sock *tp = tcp_sk(sk);
  1138. struct sk_buff *prev;
  1139. int mss;
  1140. int pcount = 0;
  1141. int len;
  1142. int in_sack;
  1143. if (!sk_can_gso(sk))
  1144. goto fallback;
  1145. /* Normally R but no L won't result in plain S */
  1146. if (!dup_sack &&
  1147. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1148. goto fallback;
  1149. if (!skb_can_shift(skb))
  1150. goto fallback;
  1151. /* This frame is about to be dropped (was ACKed). */
  1152. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1153. goto fallback;
  1154. /* Can only happen with delayed DSACK + discard craziness */
  1155. if (unlikely(skb == tcp_write_queue_head(sk)))
  1156. goto fallback;
  1157. prev = tcp_write_queue_prev(sk, skb);
  1158. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1159. goto fallback;
  1160. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1161. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1162. if (in_sack) {
  1163. len = skb->len;
  1164. pcount = tcp_skb_pcount(skb);
  1165. mss = tcp_skb_seglen(skb);
  1166. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1167. * drop this restriction as unnecessary
  1168. */
  1169. if (mss != tcp_skb_seglen(prev))
  1170. goto fallback;
  1171. } else {
  1172. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1173. goto noop;
  1174. /* CHECKME: This is non-MSS split case only?, this will
  1175. * cause skipped skbs due to advancing loop btw, original
  1176. * has that feature too
  1177. */
  1178. if (tcp_skb_pcount(skb) <= 1)
  1179. goto noop;
  1180. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1181. if (!in_sack) {
  1182. /* TODO: head merge to next could be attempted here
  1183. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1184. * though it might not be worth of the additional hassle
  1185. *
  1186. * ...we can probably just fallback to what was done
  1187. * previously. We could try merging non-SACKed ones
  1188. * as well but it probably isn't going to buy off
  1189. * because later SACKs might again split them, and
  1190. * it would make skb timestamp tracking considerably
  1191. * harder problem.
  1192. */
  1193. goto fallback;
  1194. }
  1195. len = end_seq - TCP_SKB_CB(skb)->seq;
  1196. BUG_ON(len < 0);
  1197. BUG_ON(len > skb->len);
  1198. /* MSS boundaries should be honoured or else pcount will
  1199. * severely break even though it makes things bit trickier.
  1200. * Optimize common case to avoid most of the divides
  1201. */
  1202. mss = tcp_skb_mss(skb);
  1203. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1204. * drop this restriction as unnecessary
  1205. */
  1206. if (mss != tcp_skb_seglen(prev))
  1207. goto fallback;
  1208. if (len == mss) {
  1209. pcount = 1;
  1210. } else if (len < mss) {
  1211. goto noop;
  1212. } else {
  1213. pcount = len / mss;
  1214. len = pcount * mss;
  1215. }
  1216. }
  1217. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1218. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1219. goto fallback;
  1220. if (!skb_shift(prev, skb, len))
  1221. goto fallback;
  1222. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1223. goto out;
  1224. /* Hole filled allows collapsing with the next as well, this is very
  1225. * useful when hole on every nth skb pattern happens
  1226. */
  1227. if (prev == tcp_write_queue_tail(sk))
  1228. goto out;
  1229. skb = tcp_write_queue_next(sk, prev);
  1230. if (!skb_can_shift(skb) ||
  1231. (skb == tcp_send_head(sk)) ||
  1232. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1233. (mss != tcp_skb_seglen(skb)))
  1234. goto out;
  1235. len = skb->len;
  1236. if (skb_shift(prev, skb, len)) {
  1237. pcount += tcp_skb_pcount(skb);
  1238. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1239. }
  1240. out:
  1241. state->fack_count += pcount;
  1242. return prev;
  1243. noop:
  1244. return skb;
  1245. fallback:
  1246. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1247. return NULL;
  1248. }
  1249. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1250. struct tcp_sack_block *next_dup,
  1251. struct tcp_sacktag_state *state,
  1252. u32 start_seq, u32 end_seq,
  1253. bool dup_sack_in)
  1254. {
  1255. struct tcp_sock *tp = tcp_sk(sk);
  1256. struct sk_buff *tmp;
  1257. tcp_for_write_queue_from(skb, sk) {
  1258. int in_sack = 0;
  1259. bool dup_sack = dup_sack_in;
  1260. if (skb == tcp_send_head(sk))
  1261. break;
  1262. /* queue is in-order => we can short-circuit the walk early */
  1263. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1264. break;
  1265. if ((next_dup != NULL) &&
  1266. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1267. in_sack = tcp_match_skb_to_sack(sk, skb,
  1268. next_dup->start_seq,
  1269. next_dup->end_seq);
  1270. if (in_sack > 0)
  1271. dup_sack = true;
  1272. }
  1273. /* skb reference here is a bit tricky to get right, since
  1274. * shifting can eat and free both this skb and the next,
  1275. * so not even _safe variant of the loop is enough.
  1276. */
  1277. if (in_sack <= 0) {
  1278. tmp = tcp_shift_skb_data(sk, skb, state,
  1279. start_seq, end_seq, dup_sack);
  1280. if (tmp != NULL) {
  1281. if (tmp != skb) {
  1282. skb = tmp;
  1283. continue;
  1284. }
  1285. in_sack = 0;
  1286. } else {
  1287. in_sack = tcp_match_skb_to_sack(sk, skb,
  1288. start_seq,
  1289. end_seq);
  1290. }
  1291. }
  1292. if (unlikely(in_sack < 0))
  1293. break;
  1294. if (in_sack) {
  1295. TCP_SKB_CB(skb)->sacked =
  1296. tcp_sacktag_one(sk,
  1297. state,
  1298. TCP_SKB_CB(skb)->sacked,
  1299. TCP_SKB_CB(skb)->seq,
  1300. TCP_SKB_CB(skb)->end_seq,
  1301. dup_sack,
  1302. tcp_skb_pcount(skb));
  1303. if (!before(TCP_SKB_CB(skb)->seq,
  1304. tcp_highest_sack_seq(tp)))
  1305. tcp_advance_highest_sack(sk, skb);
  1306. }
  1307. state->fack_count += tcp_skb_pcount(skb);
  1308. }
  1309. return skb;
  1310. }
  1311. /* Avoid all extra work that is being done by sacktag while walking in
  1312. * a normal way
  1313. */
  1314. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1315. struct tcp_sacktag_state *state,
  1316. u32 skip_to_seq)
  1317. {
  1318. tcp_for_write_queue_from(skb, sk) {
  1319. if (skb == tcp_send_head(sk))
  1320. break;
  1321. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1322. break;
  1323. state->fack_count += tcp_skb_pcount(skb);
  1324. }
  1325. return skb;
  1326. }
  1327. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1328. struct sock *sk,
  1329. struct tcp_sack_block *next_dup,
  1330. struct tcp_sacktag_state *state,
  1331. u32 skip_to_seq)
  1332. {
  1333. if (next_dup == NULL)
  1334. return skb;
  1335. if (before(next_dup->start_seq, skip_to_seq)) {
  1336. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1337. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1338. next_dup->start_seq, next_dup->end_seq,
  1339. 1);
  1340. }
  1341. return skb;
  1342. }
  1343. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1344. {
  1345. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1346. }
  1347. static int
  1348. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1349. u32 prior_snd_una)
  1350. {
  1351. struct tcp_sock *tp = tcp_sk(sk);
  1352. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1353. TCP_SKB_CB(ack_skb)->sacked);
  1354. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1355. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1356. struct tcp_sack_block *cache;
  1357. struct tcp_sacktag_state state;
  1358. struct sk_buff *skb;
  1359. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1360. int used_sacks;
  1361. bool found_dup_sack = false;
  1362. int i, j;
  1363. int first_sack_index;
  1364. state.flag = 0;
  1365. state.reord = tp->packets_out;
  1366. if (!tp->sacked_out) {
  1367. if (WARN_ON(tp->fackets_out))
  1368. tp->fackets_out = 0;
  1369. tcp_highest_sack_reset(sk);
  1370. }
  1371. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1372. num_sacks, prior_snd_una);
  1373. if (found_dup_sack)
  1374. state.flag |= FLAG_DSACKING_ACK;
  1375. /* Eliminate too old ACKs, but take into
  1376. * account more or less fresh ones, they can
  1377. * contain valid SACK info.
  1378. */
  1379. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1380. return 0;
  1381. if (!tp->packets_out)
  1382. goto out;
  1383. used_sacks = 0;
  1384. first_sack_index = 0;
  1385. for (i = 0; i < num_sacks; i++) {
  1386. bool dup_sack = !i && found_dup_sack;
  1387. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1388. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1389. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1390. sp[used_sacks].start_seq,
  1391. sp[used_sacks].end_seq)) {
  1392. int mib_idx;
  1393. if (dup_sack) {
  1394. if (!tp->undo_marker)
  1395. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1396. else
  1397. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1398. } else {
  1399. /* Don't count olds caused by ACK reordering */
  1400. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1401. !after(sp[used_sacks].end_seq, tp->snd_una))
  1402. continue;
  1403. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1404. }
  1405. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1406. if (i == 0)
  1407. first_sack_index = -1;
  1408. continue;
  1409. }
  1410. /* Ignore very old stuff early */
  1411. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1412. continue;
  1413. used_sacks++;
  1414. }
  1415. /* order SACK blocks to allow in order walk of the retrans queue */
  1416. for (i = used_sacks - 1; i > 0; i--) {
  1417. for (j = 0; j < i; j++) {
  1418. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1419. swap(sp[j], sp[j + 1]);
  1420. /* Track where the first SACK block goes to */
  1421. if (j == first_sack_index)
  1422. first_sack_index = j + 1;
  1423. }
  1424. }
  1425. }
  1426. skb = tcp_write_queue_head(sk);
  1427. state.fack_count = 0;
  1428. i = 0;
  1429. if (!tp->sacked_out) {
  1430. /* It's already past, so skip checking against it */
  1431. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1432. } else {
  1433. cache = tp->recv_sack_cache;
  1434. /* Skip empty blocks in at head of the cache */
  1435. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1436. !cache->end_seq)
  1437. cache++;
  1438. }
  1439. while (i < used_sacks) {
  1440. u32 start_seq = sp[i].start_seq;
  1441. u32 end_seq = sp[i].end_seq;
  1442. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1443. struct tcp_sack_block *next_dup = NULL;
  1444. if (found_dup_sack && ((i + 1) == first_sack_index))
  1445. next_dup = &sp[i + 1];
  1446. /* Skip too early cached blocks */
  1447. while (tcp_sack_cache_ok(tp, cache) &&
  1448. !before(start_seq, cache->end_seq))
  1449. cache++;
  1450. /* Can skip some work by looking recv_sack_cache? */
  1451. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1452. after(end_seq, cache->start_seq)) {
  1453. /* Head todo? */
  1454. if (before(start_seq, cache->start_seq)) {
  1455. skb = tcp_sacktag_skip(skb, sk, &state,
  1456. start_seq);
  1457. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1458. &state,
  1459. start_seq,
  1460. cache->start_seq,
  1461. dup_sack);
  1462. }
  1463. /* Rest of the block already fully processed? */
  1464. if (!after(end_seq, cache->end_seq))
  1465. goto advance_sp;
  1466. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1467. &state,
  1468. cache->end_seq);
  1469. /* ...tail remains todo... */
  1470. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1471. /* ...but better entrypoint exists! */
  1472. skb = tcp_highest_sack(sk);
  1473. if (skb == NULL)
  1474. break;
  1475. state.fack_count = tp->fackets_out;
  1476. cache++;
  1477. goto walk;
  1478. }
  1479. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1480. /* Check overlap against next cached too (past this one already) */
  1481. cache++;
  1482. continue;
  1483. }
  1484. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1485. skb = tcp_highest_sack(sk);
  1486. if (skb == NULL)
  1487. break;
  1488. state.fack_count = tp->fackets_out;
  1489. }
  1490. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1491. walk:
  1492. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1493. start_seq, end_seq, dup_sack);
  1494. advance_sp:
  1495. i++;
  1496. }
  1497. /* Clear the head of the cache sack blocks so we can skip it next time */
  1498. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1499. tp->recv_sack_cache[i].start_seq = 0;
  1500. tp->recv_sack_cache[i].end_seq = 0;
  1501. }
  1502. for (j = 0; j < used_sacks; j++)
  1503. tp->recv_sack_cache[i++] = sp[j];
  1504. tcp_mark_lost_retrans(sk);
  1505. tcp_verify_left_out(tp);
  1506. if ((state.reord < tp->fackets_out) &&
  1507. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1508. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1509. out:
  1510. #if FASTRETRANS_DEBUG > 0
  1511. WARN_ON((int)tp->sacked_out < 0);
  1512. WARN_ON((int)tp->lost_out < 0);
  1513. WARN_ON((int)tp->retrans_out < 0);
  1514. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1515. #endif
  1516. return state.flag;
  1517. }
  1518. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1519. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1520. */
  1521. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1522. {
  1523. u32 holes;
  1524. holes = max(tp->lost_out, 1U);
  1525. holes = min(holes, tp->packets_out);
  1526. if ((tp->sacked_out + holes) > tp->packets_out) {
  1527. tp->sacked_out = tp->packets_out - holes;
  1528. return true;
  1529. }
  1530. return false;
  1531. }
  1532. /* If we receive more dupacks than we expected counting segments
  1533. * in assumption of absent reordering, interpret this as reordering.
  1534. * The only another reason could be bug in receiver TCP.
  1535. */
  1536. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1537. {
  1538. struct tcp_sock *tp = tcp_sk(sk);
  1539. if (tcp_limit_reno_sacked(tp))
  1540. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1541. }
  1542. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1543. static void tcp_add_reno_sack(struct sock *sk)
  1544. {
  1545. struct tcp_sock *tp = tcp_sk(sk);
  1546. tp->sacked_out++;
  1547. tcp_check_reno_reordering(sk, 0);
  1548. tcp_verify_left_out(tp);
  1549. }
  1550. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1551. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1552. {
  1553. struct tcp_sock *tp = tcp_sk(sk);
  1554. if (acked > 0) {
  1555. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1556. if (acked - 1 >= tp->sacked_out)
  1557. tp->sacked_out = 0;
  1558. else
  1559. tp->sacked_out -= acked - 1;
  1560. }
  1561. tcp_check_reno_reordering(sk, acked);
  1562. tcp_verify_left_out(tp);
  1563. }
  1564. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1565. {
  1566. tp->sacked_out = 0;
  1567. }
  1568. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1569. {
  1570. tp->retrans_out = 0;
  1571. tp->lost_out = 0;
  1572. tp->undo_marker = 0;
  1573. tp->undo_retrans = 0;
  1574. }
  1575. void tcp_clear_retrans(struct tcp_sock *tp)
  1576. {
  1577. tcp_clear_retrans_partial(tp);
  1578. tp->fackets_out = 0;
  1579. tp->sacked_out = 0;
  1580. }
  1581. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1582. * and reset tags completely, otherwise preserve SACKs. If receiver
  1583. * dropped its ofo queue, we will know this due to reneging detection.
  1584. */
  1585. void tcp_enter_loss(struct sock *sk, int how)
  1586. {
  1587. const struct inet_connection_sock *icsk = inet_csk(sk);
  1588. struct tcp_sock *tp = tcp_sk(sk);
  1589. struct sk_buff *skb;
  1590. bool new_recovery = false;
  1591. /* Reduce ssthresh if it has not yet been made inside this window. */
  1592. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1593. !after(tp->high_seq, tp->snd_una) ||
  1594. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1595. new_recovery = true;
  1596. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1597. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1598. tcp_ca_event(sk, CA_EVENT_LOSS);
  1599. }
  1600. tp->snd_cwnd = 1;
  1601. tp->snd_cwnd_cnt = 0;
  1602. tp->snd_cwnd_stamp = tcp_time_stamp;
  1603. tcp_clear_retrans_partial(tp);
  1604. if (tcp_is_reno(tp))
  1605. tcp_reset_reno_sack(tp);
  1606. tp->undo_marker = tp->snd_una;
  1607. if (how) {
  1608. tp->sacked_out = 0;
  1609. tp->fackets_out = 0;
  1610. }
  1611. tcp_clear_all_retrans_hints(tp);
  1612. tcp_for_write_queue(skb, sk) {
  1613. if (skb == tcp_send_head(sk))
  1614. break;
  1615. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1616. tp->undo_marker = 0;
  1617. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1618. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1619. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1620. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1621. tp->lost_out += tcp_skb_pcount(skb);
  1622. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1623. }
  1624. }
  1625. tcp_verify_left_out(tp);
  1626. tp->reordering = min_t(unsigned int, tp->reordering,
  1627. sysctl_tcp_reordering);
  1628. tcp_set_ca_state(sk, TCP_CA_Loss);
  1629. tp->high_seq = tp->snd_nxt;
  1630. TCP_ECN_queue_cwr(tp);
  1631. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1632. * loss recovery is underway except recurring timeout(s) on
  1633. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1634. */
  1635. tp->frto = sysctl_tcp_frto &&
  1636. (new_recovery || icsk->icsk_retransmits) &&
  1637. !inet_csk(sk)->icsk_mtup.probe_size;
  1638. }
  1639. /* If ACK arrived pointing to a remembered SACK, it means that our
  1640. * remembered SACKs do not reflect real state of receiver i.e.
  1641. * receiver _host_ is heavily congested (or buggy).
  1642. *
  1643. * Do processing similar to RTO timeout.
  1644. */
  1645. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1646. {
  1647. if (flag & FLAG_SACK_RENEGING) {
  1648. struct inet_connection_sock *icsk = inet_csk(sk);
  1649. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1650. tcp_enter_loss(sk, 1);
  1651. icsk->icsk_retransmits++;
  1652. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1653. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1654. icsk->icsk_rto, TCP_RTO_MAX);
  1655. return true;
  1656. }
  1657. return false;
  1658. }
  1659. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1660. {
  1661. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1662. }
  1663. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1664. * counter when SACK is enabled (without SACK, sacked_out is used for
  1665. * that purpose).
  1666. *
  1667. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1668. * segments up to the highest received SACK block so far and holes in
  1669. * between them.
  1670. *
  1671. * With reordering, holes may still be in flight, so RFC3517 recovery
  1672. * uses pure sacked_out (total number of SACKed segments) even though
  1673. * it violates the RFC that uses duplicate ACKs, often these are equal
  1674. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1675. * they differ. Since neither occurs due to loss, TCP should really
  1676. * ignore them.
  1677. */
  1678. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1679. {
  1680. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1681. }
  1682. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1683. {
  1684. struct tcp_sock *tp = tcp_sk(sk);
  1685. unsigned long delay;
  1686. /* Delay early retransmit and entering fast recovery for
  1687. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1688. * available, or RTO is scheduled to fire first.
  1689. */
  1690. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1691. (flag & FLAG_ECE) || !tp->srtt)
  1692. return false;
  1693. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  1694. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1695. return false;
  1696. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1697. TCP_RTO_MAX);
  1698. return true;
  1699. }
  1700. static inline int tcp_skb_timedout(const struct sock *sk,
  1701. const struct sk_buff *skb)
  1702. {
  1703. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  1704. }
  1705. static inline int tcp_head_timedout(const struct sock *sk)
  1706. {
  1707. const struct tcp_sock *tp = tcp_sk(sk);
  1708. return tp->packets_out &&
  1709. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1710. }
  1711. /* Linux NewReno/SACK/FACK/ECN state machine.
  1712. * --------------------------------------
  1713. *
  1714. * "Open" Normal state, no dubious events, fast path.
  1715. * "Disorder" In all the respects it is "Open",
  1716. * but requires a bit more attention. It is entered when
  1717. * we see some SACKs or dupacks. It is split of "Open"
  1718. * mainly to move some processing from fast path to slow one.
  1719. * "CWR" CWND was reduced due to some Congestion Notification event.
  1720. * It can be ECN, ICMP source quench, local device congestion.
  1721. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1722. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1723. *
  1724. * tcp_fastretrans_alert() is entered:
  1725. * - each incoming ACK, if state is not "Open"
  1726. * - when arrived ACK is unusual, namely:
  1727. * * SACK
  1728. * * Duplicate ACK.
  1729. * * ECN ECE.
  1730. *
  1731. * Counting packets in flight is pretty simple.
  1732. *
  1733. * in_flight = packets_out - left_out + retrans_out
  1734. *
  1735. * packets_out is SND.NXT-SND.UNA counted in packets.
  1736. *
  1737. * retrans_out is number of retransmitted segments.
  1738. *
  1739. * left_out is number of segments left network, but not ACKed yet.
  1740. *
  1741. * left_out = sacked_out + lost_out
  1742. *
  1743. * sacked_out: Packets, which arrived to receiver out of order
  1744. * and hence not ACKed. With SACKs this number is simply
  1745. * amount of SACKed data. Even without SACKs
  1746. * it is easy to give pretty reliable estimate of this number,
  1747. * counting duplicate ACKs.
  1748. *
  1749. * lost_out: Packets lost by network. TCP has no explicit
  1750. * "loss notification" feedback from network (for now).
  1751. * It means that this number can be only _guessed_.
  1752. * Actually, it is the heuristics to predict lossage that
  1753. * distinguishes different algorithms.
  1754. *
  1755. * F.e. after RTO, when all the queue is considered as lost,
  1756. * lost_out = packets_out and in_flight = retrans_out.
  1757. *
  1758. * Essentially, we have now two algorithms counting
  1759. * lost packets.
  1760. *
  1761. * FACK: It is the simplest heuristics. As soon as we decided
  1762. * that something is lost, we decide that _all_ not SACKed
  1763. * packets until the most forward SACK are lost. I.e.
  1764. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1765. * It is absolutely correct estimate, if network does not reorder
  1766. * packets. And it loses any connection to reality when reordering
  1767. * takes place. We use FACK by default until reordering
  1768. * is suspected on the path to this destination.
  1769. *
  1770. * NewReno: when Recovery is entered, we assume that one segment
  1771. * is lost (classic Reno). While we are in Recovery and
  1772. * a partial ACK arrives, we assume that one more packet
  1773. * is lost (NewReno). This heuristics are the same in NewReno
  1774. * and SACK.
  1775. *
  1776. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1777. * deflation etc. CWND is real congestion window, never inflated, changes
  1778. * only according to classic VJ rules.
  1779. *
  1780. * Really tricky (and requiring careful tuning) part of algorithm
  1781. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1782. * The first determines the moment _when_ we should reduce CWND and,
  1783. * hence, slow down forward transmission. In fact, it determines the moment
  1784. * when we decide that hole is caused by loss, rather than by a reorder.
  1785. *
  1786. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1787. * holes, caused by lost packets.
  1788. *
  1789. * And the most logically complicated part of algorithm is undo
  1790. * heuristics. We detect false retransmits due to both too early
  1791. * fast retransmit (reordering) and underestimated RTO, analyzing
  1792. * timestamps and D-SACKs. When we detect that some segments were
  1793. * retransmitted by mistake and CWND reduction was wrong, we undo
  1794. * window reduction and abort recovery phase. This logic is hidden
  1795. * inside several functions named tcp_try_undo_<something>.
  1796. */
  1797. /* This function decides, when we should leave Disordered state
  1798. * and enter Recovery phase, reducing congestion window.
  1799. *
  1800. * Main question: may we further continue forward transmission
  1801. * with the same cwnd?
  1802. */
  1803. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1804. {
  1805. struct tcp_sock *tp = tcp_sk(sk);
  1806. __u32 packets_out;
  1807. /* Trick#1: The loss is proven. */
  1808. if (tp->lost_out)
  1809. return true;
  1810. /* Not-A-Trick#2 : Classic rule... */
  1811. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1812. return true;
  1813. /* Trick#3 : when we use RFC2988 timer restart, fast
  1814. * retransmit can be triggered by timeout of queue head.
  1815. */
  1816. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1817. return true;
  1818. /* Trick#4: It is still not OK... But will it be useful to delay
  1819. * recovery more?
  1820. */
  1821. packets_out = tp->packets_out;
  1822. if (packets_out <= tp->reordering &&
  1823. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1824. !tcp_may_send_now(sk)) {
  1825. /* We have nothing to send. This connection is limited
  1826. * either by receiver window or by application.
  1827. */
  1828. return true;
  1829. }
  1830. /* If a thin stream is detected, retransmit after first
  1831. * received dupack. Employ only if SACK is supported in order
  1832. * to avoid possible corner-case series of spurious retransmissions
  1833. * Use only if there are no unsent data.
  1834. */
  1835. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1836. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1837. tcp_is_sack(tp) && !tcp_send_head(sk))
  1838. return true;
  1839. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1840. * retransmissions due to small network reorderings, we implement
  1841. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1842. * interval if appropriate.
  1843. */
  1844. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1845. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1846. !tcp_may_send_now(sk))
  1847. return !tcp_pause_early_retransmit(sk, flag);
  1848. return false;
  1849. }
  1850. /* New heuristics: it is possible only after we switched to restart timer
  1851. * each time when something is ACKed. Hence, we can detect timed out packets
  1852. * during fast retransmit without falling to slow start.
  1853. *
  1854. * Usefulness of this as is very questionable, since we should know which of
  1855. * the segments is the next to timeout which is relatively expensive to find
  1856. * in general case unless we add some data structure just for that. The
  1857. * current approach certainly won't find the right one too often and when it
  1858. * finally does find _something_ it usually marks large part of the window
  1859. * right away (because a retransmission with a larger timestamp blocks the
  1860. * loop from advancing). -ij
  1861. */
  1862. static void tcp_timeout_skbs(struct sock *sk)
  1863. {
  1864. struct tcp_sock *tp = tcp_sk(sk);
  1865. struct sk_buff *skb;
  1866. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  1867. return;
  1868. skb = tp->scoreboard_skb_hint;
  1869. if (tp->scoreboard_skb_hint == NULL)
  1870. skb = tcp_write_queue_head(sk);
  1871. tcp_for_write_queue_from(skb, sk) {
  1872. if (skb == tcp_send_head(sk))
  1873. break;
  1874. if (!tcp_skb_timedout(sk, skb))
  1875. break;
  1876. tcp_skb_mark_lost(tp, skb);
  1877. }
  1878. tp->scoreboard_skb_hint = skb;
  1879. tcp_verify_left_out(tp);
  1880. }
  1881. /* Detect loss in event "A" above by marking head of queue up as lost.
  1882. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1883. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1884. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1885. * the maximum SACKed segments to pass before reaching this limit.
  1886. */
  1887. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1888. {
  1889. struct tcp_sock *tp = tcp_sk(sk);
  1890. struct sk_buff *skb;
  1891. int cnt, oldcnt;
  1892. int err;
  1893. unsigned int mss;
  1894. /* Use SACK to deduce losses of new sequences sent during recovery */
  1895. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1896. WARN_ON(packets > tp->packets_out);
  1897. if (tp->lost_skb_hint) {
  1898. skb = tp->lost_skb_hint;
  1899. cnt = tp->lost_cnt_hint;
  1900. /* Head already handled? */
  1901. if (mark_head && skb != tcp_write_queue_head(sk))
  1902. return;
  1903. } else {
  1904. skb = tcp_write_queue_head(sk);
  1905. cnt = 0;
  1906. }
  1907. tcp_for_write_queue_from(skb, sk) {
  1908. if (skb == tcp_send_head(sk))
  1909. break;
  1910. /* TODO: do this better */
  1911. /* this is not the most efficient way to do this... */
  1912. tp->lost_skb_hint = skb;
  1913. tp->lost_cnt_hint = cnt;
  1914. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1915. break;
  1916. oldcnt = cnt;
  1917. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1918. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1919. cnt += tcp_skb_pcount(skb);
  1920. if (cnt > packets) {
  1921. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1922. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1923. (oldcnt >= packets))
  1924. break;
  1925. mss = skb_shinfo(skb)->gso_size;
  1926. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  1927. if (err < 0)
  1928. break;
  1929. cnt = packets;
  1930. }
  1931. tcp_skb_mark_lost(tp, skb);
  1932. if (mark_head)
  1933. break;
  1934. }
  1935. tcp_verify_left_out(tp);
  1936. }
  1937. /* Account newly detected lost packet(s) */
  1938. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1939. {
  1940. struct tcp_sock *tp = tcp_sk(sk);
  1941. if (tcp_is_reno(tp)) {
  1942. tcp_mark_head_lost(sk, 1, 1);
  1943. } else if (tcp_is_fack(tp)) {
  1944. int lost = tp->fackets_out - tp->reordering;
  1945. if (lost <= 0)
  1946. lost = 1;
  1947. tcp_mark_head_lost(sk, lost, 0);
  1948. } else {
  1949. int sacked_upto = tp->sacked_out - tp->reordering;
  1950. if (sacked_upto >= 0)
  1951. tcp_mark_head_lost(sk, sacked_upto, 0);
  1952. else if (fast_rexmit)
  1953. tcp_mark_head_lost(sk, 1, 1);
  1954. }
  1955. tcp_timeout_skbs(sk);
  1956. }
  1957. /* CWND moderation, preventing bursts due to too big ACKs
  1958. * in dubious situations.
  1959. */
  1960. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1961. {
  1962. tp->snd_cwnd = min(tp->snd_cwnd,
  1963. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1964. tp->snd_cwnd_stamp = tcp_time_stamp;
  1965. }
  1966. /* Nothing was retransmitted or returned timestamp is less
  1967. * than timestamp of the first retransmission.
  1968. */
  1969. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1970. {
  1971. return !tp->retrans_stamp ||
  1972. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1973. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  1974. }
  1975. /* Undo procedures. */
  1976. #if FASTRETRANS_DEBUG > 1
  1977. static void DBGUNDO(struct sock *sk, const char *msg)
  1978. {
  1979. struct tcp_sock *tp = tcp_sk(sk);
  1980. struct inet_sock *inet = inet_sk(sk);
  1981. if (sk->sk_family == AF_INET) {
  1982. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  1983. msg,
  1984. &inet->inet_daddr, ntohs(inet->inet_dport),
  1985. tp->snd_cwnd, tcp_left_out(tp),
  1986. tp->snd_ssthresh, tp->prior_ssthresh,
  1987. tp->packets_out);
  1988. }
  1989. #if IS_ENABLED(CONFIG_IPV6)
  1990. else if (sk->sk_family == AF_INET6) {
  1991. struct ipv6_pinfo *np = inet6_sk(sk);
  1992. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  1993. msg,
  1994. &np->daddr, ntohs(inet->inet_dport),
  1995. tp->snd_cwnd, tcp_left_out(tp),
  1996. tp->snd_ssthresh, tp->prior_ssthresh,
  1997. tp->packets_out);
  1998. }
  1999. #endif
  2000. }
  2001. #else
  2002. #define DBGUNDO(x...) do { } while (0)
  2003. #endif
  2004. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2005. {
  2006. struct tcp_sock *tp = tcp_sk(sk);
  2007. if (tp->prior_ssthresh) {
  2008. const struct inet_connection_sock *icsk = inet_csk(sk);
  2009. if (icsk->icsk_ca_ops->undo_cwnd)
  2010. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2011. else
  2012. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2013. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2014. tp->snd_ssthresh = tp->prior_ssthresh;
  2015. TCP_ECN_withdraw_cwr(tp);
  2016. }
  2017. } else {
  2018. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2019. }
  2020. tp->snd_cwnd_stamp = tcp_time_stamp;
  2021. }
  2022. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2023. {
  2024. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2025. }
  2026. /* People celebrate: "We love our President!" */
  2027. static bool tcp_try_undo_recovery(struct sock *sk)
  2028. {
  2029. struct tcp_sock *tp = tcp_sk(sk);
  2030. if (tcp_may_undo(tp)) {
  2031. int mib_idx;
  2032. /* Happy end! We did not retransmit anything
  2033. * or our original transmission succeeded.
  2034. */
  2035. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2036. tcp_undo_cwr(sk, true);
  2037. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2038. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2039. else
  2040. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2041. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2042. tp->undo_marker = 0;
  2043. }
  2044. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2045. /* Hold old state until something *above* high_seq
  2046. * is ACKed. For Reno it is MUST to prevent false
  2047. * fast retransmits (RFC2582). SACK TCP is safe. */
  2048. tcp_moderate_cwnd(tp);
  2049. return true;
  2050. }
  2051. tcp_set_ca_state(sk, TCP_CA_Open);
  2052. return false;
  2053. }
  2054. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2055. static void tcp_try_undo_dsack(struct sock *sk)
  2056. {
  2057. struct tcp_sock *tp = tcp_sk(sk);
  2058. if (tp->undo_marker && !tp->undo_retrans) {
  2059. DBGUNDO(sk, "D-SACK");
  2060. tcp_undo_cwr(sk, true);
  2061. tp->undo_marker = 0;
  2062. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2063. }
  2064. }
  2065. /* We can clear retrans_stamp when there are no retransmissions in the
  2066. * window. It would seem that it is trivially available for us in
  2067. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2068. * what will happen if errors occur when sending retransmission for the
  2069. * second time. ...It could the that such segment has only
  2070. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2071. * the head skb is enough except for some reneging corner cases that
  2072. * are not worth the effort.
  2073. *
  2074. * Main reason for all this complexity is the fact that connection dying
  2075. * time now depends on the validity of the retrans_stamp, in particular,
  2076. * that successive retransmissions of a segment must not advance
  2077. * retrans_stamp under any conditions.
  2078. */
  2079. static bool tcp_any_retrans_done(const struct sock *sk)
  2080. {
  2081. const struct tcp_sock *tp = tcp_sk(sk);
  2082. struct sk_buff *skb;
  2083. if (tp->retrans_out)
  2084. return true;
  2085. skb = tcp_write_queue_head(sk);
  2086. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2087. return true;
  2088. return false;
  2089. }
  2090. /* Undo during fast recovery after partial ACK. */
  2091. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2092. {
  2093. struct tcp_sock *tp = tcp_sk(sk);
  2094. /* Partial ACK arrived. Force Hoe's retransmit. */
  2095. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2096. if (tcp_may_undo(tp)) {
  2097. /* Plain luck! Hole if filled with delayed
  2098. * packet, rather than with a retransmit.
  2099. */
  2100. if (!tcp_any_retrans_done(sk))
  2101. tp->retrans_stamp = 0;
  2102. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2103. DBGUNDO(sk, "Hoe");
  2104. tcp_undo_cwr(sk, false);
  2105. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2106. /* So... Do not make Hoe's retransmit yet.
  2107. * If the first packet was delayed, the rest
  2108. * ones are most probably delayed as well.
  2109. */
  2110. failed = 0;
  2111. }
  2112. return failed;
  2113. }
  2114. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2115. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2116. {
  2117. struct tcp_sock *tp = tcp_sk(sk);
  2118. if (frto_undo || tcp_may_undo(tp)) {
  2119. struct sk_buff *skb;
  2120. tcp_for_write_queue(skb, sk) {
  2121. if (skb == tcp_send_head(sk))
  2122. break;
  2123. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2124. }
  2125. tcp_clear_all_retrans_hints(tp);
  2126. DBGUNDO(sk, "partial loss");
  2127. tp->lost_out = 0;
  2128. tcp_undo_cwr(sk, true);
  2129. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2130. if (frto_undo)
  2131. NET_INC_STATS_BH(sock_net(sk),
  2132. LINUX_MIB_TCPSPURIOUSRTOS);
  2133. inet_csk(sk)->icsk_retransmits = 0;
  2134. tp->undo_marker = 0;
  2135. if (frto_undo || tcp_is_sack(tp))
  2136. tcp_set_ca_state(sk, TCP_CA_Open);
  2137. return true;
  2138. }
  2139. return false;
  2140. }
  2141. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2142. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2143. * It computes the number of packets to send (sndcnt) based on packets newly
  2144. * delivered:
  2145. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2146. * cwnd reductions across a full RTT.
  2147. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2148. * losses and/or application stalls), do not perform any further cwnd
  2149. * reductions, but instead slow start up to ssthresh.
  2150. */
  2151. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2152. {
  2153. struct tcp_sock *tp = tcp_sk(sk);
  2154. tp->high_seq = tp->snd_nxt;
  2155. tp->tlp_high_seq = 0;
  2156. tp->snd_cwnd_cnt = 0;
  2157. tp->prior_cwnd = tp->snd_cwnd;
  2158. tp->prr_delivered = 0;
  2159. tp->prr_out = 0;
  2160. if (set_ssthresh)
  2161. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2162. TCP_ECN_queue_cwr(tp);
  2163. }
  2164. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2165. int fast_rexmit)
  2166. {
  2167. struct tcp_sock *tp = tcp_sk(sk);
  2168. int sndcnt = 0;
  2169. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2170. tp->prr_delivered += newly_acked_sacked;
  2171. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2172. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2173. tp->prior_cwnd - 1;
  2174. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2175. } else {
  2176. sndcnt = min_t(int, delta,
  2177. max_t(int, tp->prr_delivered - tp->prr_out,
  2178. newly_acked_sacked) + 1);
  2179. }
  2180. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2181. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2182. }
  2183. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2184. {
  2185. struct tcp_sock *tp = tcp_sk(sk);
  2186. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2187. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2188. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2189. tp->snd_cwnd = tp->snd_ssthresh;
  2190. tp->snd_cwnd_stamp = tcp_time_stamp;
  2191. }
  2192. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2193. }
  2194. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2195. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2196. {
  2197. struct tcp_sock *tp = tcp_sk(sk);
  2198. tp->prior_ssthresh = 0;
  2199. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2200. tp->undo_marker = 0;
  2201. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2202. tcp_set_ca_state(sk, TCP_CA_CWR);
  2203. }
  2204. }
  2205. static void tcp_try_keep_open(struct sock *sk)
  2206. {
  2207. struct tcp_sock *tp = tcp_sk(sk);
  2208. int state = TCP_CA_Open;
  2209. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2210. state = TCP_CA_Disorder;
  2211. if (inet_csk(sk)->icsk_ca_state != state) {
  2212. tcp_set_ca_state(sk, state);
  2213. tp->high_seq = tp->snd_nxt;
  2214. }
  2215. }
  2216. static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
  2217. {
  2218. struct tcp_sock *tp = tcp_sk(sk);
  2219. tcp_verify_left_out(tp);
  2220. if (!tcp_any_retrans_done(sk))
  2221. tp->retrans_stamp = 0;
  2222. if (flag & FLAG_ECE)
  2223. tcp_enter_cwr(sk, 1);
  2224. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2225. tcp_try_keep_open(sk);
  2226. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2227. tcp_moderate_cwnd(tp);
  2228. } else {
  2229. tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
  2230. }
  2231. }
  2232. static void tcp_mtup_probe_failed(struct sock *sk)
  2233. {
  2234. struct inet_connection_sock *icsk = inet_csk(sk);
  2235. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2236. icsk->icsk_mtup.probe_size = 0;
  2237. }
  2238. static void tcp_mtup_probe_success(struct sock *sk)
  2239. {
  2240. struct tcp_sock *tp = tcp_sk(sk);
  2241. struct inet_connection_sock *icsk = inet_csk(sk);
  2242. /* FIXME: breaks with very large cwnd */
  2243. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2244. tp->snd_cwnd = tp->snd_cwnd *
  2245. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2246. icsk->icsk_mtup.probe_size;
  2247. tp->snd_cwnd_cnt = 0;
  2248. tp->snd_cwnd_stamp = tcp_time_stamp;
  2249. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2250. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2251. icsk->icsk_mtup.probe_size = 0;
  2252. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2253. }
  2254. /* Do a simple retransmit without using the backoff mechanisms in
  2255. * tcp_timer. This is used for path mtu discovery.
  2256. * The socket is already locked here.
  2257. */
  2258. void tcp_simple_retransmit(struct sock *sk)
  2259. {
  2260. const struct inet_connection_sock *icsk = inet_csk(sk);
  2261. struct tcp_sock *tp = tcp_sk(sk);
  2262. struct sk_buff *skb;
  2263. unsigned int mss = tcp_current_mss(sk);
  2264. u32 prior_lost = tp->lost_out;
  2265. tcp_for_write_queue(skb, sk) {
  2266. if (skb == tcp_send_head(sk))
  2267. break;
  2268. if (tcp_skb_seglen(skb) > mss &&
  2269. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2270. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2271. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2272. tp->retrans_out -= tcp_skb_pcount(skb);
  2273. }
  2274. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2275. }
  2276. }
  2277. tcp_clear_retrans_hints_partial(tp);
  2278. if (prior_lost == tp->lost_out)
  2279. return;
  2280. if (tcp_is_reno(tp))
  2281. tcp_limit_reno_sacked(tp);
  2282. tcp_verify_left_out(tp);
  2283. /* Don't muck with the congestion window here.
  2284. * Reason is that we do not increase amount of _data_
  2285. * in network, but units changed and effective
  2286. * cwnd/ssthresh really reduced now.
  2287. */
  2288. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2289. tp->high_seq = tp->snd_nxt;
  2290. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2291. tp->prior_ssthresh = 0;
  2292. tp->undo_marker = 0;
  2293. tcp_set_ca_state(sk, TCP_CA_Loss);
  2294. }
  2295. tcp_xmit_retransmit_queue(sk);
  2296. }
  2297. EXPORT_SYMBOL(tcp_simple_retransmit);
  2298. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2299. {
  2300. struct tcp_sock *tp = tcp_sk(sk);
  2301. int mib_idx;
  2302. if (tcp_is_reno(tp))
  2303. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2304. else
  2305. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2306. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2307. tp->prior_ssthresh = 0;
  2308. tp->undo_marker = tp->snd_una;
  2309. tp->undo_retrans = tp->retrans_out;
  2310. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2311. if (!ece_ack)
  2312. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2313. tcp_init_cwnd_reduction(sk, true);
  2314. }
  2315. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2316. }
  2317. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2318. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2319. */
  2320. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2321. {
  2322. struct inet_connection_sock *icsk = inet_csk(sk);
  2323. struct tcp_sock *tp = tcp_sk(sk);
  2324. bool recovered = !before(tp->snd_una, tp->high_seq);
  2325. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2326. if (flag & FLAG_ORIG_SACK_ACKED) {
  2327. /* Step 3.b. A timeout is spurious if not all data are
  2328. * lost, i.e., never-retransmitted data are (s)acked.
  2329. */
  2330. tcp_try_undo_loss(sk, true);
  2331. return;
  2332. }
  2333. if (after(tp->snd_nxt, tp->high_seq) &&
  2334. (flag & FLAG_DATA_SACKED || is_dupack)) {
  2335. tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
  2336. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2337. tp->high_seq = tp->snd_nxt;
  2338. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2339. TCP_NAGLE_OFF);
  2340. if (after(tp->snd_nxt, tp->high_seq))
  2341. return; /* Step 2.b */
  2342. tp->frto = 0;
  2343. }
  2344. }
  2345. if (recovered) {
  2346. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2347. icsk->icsk_retransmits = 0;
  2348. tcp_try_undo_recovery(sk);
  2349. return;
  2350. }
  2351. if (flag & FLAG_DATA_ACKED)
  2352. icsk->icsk_retransmits = 0;
  2353. if (tcp_is_reno(tp)) {
  2354. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2355. * delivered. Lower inflight to clock out (re)tranmissions.
  2356. */
  2357. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2358. tcp_add_reno_sack(sk);
  2359. else if (flag & FLAG_SND_UNA_ADVANCED)
  2360. tcp_reset_reno_sack(tp);
  2361. }
  2362. if (tcp_try_undo_loss(sk, false))
  2363. return;
  2364. tcp_xmit_retransmit_queue(sk);
  2365. }
  2366. /* Process an event, which can update packets-in-flight not trivially.
  2367. * Main goal of this function is to calculate new estimate for left_out,
  2368. * taking into account both packets sitting in receiver's buffer and
  2369. * packets lost by network.
  2370. *
  2371. * Besides that it does CWND reduction, when packet loss is detected
  2372. * and changes state of machine.
  2373. *
  2374. * It does _not_ decide what to send, it is made in function
  2375. * tcp_xmit_retransmit_queue().
  2376. */
  2377. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2378. int prior_sacked, int prior_packets,
  2379. bool is_dupack, int flag)
  2380. {
  2381. struct inet_connection_sock *icsk = inet_csk(sk);
  2382. struct tcp_sock *tp = tcp_sk(sk);
  2383. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2384. (tcp_fackets_out(tp) > tp->reordering));
  2385. int newly_acked_sacked = 0;
  2386. int fast_rexmit = 0;
  2387. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2388. tp->sacked_out = 0;
  2389. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2390. tp->fackets_out = 0;
  2391. /* Now state machine starts.
  2392. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2393. if (flag & FLAG_ECE)
  2394. tp->prior_ssthresh = 0;
  2395. /* B. In all the states check for reneging SACKs. */
  2396. if (tcp_check_sack_reneging(sk, flag))
  2397. return;
  2398. /* C. Check consistency of the current state. */
  2399. tcp_verify_left_out(tp);
  2400. /* D. Check state exit conditions. State can be terminated
  2401. * when high_seq is ACKed. */
  2402. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2403. WARN_ON(tp->retrans_out != 0);
  2404. tp->retrans_stamp = 0;
  2405. } else if (!before(tp->snd_una, tp->high_seq)) {
  2406. switch (icsk->icsk_ca_state) {
  2407. case TCP_CA_CWR:
  2408. /* CWR is to be held something *above* high_seq
  2409. * is ACKed for CWR bit to reach receiver. */
  2410. if (tp->snd_una != tp->high_seq) {
  2411. tcp_end_cwnd_reduction(sk);
  2412. tcp_set_ca_state(sk, TCP_CA_Open);
  2413. }
  2414. break;
  2415. case TCP_CA_Recovery:
  2416. if (tcp_is_reno(tp))
  2417. tcp_reset_reno_sack(tp);
  2418. if (tcp_try_undo_recovery(sk))
  2419. return;
  2420. tcp_end_cwnd_reduction(sk);
  2421. break;
  2422. }
  2423. }
  2424. /* E. Process state. */
  2425. switch (icsk->icsk_ca_state) {
  2426. case TCP_CA_Recovery:
  2427. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2428. if (tcp_is_reno(tp) && is_dupack)
  2429. tcp_add_reno_sack(sk);
  2430. } else
  2431. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2432. newly_acked_sacked = prior_packets - tp->packets_out +
  2433. tp->sacked_out - prior_sacked;
  2434. break;
  2435. case TCP_CA_Loss:
  2436. tcp_process_loss(sk, flag, is_dupack);
  2437. if (icsk->icsk_ca_state != TCP_CA_Open)
  2438. return;
  2439. /* Fall through to processing in Open state. */
  2440. default:
  2441. if (tcp_is_reno(tp)) {
  2442. if (flag & FLAG_SND_UNA_ADVANCED)
  2443. tcp_reset_reno_sack(tp);
  2444. if (is_dupack)
  2445. tcp_add_reno_sack(sk);
  2446. }
  2447. newly_acked_sacked = prior_packets - tp->packets_out +
  2448. tp->sacked_out - prior_sacked;
  2449. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2450. tcp_try_undo_dsack(sk);
  2451. if (!tcp_time_to_recover(sk, flag)) {
  2452. tcp_try_to_open(sk, flag, newly_acked_sacked);
  2453. return;
  2454. }
  2455. /* MTU probe failure: don't reduce cwnd */
  2456. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2457. icsk->icsk_mtup.probe_size &&
  2458. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2459. tcp_mtup_probe_failed(sk);
  2460. /* Restores the reduction we did in tcp_mtup_probe() */
  2461. tp->snd_cwnd++;
  2462. tcp_simple_retransmit(sk);
  2463. return;
  2464. }
  2465. /* Otherwise enter Recovery state */
  2466. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2467. fast_rexmit = 1;
  2468. }
  2469. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2470. tcp_update_scoreboard(sk, fast_rexmit);
  2471. tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
  2472. tcp_xmit_retransmit_queue(sk);
  2473. }
  2474. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2475. {
  2476. tcp_rtt_estimator(sk, seq_rtt);
  2477. tcp_set_rto(sk);
  2478. inet_csk(sk)->icsk_backoff = 0;
  2479. }
  2480. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2481. /* Read draft-ietf-tcplw-high-performance before mucking
  2482. * with this code. (Supersedes RFC1323)
  2483. */
  2484. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2485. {
  2486. /* RTTM Rule: A TSecr value received in a segment is used to
  2487. * update the averaged RTT measurement only if the segment
  2488. * acknowledges some new data, i.e., only if it advances the
  2489. * left edge of the send window.
  2490. *
  2491. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2492. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2493. *
  2494. * Changed: reset backoff as soon as we see the first valid sample.
  2495. * If we do not, we get strongly overestimated rto. With timestamps
  2496. * samples are accepted even from very old segments: f.e., when rtt=1
  2497. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2498. * answer arrives rto becomes 120 seconds! If at least one of segments
  2499. * in window is lost... Voila. --ANK (010210)
  2500. */
  2501. struct tcp_sock *tp = tcp_sk(sk);
  2502. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2503. }
  2504. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2505. {
  2506. /* We don't have a timestamp. Can only use
  2507. * packets that are not retransmitted to determine
  2508. * rtt estimates. Also, we must not reset the
  2509. * backoff for rto until we get a non-retransmitted
  2510. * packet. This allows us to deal with a situation
  2511. * where the network delay has increased suddenly.
  2512. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2513. */
  2514. if (flag & FLAG_RETRANS_DATA_ACKED)
  2515. return;
  2516. tcp_valid_rtt_meas(sk, seq_rtt);
  2517. }
  2518. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2519. const s32 seq_rtt)
  2520. {
  2521. const struct tcp_sock *tp = tcp_sk(sk);
  2522. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2523. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2524. tcp_ack_saw_tstamp(sk, flag);
  2525. else if (seq_rtt >= 0)
  2526. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2527. }
  2528. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2529. {
  2530. const struct inet_connection_sock *icsk = inet_csk(sk);
  2531. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2532. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2533. }
  2534. /* Restart timer after forward progress on connection.
  2535. * RFC2988 recommends to restart timer to now+rto.
  2536. */
  2537. void tcp_rearm_rto(struct sock *sk)
  2538. {
  2539. const struct inet_connection_sock *icsk = inet_csk(sk);
  2540. struct tcp_sock *tp = tcp_sk(sk);
  2541. /* If the retrans timer is currently being used by Fast Open
  2542. * for SYN-ACK retrans purpose, stay put.
  2543. */
  2544. if (tp->fastopen_rsk)
  2545. return;
  2546. if (!tp->packets_out) {
  2547. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2548. } else {
  2549. u32 rto = inet_csk(sk)->icsk_rto;
  2550. /* Offset the time elapsed after installing regular RTO */
  2551. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2552. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2553. struct sk_buff *skb = tcp_write_queue_head(sk);
  2554. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2555. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2556. /* delta may not be positive if the socket is locked
  2557. * when the retrans timer fires and is rescheduled.
  2558. */
  2559. if (delta > 0)
  2560. rto = delta;
  2561. }
  2562. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2563. TCP_RTO_MAX);
  2564. }
  2565. }
  2566. /* This function is called when the delayed ER timer fires. TCP enters
  2567. * fast recovery and performs fast-retransmit.
  2568. */
  2569. void tcp_resume_early_retransmit(struct sock *sk)
  2570. {
  2571. struct tcp_sock *tp = tcp_sk(sk);
  2572. tcp_rearm_rto(sk);
  2573. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2574. if (!tp->do_early_retrans)
  2575. return;
  2576. tcp_enter_recovery(sk, false);
  2577. tcp_update_scoreboard(sk, 1);
  2578. tcp_xmit_retransmit_queue(sk);
  2579. }
  2580. /* If we get here, the whole TSO packet has not been acked. */
  2581. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2582. {
  2583. struct tcp_sock *tp = tcp_sk(sk);
  2584. u32 packets_acked;
  2585. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2586. packets_acked = tcp_skb_pcount(skb);
  2587. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2588. return 0;
  2589. packets_acked -= tcp_skb_pcount(skb);
  2590. if (packets_acked) {
  2591. BUG_ON(tcp_skb_pcount(skb) == 0);
  2592. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2593. }
  2594. return packets_acked;
  2595. }
  2596. /* Remove acknowledged frames from the retransmission queue. If our packet
  2597. * is before the ack sequence we can discard it as it's confirmed to have
  2598. * arrived at the other end.
  2599. */
  2600. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2601. u32 prior_snd_una)
  2602. {
  2603. struct tcp_sock *tp = tcp_sk(sk);
  2604. const struct inet_connection_sock *icsk = inet_csk(sk);
  2605. struct sk_buff *skb;
  2606. u32 now = tcp_time_stamp;
  2607. int fully_acked = true;
  2608. int flag = 0;
  2609. u32 pkts_acked = 0;
  2610. u32 reord = tp->packets_out;
  2611. u32 prior_sacked = tp->sacked_out;
  2612. s32 seq_rtt = -1;
  2613. s32 ca_seq_rtt = -1;
  2614. ktime_t last_ackt = net_invalid_timestamp();
  2615. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2616. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2617. u32 acked_pcount;
  2618. u8 sacked = scb->sacked;
  2619. /* Determine how many packets and what bytes were acked, tso and else */
  2620. if (after(scb->end_seq, tp->snd_una)) {
  2621. if (tcp_skb_pcount(skb) == 1 ||
  2622. !after(tp->snd_una, scb->seq))
  2623. break;
  2624. acked_pcount = tcp_tso_acked(sk, skb);
  2625. if (!acked_pcount)
  2626. break;
  2627. fully_acked = false;
  2628. } else {
  2629. acked_pcount = tcp_skb_pcount(skb);
  2630. }
  2631. if (sacked & TCPCB_RETRANS) {
  2632. if (sacked & TCPCB_SACKED_RETRANS)
  2633. tp->retrans_out -= acked_pcount;
  2634. flag |= FLAG_RETRANS_DATA_ACKED;
  2635. ca_seq_rtt = -1;
  2636. seq_rtt = -1;
  2637. } else {
  2638. ca_seq_rtt = now - scb->when;
  2639. last_ackt = skb->tstamp;
  2640. if (seq_rtt < 0) {
  2641. seq_rtt = ca_seq_rtt;
  2642. }
  2643. if (!(sacked & TCPCB_SACKED_ACKED))
  2644. reord = min(pkts_acked, reord);
  2645. if (!after(scb->end_seq, tp->high_seq))
  2646. flag |= FLAG_ORIG_SACK_ACKED;
  2647. }
  2648. if (sacked & TCPCB_SACKED_ACKED)
  2649. tp->sacked_out -= acked_pcount;
  2650. if (sacked & TCPCB_LOST)
  2651. tp->lost_out -= acked_pcount;
  2652. tp->packets_out -= acked_pcount;
  2653. pkts_acked += acked_pcount;
  2654. /* Initial outgoing SYN's get put onto the write_queue
  2655. * just like anything else we transmit. It is not
  2656. * true data, and if we misinform our callers that
  2657. * this ACK acks real data, we will erroneously exit
  2658. * connection startup slow start one packet too
  2659. * quickly. This is severely frowned upon behavior.
  2660. */
  2661. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2662. flag |= FLAG_DATA_ACKED;
  2663. } else {
  2664. flag |= FLAG_SYN_ACKED;
  2665. tp->retrans_stamp = 0;
  2666. }
  2667. if (!fully_acked)
  2668. break;
  2669. tcp_unlink_write_queue(skb, sk);
  2670. sk_wmem_free_skb(sk, skb);
  2671. tp->scoreboard_skb_hint = NULL;
  2672. if (skb == tp->retransmit_skb_hint)
  2673. tp->retransmit_skb_hint = NULL;
  2674. if (skb == tp->lost_skb_hint)
  2675. tp->lost_skb_hint = NULL;
  2676. }
  2677. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2678. tp->snd_up = tp->snd_una;
  2679. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2680. flag |= FLAG_SACK_RENEGING;
  2681. if (flag & FLAG_ACKED) {
  2682. const struct tcp_congestion_ops *ca_ops
  2683. = inet_csk(sk)->icsk_ca_ops;
  2684. if (unlikely(icsk->icsk_mtup.probe_size &&
  2685. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2686. tcp_mtup_probe_success(sk);
  2687. }
  2688. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2689. tcp_rearm_rto(sk);
  2690. if (tcp_is_reno(tp)) {
  2691. tcp_remove_reno_sacks(sk, pkts_acked);
  2692. } else {
  2693. int delta;
  2694. /* Non-retransmitted hole got filled? That's reordering */
  2695. if (reord < prior_fackets)
  2696. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2697. delta = tcp_is_fack(tp) ? pkts_acked :
  2698. prior_sacked - tp->sacked_out;
  2699. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2700. }
  2701. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2702. if (ca_ops->pkts_acked) {
  2703. s32 rtt_us = -1;
  2704. /* Is the ACK triggering packet unambiguous? */
  2705. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2706. /* High resolution needed and available? */
  2707. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2708. !ktime_equal(last_ackt,
  2709. net_invalid_timestamp()))
  2710. rtt_us = ktime_us_delta(ktime_get_real(),
  2711. last_ackt);
  2712. else if (ca_seq_rtt >= 0)
  2713. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2714. }
  2715. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2716. }
  2717. }
  2718. #if FASTRETRANS_DEBUG > 0
  2719. WARN_ON((int)tp->sacked_out < 0);
  2720. WARN_ON((int)tp->lost_out < 0);
  2721. WARN_ON((int)tp->retrans_out < 0);
  2722. if (!tp->packets_out && tcp_is_sack(tp)) {
  2723. icsk = inet_csk(sk);
  2724. if (tp->lost_out) {
  2725. pr_debug("Leak l=%u %d\n",
  2726. tp->lost_out, icsk->icsk_ca_state);
  2727. tp->lost_out = 0;
  2728. }
  2729. if (tp->sacked_out) {
  2730. pr_debug("Leak s=%u %d\n",
  2731. tp->sacked_out, icsk->icsk_ca_state);
  2732. tp->sacked_out = 0;
  2733. }
  2734. if (tp->retrans_out) {
  2735. pr_debug("Leak r=%u %d\n",
  2736. tp->retrans_out, icsk->icsk_ca_state);
  2737. tp->retrans_out = 0;
  2738. }
  2739. }
  2740. #endif
  2741. return flag;
  2742. }
  2743. static void tcp_ack_probe(struct sock *sk)
  2744. {
  2745. const struct tcp_sock *tp = tcp_sk(sk);
  2746. struct inet_connection_sock *icsk = inet_csk(sk);
  2747. /* Was it a usable window open? */
  2748. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2749. icsk->icsk_backoff = 0;
  2750. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2751. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2752. * This function is not for random using!
  2753. */
  2754. } else {
  2755. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2756. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2757. TCP_RTO_MAX);
  2758. }
  2759. }
  2760. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2761. {
  2762. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2763. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2764. }
  2765. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2766. {
  2767. const struct tcp_sock *tp = tcp_sk(sk);
  2768. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2769. !tcp_in_cwnd_reduction(sk);
  2770. }
  2771. /* Check that window update is acceptable.
  2772. * The function assumes that snd_una<=ack<=snd_next.
  2773. */
  2774. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2775. const u32 ack, const u32 ack_seq,
  2776. const u32 nwin)
  2777. {
  2778. return after(ack, tp->snd_una) ||
  2779. after(ack_seq, tp->snd_wl1) ||
  2780. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2781. }
  2782. /* Update our send window.
  2783. *
  2784. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2785. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2786. */
  2787. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2788. u32 ack_seq)
  2789. {
  2790. struct tcp_sock *tp = tcp_sk(sk);
  2791. int flag = 0;
  2792. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2793. if (likely(!tcp_hdr(skb)->syn))
  2794. nwin <<= tp->rx_opt.snd_wscale;
  2795. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2796. flag |= FLAG_WIN_UPDATE;
  2797. tcp_update_wl(tp, ack_seq);
  2798. if (tp->snd_wnd != nwin) {
  2799. tp->snd_wnd = nwin;
  2800. /* Note, it is the only place, where
  2801. * fast path is recovered for sending TCP.
  2802. */
  2803. tp->pred_flags = 0;
  2804. tcp_fast_path_check(sk);
  2805. if (nwin > tp->max_window) {
  2806. tp->max_window = nwin;
  2807. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2808. }
  2809. }
  2810. }
  2811. tp->snd_una = ack;
  2812. return flag;
  2813. }
  2814. /* RFC 5961 7 [ACK Throttling] */
  2815. static void tcp_send_challenge_ack(struct sock *sk)
  2816. {
  2817. /* unprotected vars, we dont care of overwrites */
  2818. static u32 challenge_timestamp;
  2819. static unsigned int challenge_count;
  2820. u32 now = jiffies / HZ;
  2821. if (now != challenge_timestamp) {
  2822. challenge_timestamp = now;
  2823. challenge_count = 0;
  2824. }
  2825. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2826. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2827. tcp_send_ack(sk);
  2828. }
  2829. }
  2830. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2831. {
  2832. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2833. tp->rx_opt.ts_recent_stamp = get_seconds();
  2834. }
  2835. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2836. {
  2837. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2838. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2839. * extra check below makes sure this can only happen
  2840. * for pure ACK frames. -DaveM
  2841. *
  2842. * Not only, also it occurs for expired timestamps.
  2843. */
  2844. if (tcp_paws_check(&tp->rx_opt, 0))
  2845. tcp_store_ts_recent(tp);
  2846. }
  2847. }
  2848. /* This routine deals with acks during a TLP episode.
  2849. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2850. */
  2851. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2852. {
  2853. struct tcp_sock *tp = tcp_sk(sk);
  2854. bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
  2855. !(flag & (FLAG_SND_UNA_ADVANCED |
  2856. FLAG_NOT_DUP | FLAG_DATA_SACKED));
  2857. /* Mark the end of TLP episode on receiving TLP dupack or when
  2858. * ack is after tlp_high_seq.
  2859. */
  2860. if (is_tlp_dupack) {
  2861. tp->tlp_high_seq = 0;
  2862. return;
  2863. }
  2864. if (after(ack, tp->tlp_high_seq)) {
  2865. tp->tlp_high_seq = 0;
  2866. /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
  2867. if (!(flag & FLAG_DSACKING_ACK)) {
  2868. tcp_init_cwnd_reduction(sk, true);
  2869. tcp_set_ca_state(sk, TCP_CA_CWR);
  2870. tcp_end_cwnd_reduction(sk);
  2871. tcp_set_ca_state(sk, TCP_CA_Open);
  2872. NET_INC_STATS_BH(sock_net(sk),
  2873. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2874. }
  2875. }
  2876. }
  2877. /* This routine deals with incoming acks, but not outgoing ones. */
  2878. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2879. {
  2880. struct inet_connection_sock *icsk = inet_csk(sk);
  2881. struct tcp_sock *tp = tcp_sk(sk);
  2882. u32 prior_snd_una = tp->snd_una;
  2883. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2884. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2885. bool is_dupack = false;
  2886. u32 prior_in_flight;
  2887. u32 prior_fackets;
  2888. int prior_packets = tp->packets_out;
  2889. int prior_sacked = tp->sacked_out;
  2890. int pkts_acked = 0;
  2891. int previous_packets_out = 0;
  2892. /* If the ack is older than previous acks
  2893. * then we can probably ignore it.
  2894. */
  2895. if (before(ack, prior_snd_una)) {
  2896. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  2897. if (before(ack, prior_snd_una - tp->max_window)) {
  2898. tcp_send_challenge_ack(sk);
  2899. return -1;
  2900. }
  2901. goto old_ack;
  2902. }
  2903. /* If the ack includes data we haven't sent yet, discard
  2904. * this segment (RFC793 Section 3.9).
  2905. */
  2906. if (after(ack, tp->snd_nxt))
  2907. goto invalid_ack;
  2908. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2909. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  2910. tcp_rearm_rto(sk);
  2911. if (after(ack, prior_snd_una))
  2912. flag |= FLAG_SND_UNA_ADVANCED;
  2913. prior_fackets = tp->fackets_out;
  2914. prior_in_flight = tcp_packets_in_flight(tp);
  2915. /* ts_recent update must be made after we are sure that the packet
  2916. * is in window.
  2917. */
  2918. if (flag & FLAG_UPDATE_TS_RECENT)
  2919. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  2920. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2921. /* Window is constant, pure forward advance.
  2922. * No more checks are required.
  2923. * Note, we use the fact that SND.UNA>=SND.WL2.
  2924. */
  2925. tcp_update_wl(tp, ack_seq);
  2926. tp->snd_una = ack;
  2927. flag |= FLAG_WIN_UPDATE;
  2928. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2929. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2930. } else {
  2931. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2932. flag |= FLAG_DATA;
  2933. else
  2934. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2935. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2936. if (TCP_SKB_CB(skb)->sacked)
  2937. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2938. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2939. flag |= FLAG_ECE;
  2940. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2941. }
  2942. /* We passed data and got it acked, remove any soft error
  2943. * log. Something worked...
  2944. */
  2945. sk->sk_err_soft = 0;
  2946. icsk->icsk_probes_out = 0;
  2947. tp->rcv_tstamp = tcp_time_stamp;
  2948. if (!prior_packets)
  2949. goto no_queue;
  2950. /* See if we can take anything off of the retransmit queue. */
  2951. previous_packets_out = tp->packets_out;
  2952. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  2953. pkts_acked = previous_packets_out - tp->packets_out;
  2954. if (tcp_ack_is_dubious(sk, flag)) {
  2955. /* Advance CWND, if state allows this. */
  2956. if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
  2957. tcp_cong_avoid(sk, ack, prior_in_flight);
  2958. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2959. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2960. prior_packets, is_dupack, flag);
  2961. } else {
  2962. if (flag & FLAG_DATA_ACKED)
  2963. tcp_cong_avoid(sk, ack, prior_in_flight);
  2964. }
  2965. if (tp->tlp_high_seq)
  2966. tcp_process_tlp_ack(sk, ack, flag);
  2967. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  2968. struct dst_entry *dst = __sk_dst_get(sk);
  2969. if (dst)
  2970. dst_confirm(dst);
  2971. }
  2972. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  2973. tcp_schedule_loss_probe(sk);
  2974. return 1;
  2975. no_queue:
  2976. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  2977. if (flag & FLAG_DSACKING_ACK)
  2978. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2979. prior_packets, is_dupack, flag);
  2980. /* If this ack opens up a zero window, clear backoff. It was
  2981. * being used to time the probes, and is probably far higher than
  2982. * it needs to be for normal retransmission.
  2983. */
  2984. if (tcp_send_head(sk))
  2985. tcp_ack_probe(sk);
  2986. if (tp->tlp_high_seq)
  2987. tcp_process_tlp_ack(sk, ack, flag);
  2988. return 1;
  2989. invalid_ack:
  2990. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2991. return -1;
  2992. old_ack:
  2993. /* If data was SACKed, tag it and see if we should send more data.
  2994. * If data was DSACKed, see if we can undo a cwnd reduction.
  2995. */
  2996. if (TCP_SKB_CB(skb)->sacked) {
  2997. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2998. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2999. prior_packets, is_dupack, flag);
  3000. }
  3001. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3002. return 0;
  3003. }
  3004. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3005. * But, this can also be called on packets in the established flow when
  3006. * the fast version below fails.
  3007. */
  3008. void tcp_parse_options(const struct sk_buff *skb,
  3009. struct tcp_options_received *opt_rx, int estab,
  3010. struct tcp_fastopen_cookie *foc)
  3011. {
  3012. const unsigned char *ptr;
  3013. const struct tcphdr *th = tcp_hdr(skb);
  3014. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3015. ptr = (const unsigned char *)(th + 1);
  3016. opt_rx->saw_tstamp = 0;
  3017. while (length > 0) {
  3018. int opcode = *ptr++;
  3019. int opsize;
  3020. switch (opcode) {
  3021. case TCPOPT_EOL:
  3022. return;
  3023. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3024. length--;
  3025. continue;
  3026. default:
  3027. opsize = *ptr++;
  3028. if (opsize < 2) /* "silly options" */
  3029. return;
  3030. if (opsize > length)
  3031. return; /* don't parse partial options */
  3032. switch (opcode) {
  3033. case TCPOPT_MSS:
  3034. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3035. u16 in_mss = get_unaligned_be16(ptr);
  3036. if (in_mss) {
  3037. if (opt_rx->user_mss &&
  3038. opt_rx->user_mss < in_mss)
  3039. in_mss = opt_rx->user_mss;
  3040. opt_rx->mss_clamp = in_mss;
  3041. }
  3042. }
  3043. break;
  3044. case TCPOPT_WINDOW:
  3045. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3046. !estab && sysctl_tcp_window_scaling) {
  3047. __u8 snd_wscale = *(__u8 *)ptr;
  3048. opt_rx->wscale_ok = 1;
  3049. if (snd_wscale > 14) {
  3050. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3051. __func__,
  3052. snd_wscale);
  3053. snd_wscale = 14;
  3054. }
  3055. opt_rx->snd_wscale = snd_wscale;
  3056. }
  3057. break;
  3058. case TCPOPT_TIMESTAMP:
  3059. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3060. ((estab && opt_rx->tstamp_ok) ||
  3061. (!estab && sysctl_tcp_timestamps))) {
  3062. opt_rx->saw_tstamp = 1;
  3063. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3064. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3065. }
  3066. break;
  3067. case TCPOPT_SACK_PERM:
  3068. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3069. !estab && sysctl_tcp_sack) {
  3070. opt_rx->sack_ok = TCP_SACK_SEEN;
  3071. tcp_sack_reset(opt_rx);
  3072. }
  3073. break;
  3074. case TCPOPT_SACK:
  3075. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3076. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3077. opt_rx->sack_ok) {
  3078. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3079. }
  3080. break;
  3081. #ifdef CONFIG_TCP_MD5SIG
  3082. case TCPOPT_MD5SIG:
  3083. /*
  3084. * The MD5 Hash has already been
  3085. * checked (see tcp_v{4,6}_do_rcv()).
  3086. */
  3087. break;
  3088. #endif
  3089. case TCPOPT_EXP:
  3090. /* Fast Open option shares code 254 using a
  3091. * 16 bits magic number. It's valid only in
  3092. * SYN or SYN-ACK with an even size.
  3093. */
  3094. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3095. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3096. foc == NULL || !th->syn || (opsize & 1))
  3097. break;
  3098. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3099. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3100. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3101. memcpy(foc->val, ptr + 2, foc->len);
  3102. else if (foc->len != 0)
  3103. foc->len = -1;
  3104. break;
  3105. }
  3106. ptr += opsize-2;
  3107. length -= opsize;
  3108. }
  3109. }
  3110. }
  3111. EXPORT_SYMBOL(tcp_parse_options);
  3112. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3113. {
  3114. const __be32 *ptr = (const __be32 *)(th + 1);
  3115. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3116. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3117. tp->rx_opt.saw_tstamp = 1;
  3118. ++ptr;
  3119. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3120. ++ptr;
  3121. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3122. return true;
  3123. }
  3124. return false;
  3125. }
  3126. /* Fast parse options. This hopes to only see timestamps.
  3127. * If it is wrong it falls back on tcp_parse_options().
  3128. */
  3129. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3130. const struct tcphdr *th, struct tcp_sock *tp)
  3131. {
  3132. /* In the spirit of fast parsing, compare doff directly to constant
  3133. * values. Because equality is used, short doff can be ignored here.
  3134. */
  3135. if (th->doff == (sizeof(*th) / 4)) {
  3136. tp->rx_opt.saw_tstamp = 0;
  3137. return false;
  3138. } else if (tp->rx_opt.tstamp_ok &&
  3139. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3140. if (tcp_parse_aligned_timestamp(tp, th))
  3141. return true;
  3142. }
  3143. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3144. if (tp->rx_opt.saw_tstamp)
  3145. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3146. return true;
  3147. }
  3148. #ifdef CONFIG_TCP_MD5SIG
  3149. /*
  3150. * Parse MD5 Signature option
  3151. */
  3152. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3153. {
  3154. int length = (th->doff << 2) - sizeof(*th);
  3155. const u8 *ptr = (const u8 *)(th + 1);
  3156. /* If the TCP option is too short, we can short cut */
  3157. if (length < TCPOLEN_MD5SIG)
  3158. return NULL;
  3159. while (length > 0) {
  3160. int opcode = *ptr++;
  3161. int opsize;
  3162. switch(opcode) {
  3163. case TCPOPT_EOL:
  3164. return NULL;
  3165. case TCPOPT_NOP:
  3166. length--;
  3167. continue;
  3168. default:
  3169. opsize = *ptr++;
  3170. if (opsize < 2 || opsize > length)
  3171. return NULL;
  3172. if (opcode == TCPOPT_MD5SIG)
  3173. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3174. }
  3175. ptr += opsize - 2;
  3176. length -= opsize;
  3177. }
  3178. return NULL;
  3179. }
  3180. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3181. #endif
  3182. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3183. *
  3184. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3185. * it can pass through stack. So, the following predicate verifies that
  3186. * this segment is not used for anything but congestion avoidance or
  3187. * fast retransmit. Moreover, we even are able to eliminate most of such
  3188. * second order effects, if we apply some small "replay" window (~RTO)
  3189. * to timestamp space.
  3190. *
  3191. * All these measures still do not guarantee that we reject wrapped ACKs
  3192. * on networks with high bandwidth, when sequence space is recycled fastly,
  3193. * but it guarantees that such events will be very rare and do not affect
  3194. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3195. * buggy extension.
  3196. *
  3197. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3198. * states that events when retransmit arrives after original data are rare.
  3199. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3200. * the biggest problem on large power networks even with minor reordering.
  3201. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3202. * up to bandwidth of 18Gigabit/sec. 8) ]
  3203. */
  3204. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3205. {
  3206. const struct tcp_sock *tp = tcp_sk(sk);
  3207. const struct tcphdr *th = tcp_hdr(skb);
  3208. u32 seq = TCP_SKB_CB(skb)->seq;
  3209. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3210. return (/* 1. Pure ACK with correct sequence number. */
  3211. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3212. /* 2. ... and duplicate ACK. */
  3213. ack == tp->snd_una &&
  3214. /* 3. ... and does not update window. */
  3215. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3216. /* 4. ... and sits in replay window. */
  3217. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3218. }
  3219. static inline bool tcp_paws_discard(const struct sock *sk,
  3220. const struct sk_buff *skb)
  3221. {
  3222. const struct tcp_sock *tp = tcp_sk(sk);
  3223. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3224. !tcp_disordered_ack(sk, skb);
  3225. }
  3226. /* Check segment sequence number for validity.
  3227. *
  3228. * Segment controls are considered valid, if the segment
  3229. * fits to the window after truncation to the window. Acceptability
  3230. * of data (and SYN, FIN, of course) is checked separately.
  3231. * See tcp_data_queue(), for example.
  3232. *
  3233. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3234. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3235. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3236. * (borrowed from freebsd)
  3237. */
  3238. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3239. {
  3240. return !before(end_seq, tp->rcv_wup) &&
  3241. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3242. }
  3243. /* When we get a reset we do this. */
  3244. void tcp_reset(struct sock *sk)
  3245. {
  3246. /* We want the right error as BSD sees it (and indeed as we do). */
  3247. switch (sk->sk_state) {
  3248. case TCP_SYN_SENT:
  3249. sk->sk_err = ECONNREFUSED;
  3250. break;
  3251. case TCP_CLOSE_WAIT:
  3252. sk->sk_err = EPIPE;
  3253. break;
  3254. case TCP_CLOSE:
  3255. return;
  3256. default:
  3257. sk->sk_err = ECONNRESET;
  3258. }
  3259. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3260. smp_wmb();
  3261. if (!sock_flag(sk, SOCK_DEAD))
  3262. sk->sk_error_report(sk);
  3263. tcp_done(sk);
  3264. }
  3265. /*
  3266. * Process the FIN bit. This now behaves as it is supposed to work
  3267. * and the FIN takes effect when it is validly part of sequence
  3268. * space. Not before when we get holes.
  3269. *
  3270. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3271. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3272. * TIME-WAIT)
  3273. *
  3274. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3275. * close and we go into CLOSING (and later onto TIME-WAIT)
  3276. *
  3277. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3278. */
  3279. static void tcp_fin(struct sock *sk)
  3280. {
  3281. struct tcp_sock *tp = tcp_sk(sk);
  3282. inet_csk_schedule_ack(sk);
  3283. sk->sk_shutdown |= RCV_SHUTDOWN;
  3284. sock_set_flag(sk, SOCK_DONE);
  3285. switch (sk->sk_state) {
  3286. case TCP_SYN_RECV:
  3287. case TCP_ESTABLISHED:
  3288. /* Move to CLOSE_WAIT */
  3289. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3290. inet_csk(sk)->icsk_ack.pingpong = 1;
  3291. break;
  3292. case TCP_CLOSE_WAIT:
  3293. case TCP_CLOSING:
  3294. /* Received a retransmission of the FIN, do
  3295. * nothing.
  3296. */
  3297. break;
  3298. case TCP_LAST_ACK:
  3299. /* RFC793: Remain in the LAST-ACK state. */
  3300. break;
  3301. case TCP_FIN_WAIT1:
  3302. /* This case occurs when a simultaneous close
  3303. * happens, we must ack the received FIN and
  3304. * enter the CLOSING state.
  3305. */
  3306. tcp_send_ack(sk);
  3307. tcp_set_state(sk, TCP_CLOSING);
  3308. break;
  3309. case TCP_FIN_WAIT2:
  3310. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3311. tcp_send_ack(sk);
  3312. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3313. break;
  3314. default:
  3315. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3316. * cases we should never reach this piece of code.
  3317. */
  3318. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3319. __func__, sk->sk_state);
  3320. break;
  3321. }
  3322. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3323. * Probably, we should reset in this case. For now drop them.
  3324. */
  3325. __skb_queue_purge(&tp->out_of_order_queue);
  3326. if (tcp_is_sack(tp))
  3327. tcp_sack_reset(&tp->rx_opt);
  3328. sk_mem_reclaim(sk);
  3329. if (!sock_flag(sk, SOCK_DEAD)) {
  3330. sk->sk_state_change(sk);
  3331. /* Do not send POLL_HUP for half duplex close. */
  3332. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3333. sk->sk_state == TCP_CLOSE)
  3334. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3335. else
  3336. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3337. }
  3338. }
  3339. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3340. u32 end_seq)
  3341. {
  3342. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3343. if (before(seq, sp->start_seq))
  3344. sp->start_seq = seq;
  3345. if (after(end_seq, sp->end_seq))
  3346. sp->end_seq = end_seq;
  3347. return true;
  3348. }
  3349. return false;
  3350. }
  3351. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3352. {
  3353. struct tcp_sock *tp = tcp_sk(sk);
  3354. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3355. int mib_idx;
  3356. if (before(seq, tp->rcv_nxt))
  3357. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3358. else
  3359. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3360. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3361. tp->rx_opt.dsack = 1;
  3362. tp->duplicate_sack[0].start_seq = seq;
  3363. tp->duplicate_sack[0].end_seq = end_seq;
  3364. }
  3365. }
  3366. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3367. {
  3368. struct tcp_sock *tp = tcp_sk(sk);
  3369. if (!tp->rx_opt.dsack)
  3370. tcp_dsack_set(sk, seq, end_seq);
  3371. else
  3372. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3373. }
  3374. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3375. {
  3376. struct tcp_sock *tp = tcp_sk(sk);
  3377. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3378. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3379. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3380. tcp_enter_quickack_mode(sk);
  3381. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3382. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3383. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3384. end_seq = tp->rcv_nxt;
  3385. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3386. }
  3387. }
  3388. tcp_send_ack(sk);
  3389. }
  3390. /* These routines update the SACK block as out-of-order packets arrive or
  3391. * in-order packets close up the sequence space.
  3392. */
  3393. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3394. {
  3395. int this_sack;
  3396. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3397. struct tcp_sack_block *swalk = sp + 1;
  3398. /* See if the recent change to the first SACK eats into
  3399. * or hits the sequence space of other SACK blocks, if so coalesce.
  3400. */
  3401. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3402. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3403. int i;
  3404. /* Zap SWALK, by moving every further SACK up by one slot.
  3405. * Decrease num_sacks.
  3406. */
  3407. tp->rx_opt.num_sacks--;
  3408. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3409. sp[i] = sp[i + 1];
  3410. continue;
  3411. }
  3412. this_sack++, swalk++;
  3413. }
  3414. }
  3415. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3416. {
  3417. struct tcp_sock *tp = tcp_sk(sk);
  3418. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3419. int cur_sacks = tp->rx_opt.num_sacks;
  3420. int this_sack;
  3421. if (!cur_sacks)
  3422. goto new_sack;
  3423. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3424. if (tcp_sack_extend(sp, seq, end_seq)) {
  3425. /* Rotate this_sack to the first one. */
  3426. for (; this_sack > 0; this_sack--, sp--)
  3427. swap(*sp, *(sp - 1));
  3428. if (cur_sacks > 1)
  3429. tcp_sack_maybe_coalesce(tp);
  3430. return;
  3431. }
  3432. }
  3433. /* Could not find an adjacent existing SACK, build a new one,
  3434. * put it at the front, and shift everyone else down. We
  3435. * always know there is at least one SACK present already here.
  3436. *
  3437. * If the sack array is full, forget about the last one.
  3438. */
  3439. if (this_sack >= TCP_NUM_SACKS) {
  3440. this_sack--;
  3441. tp->rx_opt.num_sacks--;
  3442. sp--;
  3443. }
  3444. for (; this_sack > 0; this_sack--, sp--)
  3445. *sp = *(sp - 1);
  3446. new_sack:
  3447. /* Build the new head SACK, and we're done. */
  3448. sp->start_seq = seq;
  3449. sp->end_seq = end_seq;
  3450. tp->rx_opt.num_sacks++;
  3451. }
  3452. /* RCV.NXT advances, some SACKs should be eaten. */
  3453. static void tcp_sack_remove(struct tcp_sock *tp)
  3454. {
  3455. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3456. int num_sacks = tp->rx_opt.num_sacks;
  3457. int this_sack;
  3458. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3459. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3460. tp->rx_opt.num_sacks = 0;
  3461. return;
  3462. }
  3463. for (this_sack = 0; this_sack < num_sacks;) {
  3464. /* Check if the start of the sack is covered by RCV.NXT. */
  3465. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3466. int i;
  3467. /* RCV.NXT must cover all the block! */
  3468. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3469. /* Zap this SACK, by moving forward any other SACKS. */
  3470. for (i=this_sack+1; i < num_sacks; i++)
  3471. tp->selective_acks[i-1] = tp->selective_acks[i];
  3472. num_sacks--;
  3473. continue;
  3474. }
  3475. this_sack++;
  3476. sp++;
  3477. }
  3478. tp->rx_opt.num_sacks = num_sacks;
  3479. }
  3480. /* This one checks to see if we can put data from the
  3481. * out_of_order queue into the receive_queue.
  3482. */
  3483. static void tcp_ofo_queue(struct sock *sk)
  3484. {
  3485. struct tcp_sock *tp = tcp_sk(sk);
  3486. __u32 dsack_high = tp->rcv_nxt;
  3487. struct sk_buff *skb;
  3488. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3489. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3490. break;
  3491. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3492. __u32 dsack = dsack_high;
  3493. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3494. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3495. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3496. }
  3497. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3498. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3499. __skb_unlink(skb, &tp->out_of_order_queue);
  3500. __kfree_skb(skb);
  3501. continue;
  3502. }
  3503. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3504. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3505. TCP_SKB_CB(skb)->end_seq);
  3506. __skb_unlink(skb, &tp->out_of_order_queue);
  3507. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3508. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3509. if (tcp_hdr(skb)->fin)
  3510. tcp_fin(sk);
  3511. }
  3512. }
  3513. static bool tcp_prune_ofo_queue(struct sock *sk);
  3514. static int tcp_prune_queue(struct sock *sk);
  3515. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3516. unsigned int size)
  3517. {
  3518. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3519. !sk_rmem_schedule(sk, skb, size)) {
  3520. if (tcp_prune_queue(sk) < 0)
  3521. return -1;
  3522. if (!sk_rmem_schedule(sk, skb, size)) {
  3523. if (!tcp_prune_ofo_queue(sk))
  3524. return -1;
  3525. if (!sk_rmem_schedule(sk, skb, size))
  3526. return -1;
  3527. }
  3528. }
  3529. return 0;
  3530. }
  3531. /**
  3532. * tcp_try_coalesce - try to merge skb to prior one
  3533. * @sk: socket
  3534. * @to: prior buffer
  3535. * @from: buffer to add in queue
  3536. * @fragstolen: pointer to boolean
  3537. *
  3538. * Before queueing skb @from after @to, try to merge them
  3539. * to reduce overall memory use and queue lengths, if cost is small.
  3540. * Packets in ofo or receive queues can stay a long time.
  3541. * Better try to coalesce them right now to avoid future collapses.
  3542. * Returns true if caller should free @from instead of queueing it
  3543. */
  3544. static bool tcp_try_coalesce(struct sock *sk,
  3545. struct sk_buff *to,
  3546. struct sk_buff *from,
  3547. bool *fragstolen)
  3548. {
  3549. int delta;
  3550. *fragstolen = false;
  3551. if (tcp_hdr(from)->fin)
  3552. return false;
  3553. /* Its possible this segment overlaps with prior segment in queue */
  3554. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3555. return false;
  3556. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3557. return false;
  3558. atomic_add(delta, &sk->sk_rmem_alloc);
  3559. sk_mem_charge(sk, delta);
  3560. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3561. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3562. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3563. return true;
  3564. }
  3565. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3566. {
  3567. struct tcp_sock *tp = tcp_sk(sk);
  3568. struct sk_buff *skb1;
  3569. u32 seq, end_seq;
  3570. TCP_ECN_check_ce(tp, skb);
  3571. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3572. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3573. __kfree_skb(skb);
  3574. return;
  3575. }
  3576. /* Disable header prediction. */
  3577. tp->pred_flags = 0;
  3578. inet_csk_schedule_ack(sk);
  3579. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3580. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3581. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3582. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3583. if (!skb1) {
  3584. /* Initial out of order segment, build 1 SACK. */
  3585. if (tcp_is_sack(tp)) {
  3586. tp->rx_opt.num_sacks = 1;
  3587. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3588. tp->selective_acks[0].end_seq =
  3589. TCP_SKB_CB(skb)->end_seq;
  3590. }
  3591. __skb_queue_head(&tp->out_of_order_queue, skb);
  3592. goto end;
  3593. }
  3594. seq = TCP_SKB_CB(skb)->seq;
  3595. end_seq = TCP_SKB_CB(skb)->end_seq;
  3596. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3597. bool fragstolen;
  3598. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3599. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3600. } else {
  3601. kfree_skb_partial(skb, fragstolen);
  3602. skb = NULL;
  3603. }
  3604. if (!tp->rx_opt.num_sacks ||
  3605. tp->selective_acks[0].end_seq != seq)
  3606. goto add_sack;
  3607. /* Common case: data arrive in order after hole. */
  3608. tp->selective_acks[0].end_seq = end_seq;
  3609. goto end;
  3610. }
  3611. /* Find place to insert this segment. */
  3612. while (1) {
  3613. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3614. break;
  3615. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3616. skb1 = NULL;
  3617. break;
  3618. }
  3619. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3620. }
  3621. /* Do skb overlap to previous one? */
  3622. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3623. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3624. /* All the bits are present. Drop. */
  3625. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3626. __kfree_skb(skb);
  3627. skb = NULL;
  3628. tcp_dsack_set(sk, seq, end_seq);
  3629. goto add_sack;
  3630. }
  3631. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3632. /* Partial overlap. */
  3633. tcp_dsack_set(sk, seq,
  3634. TCP_SKB_CB(skb1)->end_seq);
  3635. } else {
  3636. if (skb_queue_is_first(&tp->out_of_order_queue,
  3637. skb1))
  3638. skb1 = NULL;
  3639. else
  3640. skb1 = skb_queue_prev(
  3641. &tp->out_of_order_queue,
  3642. skb1);
  3643. }
  3644. }
  3645. if (!skb1)
  3646. __skb_queue_head(&tp->out_of_order_queue, skb);
  3647. else
  3648. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3649. /* And clean segments covered by new one as whole. */
  3650. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3651. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3652. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3653. break;
  3654. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3655. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3656. end_seq);
  3657. break;
  3658. }
  3659. __skb_unlink(skb1, &tp->out_of_order_queue);
  3660. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3661. TCP_SKB_CB(skb1)->end_seq);
  3662. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3663. __kfree_skb(skb1);
  3664. }
  3665. add_sack:
  3666. if (tcp_is_sack(tp))
  3667. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3668. end:
  3669. if (skb)
  3670. skb_set_owner_r(skb, sk);
  3671. }
  3672. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3673. bool *fragstolen)
  3674. {
  3675. int eaten;
  3676. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3677. __skb_pull(skb, hdrlen);
  3678. eaten = (tail &&
  3679. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3680. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3681. if (!eaten) {
  3682. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3683. skb_set_owner_r(skb, sk);
  3684. }
  3685. return eaten;
  3686. }
  3687. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3688. {
  3689. struct sk_buff *skb = NULL;
  3690. struct tcphdr *th;
  3691. bool fragstolen;
  3692. if (size == 0)
  3693. return 0;
  3694. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3695. if (!skb)
  3696. goto err;
  3697. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3698. goto err_free;
  3699. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3700. skb_reset_transport_header(skb);
  3701. memset(th, 0, sizeof(*th));
  3702. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3703. goto err_free;
  3704. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3705. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3706. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3707. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3708. WARN_ON_ONCE(fragstolen); /* should not happen */
  3709. __kfree_skb(skb);
  3710. }
  3711. return size;
  3712. err_free:
  3713. kfree_skb(skb);
  3714. err:
  3715. return -ENOMEM;
  3716. }
  3717. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3718. {
  3719. const struct tcphdr *th = tcp_hdr(skb);
  3720. struct tcp_sock *tp = tcp_sk(sk);
  3721. int eaten = -1;
  3722. bool fragstolen = false;
  3723. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3724. goto drop;
  3725. skb_dst_drop(skb);
  3726. __skb_pull(skb, th->doff * 4);
  3727. TCP_ECN_accept_cwr(tp, skb);
  3728. tp->rx_opt.dsack = 0;
  3729. /* Queue data for delivery to the user.
  3730. * Packets in sequence go to the receive queue.
  3731. * Out of sequence packets to the out_of_order_queue.
  3732. */
  3733. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3734. if (tcp_receive_window(tp) == 0)
  3735. goto out_of_window;
  3736. /* Ok. In sequence. In window. */
  3737. if (tp->ucopy.task == current &&
  3738. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3739. sock_owned_by_user(sk) && !tp->urg_data) {
  3740. int chunk = min_t(unsigned int, skb->len,
  3741. tp->ucopy.len);
  3742. __set_current_state(TASK_RUNNING);
  3743. local_bh_enable();
  3744. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3745. tp->ucopy.len -= chunk;
  3746. tp->copied_seq += chunk;
  3747. eaten = (chunk == skb->len);
  3748. tcp_rcv_space_adjust(sk);
  3749. }
  3750. local_bh_disable();
  3751. }
  3752. if (eaten <= 0) {
  3753. queue_and_out:
  3754. if (eaten < 0 &&
  3755. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3756. goto drop;
  3757. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3758. }
  3759. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3760. if (skb->len)
  3761. tcp_event_data_recv(sk, skb);
  3762. if (th->fin)
  3763. tcp_fin(sk);
  3764. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3765. tcp_ofo_queue(sk);
  3766. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3767. * gap in queue is filled.
  3768. */
  3769. if (skb_queue_empty(&tp->out_of_order_queue))
  3770. inet_csk(sk)->icsk_ack.pingpong = 0;
  3771. }
  3772. if (tp->rx_opt.num_sacks)
  3773. tcp_sack_remove(tp);
  3774. tcp_fast_path_check(sk);
  3775. if (eaten > 0)
  3776. kfree_skb_partial(skb, fragstolen);
  3777. if (!sock_flag(sk, SOCK_DEAD))
  3778. sk->sk_data_ready(sk, 0);
  3779. return;
  3780. }
  3781. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3782. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3783. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3784. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3785. out_of_window:
  3786. tcp_enter_quickack_mode(sk);
  3787. inet_csk_schedule_ack(sk);
  3788. drop:
  3789. __kfree_skb(skb);
  3790. return;
  3791. }
  3792. /* Out of window. F.e. zero window probe. */
  3793. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3794. goto out_of_window;
  3795. tcp_enter_quickack_mode(sk);
  3796. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3797. /* Partial packet, seq < rcv_next < end_seq */
  3798. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3799. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3800. TCP_SKB_CB(skb)->end_seq);
  3801. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3802. /* If window is closed, drop tail of packet. But after
  3803. * remembering D-SACK for its head made in previous line.
  3804. */
  3805. if (!tcp_receive_window(tp))
  3806. goto out_of_window;
  3807. goto queue_and_out;
  3808. }
  3809. tcp_data_queue_ofo(sk, skb);
  3810. }
  3811. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3812. struct sk_buff_head *list)
  3813. {
  3814. struct sk_buff *next = NULL;
  3815. if (!skb_queue_is_last(list, skb))
  3816. next = skb_queue_next(list, skb);
  3817. __skb_unlink(skb, list);
  3818. __kfree_skb(skb);
  3819. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3820. return next;
  3821. }
  3822. /* Collapse contiguous sequence of skbs head..tail with
  3823. * sequence numbers start..end.
  3824. *
  3825. * If tail is NULL, this means until the end of the list.
  3826. *
  3827. * Segments with FIN/SYN are not collapsed (only because this
  3828. * simplifies code)
  3829. */
  3830. static void
  3831. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3832. struct sk_buff *head, struct sk_buff *tail,
  3833. u32 start, u32 end)
  3834. {
  3835. struct sk_buff *skb, *n;
  3836. bool end_of_skbs;
  3837. /* First, check that queue is collapsible and find
  3838. * the point where collapsing can be useful. */
  3839. skb = head;
  3840. restart:
  3841. end_of_skbs = true;
  3842. skb_queue_walk_from_safe(list, skb, n) {
  3843. if (skb == tail)
  3844. break;
  3845. /* No new bits? It is possible on ofo queue. */
  3846. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3847. skb = tcp_collapse_one(sk, skb, list);
  3848. if (!skb)
  3849. break;
  3850. goto restart;
  3851. }
  3852. /* The first skb to collapse is:
  3853. * - not SYN/FIN and
  3854. * - bloated or contains data before "start" or
  3855. * overlaps to the next one.
  3856. */
  3857. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3858. (tcp_win_from_space(skb->truesize) > skb->len ||
  3859. before(TCP_SKB_CB(skb)->seq, start))) {
  3860. end_of_skbs = false;
  3861. break;
  3862. }
  3863. if (!skb_queue_is_last(list, skb)) {
  3864. struct sk_buff *next = skb_queue_next(list, skb);
  3865. if (next != tail &&
  3866. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  3867. end_of_skbs = false;
  3868. break;
  3869. }
  3870. }
  3871. /* Decided to skip this, advance start seq. */
  3872. start = TCP_SKB_CB(skb)->end_seq;
  3873. }
  3874. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3875. return;
  3876. while (before(start, end)) {
  3877. struct sk_buff *nskb;
  3878. unsigned int header = skb_headroom(skb);
  3879. int copy = SKB_MAX_ORDER(header, 0);
  3880. /* Too big header? This can happen with IPv6. */
  3881. if (copy < 0)
  3882. return;
  3883. if (end - start < copy)
  3884. copy = end - start;
  3885. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3886. if (!nskb)
  3887. return;
  3888. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3889. skb_set_network_header(nskb, (skb_network_header(skb) -
  3890. skb->head));
  3891. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3892. skb->head));
  3893. skb_reserve(nskb, header);
  3894. memcpy(nskb->head, skb->head, header);
  3895. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3896. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3897. __skb_queue_before(list, skb, nskb);
  3898. skb_set_owner_r(nskb, sk);
  3899. /* Copy data, releasing collapsed skbs. */
  3900. while (copy > 0) {
  3901. int offset = start - TCP_SKB_CB(skb)->seq;
  3902. int size = TCP_SKB_CB(skb)->end_seq - start;
  3903. BUG_ON(offset < 0);
  3904. if (size > 0) {
  3905. size = min(copy, size);
  3906. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3907. BUG();
  3908. TCP_SKB_CB(nskb)->end_seq += size;
  3909. copy -= size;
  3910. start += size;
  3911. }
  3912. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3913. skb = tcp_collapse_one(sk, skb, list);
  3914. if (!skb ||
  3915. skb == tail ||
  3916. tcp_hdr(skb)->syn ||
  3917. tcp_hdr(skb)->fin)
  3918. return;
  3919. }
  3920. }
  3921. }
  3922. }
  3923. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3924. * and tcp_collapse() them until all the queue is collapsed.
  3925. */
  3926. static void tcp_collapse_ofo_queue(struct sock *sk)
  3927. {
  3928. struct tcp_sock *tp = tcp_sk(sk);
  3929. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3930. struct sk_buff *head;
  3931. u32 start, end;
  3932. if (skb == NULL)
  3933. return;
  3934. start = TCP_SKB_CB(skb)->seq;
  3935. end = TCP_SKB_CB(skb)->end_seq;
  3936. head = skb;
  3937. for (;;) {
  3938. struct sk_buff *next = NULL;
  3939. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  3940. next = skb_queue_next(&tp->out_of_order_queue, skb);
  3941. skb = next;
  3942. /* Segment is terminated when we see gap or when
  3943. * we are at the end of all the queue. */
  3944. if (!skb ||
  3945. after(TCP_SKB_CB(skb)->seq, end) ||
  3946. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3947. tcp_collapse(sk, &tp->out_of_order_queue,
  3948. head, skb, start, end);
  3949. head = skb;
  3950. if (!skb)
  3951. break;
  3952. /* Start new segment */
  3953. start = TCP_SKB_CB(skb)->seq;
  3954. end = TCP_SKB_CB(skb)->end_seq;
  3955. } else {
  3956. if (before(TCP_SKB_CB(skb)->seq, start))
  3957. start = TCP_SKB_CB(skb)->seq;
  3958. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3959. end = TCP_SKB_CB(skb)->end_seq;
  3960. }
  3961. }
  3962. }
  3963. /*
  3964. * Purge the out-of-order queue.
  3965. * Return true if queue was pruned.
  3966. */
  3967. static bool tcp_prune_ofo_queue(struct sock *sk)
  3968. {
  3969. struct tcp_sock *tp = tcp_sk(sk);
  3970. bool res = false;
  3971. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3972. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  3973. __skb_queue_purge(&tp->out_of_order_queue);
  3974. /* Reset SACK state. A conforming SACK implementation will
  3975. * do the same at a timeout based retransmit. When a connection
  3976. * is in a sad state like this, we care only about integrity
  3977. * of the connection not performance.
  3978. */
  3979. if (tp->rx_opt.sack_ok)
  3980. tcp_sack_reset(&tp->rx_opt);
  3981. sk_mem_reclaim(sk);
  3982. res = true;
  3983. }
  3984. return res;
  3985. }
  3986. /* Reduce allocated memory if we can, trying to get
  3987. * the socket within its memory limits again.
  3988. *
  3989. * Return less than zero if we should start dropping frames
  3990. * until the socket owning process reads some of the data
  3991. * to stabilize the situation.
  3992. */
  3993. static int tcp_prune_queue(struct sock *sk)
  3994. {
  3995. struct tcp_sock *tp = tcp_sk(sk);
  3996. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3997. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  3998. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3999. tcp_clamp_window(sk);
  4000. else if (sk_under_memory_pressure(sk))
  4001. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4002. tcp_collapse_ofo_queue(sk);
  4003. if (!skb_queue_empty(&sk->sk_receive_queue))
  4004. tcp_collapse(sk, &sk->sk_receive_queue,
  4005. skb_peek(&sk->sk_receive_queue),
  4006. NULL,
  4007. tp->copied_seq, tp->rcv_nxt);
  4008. sk_mem_reclaim(sk);
  4009. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4010. return 0;
  4011. /* Collapsing did not help, destructive actions follow.
  4012. * This must not ever occur. */
  4013. tcp_prune_ofo_queue(sk);
  4014. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4015. return 0;
  4016. /* If we are really being abused, tell the caller to silently
  4017. * drop receive data on the floor. It will get retransmitted
  4018. * and hopefully then we'll have sufficient space.
  4019. */
  4020. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4021. /* Massive buffer overcommit. */
  4022. tp->pred_flags = 0;
  4023. return -1;
  4024. }
  4025. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4026. * As additional protections, we do not touch cwnd in retransmission phases,
  4027. * and if application hit its sndbuf limit recently.
  4028. */
  4029. void tcp_cwnd_application_limited(struct sock *sk)
  4030. {
  4031. struct tcp_sock *tp = tcp_sk(sk);
  4032. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4033. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4034. /* Limited by application or receiver window. */
  4035. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4036. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4037. if (win_used < tp->snd_cwnd) {
  4038. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4039. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4040. }
  4041. tp->snd_cwnd_used = 0;
  4042. }
  4043. tp->snd_cwnd_stamp = tcp_time_stamp;
  4044. }
  4045. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4046. {
  4047. const struct tcp_sock *tp = tcp_sk(sk);
  4048. /* If the user specified a specific send buffer setting, do
  4049. * not modify it.
  4050. */
  4051. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4052. return false;
  4053. /* If we are under global TCP memory pressure, do not expand. */
  4054. if (sk_under_memory_pressure(sk))
  4055. return false;
  4056. /* If we are under soft global TCP memory pressure, do not expand. */
  4057. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4058. return false;
  4059. /* If we filled the congestion window, do not expand. */
  4060. if (tp->packets_out >= tp->snd_cwnd)
  4061. return false;
  4062. return true;
  4063. }
  4064. /* When incoming ACK allowed to free some skb from write_queue,
  4065. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4066. * on the exit from tcp input handler.
  4067. *
  4068. * PROBLEM: sndbuf expansion does not work well with largesend.
  4069. */
  4070. static void tcp_new_space(struct sock *sk)
  4071. {
  4072. struct tcp_sock *tp = tcp_sk(sk);
  4073. if (tcp_should_expand_sndbuf(sk)) {
  4074. int sndmem = SKB_TRUESIZE(max_t(u32,
  4075. tp->rx_opt.mss_clamp,
  4076. tp->mss_cache) +
  4077. MAX_TCP_HEADER);
  4078. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4079. tp->reordering + 1);
  4080. sndmem *= 2 * demanded;
  4081. if (sndmem > sk->sk_sndbuf)
  4082. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4083. tp->snd_cwnd_stamp = tcp_time_stamp;
  4084. }
  4085. sk->sk_write_space(sk);
  4086. }
  4087. static void tcp_check_space(struct sock *sk)
  4088. {
  4089. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4090. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4091. if (sk->sk_socket &&
  4092. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4093. tcp_new_space(sk);
  4094. }
  4095. }
  4096. static inline void tcp_data_snd_check(struct sock *sk)
  4097. {
  4098. tcp_push_pending_frames(sk);
  4099. tcp_check_space(sk);
  4100. }
  4101. /*
  4102. * Check if sending an ack is needed.
  4103. */
  4104. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4105. {
  4106. struct tcp_sock *tp = tcp_sk(sk);
  4107. /* More than one full frame received... */
  4108. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4109. /* ... and right edge of window advances far enough.
  4110. * (tcp_recvmsg() will send ACK otherwise). Or...
  4111. */
  4112. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4113. /* We ACK each frame or... */
  4114. tcp_in_quickack_mode(sk) ||
  4115. /* We have out of order data. */
  4116. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4117. /* Then ack it now */
  4118. tcp_send_ack(sk);
  4119. } else {
  4120. /* Else, send delayed ack. */
  4121. tcp_send_delayed_ack(sk);
  4122. }
  4123. }
  4124. static inline void tcp_ack_snd_check(struct sock *sk)
  4125. {
  4126. if (!inet_csk_ack_scheduled(sk)) {
  4127. /* We sent a data segment already. */
  4128. return;
  4129. }
  4130. __tcp_ack_snd_check(sk, 1);
  4131. }
  4132. /*
  4133. * This routine is only called when we have urgent data
  4134. * signaled. Its the 'slow' part of tcp_urg. It could be
  4135. * moved inline now as tcp_urg is only called from one
  4136. * place. We handle URGent data wrong. We have to - as
  4137. * BSD still doesn't use the correction from RFC961.
  4138. * For 1003.1g we should support a new option TCP_STDURG to permit
  4139. * either form (or just set the sysctl tcp_stdurg).
  4140. */
  4141. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4142. {
  4143. struct tcp_sock *tp = tcp_sk(sk);
  4144. u32 ptr = ntohs(th->urg_ptr);
  4145. if (ptr && !sysctl_tcp_stdurg)
  4146. ptr--;
  4147. ptr += ntohl(th->seq);
  4148. /* Ignore urgent data that we've already seen and read. */
  4149. if (after(tp->copied_seq, ptr))
  4150. return;
  4151. /* Do not replay urg ptr.
  4152. *
  4153. * NOTE: interesting situation not covered by specs.
  4154. * Misbehaving sender may send urg ptr, pointing to segment,
  4155. * which we already have in ofo queue. We are not able to fetch
  4156. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4157. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4158. * situations. But it is worth to think about possibility of some
  4159. * DoSes using some hypothetical application level deadlock.
  4160. */
  4161. if (before(ptr, tp->rcv_nxt))
  4162. return;
  4163. /* Do we already have a newer (or duplicate) urgent pointer? */
  4164. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4165. return;
  4166. /* Tell the world about our new urgent pointer. */
  4167. sk_send_sigurg(sk);
  4168. /* We may be adding urgent data when the last byte read was
  4169. * urgent. To do this requires some care. We cannot just ignore
  4170. * tp->copied_seq since we would read the last urgent byte again
  4171. * as data, nor can we alter copied_seq until this data arrives
  4172. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4173. *
  4174. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4175. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4176. * and expect that both A and B disappear from stream. This is _wrong_.
  4177. * Though this happens in BSD with high probability, this is occasional.
  4178. * Any application relying on this is buggy. Note also, that fix "works"
  4179. * only in this artificial test. Insert some normal data between A and B and we will
  4180. * decline of BSD again. Verdict: it is better to remove to trap
  4181. * buggy users.
  4182. */
  4183. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4184. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4185. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4186. tp->copied_seq++;
  4187. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4188. __skb_unlink(skb, &sk->sk_receive_queue);
  4189. __kfree_skb(skb);
  4190. }
  4191. }
  4192. tp->urg_data = TCP_URG_NOTYET;
  4193. tp->urg_seq = ptr;
  4194. /* Disable header prediction. */
  4195. tp->pred_flags = 0;
  4196. }
  4197. /* This is the 'fast' part of urgent handling. */
  4198. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4199. {
  4200. struct tcp_sock *tp = tcp_sk(sk);
  4201. /* Check if we get a new urgent pointer - normally not. */
  4202. if (th->urg)
  4203. tcp_check_urg(sk, th);
  4204. /* Do we wait for any urgent data? - normally not... */
  4205. if (tp->urg_data == TCP_URG_NOTYET) {
  4206. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4207. th->syn;
  4208. /* Is the urgent pointer pointing into this packet? */
  4209. if (ptr < skb->len) {
  4210. u8 tmp;
  4211. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4212. BUG();
  4213. tp->urg_data = TCP_URG_VALID | tmp;
  4214. if (!sock_flag(sk, SOCK_DEAD))
  4215. sk->sk_data_ready(sk, 0);
  4216. }
  4217. }
  4218. }
  4219. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4220. {
  4221. struct tcp_sock *tp = tcp_sk(sk);
  4222. int chunk = skb->len - hlen;
  4223. int err;
  4224. local_bh_enable();
  4225. if (skb_csum_unnecessary(skb))
  4226. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4227. else
  4228. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4229. tp->ucopy.iov);
  4230. if (!err) {
  4231. tp->ucopy.len -= chunk;
  4232. tp->copied_seq += chunk;
  4233. tcp_rcv_space_adjust(sk);
  4234. }
  4235. local_bh_disable();
  4236. return err;
  4237. }
  4238. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4239. struct sk_buff *skb)
  4240. {
  4241. __sum16 result;
  4242. if (sock_owned_by_user(sk)) {
  4243. local_bh_enable();
  4244. result = __tcp_checksum_complete(skb);
  4245. local_bh_disable();
  4246. } else {
  4247. result = __tcp_checksum_complete(skb);
  4248. }
  4249. return result;
  4250. }
  4251. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4252. struct sk_buff *skb)
  4253. {
  4254. return !skb_csum_unnecessary(skb) &&
  4255. __tcp_checksum_complete_user(sk, skb);
  4256. }
  4257. #ifdef CONFIG_NET_DMA
  4258. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4259. int hlen)
  4260. {
  4261. struct tcp_sock *tp = tcp_sk(sk);
  4262. int chunk = skb->len - hlen;
  4263. int dma_cookie;
  4264. bool copied_early = false;
  4265. if (tp->ucopy.wakeup)
  4266. return false;
  4267. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4268. tp->ucopy.dma_chan = net_dma_find_channel();
  4269. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4270. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4271. skb, hlen,
  4272. tp->ucopy.iov, chunk,
  4273. tp->ucopy.pinned_list);
  4274. if (dma_cookie < 0)
  4275. goto out;
  4276. tp->ucopy.dma_cookie = dma_cookie;
  4277. copied_early = true;
  4278. tp->ucopy.len -= chunk;
  4279. tp->copied_seq += chunk;
  4280. tcp_rcv_space_adjust(sk);
  4281. if ((tp->ucopy.len == 0) ||
  4282. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4283. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4284. tp->ucopy.wakeup = 1;
  4285. sk->sk_data_ready(sk, 0);
  4286. }
  4287. } else if (chunk > 0) {
  4288. tp->ucopy.wakeup = 1;
  4289. sk->sk_data_ready(sk, 0);
  4290. }
  4291. out:
  4292. return copied_early;
  4293. }
  4294. #endif /* CONFIG_NET_DMA */
  4295. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4296. * play significant role here.
  4297. */
  4298. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4299. const struct tcphdr *th, int syn_inerr)
  4300. {
  4301. struct tcp_sock *tp = tcp_sk(sk);
  4302. /* RFC1323: H1. Apply PAWS check first. */
  4303. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4304. tcp_paws_discard(sk, skb)) {
  4305. if (!th->rst) {
  4306. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4307. tcp_send_dupack(sk, skb);
  4308. goto discard;
  4309. }
  4310. /* Reset is accepted even if it did not pass PAWS. */
  4311. }
  4312. /* Step 1: check sequence number */
  4313. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4314. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4315. * (RST) segments are validated by checking their SEQ-fields."
  4316. * And page 69: "If an incoming segment is not acceptable,
  4317. * an acknowledgment should be sent in reply (unless the RST
  4318. * bit is set, if so drop the segment and return)".
  4319. */
  4320. if (!th->rst) {
  4321. if (th->syn)
  4322. goto syn_challenge;
  4323. tcp_send_dupack(sk, skb);
  4324. }
  4325. goto discard;
  4326. }
  4327. /* Step 2: check RST bit */
  4328. if (th->rst) {
  4329. /* RFC 5961 3.2 :
  4330. * If sequence number exactly matches RCV.NXT, then
  4331. * RESET the connection
  4332. * else
  4333. * Send a challenge ACK
  4334. */
  4335. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4336. tcp_reset(sk);
  4337. else
  4338. tcp_send_challenge_ack(sk);
  4339. goto discard;
  4340. }
  4341. /* step 3: check security and precedence [ignored] */
  4342. /* step 4: Check for a SYN
  4343. * RFC 5691 4.2 : Send a challenge ack
  4344. */
  4345. if (th->syn) {
  4346. syn_challenge:
  4347. if (syn_inerr)
  4348. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4349. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4350. tcp_send_challenge_ack(sk);
  4351. goto discard;
  4352. }
  4353. return true;
  4354. discard:
  4355. __kfree_skb(skb);
  4356. return false;
  4357. }
  4358. /*
  4359. * TCP receive function for the ESTABLISHED state.
  4360. *
  4361. * It is split into a fast path and a slow path. The fast path is
  4362. * disabled when:
  4363. * - A zero window was announced from us - zero window probing
  4364. * is only handled properly in the slow path.
  4365. * - Out of order segments arrived.
  4366. * - Urgent data is expected.
  4367. * - There is no buffer space left
  4368. * - Unexpected TCP flags/window values/header lengths are received
  4369. * (detected by checking the TCP header against pred_flags)
  4370. * - Data is sent in both directions. Fast path only supports pure senders
  4371. * or pure receivers (this means either the sequence number or the ack
  4372. * value must stay constant)
  4373. * - Unexpected TCP option.
  4374. *
  4375. * When these conditions are not satisfied it drops into a standard
  4376. * receive procedure patterned after RFC793 to handle all cases.
  4377. * The first three cases are guaranteed by proper pred_flags setting,
  4378. * the rest is checked inline. Fast processing is turned on in
  4379. * tcp_data_queue when everything is OK.
  4380. */
  4381. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4382. const struct tcphdr *th, unsigned int len)
  4383. {
  4384. struct tcp_sock *tp = tcp_sk(sk);
  4385. if (unlikely(sk->sk_rx_dst == NULL))
  4386. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4387. /*
  4388. * Header prediction.
  4389. * The code loosely follows the one in the famous
  4390. * "30 instruction TCP receive" Van Jacobson mail.
  4391. *
  4392. * Van's trick is to deposit buffers into socket queue
  4393. * on a device interrupt, to call tcp_recv function
  4394. * on the receive process context and checksum and copy
  4395. * the buffer to user space. smart...
  4396. *
  4397. * Our current scheme is not silly either but we take the
  4398. * extra cost of the net_bh soft interrupt processing...
  4399. * We do checksum and copy also but from device to kernel.
  4400. */
  4401. tp->rx_opt.saw_tstamp = 0;
  4402. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4403. * if header_prediction is to be made
  4404. * 'S' will always be tp->tcp_header_len >> 2
  4405. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4406. * turn it off (when there are holes in the receive
  4407. * space for instance)
  4408. * PSH flag is ignored.
  4409. */
  4410. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4411. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4412. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4413. int tcp_header_len = tp->tcp_header_len;
  4414. /* Timestamp header prediction: tcp_header_len
  4415. * is automatically equal to th->doff*4 due to pred_flags
  4416. * match.
  4417. */
  4418. /* Check timestamp */
  4419. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4420. /* No? Slow path! */
  4421. if (!tcp_parse_aligned_timestamp(tp, th))
  4422. goto slow_path;
  4423. /* If PAWS failed, check it more carefully in slow path */
  4424. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4425. goto slow_path;
  4426. /* DO NOT update ts_recent here, if checksum fails
  4427. * and timestamp was corrupted part, it will result
  4428. * in a hung connection since we will drop all
  4429. * future packets due to the PAWS test.
  4430. */
  4431. }
  4432. if (len <= tcp_header_len) {
  4433. /* Bulk data transfer: sender */
  4434. if (len == tcp_header_len) {
  4435. /* Predicted packet is in window by definition.
  4436. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4437. * Hence, check seq<=rcv_wup reduces to:
  4438. */
  4439. if (tcp_header_len ==
  4440. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4441. tp->rcv_nxt == tp->rcv_wup)
  4442. tcp_store_ts_recent(tp);
  4443. /* We know that such packets are checksummed
  4444. * on entry.
  4445. */
  4446. tcp_ack(sk, skb, 0);
  4447. __kfree_skb(skb);
  4448. tcp_data_snd_check(sk);
  4449. return 0;
  4450. } else { /* Header too small */
  4451. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4452. goto discard;
  4453. }
  4454. } else {
  4455. int eaten = 0;
  4456. int copied_early = 0;
  4457. bool fragstolen = false;
  4458. if (tp->copied_seq == tp->rcv_nxt &&
  4459. len - tcp_header_len <= tp->ucopy.len) {
  4460. #ifdef CONFIG_NET_DMA
  4461. if (tp->ucopy.task == current &&
  4462. sock_owned_by_user(sk) &&
  4463. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4464. copied_early = 1;
  4465. eaten = 1;
  4466. }
  4467. #endif
  4468. if (tp->ucopy.task == current &&
  4469. sock_owned_by_user(sk) && !copied_early) {
  4470. __set_current_state(TASK_RUNNING);
  4471. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4472. eaten = 1;
  4473. }
  4474. if (eaten) {
  4475. /* Predicted packet is in window by definition.
  4476. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4477. * Hence, check seq<=rcv_wup reduces to:
  4478. */
  4479. if (tcp_header_len ==
  4480. (sizeof(struct tcphdr) +
  4481. TCPOLEN_TSTAMP_ALIGNED) &&
  4482. tp->rcv_nxt == tp->rcv_wup)
  4483. tcp_store_ts_recent(tp);
  4484. tcp_rcv_rtt_measure_ts(sk, skb);
  4485. __skb_pull(skb, tcp_header_len);
  4486. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4487. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4488. }
  4489. if (copied_early)
  4490. tcp_cleanup_rbuf(sk, skb->len);
  4491. }
  4492. if (!eaten) {
  4493. if (tcp_checksum_complete_user(sk, skb))
  4494. goto csum_error;
  4495. if ((int)skb->truesize > sk->sk_forward_alloc)
  4496. goto step5;
  4497. /* Predicted packet is in window by definition.
  4498. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4499. * Hence, check seq<=rcv_wup reduces to:
  4500. */
  4501. if (tcp_header_len ==
  4502. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4503. tp->rcv_nxt == tp->rcv_wup)
  4504. tcp_store_ts_recent(tp);
  4505. tcp_rcv_rtt_measure_ts(sk, skb);
  4506. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4507. /* Bulk data transfer: receiver */
  4508. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4509. &fragstolen);
  4510. }
  4511. tcp_event_data_recv(sk, skb);
  4512. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4513. /* Well, only one small jumplet in fast path... */
  4514. tcp_ack(sk, skb, FLAG_DATA);
  4515. tcp_data_snd_check(sk);
  4516. if (!inet_csk_ack_scheduled(sk))
  4517. goto no_ack;
  4518. }
  4519. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4520. __tcp_ack_snd_check(sk, 0);
  4521. no_ack:
  4522. #ifdef CONFIG_NET_DMA
  4523. if (copied_early)
  4524. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4525. else
  4526. #endif
  4527. if (eaten)
  4528. kfree_skb_partial(skb, fragstolen);
  4529. sk->sk_data_ready(sk, 0);
  4530. return 0;
  4531. }
  4532. }
  4533. slow_path:
  4534. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4535. goto csum_error;
  4536. if (!th->ack && !th->rst)
  4537. goto discard;
  4538. /*
  4539. * Standard slow path.
  4540. */
  4541. if (!tcp_validate_incoming(sk, skb, th, 1))
  4542. return 0;
  4543. step5:
  4544. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4545. goto discard;
  4546. tcp_rcv_rtt_measure_ts(sk, skb);
  4547. /* Process urgent data. */
  4548. tcp_urg(sk, skb, th);
  4549. /* step 7: process the segment text */
  4550. tcp_data_queue(sk, skb);
  4551. tcp_data_snd_check(sk);
  4552. tcp_ack_snd_check(sk);
  4553. return 0;
  4554. csum_error:
  4555. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4556. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4557. discard:
  4558. __kfree_skb(skb);
  4559. return 0;
  4560. }
  4561. EXPORT_SYMBOL(tcp_rcv_established);
  4562. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4563. {
  4564. struct tcp_sock *tp = tcp_sk(sk);
  4565. struct inet_connection_sock *icsk = inet_csk(sk);
  4566. tcp_set_state(sk, TCP_ESTABLISHED);
  4567. if (skb != NULL) {
  4568. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4569. security_inet_conn_established(sk, skb);
  4570. }
  4571. /* Make sure socket is routed, for correct metrics. */
  4572. icsk->icsk_af_ops->rebuild_header(sk);
  4573. tcp_init_metrics(sk);
  4574. tcp_init_congestion_control(sk);
  4575. /* Prevent spurious tcp_cwnd_restart() on first data
  4576. * packet.
  4577. */
  4578. tp->lsndtime = tcp_time_stamp;
  4579. tcp_init_buffer_space(sk);
  4580. if (sock_flag(sk, SOCK_KEEPOPEN))
  4581. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4582. if (!tp->rx_opt.snd_wscale)
  4583. __tcp_fast_path_on(tp, tp->snd_wnd);
  4584. else
  4585. tp->pred_flags = 0;
  4586. if (!sock_flag(sk, SOCK_DEAD)) {
  4587. sk->sk_state_change(sk);
  4588. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4589. }
  4590. }
  4591. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4592. struct tcp_fastopen_cookie *cookie)
  4593. {
  4594. struct tcp_sock *tp = tcp_sk(sk);
  4595. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4596. u16 mss = tp->rx_opt.mss_clamp;
  4597. bool syn_drop;
  4598. if (mss == tp->rx_opt.user_mss) {
  4599. struct tcp_options_received opt;
  4600. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4601. tcp_clear_options(&opt);
  4602. opt.user_mss = opt.mss_clamp = 0;
  4603. tcp_parse_options(synack, &opt, 0, NULL);
  4604. mss = opt.mss_clamp;
  4605. }
  4606. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4607. cookie->len = -1;
  4608. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4609. * the remote receives only the retransmitted (regular) SYNs: either
  4610. * the original SYN-data or the corresponding SYN-ACK is lost.
  4611. */
  4612. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4613. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4614. if (data) { /* Retransmit unacked data in SYN */
  4615. tcp_for_write_queue_from(data, sk) {
  4616. if (data == tcp_send_head(sk) ||
  4617. __tcp_retransmit_skb(sk, data))
  4618. break;
  4619. }
  4620. tcp_rearm_rto(sk);
  4621. return true;
  4622. }
  4623. tp->syn_data_acked = tp->syn_data;
  4624. return false;
  4625. }
  4626. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4627. const struct tcphdr *th, unsigned int len)
  4628. {
  4629. struct inet_connection_sock *icsk = inet_csk(sk);
  4630. struct tcp_sock *tp = tcp_sk(sk);
  4631. struct tcp_fastopen_cookie foc = { .len = -1 };
  4632. int saved_clamp = tp->rx_opt.mss_clamp;
  4633. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4634. if (tp->rx_opt.saw_tstamp)
  4635. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4636. if (th->ack) {
  4637. /* rfc793:
  4638. * "If the state is SYN-SENT then
  4639. * first check the ACK bit
  4640. * If the ACK bit is set
  4641. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4642. * a reset (unless the RST bit is set, if so drop
  4643. * the segment and return)"
  4644. */
  4645. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4646. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4647. goto reset_and_undo;
  4648. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4649. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4650. tcp_time_stamp)) {
  4651. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4652. goto reset_and_undo;
  4653. }
  4654. /* Now ACK is acceptable.
  4655. *
  4656. * "If the RST bit is set
  4657. * If the ACK was acceptable then signal the user "error:
  4658. * connection reset", drop the segment, enter CLOSED state,
  4659. * delete TCB, and return."
  4660. */
  4661. if (th->rst) {
  4662. tcp_reset(sk);
  4663. goto discard;
  4664. }
  4665. /* rfc793:
  4666. * "fifth, if neither of the SYN or RST bits is set then
  4667. * drop the segment and return."
  4668. *
  4669. * See note below!
  4670. * --ANK(990513)
  4671. */
  4672. if (!th->syn)
  4673. goto discard_and_undo;
  4674. /* rfc793:
  4675. * "If the SYN bit is on ...
  4676. * are acceptable then ...
  4677. * (our SYN has been ACKed), change the connection
  4678. * state to ESTABLISHED..."
  4679. */
  4680. TCP_ECN_rcv_synack(tp, th);
  4681. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4682. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4683. /* Ok.. it's good. Set up sequence numbers and
  4684. * move to established.
  4685. */
  4686. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4687. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4688. /* RFC1323: The window in SYN & SYN/ACK segments is
  4689. * never scaled.
  4690. */
  4691. tp->snd_wnd = ntohs(th->window);
  4692. if (!tp->rx_opt.wscale_ok) {
  4693. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4694. tp->window_clamp = min(tp->window_clamp, 65535U);
  4695. }
  4696. if (tp->rx_opt.saw_tstamp) {
  4697. tp->rx_opt.tstamp_ok = 1;
  4698. tp->tcp_header_len =
  4699. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4700. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4701. tcp_store_ts_recent(tp);
  4702. } else {
  4703. tp->tcp_header_len = sizeof(struct tcphdr);
  4704. }
  4705. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4706. tcp_enable_fack(tp);
  4707. tcp_mtup_init(sk);
  4708. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4709. tcp_initialize_rcv_mss(sk);
  4710. /* Remember, tcp_poll() does not lock socket!
  4711. * Change state from SYN-SENT only after copied_seq
  4712. * is initialized. */
  4713. tp->copied_seq = tp->rcv_nxt;
  4714. smp_mb();
  4715. tcp_finish_connect(sk, skb);
  4716. if ((tp->syn_fastopen || tp->syn_data) &&
  4717. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4718. return -1;
  4719. if (sk->sk_write_pending ||
  4720. icsk->icsk_accept_queue.rskq_defer_accept ||
  4721. icsk->icsk_ack.pingpong) {
  4722. /* Save one ACK. Data will be ready after
  4723. * several ticks, if write_pending is set.
  4724. *
  4725. * It may be deleted, but with this feature tcpdumps
  4726. * look so _wonderfully_ clever, that I was not able
  4727. * to stand against the temptation 8) --ANK
  4728. */
  4729. inet_csk_schedule_ack(sk);
  4730. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4731. tcp_enter_quickack_mode(sk);
  4732. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4733. TCP_DELACK_MAX, TCP_RTO_MAX);
  4734. discard:
  4735. __kfree_skb(skb);
  4736. return 0;
  4737. } else {
  4738. tcp_send_ack(sk);
  4739. }
  4740. return -1;
  4741. }
  4742. /* No ACK in the segment */
  4743. if (th->rst) {
  4744. /* rfc793:
  4745. * "If the RST bit is set
  4746. *
  4747. * Otherwise (no ACK) drop the segment and return."
  4748. */
  4749. goto discard_and_undo;
  4750. }
  4751. /* PAWS check. */
  4752. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4753. tcp_paws_reject(&tp->rx_opt, 0))
  4754. goto discard_and_undo;
  4755. if (th->syn) {
  4756. /* We see SYN without ACK. It is attempt of
  4757. * simultaneous connect with crossed SYNs.
  4758. * Particularly, it can be connect to self.
  4759. */
  4760. tcp_set_state(sk, TCP_SYN_RECV);
  4761. if (tp->rx_opt.saw_tstamp) {
  4762. tp->rx_opt.tstamp_ok = 1;
  4763. tcp_store_ts_recent(tp);
  4764. tp->tcp_header_len =
  4765. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4766. } else {
  4767. tp->tcp_header_len = sizeof(struct tcphdr);
  4768. }
  4769. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4770. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4771. /* RFC1323: The window in SYN & SYN/ACK segments is
  4772. * never scaled.
  4773. */
  4774. tp->snd_wnd = ntohs(th->window);
  4775. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4776. tp->max_window = tp->snd_wnd;
  4777. TCP_ECN_rcv_syn(tp, th);
  4778. tcp_mtup_init(sk);
  4779. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4780. tcp_initialize_rcv_mss(sk);
  4781. tcp_send_synack(sk);
  4782. #if 0
  4783. /* Note, we could accept data and URG from this segment.
  4784. * There are no obstacles to make this (except that we must
  4785. * either change tcp_recvmsg() to prevent it from returning data
  4786. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4787. *
  4788. * However, if we ignore data in ACKless segments sometimes,
  4789. * we have no reasons to accept it sometimes.
  4790. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4791. * is not flawless. So, discard packet for sanity.
  4792. * Uncomment this return to process the data.
  4793. */
  4794. return -1;
  4795. #else
  4796. goto discard;
  4797. #endif
  4798. }
  4799. /* "fifth, if neither of the SYN or RST bits is set then
  4800. * drop the segment and return."
  4801. */
  4802. discard_and_undo:
  4803. tcp_clear_options(&tp->rx_opt);
  4804. tp->rx_opt.mss_clamp = saved_clamp;
  4805. goto discard;
  4806. reset_and_undo:
  4807. tcp_clear_options(&tp->rx_opt);
  4808. tp->rx_opt.mss_clamp = saved_clamp;
  4809. return 1;
  4810. }
  4811. /*
  4812. * This function implements the receiving procedure of RFC 793 for
  4813. * all states except ESTABLISHED and TIME_WAIT.
  4814. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4815. * address independent.
  4816. */
  4817. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4818. const struct tcphdr *th, unsigned int len)
  4819. {
  4820. struct tcp_sock *tp = tcp_sk(sk);
  4821. struct inet_connection_sock *icsk = inet_csk(sk);
  4822. struct request_sock *req;
  4823. int queued = 0;
  4824. tp->rx_opt.saw_tstamp = 0;
  4825. switch (sk->sk_state) {
  4826. case TCP_CLOSE:
  4827. goto discard;
  4828. case TCP_LISTEN:
  4829. if (th->ack)
  4830. return 1;
  4831. if (th->rst)
  4832. goto discard;
  4833. if (th->syn) {
  4834. if (th->fin)
  4835. goto discard;
  4836. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4837. return 1;
  4838. /* Now we have several options: In theory there is
  4839. * nothing else in the frame. KA9Q has an option to
  4840. * send data with the syn, BSD accepts data with the
  4841. * syn up to the [to be] advertised window and
  4842. * Solaris 2.1 gives you a protocol error. For now
  4843. * we just ignore it, that fits the spec precisely
  4844. * and avoids incompatibilities. It would be nice in
  4845. * future to drop through and process the data.
  4846. *
  4847. * Now that TTCP is starting to be used we ought to
  4848. * queue this data.
  4849. * But, this leaves one open to an easy denial of
  4850. * service attack, and SYN cookies can't defend
  4851. * against this problem. So, we drop the data
  4852. * in the interest of security over speed unless
  4853. * it's still in use.
  4854. */
  4855. kfree_skb(skb);
  4856. return 0;
  4857. }
  4858. goto discard;
  4859. case TCP_SYN_SENT:
  4860. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4861. if (queued >= 0)
  4862. return queued;
  4863. /* Do step6 onward by hand. */
  4864. tcp_urg(sk, skb, th);
  4865. __kfree_skb(skb);
  4866. tcp_data_snd_check(sk);
  4867. return 0;
  4868. }
  4869. req = tp->fastopen_rsk;
  4870. if (req != NULL) {
  4871. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4872. sk->sk_state != TCP_FIN_WAIT1);
  4873. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  4874. goto discard;
  4875. }
  4876. if (!th->ack && !th->rst)
  4877. goto discard;
  4878. if (!tcp_validate_incoming(sk, skb, th, 0))
  4879. return 0;
  4880. /* step 5: check the ACK field */
  4881. if (true) {
  4882. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  4883. FLAG_UPDATE_TS_RECENT) > 0;
  4884. switch (sk->sk_state) {
  4885. case TCP_SYN_RECV:
  4886. if (acceptable) {
  4887. /* Once we leave TCP_SYN_RECV, we no longer
  4888. * need req so release it.
  4889. */
  4890. if (req) {
  4891. tcp_synack_rtt_meas(sk, req);
  4892. tp->total_retrans = req->num_retrans;
  4893. reqsk_fastopen_remove(sk, req, false);
  4894. } else {
  4895. /* Make sure socket is routed, for
  4896. * correct metrics.
  4897. */
  4898. icsk->icsk_af_ops->rebuild_header(sk);
  4899. tcp_init_congestion_control(sk);
  4900. tcp_mtup_init(sk);
  4901. tcp_init_buffer_space(sk);
  4902. tp->copied_seq = tp->rcv_nxt;
  4903. }
  4904. smp_mb();
  4905. tcp_set_state(sk, TCP_ESTABLISHED);
  4906. sk->sk_state_change(sk);
  4907. /* Note, that this wakeup is only for marginal
  4908. * crossed SYN case. Passively open sockets
  4909. * are not waked up, because sk->sk_sleep ==
  4910. * NULL and sk->sk_socket == NULL.
  4911. */
  4912. if (sk->sk_socket)
  4913. sk_wake_async(sk,
  4914. SOCK_WAKE_IO, POLL_OUT);
  4915. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4916. tp->snd_wnd = ntohs(th->window) <<
  4917. tp->rx_opt.snd_wscale;
  4918. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4919. if (tp->rx_opt.tstamp_ok)
  4920. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4921. if (req) {
  4922. /* Re-arm the timer because data may
  4923. * have been sent out. This is similar
  4924. * to the regular data transmission case
  4925. * when new data has just been ack'ed.
  4926. *
  4927. * (TFO) - we could try to be more
  4928. * aggressive and retranmitting any data
  4929. * sooner based on when they were sent
  4930. * out.
  4931. */
  4932. tcp_rearm_rto(sk);
  4933. } else
  4934. tcp_init_metrics(sk);
  4935. /* Prevent spurious tcp_cwnd_restart() on
  4936. * first data packet.
  4937. */
  4938. tp->lsndtime = tcp_time_stamp;
  4939. tcp_initialize_rcv_mss(sk);
  4940. tcp_fast_path_on(tp);
  4941. } else {
  4942. return 1;
  4943. }
  4944. break;
  4945. case TCP_FIN_WAIT1:
  4946. /* If we enter the TCP_FIN_WAIT1 state and we are a
  4947. * Fast Open socket and this is the first acceptable
  4948. * ACK we have received, this would have acknowledged
  4949. * our SYNACK so stop the SYNACK timer.
  4950. */
  4951. if (req != NULL) {
  4952. /* Return RST if ack_seq is invalid.
  4953. * Note that RFC793 only says to generate a
  4954. * DUPACK for it but for TCP Fast Open it seems
  4955. * better to treat this case like TCP_SYN_RECV
  4956. * above.
  4957. */
  4958. if (!acceptable)
  4959. return 1;
  4960. /* We no longer need the request sock. */
  4961. reqsk_fastopen_remove(sk, req, false);
  4962. tcp_rearm_rto(sk);
  4963. }
  4964. if (tp->snd_una == tp->write_seq) {
  4965. struct dst_entry *dst;
  4966. tcp_set_state(sk, TCP_FIN_WAIT2);
  4967. sk->sk_shutdown |= SEND_SHUTDOWN;
  4968. dst = __sk_dst_get(sk);
  4969. if (dst)
  4970. dst_confirm(dst);
  4971. if (!sock_flag(sk, SOCK_DEAD))
  4972. /* Wake up lingering close() */
  4973. sk->sk_state_change(sk);
  4974. else {
  4975. int tmo;
  4976. if (tp->linger2 < 0 ||
  4977. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4978. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4979. tcp_done(sk);
  4980. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4981. return 1;
  4982. }
  4983. tmo = tcp_fin_time(sk);
  4984. if (tmo > TCP_TIMEWAIT_LEN) {
  4985. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4986. } else if (th->fin || sock_owned_by_user(sk)) {
  4987. /* Bad case. We could lose such FIN otherwise.
  4988. * It is not a big problem, but it looks confusing
  4989. * and not so rare event. We still can lose it now,
  4990. * if it spins in bh_lock_sock(), but it is really
  4991. * marginal case.
  4992. */
  4993. inet_csk_reset_keepalive_timer(sk, tmo);
  4994. } else {
  4995. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4996. goto discard;
  4997. }
  4998. }
  4999. }
  5000. break;
  5001. case TCP_CLOSING:
  5002. if (tp->snd_una == tp->write_seq) {
  5003. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5004. goto discard;
  5005. }
  5006. break;
  5007. case TCP_LAST_ACK:
  5008. if (tp->snd_una == tp->write_seq) {
  5009. tcp_update_metrics(sk);
  5010. tcp_done(sk);
  5011. goto discard;
  5012. }
  5013. break;
  5014. }
  5015. }
  5016. /* step 6: check the URG bit */
  5017. tcp_urg(sk, skb, th);
  5018. /* step 7: process the segment text */
  5019. switch (sk->sk_state) {
  5020. case TCP_CLOSE_WAIT:
  5021. case TCP_CLOSING:
  5022. case TCP_LAST_ACK:
  5023. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5024. break;
  5025. case TCP_FIN_WAIT1:
  5026. case TCP_FIN_WAIT2:
  5027. /* RFC 793 says to queue data in these states,
  5028. * RFC 1122 says we MUST send a reset.
  5029. * BSD 4.4 also does reset.
  5030. */
  5031. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5032. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5033. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5034. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5035. tcp_reset(sk);
  5036. return 1;
  5037. }
  5038. }
  5039. /* Fall through */
  5040. case TCP_ESTABLISHED:
  5041. tcp_data_queue(sk, skb);
  5042. queued = 1;
  5043. break;
  5044. }
  5045. /* tcp_data could move socket to TIME-WAIT */
  5046. if (sk->sk_state != TCP_CLOSE) {
  5047. tcp_data_snd_check(sk);
  5048. tcp_ack_snd_check(sk);
  5049. }
  5050. if (!queued) {
  5051. discard:
  5052. __kfree_skb(skb);
  5053. }
  5054. return 0;
  5055. }
  5056. EXPORT_SYMBOL(tcp_rcv_state_process);