xfs_buf_item.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_mount.h"
  27. #include "xfs_buf_item.h"
  28. #include "xfs_trans_priv.h"
  29. #include "xfs_error.h"
  30. #include "xfs_trace.h"
  31. kmem_zone_t *xfs_buf_item_zone;
  32. static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  33. {
  34. return container_of(lip, struct xfs_buf_log_item, bli_item);
  35. }
  36. STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
  37. /*
  38. * This returns the number of log iovecs needed to log the
  39. * given buf log item.
  40. *
  41. * It calculates this as 1 iovec for the buf log format structure
  42. * and 1 for each stretch of non-contiguous chunks to be logged.
  43. * Contiguous chunks are logged in a single iovec.
  44. *
  45. * If the XFS_BLI_STALE flag has been set, then log nothing.
  46. */
  47. STATIC uint
  48. xfs_buf_item_size_segment(
  49. struct xfs_buf_log_item *bip,
  50. struct xfs_buf_log_format *blfp)
  51. {
  52. struct xfs_buf *bp = bip->bli_buf;
  53. uint nvecs;
  54. int next_bit;
  55. int last_bit;
  56. last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  57. if (last_bit == -1)
  58. return 0;
  59. /*
  60. * initial count for a dirty buffer is 2 vectors - the format structure
  61. * and the first dirty region.
  62. */
  63. nvecs = 2;
  64. while (last_bit != -1) {
  65. /*
  66. * This takes the bit number to start looking from and
  67. * returns the next set bit from there. It returns -1
  68. * if there are no more bits set or the start bit is
  69. * beyond the end of the bitmap.
  70. */
  71. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  72. last_bit + 1);
  73. /*
  74. * If we run out of bits, leave the loop,
  75. * else if we find a new set of bits bump the number of vecs,
  76. * else keep scanning the current set of bits.
  77. */
  78. if (next_bit == -1) {
  79. break;
  80. } else if (next_bit != last_bit + 1) {
  81. last_bit = next_bit;
  82. nvecs++;
  83. } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  84. (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  85. XFS_BLF_CHUNK)) {
  86. last_bit = next_bit;
  87. nvecs++;
  88. } else {
  89. last_bit++;
  90. }
  91. }
  92. return nvecs;
  93. }
  94. /*
  95. * This returns the number of log iovecs needed to log the given buf log item.
  96. *
  97. * It calculates this as 1 iovec for the buf log format structure and 1 for each
  98. * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
  99. * in a single iovec.
  100. *
  101. * Discontiguous buffers need a format structure per region that that is being
  102. * logged. This makes the changes in the buffer appear to log recovery as though
  103. * they came from separate buffers, just like would occur if multiple buffers
  104. * were used instead of a single discontiguous buffer. This enables
  105. * discontiguous buffers to be in-memory constructs, completely transparent to
  106. * what ends up on disk.
  107. *
  108. * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
  109. * format structures.
  110. */
  111. STATIC uint
  112. xfs_buf_item_size(
  113. struct xfs_log_item *lip)
  114. {
  115. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  116. uint nvecs;
  117. int i;
  118. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  119. if (bip->bli_flags & XFS_BLI_STALE) {
  120. /*
  121. * The buffer is stale, so all we need to log
  122. * is the buf log format structure with the
  123. * cancel flag in it.
  124. */
  125. trace_xfs_buf_item_size_stale(bip);
  126. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  127. return bip->bli_format_count;
  128. }
  129. ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
  130. /*
  131. * the vector count is based on the number of buffer vectors we have
  132. * dirty bits in. This will only be greater than one when we have a
  133. * compound buffer with more than one segment dirty. Hence for compound
  134. * buffers we need to track which segment the dirty bits correspond to,
  135. * and when we move from one segment to the next increment the vector
  136. * count for the extra buf log format structure that will need to be
  137. * written.
  138. */
  139. nvecs = 0;
  140. for (i = 0; i < bip->bli_format_count; i++) {
  141. nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
  142. }
  143. trace_xfs_buf_item_size(bip);
  144. return nvecs;
  145. }
  146. static struct xfs_log_iovec *
  147. xfs_buf_item_format_segment(
  148. struct xfs_buf_log_item *bip,
  149. struct xfs_log_iovec *vecp,
  150. uint offset,
  151. struct xfs_buf_log_format *blfp)
  152. {
  153. struct xfs_buf *bp = bip->bli_buf;
  154. uint base_size;
  155. uint nvecs;
  156. int first_bit;
  157. int last_bit;
  158. int next_bit;
  159. uint nbits;
  160. uint buffer_offset;
  161. /* copy the flags across from the base format item */
  162. blfp->blf_flags = bip->__bli_format.blf_flags;
  163. /*
  164. * Base size is the actual size of the ondisk structure - it reflects
  165. * the actual size of the dirty bitmap rather than the size of the in
  166. * memory structure.
  167. */
  168. base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
  169. (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  170. nvecs = 0;
  171. first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  172. if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
  173. /*
  174. * If the map is not be dirty in the transaction, mark
  175. * the size as zero and do not advance the vector pointer.
  176. */
  177. goto out;
  178. }
  179. vecp->i_addr = blfp;
  180. vecp->i_len = base_size;
  181. vecp->i_type = XLOG_REG_TYPE_BFORMAT;
  182. vecp++;
  183. nvecs = 1;
  184. if (bip->bli_flags & XFS_BLI_STALE) {
  185. /*
  186. * The buffer is stale, so all we need to log
  187. * is the buf log format structure with the
  188. * cancel flag in it.
  189. */
  190. trace_xfs_buf_item_format_stale(bip);
  191. ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
  192. goto out;
  193. }
  194. /*
  195. * Fill in an iovec for each set of contiguous chunks.
  196. */
  197. last_bit = first_bit;
  198. nbits = 1;
  199. for (;;) {
  200. /*
  201. * This takes the bit number to start looking from and
  202. * returns the next set bit from there. It returns -1
  203. * if there are no more bits set or the start bit is
  204. * beyond the end of the bitmap.
  205. */
  206. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  207. (uint)last_bit + 1);
  208. /*
  209. * If we run out of bits fill in the last iovec and get
  210. * out of the loop.
  211. * Else if we start a new set of bits then fill in the
  212. * iovec for the series we were looking at and start
  213. * counting the bits in the new one.
  214. * Else we're still in the same set of bits so just
  215. * keep counting and scanning.
  216. */
  217. if (next_bit == -1) {
  218. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  219. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  220. vecp->i_len = nbits * XFS_BLF_CHUNK;
  221. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  222. nvecs++;
  223. break;
  224. } else if (next_bit != last_bit + 1) {
  225. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  226. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  227. vecp->i_len = nbits * XFS_BLF_CHUNK;
  228. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  229. nvecs++;
  230. vecp++;
  231. first_bit = next_bit;
  232. last_bit = next_bit;
  233. nbits = 1;
  234. } else if (xfs_buf_offset(bp, offset +
  235. (next_bit << XFS_BLF_SHIFT)) !=
  236. (xfs_buf_offset(bp, offset +
  237. (last_bit << XFS_BLF_SHIFT)) +
  238. XFS_BLF_CHUNK)) {
  239. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  240. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  241. vecp->i_len = nbits * XFS_BLF_CHUNK;
  242. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  243. nvecs++;
  244. vecp++;
  245. first_bit = next_bit;
  246. last_bit = next_bit;
  247. nbits = 1;
  248. } else {
  249. last_bit++;
  250. nbits++;
  251. }
  252. }
  253. out:
  254. blfp->blf_size = nvecs;
  255. return vecp;
  256. }
  257. /*
  258. * This is called to fill in the vector of log iovecs for the
  259. * given log buf item. It fills the first entry with a buf log
  260. * format structure, and the rest point to contiguous chunks
  261. * within the buffer.
  262. */
  263. STATIC void
  264. xfs_buf_item_format(
  265. struct xfs_log_item *lip,
  266. struct xfs_log_iovec *vecp)
  267. {
  268. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  269. struct xfs_buf *bp = bip->bli_buf;
  270. uint offset = 0;
  271. int i;
  272. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  273. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  274. (bip->bli_flags & XFS_BLI_STALE));
  275. /*
  276. * If it is an inode buffer, transfer the in-memory state to the
  277. * format flags and clear the in-memory state. We do not transfer
  278. * this state if the inode buffer allocation has not yet been committed
  279. * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
  280. * correct replay of the inode allocation.
  281. */
  282. if (bip->bli_flags & XFS_BLI_INODE_BUF) {
  283. if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
  284. xfs_log_item_in_current_chkpt(lip)))
  285. bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
  286. bip->bli_flags &= ~XFS_BLI_INODE_BUF;
  287. }
  288. for (i = 0; i < bip->bli_format_count; i++) {
  289. vecp = xfs_buf_item_format_segment(bip, vecp, offset,
  290. &bip->bli_formats[i]);
  291. offset += bp->b_maps[i].bm_len;
  292. }
  293. /*
  294. * Check to make sure everything is consistent.
  295. */
  296. trace_xfs_buf_item_format(bip);
  297. }
  298. /*
  299. * This is called to pin the buffer associated with the buf log item in memory
  300. * so it cannot be written out.
  301. *
  302. * We also always take a reference to the buffer log item here so that the bli
  303. * is held while the item is pinned in memory. This means that we can
  304. * unconditionally drop the reference count a transaction holds when the
  305. * transaction is completed.
  306. */
  307. STATIC void
  308. xfs_buf_item_pin(
  309. struct xfs_log_item *lip)
  310. {
  311. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  312. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  313. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  314. (bip->bli_flags & XFS_BLI_STALE));
  315. trace_xfs_buf_item_pin(bip);
  316. atomic_inc(&bip->bli_refcount);
  317. atomic_inc(&bip->bli_buf->b_pin_count);
  318. }
  319. /*
  320. * This is called to unpin the buffer associated with the buf log
  321. * item which was previously pinned with a call to xfs_buf_item_pin().
  322. *
  323. * Also drop the reference to the buf item for the current transaction.
  324. * If the XFS_BLI_STALE flag is set and we are the last reference,
  325. * then free up the buf log item and unlock the buffer.
  326. *
  327. * If the remove flag is set we are called from uncommit in the
  328. * forced-shutdown path. If that is true and the reference count on
  329. * the log item is going to drop to zero we need to free the item's
  330. * descriptor in the transaction.
  331. */
  332. STATIC void
  333. xfs_buf_item_unpin(
  334. struct xfs_log_item *lip,
  335. int remove)
  336. {
  337. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  338. xfs_buf_t *bp = bip->bli_buf;
  339. struct xfs_ail *ailp = lip->li_ailp;
  340. int stale = bip->bli_flags & XFS_BLI_STALE;
  341. int freed;
  342. ASSERT(bp->b_fspriv == bip);
  343. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  344. trace_xfs_buf_item_unpin(bip);
  345. freed = atomic_dec_and_test(&bip->bli_refcount);
  346. if (atomic_dec_and_test(&bp->b_pin_count))
  347. wake_up_all(&bp->b_waiters);
  348. if (freed && stale) {
  349. ASSERT(bip->bli_flags & XFS_BLI_STALE);
  350. ASSERT(xfs_buf_islocked(bp));
  351. ASSERT(XFS_BUF_ISSTALE(bp));
  352. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  353. trace_xfs_buf_item_unpin_stale(bip);
  354. if (remove) {
  355. /*
  356. * If we are in a transaction context, we have to
  357. * remove the log item from the transaction as we are
  358. * about to release our reference to the buffer. If we
  359. * don't, the unlock that occurs later in
  360. * xfs_trans_uncommit() will try to reference the
  361. * buffer which we no longer have a hold on.
  362. */
  363. if (lip->li_desc)
  364. xfs_trans_del_item(lip);
  365. /*
  366. * Since the transaction no longer refers to the buffer,
  367. * the buffer should no longer refer to the transaction.
  368. */
  369. bp->b_transp = NULL;
  370. }
  371. /*
  372. * If we get called here because of an IO error, we may
  373. * or may not have the item on the AIL. xfs_trans_ail_delete()
  374. * will take care of that situation.
  375. * xfs_trans_ail_delete() drops the AIL lock.
  376. */
  377. if (bip->bli_flags & XFS_BLI_STALE_INODE) {
  378. xfs_buf_do_callbacks(bp);
  379. bp->b_fspriv = NULL;
  380. bp->b_iodone = NULL;
  381. } else {
  382. spin_lock(&ailp->xa_lock);
  383. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
  384. xfs_buf_item_relse(bp);
  385. ASSERT(bp->b_fspriv == NULL);
  386. }
  387. xfs_buf_relse(bp);
  388. } else if (freed && remove) {
  389. /*
  390. * There are currently two references to the buffer - the active
  391. * LRU reference and the buf log item. What we are about to do
  392. * here - simulate a failed IO completion - requires 3
  393. * references.
  394. *
  395. * The LRU reference is removed by the xfs_buf_stale() call. The
  396. * buf item reference is removed by the xfs_buf_iodone()
  397. * callback that is run by xfs_buf_do_callbacks() during ioend
  398. * processing (via the bp->b_iodone callback), and then finally
  399. * the ioend processing will drop the IO reference if the buffer
  400. * is marked XBF_ASYNC.
  401. *
  402. * Hence we need to take an additional reference here so that IO
  403. * completion processing doesn't free the buffer prematurely.
  404. */
  405. xfs_buf_lock(bp);
  406. xfs_buf_hold(bp);
  407. bp->b_flags |= XBF_ASYNC;
  408. xfs_buf_ioerror(bp, EIO);
  409. XFS_BUF_UNDONE(bp);
  410. xfs_buf_stale(bp);
  411. xfs_buf_ioend(bp, 0);
  412. }
  413. }
  414. STATIC uint
  415. xfs_buf_item_push(
  416. struct xfs_log_item *lip,
  417. struct list_head *buffer_list)
  418. {
  419. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  420. struct xfs_buf *bp = bip->bli_buf;
  421. uint rval = XFS_ITEM_SUCCESS;
  422. if (xfs_buf_ispinned(bp))
  423. return XFS_ITEM_PINNED;
  424. if (!xfs_buf_trylock(bp)) {
  425. /*
  426. * If we have just raced with a buffer being pinned and it has
  427. * been marked stale, we could end up stalling until someone else
  428. * issues a log force to unpin the stale buffer. Check for the
  429. * race condition here so xfsaild recognizes the buffer is pinned
  430. * and queues a log force to move it along.
  431. */
  432. if (xfs_buf_ispinned(bp))
  433. return XFS_ITEM_PINNED;
  434. return XFS_ITEM_LOCKED;
  435. }
  436. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  437. trace_xfs_buf_item_push(bip);
  438. if (!xfs_buf_delwri_queue(bp, buffer_list))
  439. rval = XFS_ITEM_FLUSHING;
  440. xfs_buf_unlock(bp);
  441. return rval;
  442. }
  443. /*
  444. * Release the buffer associated with the buf log item. If there is no dirty
  445. * logged data associated with the buffer recorded in the buf log item, then
  446. * free the buf log item and remove the reference to it in the buffer.
  447. *
  448. * This call ignores the recursion count. It is only called when the buffer
  449. * should REALLY be unlocked, regardless of the recursion count.
  450. *
  451. * We unconditionally drop the transaction's reference to the log item. If the
  452. * item was logged, then another reference was taken when it was pinned, so we
  453. * can safely drop the transaction reference now. This also allows us to avoid
  454. * potential races with the unpin code freeing the bli by not referencing the
  455. * bli after we've dropped the reference count.
  456. *
  457. * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
  458. * if necessary but do not unlock the buffer. This is for support of
  459. * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
  460. * free the item.
  461. */
  462. STATIC void
  463. xfs_buf_item_unlock(
  464. struct xfs_log_item *lip)
  465. {
  466. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  467. struct xfs_buf *bp = bip->bli_buf;
  468. int aborted, clean, i;
  469. uint hold;
  470. /* Clear the buffer's association with this transaction. */
  471. bp->b_transp = NULL;
  472. /*
  473. * If this is a transaction abort, don't return early. Instead, allow
  474. * the brelse to happen. Normally it would be done for stale
  475. * (cancelled) buffers at unpin time, but we'll never go through the
  476. * pin/unpin cycle if we abort inside commit.
  477. */
  478. aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
  479. /*
  480. * Before possibly freeing the buf item, determine if we should
  481. * release the buffer at the end of this routine.
  482. */
  483. hold = bip->bli_flags & XFS_BLI_HOLD;
  484. /* Clear the per transaction state. */
  485. bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
  486. /*
  487. * If the buf item is marked stale, then don't do anything. We'll
  488. * unlock the buffer and free the buf item when the buffer is unpinned
  489. * for the last time.
  490. */
  491. if (bip->bli_flags & XFS_BLI_STALE) {
  492. trace_xfs_buf_item_unlock_stale(bip);
  493. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  494. if (!aborted) {
  495. atomic_dec(&bip->bli_refcount);
  496. return;
  497. }
  498. }
  499. trace_xfs_buf_item_unlock(bip);
  500. /*
  501. * If the buf item isn't tracking any data, free it, otherwise drop the
  502. * reference we hold to it. If we are aborting the transaction, this may
  503. * be the only reference to the buf item, so we free it anyway
  504. * regardless of whether it is dirty or not. A dirty abort implies a
  505. * shutdown, anyway.
  506. */
  507. clean = 1;
  508. for (i = 0; i < bip->bli_format_count; i++) {
  509. if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
  510. bip->bli_formats[i].blf_map_size)) {
  511. clean = 0;
  512. break;
  513. }
  514. }
  515. if (clean)
  516. xfs_buf_item_relse(bp);
  517. else if (aborted) {
  518. if (atomic_dec_and_test(&bip->bli_refcount)) {
  519. ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
  520. xfs_buf_item_relse(bp);
  521. }
  522. } else
  523. atomic_dec(&bip->bli_refcount);
  524. if (!hold)
  525. xfs_buf_relse(bp);
  526. }
  527. /*
  528. * This is called to find out where the oldest active copy of the
  529. * buf log item in the on disk log resides now that the last log
  530. * write of it completed at the given lsn.
  531. * We always re-log all the dirty data in a buffer, so usually the
  532. * latest copy in the on disk log is the only one that matters. For
  533. * those cases we simply return the given lsn.
  534. *
  535. * The one exception to this is for buffers full of newly allocated
  536. * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
  537. * flag set, indicating that only the di_next_unlinked fields from the
  538. * inodes in the buffers will be replayed during recovery. If the
  539. * original newly allocated inode images have not yet been flushed
  540. * when the buffer is so relogged, then we need to make sure that we
  541. * keep the old images in the 'active' portion of the log. We do this
  542. * by returning the original lsn of that transaction here rather than
  543. * the current one.
  544. */
  545. STATIC xfs_lsn_t
  546. xfs_buf_item_committed(
  547. struct xfs_log_item *lip,
  548. xfs_lsn_t lsn)
  549. {
  550. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  551. trace_xfs_buf_item_committed(bip);
  552. if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
  553. return lip->li_lsn;
  554. return lsn;
  555. }
  556. STATIC void
  557. xfs_buf_item_committing(
  558. struct xfs_log_item *lip,
  559. xfs_lsn_t commit_lsn)
  560. {
  561. }
  562. /*
  563. * This is the ops vector shared by all buf log items.
  564. */
  565. static const struct xfs_item_ops xfs_buf_item_ops = {
  566. .iop_size = xfs_buf_item_size,
  567. .iop_format = xfs_buf_item_format,
  568. .iop_pin = xfs_buf_item_pin,
  569. .iop_unpin = xfs_buf_item_unpin,
  570. .iop_unlock = xfs_buf_item_unlock,
  571. .iop_committed = xfs_buf_item_committed,
  572. .iop_push = xfs_buf_item_push,
  573. .iop_committing = xfs_buf_item_committing
  574. };
  575. STATIC int
  576. xfs_buf_item_get_format(
  577. struct xfs_buf_log_item *bip,
  578. int count)
  579. {
  580. ASSERT(bip->bli_formats == NULL);
  581. bip->bli_format_count = count;
  582. if (count == 1) {
  583. bip->bli_formats = &bip->__bli_format;
  584. return 0;
  585. }
  586. bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
  587. KM_SLEEP);
  588. if (!bip->bli_formats)
  589. return ENOMEM;
  590. return 0;
  591. }
  592. STATIC void
  593. xfs_buf_item_free_format(
  594. struct xfs_buf_log_item *bip)
  595. {
  596. if (bip->bli_formats != &bip->__bli_format) {
  597. kmem_free(bip->bli_formats);
  598. bip->bli_formats = NULL;
  599. }
  600. }
  601. /*
  602. * Allocate a new buf log item to go with the given buffer.
  603. * Set the buffer's b_fsprivate field to point to the new
  604. * buf log item. If there are other item's attached to the
  605. * buffer (see xfs_buf_attach_iodone() below), then put the
  606. * buf log item at the front.
  607. */
  608. void
  609. xfs_buf_item_init(
  610. xfs_buf_t *bp,
  611. xfs_mount_t *mp)
  612. {
  613. xfs_log_item_t *lip = bp->b_fspriv;
  614. xfs_buf_log_item_t *bip;
  615. int chunks;
  616. int map_size;
  617. int error;
  618. int i;
  619. /*
  620. * Check to see if there is already a buf log item for
  621. * this buffer. If there is, it is guaranteed to be
  622. * the first. If we do already have one, there is
  623. * nothing to do here so return.
  624. */
  625. ASSERT(bp->b_target->bt_mount == mp);
  626. if (lip != NULL && lip->li_type == XFS_LI_BUF)
  627. return;
  628. bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
  629. xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
  630. bip->bli_buf = bp;
  631. xfs_buf_hold(bp);
  632. /*
  633. * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
  634. * can be divided into. Make sure not to truncate any pieces.
  635. * map_size is the size of the bitmap needed to describe the
  636. * chunks of the buffer.
  637. *
  638. * Discontiguous buffer support follows the layout of the underlying
  639. * buffer. This makes the implementation as simple as possible.
  640. */
  641. error = xfs_buf_item_get_format(bip, bp->b_map_count);
  642. ASSERT(error == 0);
  643. for (i = 0; i < bip->bli_format_count; i++) {
  644. chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
  645. XFS_BLF_CHUNK);
  646. map_size = DIV_ROUND_UP(chunks, NBWORD);
  647. bip->bli_formats[i].blf_type = XFS_LI_BUF;
  648. bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
  649. bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
  650. bip->bli_formats[i].blf_map_size = map_size;
  651. }
  652. #ifdef XFS_TRANS_DEBUG
  653. /*
  654. * Allocate the arrays for tracking what needs to be logged
  655. * and what our callers request to be logged. bli_orig
  656. * holds a copy of the original, clean buffer for comparison
  657. * against, and bli_logged keeps a 1 bit flag per byte in
  658. * the buffer to indicate which bytes the callers have asked
  659. * to have logged.
  660. */
  661. bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
  662. memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
  663. bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
  664. #endif
  665. /*
  666. * Put the buf item into the list of items attached to the
  667. * buffer at the front.
  668. */
  669. if (bp->b_fspriv)
  670. bip->bli_item.li_bio_list = bp->b_fspriv;
  671. bp->b_fspriv = bip;
  672. }
  673. /*
  674. * Mark bytes first through last inclusive as dirty in the buf
  675. * item's bitmap.
  676. */
  677. void
  678. xfs_buf_item_log_segment(
  679. struct xfs_buf_log_item *bip,
  680. uint first,
  681. uint last,
  682. uint *map)
  683. {
  684. uint first_bit;
  685. uint last_bit;
  686. uint bits_to_set;
  687. uint bits_set;
  688. uint word_num;
  689. uint *wordp;
  690. uint bit;
  691. uint end_bit;
  692. uint mask;
  693. /*
  694. * Convert byte offsets to bit numbers.
  695. */
  696. first_bit = first >> XFS_BLF_SHIFT;
  697. last_bit = last >> XFS_BLF_SHIFT;
  698. /*
  699. * Calculate the total number of bits to be set.
  700. */
  701. bits_to_set = last_bit - first_bit + 1;
  702. /*
  703. * Get a pointer to the first word in the bitmap
  704. * to set a bit in.
  705. */
  706. word_num = first_bit >> BIT_TO_WORD_SHIFT;
  707. wordp = &map[word_num];
  708. /*
  709. * Calculate the starting bit in the first word.
  710. */
  711. bit = first_bit & (uint)(NBWORD - 1);
  712. /*
  713. * First set any bits in the first word of our range.
  714. * If it starts at bit 0 of the word, it will be
  715. * set below rather than here. That is what the variable
  716. * bit tells us. The variable bits_set tracks the number
  717. * of bits that have been set so far. End_bit is the number
  718. * of the last bit to be set in this word plus one.
  719. */
  720. if (bit) {
  721. end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
  722. mask = ((1 << (end_bit - bit)) - 1) << bit;
  723. *wordp |= mask;
  724. wordp++;
  725. bits_set = end_bit - bit;
  726. } else {
  727. bits_set = 0;
  728. }
  729. /*
  730. * Now set bits a whole word at a time that are between
  731. * first_bit and last_bit.
  732. */
  733. while ((bits_to_set - bits_set) >= NBWORD) {
  734. *wordp |= 0xffffffff;
  735. bits_set += NBWORD;
  736. wordp++;
  737. }
  738. /*
  739. * Finally, set any bits left to be set in one last partial word.
  740. */
  741. end_bit = bits_to_set - bits_set;
  742. if (end_bit) {
  743. mask = (1 << end_bit) - 1;
  744. *wordp |= mask;
  745. }
  746. }
  747. /*
  748. * Mark bytes first through last inclusive as dirty in the buf
  749. * item's bitmap.
  750. */
  751. void
  752. xfs_buf_item_log(
  753. xfs_buf_log_item_t *bip,
  754. uint first,
  755. uint last)
  756. {
  757. int i;
  758. uint start;
  759. uint end;
  760. struct xfs_buf *bp = bip->bli_buf;
  761. /*
  762. * Mark the item as having some dirty data for
  763. * quick reference in xfs_buf_item_dirty.
  764. */
  765. bip->bli_flags |= XFS_BLI_DIRTY;
  766. /*
  767. * walk each buffer segment and mark them dirty appropriately.
  768. */
  769. start = 0;
  770. for (i = 0; i < bip->bli_format_count; i++) {
  771. if (start > last)
  772. break;
  773. end = start + BBTOB(bp->b_maps[i].bm_len);
  774. if (first > end) {
  775. start += BBTOB(bp->b_maps[i].bm_len);
  776. continue;
  777. }
  778. if (first < start)
  779. first = start;
  780. if (end > last)
  781. end = last;
  782. xfs_buf_item_log_segment(bip, first, end,
  783. &bip->bli_formats[i].blf_data_map[0]);
  784. start += bp->b_maps[i].bm_len;
  785. }
  786. }
  787. /*
  788. * Return 1 if the buffer has some data that has been logged (at any
  789. * point, not just the current transaction) and 0 if not.
  790. */
  791. uint
  792. xfs_buf_item_dirty(
  793. xfs_buf_log_item_t *bip)
  794. {
  795. return (bip->bli_flags & XFS_BLI_DIRTY);
  796. }
  797. STATIC void
  798. xfs_buf_item_free(
  799. xfs_buf_log_item_t *bip)
  800. {
  801. #ifdef XFS_TRANS_DEBUG
  802. kmem_free(bip->bli_orig);
  803. kmem_free(bip->bli_logged);
  804. #endif /* XFS_TRANS_DEBUG */
  805. xfs_buf_item_free_format(bip);
  806. kmem_zone_free(xfs_buf_item_zone, bip);
  807. }
  808. /*
  809. * This is called when the buf log item is no longer needed. It should
  810. * free the buf log item associated with the given buffer and clear
  811. * the buffer's pointer to the buf log item. If there are no more
  812. * items in the list, clear the b_iodone field of the buffer (see
  813. * xfs_buf_attach_iodone() below).
  814. */
  815. void
  816. xfs_buf_item_relse(
  817. xfs_buf_t *bp)
  818. {
  819. xfs_buf_log_item_t *bip;
  820. trace_xfs_buf_item_relse(bp, _RET_IP_);
  821. bip = bp->b_fspriv;
  822. bp->b_fspriv = bip->bli_item.li_bio_list;
  823. if (bp->b_fspriv == NULL)
  824. bp->b_iodone = NULL;
  825. xfs_buf_rele(bp);
  826. xfs_buf_item_free(bip);
  827. }
  828. /*
  829. * Add the given log item with its callback to the list of callbacks
  830. * to be called when the buffer's I/O completes. If it is not set
  831. * already, set the buffer's b_iodone() routine to be
  832. * xfs_buf_iodone_callbacks() and link the log item into the list of
  833. * items rooted at b_fsprivate. Items are always added as the second
  834. * entry in the list if there is a first, because the buf item code
  835. * assumes that the buf log item is first.
  836. */
  837. void
  838. xfs_buf_attach_iodone(
  839. xfs_buf_t *bp,
  840. void (*cb)(xfs_buf_t *, xfs_log_item_t *),
  841. xfs_log_item_t *lip)
  842. {
  843. xfs_log_item_t *head_lip;
  844. ASSERT(xfs_buf_islocked(bp));
  845. lip->li_cb = cb;
  846. head_lip = bp->b_fspriv;
  847. if (head_lip) {
  848. lip->li_bio_list = head_lip->li_bio_list;
  849. head_lip->li_bio_list = lip;
  850. } else {
  851. bp->b_fspriv = lip;
  852. }
  853. ASSERT(bp->b_iodone == NULL ||
  854. bp->b_iodone == xfs_buf_iodone_callbacks);
  855. bp->b_iodone = xfs_buf_iodone_callbacks;
  856. }
  857. /*
  858. * We can have many callbacks on a buffer. Running the callbacks individually
  859. * can cause a lot of contention on the AIL lock, so we allow for a single
  860. * callback to be able to scan the remaining lip->li_bio_list for other items
  861. * of the same type and callback to be processed in the first call.
  862. *
  863. * As a result, the loop walking the callback list below will also modify the
  864. * list. it removes the first item from the list and then runs the callback.
  865. * The loop then restarts from the new head of the list. This allows the
  866. * callback to scan and modify the list attached to the buffer and we don't
  867. * have to care about maintaining a next item pointer.
  868. */
  869. STATIC void
  870. xfs_buf_do_callbacks(
  871. struct xfs_buf *bp)
  872. {
  873. struct xfs_log_item *lip;
  874. while ((lip = bp->b_fspriv) != NULL) {
  875. bp->b_fspriv = lip->li_bio_list;
  876. ASSERT(lip->li_cb != NULL);
  877. /*
  878. * Clear the next pointer so we don't have any
  879. * confusion if the item is added to another buf.
  880. * Don't touch the log item after calling its
  881. * callback, because it could have freed itself.
  882. */
  883. lip->li_bio_list = NULL;
  884. lip->li_cb(bp, lip);
  885. }
  886. }
  887. /*
  888. * This is the iodone() function for buffers which have had callbacks
  889. * attached to them by xfs_buf_attach_iodone(). It should remove each
  890. * log item from the buffer's list and call the callback of each in turn.
  891. * When done, the buffer's fsprivate field is set to NULL and the buffer
  892. * is unlocked with a call to iodone().
  893. */
  894. void
  895. xfs_buf_iodone_callbacks(
  896. struct xfs_buf *bp)
  897. {
  898. struct xfs_log_item *lip = bp->b_fspriv;
  899. struct xfs_mount *mp = lip->li_mountp;
  900. static ulong lasttime;
  901. static xfs_buftarg_t *lasttarg;
  902. if (likely(!xfs_buf_geterror(bp)))
  903. goto do_callbacks;
  904. /*
  905. * If we've already decided to shutdown the filesystem because of
  906. * I/O errors, there's no point in giving this a retry.
  907. */
  908. if (XFS_FORCED_SHUTDOWN(mp)) {
  909. xfs_buf_stale(bp);
  910. XFS_BUF_DONE(bp);
  911. trace_xfs_buf_item_iodone(bp, _RET_IP_);
  912. goto do_callbacks;
  913. }
  914. if (bp->b_target != lasttarg ||
  915. time_after(jiffies, (lasttime + 5*HZ))) {
  916. lasttime = jiffies;
  917. xfs_buf_ioerror_alert(bp, __func__);
  918. }
  919. lasttarg = bp->b_target;
  920. /*
  921. * If the write was asynchronous then no one will be looking for the
  922. * error. Clear the error state and write the buffer out again.
  923. *
  924. * XXX: This helps against transient write errors, but we need to find
  925. * a way to shut the filesystem down if the writes keep failing.
  926. *
  927. * In practice we'll shut the filesystem down soon as non-transient
  928. * erorrs tend to affect the whole device and a failing log write
  929. * will make us give up. But we really ought to do better here.
  930. */
  931. if (XFS_BUF_ISASYNC(bp)) {
  932. ASSERT(bp->b_iodone != NULL);
  933. trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
  934. xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
  935. if (!XFS_BUF_ISSTALE(bp)) {
  936. bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
  937. xfs_buf_iorequest(bp);
  938. } else {
  939. xfs_buf_relse(bp);
  940. }
  941. return;
  942. }
  943. /*
  944. * If the write of the buffer was synchronous, we want to make
  945. * sure to return the error to the caller of xfs_bwrite().
  946. */
  947. xfs_buf_stale(bp);
  948. XFS_BUF_DONE(bp);
  949. trace_xfs_buf_error_relse(bp, _RET_IP_);
  950. do_callbacks:
  951. xfs_buf_do_callbacks(bp);
  952. bp->b_fspriv = NULL;
  953. bp->b_iodone = NULL;
  954. xfs_buf_ioend(bp, 0);
  955. }
  956. /*
  957. * This is the iodone() function for buffers which have been
  958. * logged. It is called when they are eventually flushed out.
  959. * It should remove the buf item from the AIL, and free the buf item.
  960. * It is called by xfs_buf_iodone_callbacks() above which will take
  961. * care of cleaning up the buffer itself.
  962. */
  963. void
  964. xfs_buf_iodone(
  965. struct xfs_buf *bp,
  966. struct xfs_log_item *lip)
  967. {
  968. struct xfs_ail *ailp = lip->li_ailp;
  969. ASSERT(BUF_ITEM(lip)->bli_buf == bp);
  970. xfs_buf_rele(bp);
  971. /*
  972. * If we are forcibly shutting down, this may well be
  973. * off the AIL already. That's because we simulate the
  974. * log-committed callbacks to unpin these buffers. Or we may never
  975. * have put this item on AIL because of the transaction was
  976. * aborted forcibly. xfs_trans_ail_delete() takes care of these.
  977. *
  978. * Either way, AIL is useless if we're forcing a shutdown.
  979. */
  980. spin_lock(&ailp->xa_lock);
  981. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
  982. xfs_buf_item_free(BUF_ITEM(lip));
  983. }