extents_status.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999
  1. /*
  2. * fs/ext4/extents_status.c
  3. *
  4. * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
  5. * Modified by
  6. * Allison Henderson <achender@linux.vnet.ibm.com>
  7. * Hugh Dickins <hughd@google.com>
  8. * Zheng Liu <wenqing.lz@taobao.com>
  9. *
  10. * Ext4 extents status tree core functions.
  11. */
  12. #include <linux/rbtree.h>
  13. #include "ext4.h"
  14. #include "extents_status.h"
  15. #include "ext4_extents.h"
  16. #include <trace/events/ext4.h>
  17. /*
  18. * According to previous discussion in Ext4 Developer Workshop, we
  19. * will introduce a new structure called io tree to track all extent
  20. * status in order to solve some problems that we have met
  21. * (e.g. Reservation space warning), and provide extent-level locking.
  22. * Delay extent tree is the first step to achieve this goal. It is
  23. * original built by Yongqiang Yang. At that time it is called delay
  24. * extent tree, whose goal is only track delayed extents in memory to
  25. * simplify the implementation of fiemap and bigalloc, and introduce
  26. * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
  27. * delay extent tree at the first commit. But for better understand
  28. * what it does, it has been rename to extent status tree.
  29. *
  30. * Step1:
  31. * Currently the first step has been done. All delayed extents are
  32. * tracked in the tree. It maintains the delayed extent when a delayed
  33. * allocation is issued, and the delayed extent is written out or
  34. * invalidated. Therefore the implementation of fiemap and bigalloc
  35. * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  36. *
  37. * The following comment describes the implemenmtation of extent
  38. * status tree and future works.
  39. *
  40. * Step2:
  41. * In this step all extent status are tracked by extent status tree.
  42. * Thus, we can first try to lookup a block mapping in this tree before
  43. * finding it in extent tree. Hence, single extent cache can be removed
  44. * because extent status tree can do a better job. Extents in status
  45. * tree are loaded on-demand. Therefore, the extent status tree may not
  46. * contain all of the extents in a file. Meanwhile we define a shrinker
  47. * to reclaim memory from extent status tree because fragmented extent
  48. * tree will make status tree cost too much memory. written/unwritten/-
  49. * hole extents in the tree will be reclaimed by this shrinker when we
  50. * are under high memory pressure. Delayed extents will not be
  51. * reclimed because fiemap, bigalloc, and seek_data/hole need it.
  52. */
  53. /*
  54. * Extent status tree implementation for ext4.
  55. *
  56. *
  57. * ==========================================================================
  58. * Extent status tree tracks all extent status.
  59. *
  60. * 1. Why we need to implement extent status tree?
  61. *
  62. * Without extent status tree, ext4 identifies a delayed extent by looking
  63. * up page cache, this has several deficiencies - complicated, buggy,
  64. * and inefficient code.
  65. *
  66. * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
  67. * block or a range of blocks are belonged to a delayed extent.
  68. *
  69. * Let us have a look at how they do without extent status tree.
  70. * -- FIEMAP
  71. * FIEMAP looks up page cache to identify delayed allocations from holes.
  72. *
  73. * -- SEEK_HOLE/DATA
  74. * SEEK_HOLE/DATA has the same problem as FIEMAP.
  75. *
  76. * -- bigalloc
  77. * bigalloc looks up page cache to figure out if a block is
  78. * already under delayed allocation or not to determine whether
  79. * quota reserving is needed for the cluster.
  80. *
  81. * -- writeout
  82. * Writeout looks up whole page cache to see if a buffer is
  83. * mapped, If there are not very many delayed buffers, then it is
  84. * time comsuming.
  85. *
  86. * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
  87. * bigalloc and writeout can figure out if a block or a range of
  88. * blocks is under delayed allocation(belonged to a delayed extent) or
  89. * not by searching the extent tree.
  90. *
  91. *
  92. * ==========================================================================
  93. * 2. Ext4 extent status tree impelmentation
  94. *
  95. * -- extent
  96. * A extent is a range of blocks which are contiguous logically and
  97. * physically. Unlike extent in extent tree, this extent in ext4 is
  98. * a in-memory struct, there is no corresponding on-disk data. There
  99. * is no limit on length of extent, so an extent can contain as many
  100. * blocks as they are contiguous logically and physically.
  101. *
  102. * -- extent status tree
  103. * Every inode has an extent status tree and all allocation blocks
  104. * are added to the tree with different status. The extent in the
  105. * tree are ordered by logical block no.
  106. *
  107. * -- operations on a extent status tree
  108. * There are three important operations on a delayed extent tree: find
  109. * next extent, adding a extent(a range of blocks) and removing a extent.
  110. *
  111. * -- race on a extent status tree
  112. * Extent status tree is protected by inode->i_es_lock.
  113. *
  114. * -- memory consumption
  115. * Fragmented extent tree will make extent status tree cost too much
  116. * memory. Hence, we will reclaim written/unwritten/hole extents from
  117. * the tree under a heavy memory pressure.
  118. *
  119. *
  120. * ==========================================================================
  121. * 3. Performance analysis
  122. *
  123. * -- overhead
  124. * 1. There is a cache extent for write access, so if writes are
  125. * not very random, adding space operaions are in O(1) time.
  126. *
  127. * -- gain
  128. * 2. Code is much simpler, more readable, more maintainable and
  129. * more efficient.
  130. *
  131. *
  132. * ==========================================================================
  133. * 4. TODO list
  134. *
  135. * -- Refactor delayed space reservation
  136. *
  137. * -- Extent-level locking
  138. */
  139. static struct kmem_cache *ext4_es_cachep;
  140. static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
  141. static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  142. ext4_lblk_t end);
  143. static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
  144. int nr_to_scan);
  145. int __init ext4_init_es(void)
  146. {
  147. ext4_es_cachep = kmem_cache_create("ext4_extent_status",
  148. sizeof(struct extent_status),
  149. 0, (SLAB_RECLAIM_ACCOUNT), NULL);
  150. if (ext4_es_cachep == NULL)
  151. return -ENOMEM;
  152. return 0;
  153. }
  154. void ext4_exit_es(void)
  155. {
  156. if (ext4_es_cachep)
  157. kmem_cache_destroy(ext4_es_cachep);
  158. }
  159. void ext4_es_init_tree(struct ext4_es_tree *tree)
  160. {
  161. tree->root = RB_ROOT;
  162. tree->cache_es = NULL;
  163. }
  164. #ifdef ES_DEBUG__
  165. static void ext4_es_print_tree(struct inode *inode)
  166. {
  167. struct ext4_es_tree *tree;
  168. struct rb_node *node;
  169. printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
  170. tree = &EXT4_I(inode)->i_es_tree;
  171. node = rb_first(&tree->root);
  172. while (node) {
  173. struct extent_status *es;
  174. es = rb_entry(node, struct extent_status, rb_node);
  175. printk(KERN_DEBUG " [%u/%u) %llu %llx",
  176. es->es_lblk, es->es_len,
  177. ext4_es_pblock(es), ext4_es_status(es));
  178. node = rb_next(node);
  179. }
  180. printk(KERN_DEBUG "\n");
  181. }
  182. #else
  183. #define ext4_es_print_tree(inode)
  184. #endif
  185. static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
  186. {
  187. BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
  188. return es->es_lblk + es->es_len - 1;
  189. }
  190. /*
  191. * search through the tree for an delayed extent with a given offset. If
  192. * it can't be found, try to find next extent.
  193. */
  194. static struct extent_status *__es_tree_search(struct rb_root *root,
  195. ext4_lblk_t lblk)
  196. {
  197. struct rb_node *node = root->rb_node;
  198. struct extent_status *es = NULL;
  199. while (node) {
  200. es = rb_entry(node, struct extent_status, rb_node);
  201. if (lblk < es->es_lblk)
  202. node = node->rb_left;
  203. else if (lblk > ext4_es_end(es))
  204. node = node->rb_right;
  205. else
  206. return es;
  207. }
  208. if (es && lblk < es->es_lblk)
  209. return es;
  210. if (es && lblk > ext4_es_end(es)) {
  211. node = rb_next(&es->rb_node);
  212. return node ? rb_entry(node, struct extent_status, rb_node) :
  213. NULL;
  214. }
  215. return NULL;
  216. }
  217. /*
  218. * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
  219. * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
  220. *
  221. * @inode: the inode which owns delayed extents
  222. * @lblk: the offset where we start to search
  223. * @end: the offset where we stop to search
  224. * @es: delayed extent that we found
  225. */
  226. void ext4_es_find_delayed_extent_range(struct inode *inode,
  227. ext4_lblk_t lblk, ext4_lblk_t end,
  228. struct extent_status *es)
  229. {
  230. struct ext4_es_tree *tree = NULL;
  231. struct extent_status *es1 = NULL;
  232. struct rb_node *node;
  233. BUG_ON(es == NULL);
  234. BUG_ON(end < lblk);
  235. trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
  236. read_lock(&EXT4_I(inode)->i_es_lock);
  237. tree = &EXT4_I(inode)->i_es_tree;
  238. /* find extent in cache firstly */
  239. es->es_lblk = es->es_len = es->es_pblk = 0;
  240. if (tree->cache_es) {
  241. es1 = tree->cache_es;
  242. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  243. es_debug("%u cached by [%u/%u) %llu %llx\n",
  244. lblk, es1->es_lblk, es1->es_len,
  245. ext4_es_pblock(es1), ext4_es_status(es1));
  246. goto out;
  247. }
  248. }
  249. es1 = __es_tree_search(&tree->root, lblk);
  250. out:
  251. if (es1 && !ext4_es_is_delayed(es1)) {
  252. while ((node = rb_next(&es1->rb_node)) != NULL) {
  253. es1 = rb_entry(node, struct extent_status, rb_node);
  254. if (es1->es_lblk > end) {
  255. es1 = NULL;
  256. break;
  257. }
  258. if (ext4_es_is_delayed(es1))
  259. break;
  260. }
  261. }
  262. if (es1 && ext4_es_is_delayed(es1)) {
  263. tree->cache_es = es1;
  264. es->es_lblk = es1->es_lblk;
  265. es->es_len = es1->es_len;
  266. es->es_pblk = es1->es_pblk;
  267. }
  268. read_unlock(&EXT4_I(inode)->i_es_lock);
  269. ext4_es_lru_add(inode);
  270. trace_ext4_es_find_delayed_extent_range_exit(inode, es);
  271. }
  272. static struct extent_status *
  273. ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
  274. ext4_fsblk_t pblk)
  275. {
  276. struct extent_status *es;
  277. es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
  278. if (es == NULL)
  279. return NULL;
  280. es->es_lblk = lblk;
  281. es->es_len = len;
  282. es->es_pblk = pblk;
  283. /*
  284. * We don't count delayed extent because we never try to reclaim them
  285. */
  286. if (!ext4_es_is_delayed(es)) {
  287. EXT4_I(inode)->i_es_lru_nr++;
  288. percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
  289. }
  290. return es;
  291. }
  292. static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
  293. {
  294. /* Decrease the lru counter when this es is not delayed */
  295. if (!ext4_es_is_delayed(es)) {
  296. BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
  297. EXT4_I(inode)->i_es_lru_nr--;
  298. percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
  299. }
  300. kmem_cache_free(ext4_es_cachep, es);
  301. }
  302. /*
  303. * Check whether or not two extents can be merged
  304. * Condition:
  305. * - logical block number is contiguous
  306. * - physical block number is contiguous
  307. * - status is equal
  308. */
  309. static int ext4_es_can_be_merged(struct extent_status *es1,
  310. struct extent_status *es2)
  311. {
  312. if (ext4_es_status(es1) != ext4_es_status(es2))
  313. return 0;
  314. if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL)
  315. return 0;
  316. if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
  317. return 0;
  318. if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
  319. (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
  320. return 1;
  321. if (ext4_es_is_hole(es1))
  322. return 1;
  323. /* we need to check delayed extent is without unwritten status */
  324. if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
  325. return 1;
  326. return 0;
  327. }
  328. static struct extent_status *
  329. ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
  330. {
  331. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  332. struct extent_status *es1;
  333. struct rb_node *node;
  334. node = rb_prev(&es->rb_node);
  335. if (!node)
  336. return es;
  337. es1 = rb_entry(node, struct extent_status, rb_node);
  338. if (ext4_es_can_be_merged(es1, es)) {
  339. es1->es_len += es->es_len;
  340. rb_erase(&es->rb_node, &tree->root);
  341. ext4_es_free_extent(inode, es);
  342. es = es1;
  343. }
  344. return es;
  345. }
  346. static struct extent_status *
  347. ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
  348. {
  349. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  350. struct extent_status *es1;
  351. struct rb_node *node;
  352. node = rb_next(&es->rb_node);
  353. if (!node)
  354. return es;
  355. es1 = rb_entry(node, struct extent_status, rb_node);
  356. if (ext4_es_can_be_merged(es, es1)) {
  357. es->es_len += es1->es_len;
  358. rb_erase(node, &tree->root);
  359. ext4_es_free_extent(inode, es1);
  360. }
  361. return es;
  362. }
  363. #ifdef ES_AGGRESSIVE_TEST
  364. static void ext4_es_insert_extent_ext_check(struct inode *inode,
  365. struct extent_status *es)
  366. {
  367. struct ext4_ext_path *path = NULL;
  368. struct ext4_extent *ex;
  369. ext4_lblk_t ee_block;
  370. ext4_fsblk_t ee_start;
  371. unsigned short ee_len;
  372. int depth, ee_status, es_status;
  373. path = ext4_ext_find_extent(inode, es->es_lblk, NULL);
  374. if (IS_ERR(path))
  375. return;
  376. depth = ext_depth(inode);
  377. ex = path[depth].p_ext;
  378. if (ex) {
  379. ee_block = le32_to_cpu(ex->ee_block);
  380. ee_start = ext4_ext_pblock(ex);
  381. ee_len = ext4_ext_get_actual_len(ex);
  382. ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0;
  383. es_status = ext4_es_is_unwritten(es) ? 1 : 0;
  384. /*
  385. * Make sure ex and es are not overlap when we try to insert
  386. * a delayed/hole extent.
  387. */
  388. if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
  389. if (in_range(es->es_lblk, ee_block, ee_len)) {
  390. pr_warn("ES insert assertation failed for "
  391. "inode: %lu we can find an extent "
  392. "at block [%d/%d/%llu/%c], but we "
  393. "want to add an delayed/hole extent "
  394. "[%d/%d/%llu/%llx]\n",
  395. inode->i_ino, ee_block, ee_len,
  396. ee_start, ee_status ? 'u' : 'w',
  397. es->es_lblk, es->es_len,
  398. ext4_es_pblock(es), ext4_es_status(es));
  399. }
  400. goto out;
  401. }
  402. /*
  403. * We don't check ee_block == es->es_lblk, etc. because es
  404. * might be a part of whole extent, vice versa.
  405. */
  406. if (es->es_lblk < ee_block ||
  407. ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
  408. pr_warn("ES insert assertation failed for inode: %lu "
  409. "ex_status [%d/%d/%llu/%c] != "
  410. "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
  411. ee_block, ee_len, ee_start,
  412. ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
  413. ext4_es_pblock(es), es_status ? 'u' : 'w');
  414. goto out;
  415. }
  416. if (ee_status ^ es_status) {
  417. pr_warn("ES insert assertation failed for inode: %lu "
  418. "ex_status [%d/%d/%llu/%c] != "
  419. "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
  420. ee_block, ee_len, ee_start,
  421. ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
  422. ext4_es_pblock(es), es_status ? 'u' : 'w');
  423. }
  424. } else {
  425. /*
  426. * We can't find an extent on disk. So we need to make sure
  427. * that we don't want to add an written/unwritten extent.
  428. */
  429. if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
  430. pr_warn("ES insert assertation failed for inode: %lu "
  431. "can't find an extent at block %d but we want "
  432. "to add an written/unwritten extent "
  433. "[%d/%d/%llu/%llx]\n", inode->i_ino,
  434. es->es_lblk, es->es_lblk, es->es_len,
  435. ext4_es_pblock(es), ext4_es_status(es));
  436. }
  437. }
  438. out:
  439. if (path) {
  440. ext4_ext_drop_refs(path);
  441. kfree(path);
  442. }
  443. }
  444. static void ext4_es_insert_extent_ind_check(struct inode *inode,
  445. struct extent_status *es)
  446. {
  447. struct ext4_map_blocks map;
  448. int retval;
  449. /*
  450. * Here we call ext4_ind_map_blocks to lookup a block mapping because
  451. * 'Indirect' structure is defined in indirect.c. So we couldn't
  452. * access direct/indirect tree from outside. It is too dirty to define
  453. * this function in indirect.c file.
  454. */
  455. map.m_lblk = es->es_lblk;
  456. map.m_len = es->es_len;
  457. retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
  458. if (retval > 0) {
  459. if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
  460. /*
  461. * We want to add a delayed/hole extent but this
  462. * block has been allocated.
  463. */
  464. pr_warn("ES insert assertation failed for inode: %lu "
  465. "We can find blocks but we want to add a "
  466. "delayed/hole extent [%d/%d/%llu/%llx]\n",
  467. inode->i_ino, es->es_lblk, es->es_len,
  468. ext4_es_pblock(es), ext4_es_status(es));
  469. return;
  470. } else if (ext4_es_is_written(es)) {
  471. if (retval != es->es_len) {
  472. pr_warn("ES insert assertation failed for "
  473. "inode: %lu retval %d != es_len %d\n",
  474. inode->i_ino, retval, es->es_len);
  475. return;
  476. }
  477. if (map.m_pblk != ext4_es_pblock(es)) {
  478. pr_warn("ES insert assertation failed for "
  479. "inode: %lu m_pblk %llu != "
  480. "es_pblk %llu\n",
  481. inode->i_ino, map.m_pblk,
  482. ext4_es_pblock(es));
  483. return;
  484. }
  485. } else {
  486. /*
  487. * We don't need to check unwritten extent because
  488. * indirect-based file doesn't have it.
  489. */
  490. BUG_ON(1);
  491. }
  492. } else if (retval == 0) {
  493. if (ext4_es_is_written(es)) {
  494. pr_warn("ES insert assertation failed for inode: %lu "
  495. "We can't find the block but we want to add "
  496. "an written extent [%d/%d/%llu/%llx]\n",
  497. inode->i_ino, es->es_lblk, es->es_len,
  498. ext4_es_pblock(es), ext4_es_status(es));
  499. return;
  500. }
  501. }
  502. }
  503. static inline void ext4_es_insert_extent_check(struct inode *inode,
  504. struct extent_status *es)
  505. {
  506. /*
  507. * We don't need to worry about the race condition because
  508. * caller takes i_data_sem locking.
  509. */
  510. BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
  511. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  512. ext4_es_insert_extent_ext_check(inode, es);
  513. else
  514. ext4_es_insert_extent_ind_check(inode, es);
  515. }
  516. #else
  517. static inline void ext4_es_insert_extent_check(struct inode *inode,
  518. struct extent_status *es)
  519. {
  520. }
  521. #endif
  522. static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
  523. {
  524. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  525. struct rb_node **p = &tree->root.rb_node;
  526. struct rb_node *parent = NULL;
  527. struct extent_status *es;
  528. while (*p) {
  529. parent = *p;
  530. es = rb_entry(parent, struct extent_status, rb_node);
  531. if (newes->es_lblk < es->es_lblk) {
  532. if (ext4_es_can_be_merged(newes, es)) {
  533. /*
  534. * Here we can modify es_lblk directly
  535. * because it isn't overlapped.
  536. */
  537. es->es_lblk = newes->es_lblk;
  538. es->es_len += newes->es_len;
  539. if (ext4_es_is_written(es) ||
  540. ext4_es_is_unwritten(es))
  541. ext4_es_store_pblock(es,
  542. newes->es_pblk);
  543. es = ext4_es_try_to_merge_left(inode, es);
  544. goto out;
  545. }
  546. p = &(*p)->rb_left;
  547. } else if (newes->es_lblk > ext4_es_end(es)) {
  548. if (ext4_es_can_be_merged(es, newes)) {
  549. es->es_len += newes->es_len;
  550. es = ext4_es_try_to_merge_right(inode, es);
  551. goto out;
  552. }
  553. p = &(*p)->rb_right;
  554. } else {
  555. BUG_ON(1);
  556. return -EINVAL;
  557. }
  558. }
  559. es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
  560. newes->es_pblk);
  561. if (!es)
  562. return -ENOMEM;
  563. rb_link_node(&es->rb_node, parent, p);
  564. rb_insert_color(&es->rb_node, &tree->root);
  565. out:
  566. tree->cache_es = es;
  567. return 0;
  568. }
  569. /*
  570. * ext4_es_insert_extent() adds a space to a extent status tree.
  571. *
  572. * ext4_es_insert_extent is called by ext4_da_write_begin and
  573. * ext4_es_remove_extent.
  574. *
  575. * Return 0 on success, error code on failure.
  576. */
  577. int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
  578. ext4_lblk_t len, ext4_fsblk_t pblk,
  579. unsigned long long status)
  580. {
  581. struct extent_status newes;
  582. ext4_lblk_t end = lblk + len - 1;
  583. int err = 0;
  584. es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
  585. lblk, len, pblk, status, inode->i_ino);
  586. if (!len)
  587. return 0;
  588. BUG_ON(end < lblk);
  589. newes.es_lblk = lblk;
  590. newes.es_len = len;
  591. ext4_es_store_pblock(&newes, pblk);
  592. ext4_es_store_status(&newes, status);
  593. trace_ext4_es_insert_extent(inode, &newes);
  594. ext4_es_insert_extent_check(inode, &newes);
  595. write_lock(&EXT4_I(inode)->i_es_lock);
  596. err = __es_remove_extent(inode, lblk, end);
  597. if (err != 0)
  598. goto error;
  599. err = __es_insert_extent(inode, &newes);
  600. error:
  601. write_unlock(&EXT4_I(inode)->i_es_lock);
  602. ext4_es_lru_add(inode);
  603. ext4_es_print_tree(inode);
  604. return err;
  605. }
  606. /*
  607. * ext4_es_lookup_extent() looks up an extent in extent status tree.
  608. *
  609. * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
  610. *
  611. * Return: 1 on found, 0 on not
  612. */
  613. int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
  614. struct extent_status *es)
  615. {
  616. struct ext4_es_tree *tree;
  617. struct extent_status *es1 = NULL;
  618. struct rb_node *node;
  619. int found = 0;
  620. trace_ext4_es_lookup_extent_enter(inode, lblk);
  621. es_debug("lookup extent in block %u\n", lblk);
  622. tree = &EXT4_I(inode)->i_es_tree;
  623. read_lock(&EXT4_I(inode)->i_es_lock);
  624. /* find extent in cache firstly */
  625. es->es_lblk = es->es_len = es->es_pblk = 0;
  626. if (tree->cache_es) {
  627. es1 = tree->cache_es;
  628. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  629. es_debug("%u cached by [%u/%u)\n",
  630. lblk, es1->es_lblk, es1->es_len);
  631. found = 1;
  632. goto out;
  633. }
  634. }
  635. node = tree->root.rb_node;
  636. while (node) {
  637. es1 = rb_entry(node, struct extent_status, rb_node);
  638. if (lblk < es1->es_lblk)
  639. node = node->rb_left;
  640. else if (lblk > ext4_es_end(es1))
  641. node = node->rb_right;
  642. else {
  643. found = 1;
  644. break;
  645. }
  646. }
  647. out:
  648. if (found) {
  649. BUG_ON(!es1);
  650. es->es_lblk = es1->es_lblk;
  651. es->es_len = es1->es_len;
  652. es->es_pblk = es1->es_pblk;
  653. }
  654. read_unlock(&EXT4_I(inode)->i_es_lock);
  655. ext4_es_lru_add(inode);
  656. trace_ext4_es_lookup_extent_exit(inode, es, found);
  657. return found;
  658. }
  659. static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  660. ext4_lblk_t end)
  661. {
  662. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  663. struct rb_node *node;
  664. struct extent_status *es;
  665. struct extent_status orig_es;
  666. ext4_lblk_t len1, len2;
  667. ext4_fsblk_t block;
  668. int err = 0;
  669. es = __es_tree_search(&tree->root, lblk);
  670. if (!es)
  671. goto out;
  672. if (es->es_lblk > end)
  673. goto out;
  674. /* Simply invalidate cache_es. */
  675. tree->cache_es = NULL;
  676. orig_es.es_lblk = es->es_lblk;
  677. orig_es.es_len = es->es_len;
  678. orig_es.es_pblk = es->es_pblk;
  679. len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
  680. len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
  681. if (len1 > 0)
  682. es->es_len = len1;
  683. if (len2 > 0) {
  684. if (len1 > 0) {
  685. struct extent_status newes;
  686. newes.es_lblk = end + 1;
  687. newes.es_len = len2;
  688. if (ext4_es_is_written(&orig_es) ||
  689. ext4_es_is_unwritten(&orig_es)) {
  690. block = ext4_es_pblock(&orig_es) +
  691. orig_es.es_len - len2;
  692. ext4_es_store_pblock(&newes, block);
  693. }
  694. ext4_es_store_status(&newes, ext4_es_status(&orig_es));
  695. err = __es_insert_extent(inode, &newes);
  696. if (err) {
  697. es->es_lblk = orig_es.es_lblk;
  698. es->es_len = orig_es.es_len;
  699. goto out;
  700. }
  701. } else {
  702. es->es_lblk = end + 1;
  703. es->es_len = len2;
  704. if (ext4_es_is_written(es) ||
  705. ext4_es_is_unwritten(es)) {
  706. block = orig_es.es_pblk + orig_es.es_len - len2;
  707. ext4_es_store_pblock(es, block);
  708. }
  709. }
  710. goto out;
  711. }
  712. if (len1 > 0) {
  713. node = rb_next(&es->rb_node);
  714. if (node)
  715. es = rb_entry(node, struct extent_status, rb_node);
  716. else
  717. es = NULL;
  718. }
  719. while (es && ext4_es_end(es) <= end) {
  720. node = rb_next(&es->rb_node);
  721. rb_erase(&es->rb_node, &tree->root);
  722. ext4_es_free_extent(inode, es);
  723. if (!node) {
  724. es = NULL;
  725. break;
  726. }
  727. es = rb_entry(node, struct extent_status, rb_node);
  728. }
  729. if (es && es->es_lblk < end + 1) {
  730. ext4_lblk_t orig_len = es->es_len;
  731. len1 = ext4_es_end(es) - end;
  732. es->es_lblk = end + 1;
  733. es->es_len = len1;
  734. if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
  735. block = es->es_pblk + orig_len - len1;
  736. ext4_es_store_pblock(es, block);
  737. }
  738. }
  739. out:
  740. return err;
  741. }
  742. /*
  743. * ext4_es_remove_extent() removes a space from a extent status tree.
  744. *
  745. * Return 0 on success, error code on failure.
  746. */
  747. int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  748. ext4_lblk_t len)
  749. {
  750. ext4_lblk_t end;
  751. int err = 0;
  752. trace_ext4_es_remove_extent(inode, lblk, len);
  753. es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
  754. lblk, len, inode->i_ino);
  755. if (!len)
  756. return err;
  757. end = lblk + len - 1;
  758. BUG_ON(end < lblk);
  759. write_lock(&EXT4_I(inode)->i_es_lock);
  760. err = __es_remove_extent(inode, lblk, end);
  761. write_unlock(&EXT4_I(inode)->i_es_lock);
  762. ext4_es_print_tree(inode);
  763. return err;
  764. }
  765. int ext4_es_zeroout(struct inode *inode, struct ext4_extent *ex)
  766. {
  767. ext4_lblk_t ee_block;
  768. ext4_fsblk_t ee_pblock;
  769. unsigned int ee_len;
  770. ee_block = le32_to_cpu(ex->ee_block);
  771. ee_len = ext4_ext_get_actual_len(ex);
  772. ee_pblock = ext4_ext_pblock(ex);
  773. if (ee_len == 0)
  774. return 0;
  775. return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
  776. EXTENT_STATUS_WRITTEN);
  777. }
  778. static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
  779. {
  780. struct ext4_sb_info *sbi = container_of(shrink,
  781. struct ext4_sb_info, s_es_shrinker);
  782. struct ext4_inode_info *ei;
  783. struct list_head *cur, *tmp, scanned;
  784. int nr_to_scan = sc->nr_to_scan;
  785. int ret, nr_shrunk = 0;
  786. ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
  787. trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
  788. if (!nr_to_scan)
  789. return ret;
  790. INIT_LIST_HEAD(&scanned);
  791. spin_lock(&sbi->s_es_lru_lock);
  792. list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
  793. list_move_tail(cur, &scanned);
  794. ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
  795. read_lock(&ei->i_es_lock);
  796. if (ei->i_es_lru_nr == 0) {
  797. read_unlock(&ei->i_es_lock);
  798. continue;
  799. }
  800. read_unlock(&ei->i_es_lock);
  801. write_lock(&ei->i_es_lock);
  802. ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
  803. write_unlock(&ei->i_es_lock);
  804. nr_shrunk += ret;
  805. nr_to_scan -= ret;
  806. if (nr_to_scan == 0)
  807. break;
  808. }
  809. list_splice_tail(&scanned, &sbi->s_es_lru);
  810. spin_unlock(&sbi->s_es_lru_lock);
  811. ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
  812. trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
  813. return ret;
  814. }
  815. void ext4_es_register_shrinker(struct super_block *sb)
  816. {
  817. struct ext4_sb_info *sbi;
  818. sbi = EXT4_SB(sb);
  819. INIT_LIST_HEAD(&sbi->s_es_lru);
  820. spin_lock_init(&sbi->s_es_lru_lock);
  821. sbi->s_es_shrinker.shrink = ext4_es_shrink;
  822. sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
  823. register_shrinker(&sbi->s_es_shrinker);
  824. }
  825. void ext4_es_unregister_shrinker(struct super_block *sb)
  826. {
  827. unregister_shrinker(&EXT4_SB(sb)->s_es_shrinker);
  828. }
  829. void ext4_es_lru_add(struct inode *inode)
  830. {
  831. struct ext4_inode_info *ei = EXT4_I(inode);
  832. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  833. spin_lock(&sbi->s_es_lru_lock);
  834. if (list_empty(&ei->i_es_lru))
  835. list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
  836. else
  837. list_move_tail(&ei->i_es_lru, &sbi->s_es_lru);
  838. spin_unlock(&sbi->s_es_lru_lock);
  839. }
  840. void ext4_es_lru_del(struct inode *inode)
  841. {
  842. struct ext4_inode_info *ei = EXT4_I(inode);
  843. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  844. spin_lock(&sbi->s_es_lru_lock);
  845. if (!list_empty(&ei->i_es_lru))
  846. list_del_init(&ei->i_es_lru);
  847. spin_unlock(&sbi->s_es_lru_lock);
  848. }
  849. static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
  850. int nr_to_scan)
  851. {
  852. struct inode *inode = &ei->vfs_inode;
  853. struct ext4_es_tree *tree = &ei->i_es_tree;
  854. struct rb_node *node;
  855. struct extent_status *es;
  856. int nr_shrunk = 0;
  857. if (ei->i_es_lru_nr == 0)
  858. return 0;
  859. node = rb_first(&tree->root);
  860. while (node != NULL) {
  861. es = rb_entry(node, struct extent_status, rb_node);
  862. node = rb_next(&es->rb_node);
  863. /*
  864. * We can't reclaim delayed extent from status tree because
  865. * fiemap, bigallic, and seek_data/hole need to use it.
  866. */
  867. if (!ext4_es_is_delayed(es)) {
  868. rb_erase(&es->rb_node, &tree->root);
  869. ext4_es_free_extent(inode, es);
  870. nr_shrunk++;
  871. if (--nr_to_scan == 0)
  872. break;
  873. }
  874. }
  875. tree->cache_es = NULL;
  876. return nr_shrunk;
  877. }