r600_dpm.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024
  1. /*
  2. * Copyright 2011 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include "drmP.h"
  25. #include "radeon.h"
  26. #include "r600d.h"
  27. #include "r600_dpm.h"
  28. #include "atom.h"
  29. const u32 r600_utc[R600_PM_NUMBER_OF_TC] =
  30. {
  31. R600_UTC_DFLT_00,
  32. R600_UTC_DFLT_01,
  33. R600_UTC_DFLT_02,
  34. R600_UTC_DFLT_03,
  35. R600_UTC_DFLT_04,
  36. R600_UTC_DFLT_05,
  37. R600_UTC_DFLT_06,
  38. R600_UTC_DFLT_07,
  39. R600_UTC_DFLT_08,
  40. R600_UTC_DFLT_09,
  41. R600_UTC_DFLT_10,
  42. R600_UTC_DFLT_11,
  43. R600_UTC_DFLT_12,
  44. R600_UTC_DFLT_13,
  45. R600_UTC_DFLT_14,
  46. };
  47. const u32 r600_dtc[R600_PM_NUMBER_OF_TC] =
  48. {
  49. R600_DTC_DFLT_00,
  50. R600_DTC_DFLT_01,
  51. R600_DTC_DFLT_02,
  52. R600_DTC_DFLT_03,
  53. R600_DTC_DFLT_04,
  54. R600_DTC_DFLT_05,
  55. R600_DTC_DFLT_06,
  56. R600_DTC_DFLT_07,
  57. R600_DTC_DFLT_08,
  58. R600_DTC_DFLT_09,
  59. R600_DTC_DFLT_10,
  60. R600_DTC_DFLT_11,
  61. R600_DTC_DFLT_12,
  62. R600_DTC_DFLT_13,
  63. R600_DTC_DFLT_14,
  64. };
  65. void r600_dpm_print_class_info(u32 class, u32 class2)
  66. {
  67. printk("\tui class: ");
  68. switch (class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
  69. case ATOM_PPLIB_CLASSIFICATION_UI_NONE:
  70. default:
  71. printk("none\n");
  72. break;
  73. case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
  74. printk("battery\n");
  75. break;
  76. case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED:
  77. printk("balanced\n");
  78. break;
  79. case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
  80. printk("performance\n");
  81. break;
  82. }
  83. printk("\tinternal class: ");
  84. if (((class & ~ATOM_PPLIB_CLASSIFICATION_UI_MASK) == 0) &&
  85. (class2 == 0))
  86. printk("none");
  87. else {
  88. if (class & ATOM_PPLIB_CLASSIFICATION_BOOT)
  89. printk("boot ");
  90. if (class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
  91. printk("thermal ");
  92. if (class & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
  93. printk("limited_pwr ");
  94. if (class & ATOM_PPLIB_CLASSIFICATION_REST)
  95. printk("rest ");
  96. if (class & ATOM_PPLIB_CLASSIFICATION_FORCED)
  97. printk("forced ");
  98. if (class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
  99. printk("3d_perf ");
  100. if (class & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE)
  101. printk("ovrdrv ");
  102. if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  103. printk("uvd ");
  104. if (class & ATOM_PPLIB_CLASSIFICATION_3DLOW)
  105. printk("3d_low ");
  106. if (class & ATOM_PPLIB_CLASSIFICATION_ACPI)
  107. printk("acpi ");
  108. if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
  109. printk("uvd_hd2 ");
  110. if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
  111. printk("uvd_hd ");
  112. if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
  113. printk("uvd_sd ");
  114. if (class2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
  115. printk("limited_pwr2 ");
  116. if (class2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
  117. printk("ulv ");
  118. if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
  119. printk("uvd_mvc ");
  120. }
  121. printk("\n");
  122. }
  123. void r600_dpm_print_cap_info(u32 caps)
  124. {
  125. printk("\tcaps: ");
  126. if (caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY)
  127. printk("single_disp ");
  128. if (caps & ATOM_PPLIB_SUPPORTS_VIDEO_PLAYBACK)
  129. printk("video ");
  130. if (caps & ATOM_PPLIB_DISALLOW_ON_DC)
  131. printk("no_dc ");
  132. printk("\n");
  133. }
  134. void r600_dpm_print_ps_status(struct radeon_device *rdev,
  135. struct radeon_ps *rps)
  136. {
  137. printk("\tstatus: ");
  138. if (rps == rdev->pm.dpm.current_ps)
  139. printk("c ");
  140. if (rps == rdev->pm.dpm.requested_ps)
  141. printk("r ");
  142. if (rps == rdev->pm.dpm.boot_ps)
  143. printk("b ");
  144. printk("\n");
  145. }
  146. void r600_calculate_u_and_p(u32 i, u32 r_c, u32 p_b,
  147. u32 *p, u32 *u)
  148. {
  149. u32 b_c = 0;
  150. u32 i_c;
  151. u32 tmp;
  152. i_c = (i * r_c) / 100;
  153. tmp = i_c >> p_b;
  154. while (tmp) {
  155. b_c++;
  156. tmp >>= 1;
  157. }
  158. *u = (b_c + 1) / 2;
  159. *p = i_c / (1 << (2 * (*u)));
  160. }
  161. int r600_calculate_at(u32 t, u32 h, u32 fh, u32 fl, u32 *tl, u32 *th)
  162. {
  163. u32 k, a, ah, al;
  164. u32 t1;
  165. if ((fl == 0) || (fh == 0) || (fl > fh))
  166. return -EINVAL;
  167. k = (100 * fh) / fl;
  168. t1 = (t * (k - 100));
  169. a = (1000 * (100 * h + t1)) / (10000 + (t1 / 100));
  170. a = (a + 5) / 10;
  171. ah = ((a * t) + 5000) / 10000;
  172. al = a - ah;
  173. *th = t - ah;
  174. *tl = t + al;
  175. return 0;
  176. }
  177. void r600_gfx_clockgating_enable(struct radeon_device *rdev, bool enable)
  178. {
  179. int i;
  180. if (enable) {
  181. WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN);
  182. } else {
  183. WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN);
  184. WREG32(CG_RLC_REQ_AND_RSP, 0x2);
  185. for (i = 0; i < rdev->usec_timeout; i++) {
  186. if (((RREG32(CG_RLC_REQ_AND_RSP) & CG_RLC_RSP_TYPE_MASK) >> CG_RLC_RSP_TYPE_SHIFT) == 1)
  187. break;
  188. udelay(1);
  189. }
  190. WREG32(CG_RLC_REQ_AND_RSP, 0x0);
  191. WREG32(GRBM_PWR_CNTL, 0x1);
  192. RREG32(GRBM_PWR_CNTL);
  193. }
  194. }
  195. void r600_dynamicpm_enable(struct radeon_device *rdev, bool enable)
  196. {
  197. if (enable)
  198. WREG32_P(GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, ~GLOBAL_PWRMGT_EN);
  199. else
  200. WREG32_P(GENERAL_PWRMGT, 0, ~GLOBAL_PWRMGT_EN);
  201. }
  202. void r600_enable_thermal_protection(struct radeon_device *rdev, bool enable)
  203. {
  204. if (enable)
  205. WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS);
  206. else
  207. WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS);
  208. }
  209. void r600_enable_acpi_pm(struct radeon_device *rdev)
  210. {
  211. WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN);
  212. }
  213. void r600_enable_dynamic_pcie_gen2(struct radeon_device *rdev, bool enable)
  214. {
  215. if (enable)
  216. WREG32_P(GENERAL_PWRMGT, ENABLE_GEN2PCIE, ~ENABLE_GEN2PCIE);
  217. else
  218. WREG32_P(GENERAL_PWRMGT, 0, ~ENABLE_GEN2PCIE);
  219. }
  220. bool r600_dynamicpm_enabled(struct radeon_device *rdev)
  221. {
  222. if (RREG32(GENERAL_PWRMGT) & GLOBAL_PWRMGT_EN)
  223. return true;
  224. else
  225. return false;
  226. }
  227. void r600_enable_sclk_control(struct radeon_device *rdev, bool enable)
  228. {
  229. if (enable)
  230. WREG32_P(GENERAL_PWRMGT, 0, ~SCLK_PWRMGT_OFF);
  231. else
  232. WREG32_P(GENERAL_PWRMGT, SCLK_PWRMGT_OFF, ~SCLK_PWRMGT_OFF);
  233. }
  234. void r600_enable_mclk_control(struct radeon_device *rdev, bool enable)
  235. {
  236. if (enable)
  237. WREG32_P(MCLK_PWRMGT_CNTL, 0, ~MPLL_PWRMGT_OFF);
  238. else
  239. WREG32_P(MCLK_PWRMGT_CNTL, MPLL_PWRMGT_OFF, ~MPLL_PWRMGT_OFF);
  240. }
  241. void r600_enable_spll_bypass(struct radeon_device *rdev, bool enable)
  242. {
  243. if (enable)
  244. WREG32_P(CG_SPLL_FUNC_CNTL, SPLL_BYPASS_EN, ~SPLL_BYPASS_EN);
  245. else
  246. WREG32_P(CG_SPLL_FUNC_CNTL, 0, ~SPLL_BYPASS_EN);
  247. }
  248. void r600_wait_for_spll_change(struct radeon_device *rdev)
  249. {
  250. int i;
  251. for (i = 0; i < rdev->usec_timeout; i++) {
  252. if (RREG32(CG_SPLL_FUNC_CNTL) & SPLL_CHG_STATUS)
  253. break;
  254. udelay(1);
  255. }
  256. }
  257. void r600_set_bsp(struct radeon_device *rdev, u32 u, u32 p)
  258. {
  259. WREG32(CG_BSP, BSP(p) | BSU(u));
  260. }
  261. void r600_set_at(struct radeon_device *rdev,
  262. u32 l_to_m, u32 m_to_h,
  263. u32 h_to_m, u32 m_to_l)
  264. {
  265. WREG32(CG_RT, FLS(l_to_m) | FMS(m_to_h));
  266. WREG32(CG_LT, FHS(h_to_m) | FMS(m_to_l));
  267. }
  268. void r600_set_tc(struct radeon_device *rdev,
  269. u32 index, u32 u_t, u32 d_t)
  270. {
  271. WREG32(CG_FFCT_0 + (index * 4), UTC_0(u_t) | DTC_0(d_t));
  272. }
  273. void r600_select_td(struct radeon_device *rdev,
  274. enum r600_td td)
  275. {
  276. if (td == R600_TD_AUTO)
  277. WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL);
  278. else
  279. WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL);
  280. if (td == R600_TD_UP)
  281. WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE);
  282. if (td == R600_TD_DOWN)
  283. WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE);
  284. }
  285. void r600_set_vrc(struct radeon_device *rdev, u32 vrv)
  286. {
  287. WREG32(CG_FTV, vrv);
  288. }
  289. void r600_set_tpu(struct radeon_device *rdev, u32 u)
  290. {
  291. WREG32_P(CG_TPC, TPU(u), ~TPU_MASK);
  292. }
  293. void r600_set_tpc(struct radeon_device *rdev, u32 c)
  294. {
  295. WREG32_P(CG_TPC, TPCC(c), ~TPCC_MASK);
  296. }
  297. void r600_set_sstu(struct radeon_device *rdev, u32 u)
  298. {
  299. WREG32_P(CG_SSP, CG_SSTU(u), ~CG_SSTU_MASK);
  300. }
  301. void r600_set_sst(struct radeon_device *rdev, u32 t)
  302. {
  303. WREG32_P(CG_SSP, CG_SST(t), ~CG_SST_MASK);
  304. }
  305. void r600_set_git(struct radeon_device *rdev, u32 t)
  306. {
  307. WREG32_P(CG_GIT, CG_GICST(t), ~CG_GICST_MASK);
  308. }
  309. void r600_set_fctu(struct radeon_device *rdev, u32 u)
  310. {
  311. WREG32_P(CG_FC_T, FC_TU(u), ~FC_TU_MASK);
  312. }
  313. void r600_set_fct(struct radeon_device *rdev, u32 t)
  314. {
  315. WREG32_P(CG_FC_T, FC_T(t), ~FC_T_MASK);
  316. }
  317. void r600_set_ctxcgtt3d_rphc(struct radeon_device *rdev, u32 p)
  318. {
  319. WREG32_P(CG_CTX_CGTT3D_R, PHC(p), ~PHC_MASK);
  320. }
  321. void r600_set_ctxcgtt3d_rsdc(struct radeon_device *rdev, u32 s)
  322. {
  323. WREG32_P(CG_CTX_CGTT3D_R, SDC(s), ~SDC_MASK);
  324. }
  325. void r600_set_vddc3d_oorsu(struct radeon_device *rdev, u32 u)
  326. {
  327. WREG32_P(CG_VDDC3D_OOR, SU(u), ~SU_MASK);
  328. }
  329. void r600_set_vddc3d_oorphc(struct radeon_device *rdev, u32 p)
  330. {
  331. WREG32_P(CG_VDDC3D_OOR, PHC(p), ~PHC_MASK);
  332. }
  333. void r600_set_vddc3d_oorsdc(struct radeon_device *rdev, u32 s)
  334. {
  335. WREG32_P(CG_VDDC3D_OOR, SDC(s), ~SDC_MASK);
  336. }
  337. void r600_set_mpll_lock_time(struct radeon_device *rdev, u32 lock_time)
  338. {
  339. WREG32_P(MPLL_TIME, MPLL_LOCK_TIME(lock_time), ~MPLL_LOCK_TIME_MASK);
  340. }
  341. void r600_set_mpll_reset_time(struct radeon_device *rdev, u32 reset_time)
  342. {
  343. WREG32_P(MPLL_TIME, MPLL_RESET_TIME(reset_time), ~MPLL_RESET_TIME_MASK);
  344. }
  345. void r600_engine_clock_entry_enable(struct radeon_device *rdev,
  346. u32 index, bool enable)
  347. {
  348. if (enable)
  349. WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
  350. STEP_0_SPLL_ENTRY_VALID, ~STEP_0_SPLL_ENTRY_VALID);
  351. else
  352. WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
  353. 0, ~STEP_0_SPLL_ENTRY_VALID);
  354. }
  355. void r600_engine_clock_entry_enable_pulse_skipping(struct radeon_device *rdev,
  356. u32 index, bool enable)
  357. {
  358. if (enable)
  359. WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
  360. STEP_0_SPLL_STEP_ENABLE, ~STEP_0_SPLL_STEP_ENABLE);
  361. else
  362. WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
  363. 0, ~STEP_0_SPLL_STEP_ENABLE);
  364. }
  365. void r600_engine_clock_entry_enable_post_divider(struct radeon_device *rdev,
  366. u32 index, bool enable)
  367. {
  368. if (enable)
  369. WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
  370. STEP_0_POST_DIV_EN, ~STEP_0_POST_DIV_EN);
  371. else
  372. WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
  373. 0, ~STEP_0_POST_DIV_EN);
  374. }
  375. void r600_engine_clock_entry_set_post_divider(struct radeon_device *rdev,
  376. u32 index, u32 divider)
  377. {
  378. WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
  379. STEP_0_SPLL_POST_DIV(divider), ~STEP_0_SPLL_POST_DIV_MASK);
  380. }
  381. void r600_engine_clock_entry_set_reference_divider(struct radeon_device *rdev,
  382. u32 index, u32 divider)
  383. {
  384. WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
  385. STEP_0_SPLL_REF_DIV(divider), ~STEP_0_SPLL_REF_DIV_MASK);
  386. }
  387. void r600_engine_clock_entry_set_feedback_divider(struct radeon_device *rdev,
  388. u32 index, u32 divider)
  389. {
  390. WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
  391. STEP_0_SPLL_FB_DIV(divider), ~STEP_0_SPLL_FB_DIV_MASK);
  392. }
  393. void r600_engine_clock_entry_set_step_time(struct radeon_device *rdev,
  394. u32 index, u32 step_time)
  395. {
  396. WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
  397. STEP_0_SPLL_STEP_TIME(step_time), ~STEP_0_SPLL_STEP_TIME_MASK);
  398. }
  399. void r600_vid_rt_set_ssu(struct radeon_device *rdev, u32 u)
  400. {
  401. WREG32_P(VID_RT, SSTU(u), ~SSTU_MASK);
  402. }
  403. void r600_vid_rt_set_vru(struct radeon_device *rdev, u32 u)
  404. {
  405. WREG32_P(VID_RT, VID_CRTU(u), ~VID_CRTU_MASK);
  406. }
  407. void r600_vid_rt_set_vrt(struct radeon_device *rdev, u32 rt)
  408. {
  409. WREG32_P(VID_RT, VID_CRT(rt), ~VID_CRT_MASK);
  410. }
  411. void r600_voltage_control_enable_pins(struct radeon_device *rdev,
  412. u64 mask)
  413. {
  414. WREG32(LOWER_GPIO_ENABLE, mask & 0xffffffff);
  415. WREG32(UPPER_GPIO_ENABLE, upper_32_bits(mask));
  416. }
  417. void r600_voltage_control_program_voltages(struct radeon_device *rdev,
  418. enum r600_power_level index, u64 pins)
  419. {
  420. u32 tmp, mask;
  421. u32 ix = 3 - (3 & index);
  422. WREG32(CTXSW_VID_LOWER_GPIO_CNTL + (ix * 4), pins & 0xffffffff);
  423. mask = 7 << (3 * ix);
  424. tmp = RREG32(VID_UPPER_GPIO_CNTL);
  425. tmp = (tmp & ~mask) | ((pins >> (32 - (3 * ix))) & mask);
  426. WREG32(VID_UPPER_GPIO_CNTL, tmp);
  427. }
  428. void r600_voltage_control_deactivate_static_control(struct radeon_device *rdev,
  429. u64 mask)
  430. {
  431. u32 gpio;
  432. gpio = RREG32(GPIOPAD_MASK);
  433. gpio &= ~mask;
  434. WREG32(GPIOPAD_MASK, gpio);
  435. gpio = RREG32(GPIOPAD_EN);
  436. gpio &= ~mask;
  437. WREG32(GPIOPAD_EN, gpio);
  438. gpio = RREG32(GPIOPAD_A);
  439. gpio &= ~mask;
  440. WREG32(GPIOPAD_A, gpio);
  441. }
  442. void r600_power_level_enable(struct radeon_device *rdev,
  443. enum r600_power_level index, bool enable)
  444. {
  445. u32 ix = 3 - (3 & index);
  446. if (enable)
  447. WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), CTXSW_FREQ_STATE_ENABLE,
  448. ~CTXSW_FREQ_STATE_ENABLE);
  449. else
  450. WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), 0,
  451. ~CTXSW_FREQ_STATE_ENABLE);
  452. }
  453. void r600_power_level_set_voltage_index(struct radeon_device *rdev,
  454. enum r600_power_level index, u32 voltage_index)
  455. {
  456. u32 ix = 3 - (3 & index);
  457. WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4),
  458. CTXSW_FREQ_VIDS_CFG_INDEX(voltage_index), ~CTXSW_FREQ_VIDS_CFG_INDEX_MASK);
  459. }
  460. void r600_power_level_set_mem_clock_index(struct radeon_device *rdev,
  461. enum r600_power_level index, u32 mem_clock_index)
  462. {
  463. u32 ix = 3 - (3 & index);
  464. WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4),
  465. CTXSW_FREQ_MCLK_CFG_INDEX(mem_clock_index), ~CTXSW_FREQ_MCLK_CFG_INDEX_MASK);
  466. }
  467. void r600_power_level_set_eng_clock_index(struct radeon_device *rdev,
  468. enum r600_power_level index, u32 eng_clock_index)
  469. {
  470. u32 ix = 3 - (3 & index);
  471. WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4),
  472. CTXSW_FREQ_SCLK_CFG_INDEX(eng_clock_index), ~CTXSW_FREQ_SCLK_CFG_INDEX_MASK);
  473. }
  474. void r600_power_level_set_watermark_id(struct radeon_device *rdev,
  475. enum r600_power_level index,
  476. enum r600_display_watermark watermark_id)
  477. {
  478. u32 ix = 3 - (3 & index);
  479. u32 tmp = 0;
  480. if (watermark_id == R600_DISPLAY_WATERMARK_HIGH)
  481. tmp = CTXSW_FREQ_DISPLAY_WATERMARK;
  482. WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), tmp, ~CTXSW_FREQ_DISPLAY_WATERMARK);
  483. }
  484. void r600_power_level_set_pcie_gen2(struct radeon_device *rdev,
  485. enum r600_power_level index, bool compatible)
  486. {
  487. u32 ix = 3 - (3 & index);
  488. u32 tmp = 0;
  489. if (compatible)
  490. tmp = CTXSW_FREQ_GEN2PCIE_VOLT;
  491. WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), tmp, ~CTXSW_FREQ_GEN2PCIE_VOLT);
  492. }
  493. enum r600_power_level r600_power_level_get_current_index(struct radeon_device *rdev)
  494. {
  495. u32 tmp;
  496. tmp = RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK;
  497. tmp >>= CURRENT_PROFILE_INDEX_SHIFT;
  498. return tmp;
  499. }
  500. enum r600_power_level r600_power_level_get_target_index(struct radeon_device *rdev)
  501. {
  502. u32 tmp;
  503. tmp = RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & TARGET_PROFILE_INDEX_MASK;
  504. tmp >>= TARGET_PROFILE_INDEX_SHIFT;
  505. return tmp;
  506. }
  507. void r600_power_level_set_enter_index(struct radeon_device *rdev,
  508. enum r600_power_level index)
  509. {
  510. WREG32_P(TARGET_AND_CURRENT_PROFILE_INDEX, DYN_PWR_ENTER_INDEX(index),
  511. ~DYN_PWR_ENTER_INDEX_MASK);
  512. }
  513. void r600_wait_for_power_level_unequal(struct radeon_device *rdev,
  514. enum r600_power_level index)
  515. {
  516. int i;
  517. for (i = 0; i < rdev->usec_timeout; i++) {
  518. if (r600_power_level_get_target_index(rdev) != index)
  519. break;
  520. udelay(1);
  521. }
  522. for (i = 0; i < rdev->usec_timeout; i++) {
  523. if (r600_power_level_get_current_index(rdev) != index)
  524. break;
  525. udelay(1);
  526. }
  527. }
  528. void r600_wait_for_power_level(struct radeon_device *rdev,
  529. enum r600_power_level index)
  530. {
  531. int i;
  532. for (i = 0; i < rdev->usec_timeout; i++) {
  533. if (r600_power_level_get_target_index(rdev) == index)
  534. break;
  535. udelay(1);
  536. }
  537. for (i = 0; i < rdev->usec_timeout; i++) {
  538. if (r600_power_level_get_current_index(rdev) == index)
  539. break;
  540. udelay(1);
  541. }
  542. }
  543. void r600_start_dpm(struct radeon_device *rdev)
  544. {
  545. r600_enable_sclk_control(rdev, false);
  546. r600_enable_mclk_control(rdev, false);
  547. r600_dynamicpm_enable(rdev, true);
  548. radeon_wait_for_vblank(rdev, 0);
  549. radeon_wait_for_vblank(rdev, 1);
  550. r600_enable_spll_bypass(rdev, true);
  551. r600_wait_for_spll_change(rdev);
  552. r600_enable_spll_bypass(rdev, false);
  553. r600_wait_for_spll_change(rdev);
  554. r600_enable_spll_bypass(rdev, true);
  555. r600_wait_for_spll_change(rdev);
  556. r600_enable_spll_bypass(rdev, false);
  557. r600_wait_for_spll_change(rdev);
  558. r600_enable_sclk_control(rdev, true);
  559. r600_enable_mclk_control(rdev, true);
  560. }
  561. void r600_stop_dpm(struct radeon_device *rdev)
  562. {
  563. r600_dynamicpm_enable(rdev, false);
  564. }
  565. int r600_dpm_pre_set_power_state(struct radeon_device *rdev)
  566. {
  567. return 0;
  568. }
  569. void r600_dpm_post_set_power_state(struct radeon_device *rdev)
  570. {
  571. }
  572. bool r600_is_uvd_state(u32 class, u32 class2)
  573. {
  574. if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  575. return true;
  576. if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
  577. return true;
  578. if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
  579. return true;
  580. if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
  581. return true;
  582. if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
  583. return true;
  584. return false;
  585. }
  586. int r600_set_thermal_temperature_range(struct radeon_device *rdev,
  587. int min_temp, int max_temp)
  588. {
  589. int low_temp = 0 * 1000;
  590. int high_temp = 255 * 1000;
  591. if (low_temp < min_temp)
  592. low_temp = min_temp;
  593. if (high_temp > max_temp)
  594. high_temp = max_temp;
  595. if (high_temp < low_temp) {
  596. DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
  597. return -EINVAL;
  598. }
  599. WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(high_temp / 1000), ~DIG_THERM_INTH_MASK);
  600. WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(low_temp / 1000), ~DIG_THERM_INTL_MASK);
  601. WREG32_P(CG_THERMAL_CTRL, DIG_THERM_DPM(high_temp / 1000), ~DIG_THERM_DPM_MASK);
  602. rdev->pm.dpm.thermal.min_temp = low_temp;
  603. rdev->pm.dpm.thermal.max_temp = high_temp;
  604. return 0;
  605. }
  606. bool r600_is_internal_thermal_sensor(enum radeon_int_thermal_type sensor)
  607. {
  608. switch (sensor) {
  609. case THERMAL_TYPE_RV6XX:
  610. case THERMAL_TYPE_RV770:
  611. case THERMAL_TYPE_EVERGREEN:
  612. case THERMAL_TYPE_SUMO:
  613. case THERMAL_TYPE_NI:
  614. case THERMAL_TYPE_SI:
  615. return true;
  616. case THERMAL_TYPE_ADT7473_WITH_INTERNAL:
  617. case THERMAL_TYPE_EMC2103_WITH_INTERNAL:
  618. return false; /* need special handling */
  619. case THERMAL_TYPE_NONE:
  620. case THERMAL_TYPE_EXTERNAL:
  621. case THERMAL_TYPE_EXTERNAL_GPIO:
  622. default:
  623. return false;
  624. }
  625. }
  626. union power_info {
  627. struct _ATOM_POWERPLAY_INFO info;
  628. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  629. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  630. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  631. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  632. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  633. struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4;
  634. struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5;
  635. };
  636. union fan_info {
  637. struct _ATOM_PPLIB_FANTABLE fan;
  638. struct _ATOM_PPLIB_FANTABLE2 fan2;
  639. };
  640. static int r600_parse_clk_voltage_dep_table(struct radeon_clock_voltage_dependency_table *radeon_table,
  641. ATOM_PPLIB_Clock_Voltage_Dependency_Table *atom_table)
  642. {
  643. u32 size = atom_table->ucNumEntries *
  644. sizeof(struct radeon_clock_voltage_dependency_entry);
  645. int i;
  646. radeon_table->entries = kzalloc(size, GFP_KERNEL);
  647. if (!radeon_table->entries)
  648. return -ENOMEM;
  649. for (i = 0; i < atom_table->ucNumEntries; i++) {
  650. radeon_table->entries[i].clk = le16_to_cpu(atom_table->entries[i].usClockLow) |
  651. (atom_table->entries[i].ucClockHigh << 16);
  652. radeon_table->entries[i].v = le16_to_cpu(atom_table->entries[i].usVoltage);
  653. }
  654. radeon_table->count = atom_table->ucNumEntries;
  655. return 0;
  656. }
  657. /* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */
  658. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12
  659. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14
  660. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16
  661. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18
  662. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20
  663. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22
  664. int r600_parse_extended_power_table(struct radeon_device *rdev)
  665. {
  666. struct radeon_mode_info *mode_info = &rdev->mode_info;
  667. union power_info *power_info;
  668. union fan_info *fan_info;
  669. ATOM_PPLIB_Clock_Voltage_Dependency_Table *dep_table;
  670. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  671. u16 data_offset;
  672. u8 frev, crev;
  673. int ret, i;
  674. if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
  675. &frev, &crev, &data_offset))
  676. return -EINVAL;
  677. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  678. /* fan table */
  679. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  680. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
  681. if (power_info->pplib3.usFanTableOffset) {
  682. fan_info = (union fan_info *)(mode_info->atom_context->bios + data_offset +
  683. le16_to_cpu(power_info->pplib3.usFanTableOffset));
  684. rdev->pm.dpm.fan.t_hyst = fan_info->fan.ucTHyst;
  685. rdev->pm.dpm.fan.t_min = le16_to_cpu(fan_info->fan.usTMin);
  686. rdev->pm.dpm.fan.t_med = le16_to_cpu(fan_info->fan.usTMed);
  687. rdev->pm.dpm.fan.t_high = le16_to_cpu(fan_info->fan.usTHigh);
  688. rdev->pm.dpm.fan.pwm_min = le16_to_cpu(fan_info->fan.usPWMMin);
  689. rdev->pm.dpm.fan.pwm_med = le16_to_cpu(fan_info->fan.usPWMMed);
  690. rdev->pm.dpm.fan.pwm_high = le16_to_cpu(fan_info->fan.usPWMHigh);
  691. if (fan_info->fan.ucFanTableFormat >= 2)
  692. rdev->pm.dpm.fan.t_max = le16_to_cpu(fan_info->fan2.usTMax);
  693. else
  694. rdev->pm.dpm.fan.t_max = 10900;
  695. rdev->pm.dpm.fan.cycle_delay = 100000;
  696. rdev->pm.dpm.fan.ucode_fan_control = true;
  697. }
  698. }
  699. /* clock dependancy tables, shedding tables */
  700. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  701. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE4)) {
  702. if (power_info->pplib4.usVddcDependencyOnSCLKOffset) {
  703. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  704. (mode_info->atom_context->bios + data_offset +
  705. le16_to_cpu(power_info->pplib4.usVddcDependencyOnSCLKOffset));
  706. ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
  707. dep_table);
  708. if (ret)
  709. return ret;
  710. }
  711. if (power_info->pplib4.usVddciDependencyOnMCLKOffset) {
  712. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  713. (mode_info->atom_context->bios + data_offset +
  714. le16_to_cpu(power_info->pplib4.usVddciDependencyOnMCLKOffset));
  715. ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
  716. dep_table);
  717. if (ret) {
  718. kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
  719. return ret;
  720. }
  721. }
  722. if (power_info->pplib4.usVddcDependencyOnMCLKOffset) {
  723. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  724. (mode_info->atom_context->bios + data_offset +
  725. le16_to_cpu(power_info->pplib4.usVddcDependencyOnMCLKOffset));
  726. ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
  727. dep_table);
  728. if (ret) {
  729. kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
  730. kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries);
  731. return ret;
  732. }
  733. }
  734. if (power_info->pplib4.usMaxClockVoltageOnDCOffset) {
  735. ATOM_PPLIB_Clock_Voltage_Limit_Table *clk_v =
  736. (ATOM_PPLIB_Clock_Voltage_Limit_Table *)
  737. (mode_info->atom_context->bios + data_offset +
  738. le16_to_cpu(power_info->pplib4.usMaxClockVoltageOnDCOffset));
  739. if (clk_v->ucNumEntries) {
  740. rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk =
  741. le16_to_cpu(clk_v->entries[0].usSclkLow) |
  742. (clk_v->entries[0].ucSclkHigh << 16);
  743. rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk =
  744. le16_to_cpu(clk_v->entries[0].usMclkLow) |
  745. (clk_v->entries[0].ucMclkHigh << 16);
  746. rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc =
  747. le16_to_cpu(clk_v->entries[0].usVddc);
  748. rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddci =
  749. le16_to_cpu(clk_v->entries[0].usVddci);
  750. }
  751. }
  752. if (power_info->pplib4.usVddcPhaseShedLimitsTableOffset) {
  753. ATOM_PPLIB_PhaseSheddingLimits_Table *psl =
  754. (ATOM_PPLIB_PhaseSheddingLimits_Table *)
  755. (mode_info->atom_context->bios + data_offset +
  756. le16_to_cpu(power_info->pplib4.usVddcPhaseShedLimitsTableOffset));
  757. rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries =
  758. kzalloc(psl->ucNumEntries *
  759. sizeof(struct radeon_phase_shedding_limits_entry),
  760. GFP_KERNEL);
  761. if (!rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries) {
  762. kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
  763. kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries);
  764. kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries);
  765. return -ENOMEM;
  766. }
  767. for (i = 0; i < psl->ucNumEntries; i++) {
  768. rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].sclk =
  769. le16_to_cpu(psl->entries[i].usSclkLow) |
  770. (psl->entries[i].ucSclkHigh << 16);
  771. rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].mclk =
  772. le16_to_cpu(psl->entries[i].usMclkLow) |
  773. (psl->entries[i].ucMclkHigh << 16);
  774. rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].voltage =
  775. le16_to_cpu(psl->entries[i].usVoltage);
  776. }
  777. rdev->pm.dpm.dyn_state.phase_shedding_limits_table.count =
  778. psl->ucNumEntries;
  779. }
  780. }
  781. /* cac data */
  782. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  783. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE5)) {
  784. rdev->pm.dpm.tdp_limit = le32_to_cpu(power_info->pplib5.ulTDPLimit);
  785. rdev->pm.dpm.near_tdp_limit = le32_to_cpu(power_info->pplib5.ulNearTDPLimit);
  786. rdev->pm.dpm.near_tdp_limit_adjusted = rdev->pm.dpm.near_tdp_limit;
  787. rdev->pm.dpm.tdp_od_limit = le16_to_cpu(power_info->pplib5.usTDPODLimit);
  788. if (rdev->pm.dpm.tdp_od_limit)
  789. rdev->pm.dpm.power_control = true;
  790. else
  791. rdev->pm.dpm.power_control = false;
  792. rdev->pm.dpm.tdp_adjustment = 0;
  793. rdev->pm.dpm.sq_ramping_threshold = le32_to_cpu(power_info->pplib5.ulSQRampingThreshold);
  794. rdev->pm.dpm.cac_leakage = le32_to_cpu(power_info->pplib5.ulCACLeakage);
  795. rdev->pm.dpm.load_line_slope = le16_to_cpu(power_info->pplib5.usLoadLineSlope);
  796. if (power_info->pplib5.usCACLeakageTableOffset) {
  797. ATOM_PPLIB_CAC_Leakage_Table *cac_table =
  798. (ATOM_PPLIB_CAC_Leakage_Table *)
  799. (mode_info->atom_context->bios + data_offset +
  800. le16_to_cpu(power_info->pplib5.usCACLeakageTableOffset));
  801. u32 size = cac_table->ucNumEntries * sizeof(struct radeon_cac_leakage_table);
  802. rdev->pm.dpm.dyn_state.cac_leakage_table.entries = kzalloc(size, GFP_KERNEL);
  803. if (!rdev->pm.dpm.dyn_state.cac_leakage_table.entries) {
  804. kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
  805. kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries);
  806. kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries);
  807. return -ENOMEM;
  808. }
  809. for (i = 0; i < cac_table->ucNumEntries; i++) {
  810. rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc =
  811. le16_to_cpu(cac_table->entries[i].usVddc);
  812. rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage =
  813. le32_to_cpu(cac_table->entries[i].ulLeakageValue);
  814. }
  815. rdev->pm.dpm.dyn_state.cac_leakage_table.count = cac_table->ucNumEntries;
  816. }
  817. }
  818. /* ppm table */
  819. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  820. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
  821. ATOM_PPLIB_EXTENDEDHEADER *ext_hdr = (ATOM_PPLIB_EXTENDEDHEADER *)
  822. (mode_info->atom_context->bios + data_offset +
  823. le16_to_cpu(power_info->pplib3.usExtendendedHeaderOffset));
  824. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) &&
  825. ext_hdr->usPPMTableOffset) {
  826. ATOM_PPLIB_PPM_Table *ppm = (ATOM_PPLIB_PPM_Table *)
  827. (mode_info->atom_context->bios + data_offset +
  828. le16_to_cpu(ext_hdr->usPPMTableOffset));
  829. rdev->pm.dpm.dyn_state.ppm_table =
  830. kzalloc(sizeof(struct radeon_ppm_table), GFP_KERNEL);
  831. if (!rdev->pm.dpm.dyn_state.ppm_table) {
  832. kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
  833. kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries);
  834. kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries);
  835. kfree(rdev->pm.dpm.dyn_state.cac_leakage_table.entries);
  836. return -ENOMEM;
  837. }
  838. rdev->pm.dpm.dyn_state.ppm_table->ppm_design = ppm->ucPpmDesign;
  839. rdev->pm.dpm.dyn_state.ppm_table->cpu_core_number =
  840. le16_to_cpu(ppm->usCpuCoreNumber);
  841. rdev->pm.dpm.dyn_state.ppm_table->platform_tdp =
  842. le32_to_cpu(ppm->ulPlatformTDP);
  843. rdev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdp =
  844. le32_to_cpu(ppm->ulSmallACPlatformTDP);
  845. rdev->pm.dpm.dyn_state.ppm_table->platform_tdc =
  846. le32_to_cpu(ppm->ulPlatformTDC);
  847. rdev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdc =
  848. le32_to_cpu(ppm->ulSmallACPlatformTDC);
  849. rdev->pm.dpm.dyn_state.ppm_table->apu_tdp =
  850. le32_to_cpu(ppm->ulApuTDP);
  851. rdev->pm.dpm.dyn_state.ppm_table->dgpu_tdp =
  852. le32_to_cpu(ppm->ulDGpuTDP);
  853. rdev->pm.dpm.dyn_state.ppm_table->dgpu_ulv_power =
  854. le32_to_cpu(ppm->ulDGpuUlvPower);
  855. rdev->pm.dpm.dyn_state.ppm_table->tj_max =
  856. le32_to_cpu(ppm->ulTjmax);
  857. }
  858. }
  859. return 0;
  860. }
  861. void r600_free_extended_power_table(struct radeon_device *rdev)
  862. {
  863. if (rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries)
  864. kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
  865. if (rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries)
  866. kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries);
  867. if (rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries)
  868. kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries);
  869. if (rdev->pm.dpm.dyn_state.cac_leakage_table.entries)
  870. kfree(rdev->pm.dpm.dyn_state.cac_leakage_table.entries);
  871. if (rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries)
  872. kfree(rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries);
  873. if (rdev->pm.dpm.dyn_state.ppm_table)
  874. kfree(rdev->pm.dpm.dyn_state.ppm_table);
  875. }
  876. enum radeon_pcie_gen r600_get_pcie_gen_support(struct radeon_device *rdev,
  877. u32 sys_mask,
  878. enum radeon_pcie_gen asic_gen,
  879. enum radeon_pcie_gen default_gen)
  880. {
  881. switch (asic_gen) {
  882. case RADEON_PCIE_GEN1:
  883. return RADEON_PCIE_GEN1;
  884. case RADEON_PCIE_GEN2:
  885. return RADEON_PCIE_GEN2;
  886. case RADEON_PCIE_GEN3:
  887. return RADEON_PCIE_GEN3;
  888. default:
  889. if ((sys_mask & DRM_PCIE_SPEED_80) && (default_gen == RADEON_PCIE_GEN3))
  890. return RADEON_PCIE_GEN3;
  891. else if ((sys_mask & DRM_PCIE_SPEED_50) && (default_gen == RADEON_PCIE_GEN2))
  892. return RADEON_PCIE_GEN2;
  893. else
  894. return RADEON_PCIE_GEN1;
  895. }
  896. return RADEON_PCIE_GEN1;
  897. }