memblock.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/bitops.h>
  15. #include <linux/memblock.h>
  16. struct memblock memblock;
  17. static int memblock_debug;
  18. static int __init early_memblock(char *p)
  19. {
  20. if (p && strstr(p, "debug"))
  21. memblock_debug = 1;
  22. return 0;
  23. }
  24. early_param("memblock", early_memblock);
  25. static void memblock_dump(struct memblock_type *region, char *name)
  26. {
  27. unsigned long long base, size;
  28. int i;
  29. pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
  30. for (i = 0; i < region->cnt; i++) {
  31. base = region->regions[i].base;
  32. size = region->regions[i].size;
  33. pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
  34. name, i, base, base + size - 1, size);
  35. }
  36. }
  37. void memblock_dump_all(void)
  38. {
  39. if (!memblock_debug)
  40. return;
  41. pr_info("MEMBLOCK configuration:\n");
  42. pr_info(" rmo_size = 0x%llx\n", (unsigned long long)memblock.rmo_size);
  43. pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size);
  44. memblock_dump(&memblock.memory, "memory");
  45. memblock_dump(&memblock.reserved, "reserved");
  46. }
  47. static unsigned long memblock_addrs_overlap(u64 base1, u64 size1, u64 base2,
  48. u64 size2)
  49. {
  50. return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  51. }
  52. static long memblock_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
  53. {
  54. if (base2 == base1 + size1)
  55. return 1;
  56. else if (base1 == base2 + size2)
  57. return -1;
  58. return 0;
  59. }
  60. static long memblock_regions_adjacent(struct memblock_type *type,
  61. unsigned long r1, unsigned long r2)
  62. {
  63. u64 base1 = type->regions[r1].base;
  64. u64 size1 = type->regions[r1].size;
  65. u64 base2 = type->regions[r2].base;
  66. u64 size2 = type->regions[r2].size;
  67. return memblock_addrs_adjacent(base1, size1, base2, size2);
  68. }
  69. static void memblock_remove_region(struct memblock_type *type, unsigned long r)
  70. {
  71. unsigned long i;
  72. for (i = r; i < type->cnt - 1; i++) {
  73. type->regions[i].base = type->regions[i + 1].base;
  74. type->regions[i].size = type->regions[i + 1].size;
  75. }
  76. type->cnt--;
  77. }
  78. /* Assumption: base addr of region 1 < base addr of region 2 */
  79. static void memblock_coalesce_regions(struct memblock_type *type,
  80. unsigned long r1, unsigned long r2)
  81. {
  82. type->regions[r1].size += type->regions[r2].size;
  83. memblock_remove_region(type, r2);
  84. }
  85. void __init memblock_init(void)
  86. {
  87. /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
  88. * This simplifies the memblock_add() code below...
  89. */
  90. memblock.memory.regions[0].base = 0;
  91. memblock.memory.regions[0].size = 0;
  92. memblock.memory.cnt = 1;
  93. /* Ditto. */
  94. memblock.reserved.regions[0].base = 0;
  95. memblock.reserved.regions[0].size = 0;
  96. memblock.reserved.cnt = 1;
  97. memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
  98. }
  99. void __init memblock_analyze(void)
  100. {
  101. int i;
  102. memblock.memory.size = 0;
  103. for (i = 0; i < memblock.memory.cnt; i++)
  104. memblock.memory.size += memblock.memory.regions[i].size;
  105. }
  106. static long memblock_add_region(struct memblock_type *type, u64 base, u64 size)
  107. {
  108. unsigned long coalesced = 0;
  109. long adjacent, i;
  110. if ((type->cnt == 1) && (type->regions[0].size == 0)) {
  111. type->regions[0].base = base;
  112. type->regions[0].size = size;
  113. return 0;
  114. }
  115. /* First try and coalesce this MEMBLOCK with another. */
  116. for (i = 0; i < type->cnt; i++) {
  117. u64 rgnbase = type->regions[i].base;
  118. u64 rgnsize = type->regions[i].size;
  119. if ((rgnbase == base) && (rgnsize == size))
  120. /* Already have this region, so we're done */
  121. return 0;
  122. adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
  123. if (adjacent > 0) {
  124. type->regions[i].base -= size;
  125. type->regions[i].size += size;
  126. coalesced++;
  127. break;
  128. } else if (adjacent < 0) {
  129. type->regions[i].size += size;
  130. coalesced++;
  131. break;
  132. }
  133. }
  134. if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) {
  135. memblock_coalesce_regions(type, i, i+1);
  136. coalesced++;
  137. }
  138. if (coalesced)
  139. return coalesced;
  140. if (type->cnt >= MAX_MEMBLOCK_REGIONS)
  141. return -1;
  142. /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
  143. for (i = type->cnt - 1; i >= 0; i--) {
  144. if (base < type->regions[i].base) {
  145. type->regions[i+1].base = type->regions[i].base;
  146. type->regions[i+1].size = type->regions[i].size;
  147. } else {
  148. type->regions[i+1].base = base;
  149. type->regions[i+1].size = size;
  150. break;
  151. }
  152. }
  153. if (base < type->regions[0].base) {
  154. type->regions[0].base = base;
  155. type->regions[0].size = size;
  156. }
  157. type->cnt++;
  158. return 0;
  159. }
  160. long memblock_add(u64 base, u64 size)
  161. {
  162. /* On pSeries LPAR systems, the first MEMBLOCK is our RMO region. */
  163. if (base == 0)
  164. memblock.rmo_size = size;
  165. return memblock_add_region(&memblock.memory, base, size);
  166. }
  167. static long __memblock_remove(struct memblock_type *type, u64 base, u64 size)
  168. {
  169. u64 rgnbegin, rgnend;
  170. u64 end = base + size;
  171. int i;
  172. rgnbegin = rgnend = 0; /* supress gcc warnings */
  173. /* Find the region where (base, size) belongs to */
  174. for (i=0; i < type->cnt; i++) {
  175. rgnbegin = type->regions[i].base;
  176. rgnend = rgnbegin + type->regions[i].size;
  177. if ((rgnbegin <= base) && (end <= rgnend))
  178. break;
  179. }
  180. /* Didn't find the region */
  181. if (i == type->cnt)
  182. return -1;
  183. /* Check to see if we are removing entire region */
  184. if ((rgnbegin == base) && (rgnend == end)) {
  185. memblock_remove_region(type, i);
  186. return 0;
  187. }
  188. /* Check to see if region is matching at the front */
  189. if (rgnbegin == base) {
  190. type->regions[i].base = end;
  191. type->regions[i].size -= size;
  192. return 0;
  193. }
  194. /* Check to see if the region is matching at the end */
  195. if (rgnend == end) {
  196. type->regions[i].size -= size;
  197. return 0;
  198. }
  199. /*
  200. * We need to split the entry - adjust the current one to the
  201. * beginging of the hole and add the region after hole.
  202. */
  203. type->regions[i].size = base - type->regions[i].base;
  204. return memblock_add_region(type, end, rgnend - end);
  205. }
  206. long memblock_remove(u64 base, u64 size)
  207. {
  208. return __memblock_remove(&memblock.memory, base, size);
  209. }
  210. long __init memblock_free(u64 base, u64 size)
  211. {
  212. return __memblock_remove(&memblock.reserved, base, size);
  213. }
  214. long __init memblock_reserve(u64 base, u64 size)
  215. {
  216. struct memblock_type *_rgn = &memblock.reserved;
  217. BUG_ON(0 == size);
  218. return memblock_add_region(_rgn, base, size);
  219. }
  220. long memblock_overlaps_region(struct memblock_type *type, u64 base, u64 size)
  221. {
  222. unsigned long i;
  223. for (i = 0; i < type->cnt; i++) {
  224. u64 rgnbase = type->regions[i].base;
  225. u64 rgnsize = type->regions[i].size;
  226. if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  227. break;
  228. }
  229. return (i < type->cnt) ? i : -1;
  230. }
  231. static u64 memblock_align_down(u64 addr, u64 size)
  232. {
  233. return addr & ~(size - 1);
  234. }
  235. static u64 memblock_align_up(u64 addr, u64 size)
  236. {
  237. return (addr + (size - 1)) & ~(size - 1);
  238. }
  239. static u64 __init memblock_alloc_region(u64 start, u64 end,
  240. u64 size, u64 align)
  241. {
  242. u64 base, res_base;
  243. long j;
  244. base = memblock_align_down((end - size), align);
  245. while (start <= base) {
  246. j = memblock_overlaps_region(&memblock.reserved, base, size);
  247. if (j < 0) {
  248. /* this area isn't reserved, take it */
  249. if (memblock_add_region(&memblock.reserved, base, size) < 0)
  250. base = ~(u64)0;
  251. return base;
  252. }
  253. res_base = memblock.reserved.regions[j].base;
  254. if (res_base < size)
  255. break;
  256. base = memblock_align_down(res_base - size, align);
  257. }
  258. return ~(u64)0;
  259. }
  260. u64 __weak __init memblock_nid_range(u64 start, u64 end, int *nid)
  261. {
  262. *nid = 0;
  263. return end;
  264. }
  265. static u64 __init memblock_alloc_nid_region(struct memblock_region *mp,
  266. u64 size, u64 align, int nid)
  267. {
  268. u64 start, end;
  269. start = mp->base;
  270. end = start + mp->size;
  271. start = memblock_align_up(start, align);
  272. while (start < end) {
  273. u64 this_end;
  274. int this_nid;
  275. this_end = memblock_nid_range(start, end, &this_nid);
  276. if (this_nid == nid) {
  277. u64 ret = memblock_alloc_region(start, this_end, size, align);
  278. if (ret != ~(u64)0)
  279. return ret;
  280. }
  281. start = this_end;
  282. }
  283. return ~(u64)0;
  284. }
  285. u64 __init memblock_alloc_nid(u64 size, u64 align, int nid)
  286. {
  287. struct memblock_type *mem = &memblock.memory;
  288. int i;
  289. BUG_ON(0 == size);
  290. /* We do a bottom-up search for a region with the right
  291. * nid since that's easier considering how memblock_nid_range()
  292. * works
  293. */
  294. size = memblock_align_up(size, align);
  295. for (i = 0; i < mem->cnt; i++) {
  296. u64 ret = memblock_alloc_nid_region(&mem->regions[i],
  297. size, align, nid);
  298. if (ret != ~(u64)0)
  299. return ret;
  300. }
  301. return memblock_alloc(size, align);
  302. }
  303. u64 __init memblock_alloc(u64 size, u64 align)
  304. {
  305. return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
  306. }
  307. u64 __init memblock_alloc_base(u64 size, u64 align, u64 max_addr)
  308. {
  309. u64 alloc;
  310. alloc = __memblock_alloc_base(size, align, max_addr);
  311. if (alloc == 0)
  312. panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
  313. (unsigned long long) size, (unsigned long long) max_addr);
  314. return alloc;
  315. }
  316. u64 __init __memblock_alloc_base(u64 size, u64 align, u64 max_addr)
  317. {
  318. long i;
  319. u64 base = 0;
  320. u64 res_base;
  321. BUG_ON(0 == size);
  322. size = memblock_align_up(size, align);
  323. /* Pump up max_addr */
  324. if (max_addr == MEMBLOCK_ALLOC_ACCESSIBLE)
  325. max_addr = memblock.current_limit;
  326. /* We do a top-down search, this tends to limit memory
  327. * fragmentation by keeping early boot allocs near the
  328. * top of memory
  329. */
  330. for (i = memblock.memory.cnt - 1; i >= 0; i--) {
  331. u64 memblockbase = memblock.memory.regions[i].base;
  332. u64 memblocksize = memblock.memory.regions[i].size;
  333. if (memblocksize < size)
  334. continue;
  335. base = min(memblockbase + memblocksize, max_addr);
  336. res_base = memblock_alloc_region(memblockbase, base, size, align);
  337. if (res_base != ~(u64)0)
  338. return res_base;
  339. }
  340. return 0;
  341. }
  342. /* You must call memblock_analyze() before this. */
  343. u64 __init memblock_phys_mem_size(void)
  344. {
  345. return memblock.memory.size;
  346. }
  347. u64 memblock_end_of_DRAM(void)
  348. {
  349. int idx = memblock.memory.cnt - 1;
  350. return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
  351. }
  352. /* You must call memblock_analyze() after this. */
  353. void __init memblock_enforce_memory_limit(u64 memory_limit)
  354. {
  355. unsigned long i;
  356. u64 limit;
  357. struct memblock_region *p;
  358. if (!memory_limit)
  359. return;
  360. /* Truncate the memblock regions to satisfy the memory limit. */
  361. limit = memory_limit;
  362. for (i = 0; i < memblock.memory.cnt; i++) {
  363. if (limit > memblock.memory.regions[i].size) {
  364. limit -= memblock.memory.regions[i].size;
  365. continue;
  366. }
  367. memblock.memory.regions[i].size = limit;
  368. memblock.memory.cnt = i + 1;
  369. break;
  370. }
  371. if (memblock.memory.regions[0].size < memblock.rmo_size)
  372. memblock.rmo_size = memblock.memory.regions[0].size;
  373. memory_limit = memblock_end_of_DRAM();
  374. /* And truncate any reserves above the limit also. */
  375. for (i = 0; i < memblock.reserved.cnt; i++) {
  376. p = &memblock.reserved.regions[i];
  377. if (p->base > memory_limit)
  378. p->size = 0;
  379. else if ((p->base + p->size) > memory_limit)
  380. p->size = memory_limit - p->base;
  381. if (p->size == 0) {
  382. memblock_remove_region(&memblock.reserved, i);
  383. i--;
  384. }
  385. }
  386. }
  387. static int memblock_search(struct memblock_type *type, u64 addr)
  388. {
  389. unsigned int left = 0, right = type->cnt;
  390. do {
  391. unsigned int mid = (right + left) / 2;
  392. if (addr < type->regions[mid].base)
  393. right = mid;
  394. else if (addr >= (type->regions[mid].base +
  395. type->regions[mid].size))
  396. left = mid + 1;
  397. else
  398. return mid;
  399. } while (left < right);
  400. return -1;
  401. }
  402. int __init memblock_is_reserved(u64 addr)
  403. {
  404. return memblock_search(&memblock.reserved, addr) != -1;
  405. }
  406. int memblock_is_memory(u64 addr)
  407. {
  408. return memblock_search(&memblock.memory, addr) != -1;
  409. }
  410. int memblock_is_region_memory(u64 base, u64 size)
  411. {
  412. int idx = memblock_search(&memblock.reserved, base);
  413. if (idx == -1)
  414. return 0;
  415. return memblock.reserved.regions[idx].base <= base &&
  416. (memblock.reserved.regions[idx].base +
  417. memblock.reserved.regions[idx].size) >= (base + size);
  418. }
  419. int memblock_is_region_reserved(u64 base, u64 size)
  420. {
  421. return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
  422. }
  423. void __init memblock_set_current_limit(u64 limit)
  424. {
  425. memblock.current_limit = limit;
  426. }