lguest.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038
  1. /*P:100 This is the Launcher code, a simple program which lays out the
  2. * "physical" memory for the new Guest by mapping the kernel image and
  3. * the virtual devices, then opens /dev/lguest to tell the kernel
  4. * about the Guest and control it. :*/
  5. #define _LARGEFILE64_SOURCE
  6. #define _GNU_SOURCE
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <unistd.h>
  10. #include <err.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <elf.h>
  14. #include <sys/mman.h>
  15. #include <sys/param.h>
  16. #include <sys/types.h>
  17. #include <sys/stat.h>
  18. #include <sys/wait.h>
  19. #include <fcntl.h>
  20. #include <stdbool.h>
  21. #include <errno.h>
  22. #include <ctype.h>
  23. #include <sys/socket.h>
  24. #include <sys/ioctl.h>
  25. #include <sys/time.h>
  26. #include <time.h>
  27. #include <netinet/in.h>
  28. #include <net/if.h>
  29. #include <linux/sockios.h>
  30. #include <linux/if_tun.h>
  31. #include <sys/uio.h>
  32. #include <termios.h>
  33. #include <getopt.h>
  34. #include <zlib.h>
  35. #include <assert.h>
  36. #include <sched.h>
  37. #include <limits.h>
  38. #include <stddef.h>
  39. #include <signal.h>
  40. #include "linux/lguest_launcher.h"
  41. #include "linux/virtio_config.h"
  42. #include "linux/virtio_net.h"
  43. #include "linux/virtio_blk.h"
  44. #include "linux/virtio_console.h"
  45. #include "linux/virtio_rng.h"
  46. #include "linux/virtio_ring.h"
  47. #include "asm/bootparam.h"
  48. /*L:110 We can ignore the 39 include files we need for this program, but I do
  49. * want to draw attention to the use of kernel-style types.
  50. *
  51. * As Linus said, "C is a Spartan language, and so should your naming be." I
  52. * like these abbreviations, so we define them here. Note that u64 is always
  53. * unsigned long long, which works on all Linux systems: this means that we can
  54. * use %llu in printf for any u64. */
  55. typedef unsigned long long u64;
  56. typedef uint32_t u32;
  57. typedef uint16_t u16;
  58. typedef uint8_t u8;
  59. /*:*/
  60. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  61. #define NET_PEERNUM 1
  62. #define BRIDGE_PFX "bridge:"
  63. #ifndef SIOCBRADDIF
  64. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  65. #endif
  66. /* We can have up to 256 pages for devices. */
  67. #define DEVICE_PAGES 256
  68. /* This will occupy 3 pages: it must be a power of 2. */
  69. #define VIRTQUEUE_NUM 256
  70. /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
  71. * this, and although I wouldn't recommend it, it works quite nicely here. */
  72. static bool verbose;
  73. #define verbose(args...) \
  74. do { if (verbose) printf(args); } while(0)
  75. /*:*/
  76. /* File descriptors for the Waker. */
  77. struct {
  78. int pipe[2];
  79. } waker_fds;
  80. /* The pointer to the start of guest memory. */
  81. static void *guest_base;
  82. /* The maximum guest physical address allowed, and maximum possible. */
  83. static unsigned long guest_limit, guest_max;
  84. /* The pipe for signal hander to write to. */
  85. static int timeoutpipe[2];
  86. static unsigned int timeout_usec = 500;
  87. /* The /dev/lguest file descriptor. */
  88. static int lguest_fd;
  89. /* a per-cpu variable indicating whose vcpu is currently running */
  90. static unsigned int __thread cpu_id;
  91. /* This is our list of devices. */
  92. struct device_list
  93. {
  94. /* Summary information about the devices in our list: ready to pass to
  95. * select() to ask which need servicing.*/
  96. fd_set infds;
  97. int max_infd;
  98. /* Counter to assign interrupt numbers. */
  99. unsigned int next_irq;
  100. /* Counter to print out convenient device numbers. */
  101. unsigned int device_num;
  102. /* The descriptor page for the devices. */
  103. u8 *descpage;
  104. /* A single linked list of devices. */
  105. struct device *dev;
  106. /* And a pointer to the last device for easy append and also for
  107. * configuration appending. */
  108. struct device *lastdev;
  109. };
  110. /* The list of Guest devices, based on command line arguments. */
  111. static struct device_list devices;
  112. /* The device structure describes a single device. */
  113. struct device
  114. {
  115. /* The linked-list pointer. */
  116. struct device *next;
  117. /* The device's descriptor, as mapped into the Guest. */
  118. struct lguest_device_desc *desc;
  119. /* We can't trust desc values once Guest has booted: we use these. */
  120. unsigned int feature_len;
  121. unsigned int num_vq;
  122. /* The name of this device, for --verbose. */
  123. const char *name;
  124. /* If handle_input is set, it wants to be called when this file
  125. * descriptor is ready. */
  126. int fd;
  127. bool (*handle_input)(struct device *me);
  128. /* Any queues attached to this device */
  129. struct virtqueue *vq;
  130. /* Handle status being finalized (ie. feature bits stable). */
  131. void (*ready)(struct device *me);
  132. /* Device-specific data. */
  133. void *priv;
  134. };
  135. /* The virtqueue structure describes a queue attached to a device. */
  136. struct virtqueue
  137. {
  138. struct virtqueue *next;
  139. /* Which device owns me. */
  140. struct device *dev;
  141. /* The configuration for this queue. */
  142. struct lguest_vqconfig config;
  143. /* The actual ring of buffers. */
  144. struct vring vring;
  145. /* Last available index we saw. */
  146. u16 last_avail_idx;
  147. /* The routine to call when the Guest pings us, or timeout. */
  148. void (*handle_output)(struct virtqueue *me, bool timeout);
  149. /* Is this blocked awaiting a timer? */
  150. bool blocked;
  151. };
  152. /* Remember the arguments to the program so we can "reboot" */
  153. static char **main_args;
  154. /* We have to be careful with barriers: our devices are all run in separate
  155. * threads and so we need to make sure that changes visible to the Guest happen
  156. * in precise order. */
  157. #define wmb() __asm__ __volatile__("" : : : "memory")
  158. /* Convert an iovec element to the given type.
  159. *
  160. * This is a fairly ugly trick: we need to know the size of the type and
  161. * alignment requirement to check the pointer is kosher. It's also nice to
  162. * have the name of the type in case we report failure.
  163. *
  164. * Typing those three things all the time is cumbersome and error prone, so we
  165. * have a macro which sets them all up and passes to the real function. */
  166. #define convert(iov, type) \
  167. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  168. static void *_convert(struct iovec *iov, size_t size, size_t align,
  169. const char *name)
  170. {
  171. if (iov->iov_len != size)
  172. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  173. if ((unsigned long)iov->iov_base % align != 0)
  174. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  175. return iov->iov_base;
  176. }
  177. /* Wrapper for the last available index. Makes it easier to change. */
  178. #define lg_last_avail(vq) ((vq)->last_avail_idx)
  179. /* The virtio configuration space is defined to be little-endian. x86 is
  180. * little-endian too, but it's nice to be explicit so we have these helpers. */
  181. #define cpu_to_le16(v16) (v16)
  182. #define cpu_to_le32(v32) (v32)
  183. #define cpu_to_le64(v64) (v64)
  184. #define le16_to_cpu(v16) (v16)
  185. #define le32_to_cpu(v32) (v32)
  186. #define le64_to_cpu(v64) (v64)
  187. /* Is this iovec empty? */
  188. static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
  189. {
  190. unsigned int i;
  191. for (i = 0; i < num_iov; i++)
  192. if (iov[i].iov_len)
  193. return false;
  194. return true;
  195. }
  196. /* Take len bytes from the front of this iovec. */
  197. static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
  198. {
  199. unsigned int i;
  200. for (i = 0; i < num_iov; i++) {
  201. unsigned int used;
  202. used = iov[i].iov_len < len ? iov[i].iov_len : len;
  203. iov[i].iov_base += used;
  204. iov[i].iov_len -= used;
  205. len -= used;
  206. }
  207. assert(len == 0);
  208. }
  209. /* The device virtqueue descriptors are followed by feature bitmasks. */
  210. static u8 *get_feature_bits(struct device *dev)
  211. {
  212. return (u8 *)(dev->desc + 1)
  213. + dev->num_vq * sizeof(struct lguest_vqconfig);
  214. }
  215. /*L:100 The Launcher code itself takes us out into userspace, that scary place
  216. * where pointers run wild and free! Unfortunately, like most userspace
  217. * programs, it's quite boring (which is why everyone likes to hack on the
  218. * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
  219. * will get you through this section. Or, maybe not.
  220. *
  221. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  222. * memory and stores it in "guest_base". In other words, Guest physical ==
  223. * Launcher virtual with an offset.
  224. *
  225. * This can be tough to get your head around, but usually it just means that we
  226. * use these trivial conversion functions when the Guest gives us it's
  227. * "physical" addresses: */
  228. static void *from_guest_phys(unsigned long addr)
  229. {
  230. return guest_base + addr;
  231. }
  232. static unsigned long to_guest_phys(const void *addr)
  233. {
  234. return (addr - guest_base);
  235. }
  236. /*L:130
  237. * Loading the Kernel.
  238. *
  239. * We start with couple of simple helper routines. open_or_die() avoids
  240. * error-checking code cluttering the callers: */
  241. static int open_or_die(const char *name, int flags)
  242. {
  243. int fd = open(name, flags);
  244. if (fd < 0)
  245. err(1, "Failed to open %s", name);
  246. return fd;
  247. }
  248. /* map_zeroed_pages() takes a number of pages. */
  249. static void *map_zeroed_pages(unsigned int num)
  250. {
  251. int fd = open_or_die("/dev/zero", O_RDONLY);
  252. void *addr;
  253. /* We use a private mapping (ie. if we write to the page, it will be
  254. * copied). */
  255. addr = mmap(NULL, getpagesize() * num,
  256. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  257. if (addr == MAP_FAILED)
  258. err(1, "Mmaping %u pages of /dev/zero", num);
  259. close(fd);
  260. return addr;
  261. }
  262. /* Get some more pages for a device. */
  263. static void *get_pages(unsigned int num)
  264. {
  265. void *addr = from_guest_phys(guest_limit);
  266. guest_limit += num * getpagesize();
  267. if (guest_limit > guest_max)
  268. errx(1, "Not enough memory for devices");
  269. return addr;
  270. }
  271. /* This routine is used to load the kernel or initrd. It tries mmap, but if
  272. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  273. * it falls back to reading the memory in. */
  274. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  275. {
  276. ssize_t r;
  277. /* We map writable even though for some segments are marked read-only.
  278. * The kernel really wants to be writable: it patches its own
  279. * instructions.
  280. *
  281. * MAP_PRIVATE means that the page won't be copied until a write is
  282. * done to it. This allows us to share untouched memory between
  283. * Guests. */
  284. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  285. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  286. return;
  287. /* pread does a seek and a read in one shot: saves a few lines. */
  288. r = pread(fd, addr, len, offset);
  289. if (r != len)
  290. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  291. }
  292. /* This routine takes an open vmlinux image, which is in ELF, and maps it into
  293. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  294. * by all modern binaries on Linux including the kernel.
  295. *
  296. * The ELF headers give *two* addresses: a physical address, and a virtual
  297. * address. We use the physical address; the Guest will map itself to the
  298. * virtual address.
  299. *
  300. * We return the starting address. */
  301. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  302. {
  303. Elf32_Phdr phdr[ehdr->e_phnum];
  304. unsigned int i;
  305. /* Sanity checks on the main ELF header: an x86 executable with a
  306. * reasonable number of correctly-sized program headers. */
  307. if (ehdr->e_type != ET_EXEC
  308. || ehdr->e_machine != EM_386
  309. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  310. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  311. errx(1, "Malformed elf header");
  312. /* An ELF executable contains an ELF header and a number of "program"
  313. * headers which indicate which parts ("segments") of the program to
  314. * load where. */
  315. /* We read in all the program headers at once: */
  316. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  317. err(1, "Seeking to program headers");
  318. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  319. err(1, "Reading program headers");
  320. /* Try all the headers: there are usually only three. A read-only one,
  321. * a read-write one, and a "note" section which we don't load. */
  322. for (i = 0; i < ehdr->e_phnum; i++) {
  323. /* If this isn't a loadable segment, we ignore it */
  324. if (phdr[i].p_type != PT_LOAD)
  325. continue;
  326. verbose("Section %i: size %i addr %p\n",
  327. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  328. /* We map this section of the file at its physical address. */
  329. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  330. phdr[i].p_offset, phdr[i].p_filesz);
  331. }
  332. /* The entry point is given in the ELF header. */
  333. return ehdr->e_entry;
  334. }
  335. /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
  336. * supposed to jump into it and it will unpack itself. We used to have to
  337. * perform some hairy magic because the unpacking code scared me.
  338. *
  339. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  340. * a small patch to jump over the tricky bits in the Guest, so now we just read
  341. * the funky header so we know where in the file to load, and away we go! */
  342. static unsigned long load_bzimage(int fd)
  343. {
  344. struct boot_params boot;
  345. int r;
  346. /* Modern bzImages get loaded at 1M. */
  347. void *p = from_guest_phys(0x100000);
  348. /* Go back to the start of the file and read the header. It should be
  349. * a Linux boot header (see Documentation/x86/i386/boot.txt) */
  350. lseek(fd, 0, SEEK_SET);
  351. read(fd, &boot, sizeof(boot));
  352. /* Inside the setup_hdr, we expect the magic "HdrS" */
  353. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  354. errx(1, "This doesn't look like a bzImage to me");
  355. /* Skip over the extra sectors of the header. */
  356. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  357. /* Now read everything into memory. in nice big chunks. */
  358. while ((r = read(fd, p, 65536)) > 0)
  359. p += r;
  360. /* Finally, code32_start tells us where to enter the kernel. */
  361. return boot.hdr.code32_start;
  362. }
  363. /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
  364. * come wrapped up in the self-decompressing "bzImage" format. With a little
  365. * work, we can load those, too. */
  366. static unsigned long load_kernel(int fd)
  367. {
  368. Elf32_Ehdr hdr;
  369. /* Read in the first few bytes. */
  370. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  371. err(1, "Reading kernel");
  372. /* If it's an ELF file, it starts with "\177ELF" */
  373. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  374. return map_elf(fd, &hdr);
  375. /* Otherwise we assume it's a bzImage, and try to load it. */
  376. return load_bzimage(fd);
  377. }
  378. /* This is a trivial little helper to align pages. Andi Kleen hated it because
  379. * it calls getpagesize() twice: "it's dumb code."
  380. *
  381. * Kernel guys get really het up about optimization, even when it's not
  382. * necessary. I leave this code as a reaction against that. */
  383. static inline unsigned long page_align(unsigned long addr)
  384. {
  385. /* Add upwards and truncate downwards. */
  386. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  387. }
  388. /*L:180 An "initial ram disk" is a disk image loaded into memory along with
  389. * the kernel which the kernel can use to boot from without needing any
  390. * drivers. Most distributions now use this as standard: the initrd contains
  391. * the code to load the appropriate driver modules for the current machine.
  392. *
  393. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  394. * kernels. He sent me this (and tells me when I break it). */
  395. static unsigned long load_initrd(const char *name, unsigned long mem)
  396. {
  397. int ifd;
  398. struct stat st;
  399. unsigned long len;
  400. ifd = open_or_die(name, O_RDONLY);
  401. /* fstat() is needed to get the file size. */
  402. if (fstat(ifd, &st) < 0)
  403. err(1, "fstat() on initrd '%s'", name);
  404. /* We map the initrd at the top of memory, but mmap wants it to be
  405. * page-aligned, so we round the size up for that. */
  406. len = page_align(st.st_size);
  407. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  408. /* Once a file is mapped, you can close the file descriptor. It's a
  409. * little odd, but quite useful. */
  410. close(ifd);
  411. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  412. /* We return the initrd size. */
  413. return len;
  414. }
  415. /*:*/
  416. /* Simple routine to roll all the commandline arguments together with spaces
  417. * between them. */
  418. static void concat(char *dst, char *args[])
  419. {
  420. unsigned int i, len = 0;
  421. for (i = 0; args[i]; i++) {
  422. if (i) {
  423. strcat(dst+len, " ");
  424. len++;
  425. }
  426. strcpy(dst+len, args[i]);
  427. len += strlen(args[i]);
  428. }
  429. /* In case it's empty. */
  430. dst[len] = '\0';
  431. }
  432. /*L:185 This is where we actually tell the kernel to initialize the Guest. We
  433. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  434. * the base of Guest "physical" memory, the top physical page to allow and the
  435. * entry point for the Guest. */
  436. static void tell_kernel(unsigned long start)
  437. {
  438. unsigned long args[] = { LHREQ_INITIALIZE,
  439. (unsigned long)guest_base,
  440. guest_limit / getpagesize(), start };
  441. verbose("Guest: %p - %p (%#lx)\n",
  442. guest_base, guest_base + guest_limit, guest_limit);
  443. lguest_fd = open_or_die("/dev/lguest", O_RDWR);
  444. if (write(lguest_fd, args, sizeof(args)) < 0)
  445. err(1, "Writing to /dev/lguest");
  446. }
  447. /*:*/
  448. static void add_device_fd(int fd)
  449. {
  450. FD_SET(fd, &devices.infds);
  451. if (fd > devices.max_infd)
  452. devices.max_infd = fd;
  453. }
  454. /*L:200
  455. * The Waker.
  456. *
  457. * With console, block and network devices, we can have lots of input which we
  458. * need to process. We could try to tell the kernel what file descriptors to
  459. * watch, but handing a file descriptor mask through to the kernel is fairly
  460. * icky.
  461. *
  462. * Instead, we clone off a thread which watches the file descriptors and writes
  463. * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
  464. * stop running the Guest. This causes the Launcher to return from the
  465. * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
  466. * the LHREQ_BREAK and wake us up again.
  467. *
  468. * This, of course, is merely a different *kind* of icky.
  469. *
  470. * Given my well-known antipathy to threads, I'd prefer to use processes. But
  471. * it's easier to share Guest memory with threads, and trivial to share the
  472. * devices.infds as the Launcher changes it.
  473. */
  474. static int waker(void *unused)
  475. {
  476. /* Close the write end of the pipe: only the Launcher has it open. */
  477. close(waker_fds.pipe[1]);
  478. for (;;) {
  479. fd_set rfds = devices.infds;
  480. unsigned long args[] = { LHREQ_BREAK, 1 };
  481. unsigned int maxfd = devices.max_infd;
  482. /* We also listen to the pipe from the Launcher. */
  483. FD_SET(waker_fds.pipe[0], &rfds);
  484. if (waker_fds.pipe[0] > maxfd)
  485. maxfd = waker_fds.pipe[0];
  486. /* Wait until input is ready from one of the devices. */
  487. select(maxfd+1, &rfds, NULL, NULL, NULL);
  488. /* Message from Launcher? */
  489. if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
  490. char c;
  491. /* If this fails, then assume Launcher has exited.
  492. * Don't do anything on exit: we're just a thread! */
  493. if (read(waker_fds.pipe[0], &c, 1) != 1)
  494. _exit(0);
  495. continue;
  496. }
  497. /* Send LHREQ_BREAK command to snap the Launcher out of it. */
  498. pwrite(lguest_fd, args, sizeof(args), cpu_id);
  499. }
  500. return 0;
  501. }
  502. /* This routine just sets up a pipe to the Waker process. */
  503. static void setup_waker(void)
  504. {
  505. /* This pipe is closed when Launcher dies, telling Waker. */
  506. if (pipe(waker_fds.pipe) != 0)
  507. err(1, "Creating pipe for Waker");
  508. if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
  509. err(1, "Creating Waker");
  510. }
  511. /*
  512. * Device Handling.
  513. *
  514. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  515. * We need to make sure it's not trying to reach into the Launcher itself, so
  516. * we have a convenient routine which checks it and exits with an error message
  517. * if something funny is going on:
  518. */
  519. static void *_check_pointer(unsigned long addr, unsigned int size,
  520. unsigned int line)
  521. {
  522. /* We have to separately check addr and addr+size, because size could
  523. * be huge and addr + size might wrap around. */
  524. if (addr >= guest_limit || addr + size >= guest_limit)
  525. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  526. /* We return a pointer for the caller's convenience, now we know it's
  527. * safe to use. */
  528. return from_guest_phys(addr);
  529. }
  530. /* A macro which transparently hands the line number to the real function. */
  531. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  532. /* Each buffer in the virtqueues is actually a chain of descriptors. This
  533. * function returns the next descriptor in the chain, or vq->vring.num if we're
  534. * at the end. */
  535. static unsigned next_desc(struct virtqueue *vq, unsigned int i)
  536. {
  537. unsigned int next;
  538. /* If this descriptor says it doesn't chain, we're done. */
  539. if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
  540. return vq->vring.num;
  541. /* Check they're not leading us off end of descriptors. */
  542. next = vq->vring.desc[i].next;
  543. /* Make sure compiler knows to grab that: we don't want it changing! */
  544. wmb();
  545. if (next >= vq->vring.num)
  546. errx(1, "Desc next is %u", next);
  547. return next;
  548. }
  549. /* This looks in the virtqueue and for the first available buffer, and converts
  550. * it to an iovec for convenient access. Since descriptors consist of some
  551. * number of output then some number of input descriptors, it's actually two
  552. * iovecs, but we pack them into one and note how many of each there were.
  553. *
  554. * This function returns the descriptor number found, or vq->vring.num (which
  555. * is never a valid descriptor number) if none was found. */
  556. static unsigned get_vq_desc(struct virtqueue *vq,
  557. struct iovec iov[],
  558. unsigned int *out_num, unsigned int *in_num)
  559. {
  560. unsigned int i, head;
  561. u16 last_avail;
  562. /* Check it isn't doing very strange things with descriptor numbers. */
  563. last_avail = lg_last_avail(vq);
  564. if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
  565. errx(1, "Guest moved used index from %u to %u",
  566. last_avail, vq->vring.avail->idx);
  567. /* If there's nothing new since last we looked, return invalid. */
  568. if (vq->vring.avail->idx == last_avail)
  569. return vq->vring.num;
  570. /* Grab the next descriptor number they're advertising, and increment
  571. * the index we've seen. */
  572. head = vq->vring.avail->ring[last_avail % vq->vring.num];
  573. lg_last_avail(vq)++;
  574. /* If their number is silly, that's a fatal mistake. */
  575. if (head >= vq->vring.num)
  576. errx(1, "Guest says index %u is available", head);
  577. /* When we start there are none of either input nor output. */
  578. *out_num = *in_num = 0;
  579. i = head;
  580. do {
  581. /* Grab the first descriptor, and check it's OK. */
  582. iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
  583. iov[*out_num + *in_num].iov_base
  584. = check_pointer(vq->vring.desc[i].addr,
  585. vq->vring.desc[i].len);
  586. /* If this is an input descriptor, increment that count. */
  587. if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
  588. (*in_num)++;
  589. else {
  590. /* If it's an output descriptor, they're all supposed
  591. * to come before any input descriptors. */
  592. if (*in_num)
  593. errx(1, "Descriptor has out after in");
  594. (*out_num)++;
  595. }
  596. /* If we've got too many, that implies a descriptor loop. */
  597. if (*out_num + *in_num > vq->vring.num)
  598. errx(1, "Looped descriptor");
  599. } while ((i = next_desc(vq, i)) != vq->vring.num);
  600. return head;
  601. }
  602. /* After we've used one of their buffers, we tell them about it. We'll then
  603. * want to send them an interrupt, using trigger_irq(). */
  604. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  605. {
  606. struct vring_used_elem *used;
  607. /* The virtqueue contains a ring of used buffers. Get a pointer to the
  608. * next entry in that used ring. */
  609. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  610. used->id = head;
  611. used->len = len;
  612. /* Make sure buffer is written before we update index. */
  613. wmb();
  614. vq->vring.used->idx++;
  615. }
  616. /* This actually sends the interrupt for this virtqueue */
  617. static void trigger_irq(struct virtqueue *vq)
  618. {
  619. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  620. /* If they don't want an interrupt, don't send one, unless empty. */
  621. if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
  622. && lg_last_avail(vq) != vq->vring.avail->idx)
  623. return;
  624. /* Send the Guest an interrupt tell them we used something up. */
  625. if (write(lguest_fd, buf, sizeof(buf)) != 0)
  626. err(1, "Triggering irq %i", vq->config.irq);
  627. }
  628. /* And here's the combo meal deal. Supersize me! */
  629. static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
  630. {
  631. add_used(vq, head, len);
  632. trigger_irq(vq);
  633. }
  634. /*
  635. * The Console
  636. *
  637. * Here is the input terminal setting we save, and the routine to restore them
  638. * on exit so the user gets their terminal back. */
  639. static struct termios orig_term;
  640. static void restore_term(void)
  641. {
  642. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  643. }
  644. /* We associate some data with the console for our exit hack. */
  645. struct console_abort
  646. {
  647. /* How many times have they hit ^C? */
  648. int count;
  649. /* When did they start? */
  650. struct timeval start;
  651. };
  652. /* This is the routine which handles console input (ie. stdin). */
  653. static bool handle_console_input(struct device *dev)
  654. {
  655. int len;
  656. unsigned int head, in_num, out_num;
  657. struct iovec iov[dev->vq->vring.num];
  658. struct console_abort *abort = dev->priv;
  659. /* First we need a console buffer from the Guests's input virtqueue. */
  660. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  661. /* If they're not ready for input, stop listening to this file
  662. * descriptor. We'll start again once they add an input buffer. */
  663. if (head == dev->vq->vring.num)
  664. return false;
  665. if (out_num)
  666. errx(1, "Output buffers in console in queue?");
  667. /* This is why we convert to iovecs: the readv() call uses them, and so
  668. * it reads straight into the Guest's buffer. */
  669. len = readv(dev->fd, iov, in_num);
  670. if (len <= 0) {
  671. /* This implies that the console is closed, is /dev/null, or
  672. * something went terribly wrong. */
  673. warnx("Failed to get console input, ignoring console.");
  674. /* Put the input terminal back. */
  675. restore_term();
  676. /* Remove callback from input vq, so it doesn't restart us. */
  677. dev->vq->handle_output = NULL;
  678. /* Stop listening to this fd: don't call us again. */
  679. return false;
  680. }
  681. /* Tell the Guest about the new input. */
  682. add_used_and_trigger(dev->vq, head, len);
  683. /* Three ^C within one second? Exit.
  684. *
  685. * This is such a hack, but works surprisingly well. Each ^C has to be
  686. * in a buffer by itself, so they can't be too fast. But we check that
  687. * we get three within about a second, so they can't be too slow. */
  688. if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
  689. if (!abort->count++)
  690. gettimeofday(&abort->start, NULL);
  691. else if (abort->count == 3) {
  692. struct timeval now;
  693. gettimeofday(&now, NULL);
  694. if (now.tv_sec <= abort->start.tv_sec+1) {
  695. unsigned long args[] = { LHREQ_BREAK, 0 };
  696. /* Close the fd so Waker will know it has to
  697. * exit. */
  698. close(waker_fds.pipe[1]);
  699. /* Just in case Waker is blocked in BREAK, send
  700. * unbreak now. */
  701. write(lguest_fd, args, sizeof(args));
  702. exit(2);
  703. }
  704. abort->count = 0;
  705. }
  706. } else
  707. /* Any other key resets the abort counter. */
  708. abort->count = 0;
  709. /* Everything went OK! */
  710. return true;
  711. }
  712. /* Handling output for console is simple: we just get all the output buffers
  713. * and write them to stdout. */
  714. static void handle_console_output(struct virtqueue *vq, bool timeout)
  715. {
  716. unsigned int head, out, in;
  717. struct iovec iov[vq->vring.num];
  718. /* Keep getting output buffers from the Guest until we run out. */
  719. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  720. if (in)
  721. errx(1, "Input buffers in output queue?");
  722. writev(STDOUT_FILENO, iov, out);
  723. add_used_and_trigger(vq, head, 0);
  724. }
  725. }
  726. /* This is called when we no longer want to hear about Guest changes to a
  727. * virtqueue. This is more efficient in high-traffic cases, but it means we
  728. * have to set a timer to check if any more changes have occurred. */
  729. static void block_vq(struct virtqueue *vq)
  730. {
  731. struct itimerval itm;
  732. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  733. vq->blocked = true;
  734. itm.it_interval.tv_sec = 0;
  735. itm.it_interval.tv_usec = 0;
  736. itm.it_value.tv_sec = 0;
  737. itm.it_value.tv_usec = timeout_usec;
  738. setitimer(ITIMER_REAL, &itm, NULL);
  739. }
  740. /*
  741. * The Network
  742. *
  743. * Handling output for network is also simple: we get all the output buffers
  744. * and write them (ignoring the first element) to this device's file descriptor
  745. * (/dev/net/tun).
  746. */
  747. static void handle_net_output(struct virtqueue *vq, bool timeout)
  748. {
  749. unsigned int head, out, in, num = 0;
  750. struct iovec iov[vq->vring.num];
  751. static int last_timeout_num;
  752. /* Keep getting output buffers from the Guest until we run out. */
  753. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  754. if (in)
  755. errx(1, "Input buffers in output queue?");
  756. if (writev(vq->dev->fd, iov, out) < 0)
  757. err(1, "Writing network packet to tun");
  758. add_used_and_trigger(vq, head, 0);
  759. num++;
  760. }
  761. /* Block further kicks and set up a timer if we saw anything. */
  762. if (!timeout && num)
  763. block_vq(vq);
  764. /* We never quite know how long should we wait before we check the
  765. * queue again for more packets. We start at 500 microseconds, and if
  766. * we get fewer packets than last time, we assume we made the timeout
  767. * too small and increase it by 10 microseconds. Otherwise, we drop it
  768. * by one microsecond every time. It seems to work well enough. */
  769. if (timeout) {
  770. if (num < last_timeout_num)
  771. timeout_usec += 10;
  772. else if (timeout_usec > 1)
  773. timeout_usec--;
  774. last_timeout_num = num;
  775. }
  776. }
  777. /* This is where we handle a packet coming in from the tun device to our
  778. * Guest. */
  779. static bool handle_tun_input(struct device *dev)
  780. {
  781. unsigned int head, in_num, out_num;
  782. int len;
  783. struct iovec iov[dev->vq->vring.num];
  784. /* First we need a network buffer from the Guests's recv virtqueue. */
  785. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  786. if (head == dev->vq->vring.num) {
  787. /* Now, it's expected that if we try to send a packet too
  788. * early, the Guest won't be ready yet. Wait until the device
  789. * status says it's ready. */
  790. /* FIXME: Actually want DRIVER_ACTIVE here. */
  791. /* Now tell it we want to know if new things appear. */
  792. dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  793. wmb();
  794. /* We'll turn this back on if input buffers are registered. */
  795. return false;
  796. } else if (out_num)
  797. errx(1, "Output buffers in network recv queue?");
  798. /* Read the packet from the device directly into the Guest's buffer. */
  799. len = readv(dev->fd, iov, in_num);
  800. if (len <= 0)
  801. err(1, "reading network");
  802. /* Tell the Guest about the new packet. */
  803. add_used_and_trigger(dev->vq, head, len);
  804. verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
  805. ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
  806. head != dev->vq->vring.num ? "sent" : "discarded");
  807. /* All good. */
  808. return true;
  809. }
  810. /*L:215 This is the callback attached to the network and console input
  811. * virtqueues: it ensures we try again, in case we stopped console or net
  812. * delivery because Guest didn't have any buffers. */
  813. static void enable_fd(struct virtqueue *vq, bool timeout)
  814. {
  815. add_device_fd(vq->dev->fd);
  816. /* Snap the Waker out of its select loop. */
  817. write(waker_fds.pipe[1], "", 1);
  818. }
  819. static void net_enable_fd(struct virtqueue *vq, bool timeout)
  820. {
  821. /* We don't need to know again when Guest refills receive buffer. */
  822. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  823. enable_fd(vq, timeout);
  824. }
  825. /* When the Guest tells us they updated the status field, we handle it. */
  826. static void update_device_status(struct device *dev)
  827. {
  828. struct virtqueue *vq;
  829. /* This is a reset. */
  830. if (dev->desc->status == 0) {
  831. verbose("Resetting device %s\n", dev->name);
  832. /* Clear any features they've acked. */
  833. memset(get_feature_bits(dev) + dev->feature_len, 0,
  834. dev->feature_len);
  835. /* Zero out the virtqueues. */
  836. for (vq = dev->vq; vq; vq = vq->next) {
  837. memset(vq->vring.desc, 0,
  838. vring_size(vq->config.num, LGUEST_VRING_ALIGN));
  839. lg_last_avail(vq) = 0;
  840. }
  841. } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  842. warnx("Device %s configuration FAILED", dev->name);
  843. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  844. unsigned int i;
  845. verbose("Device %s OK: offered", dev->name);
  846. for (i = 0; i < dev->feature_len; i++)
  847. verbose(" %02x", get_feature_bits(dev)[i]);
  848. verbose(", accepted");
  849. for (i = 0; i < dev->feature_len; i++)
  850. verbose(" %02x", get_feature_bits(dev)
  851. [dev->feature_len+i]);
  852. if (dev->ready)
  853. dev->ready(dev);
  854. }
  855. }
  856. /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
  857. static void handle_output(unsigned long addr)
  858. {
  859. struct device *i;
  860. struct virtqueue *vq;
  861. /* Check each device and virtqueue. */
  862. for (i = devices.dev; i; i = i->next) {
  863. /* Notifications to device descriptors update device status. */
  864. if (from_guest_phys(addr) == i->desc) {
  865. update_device_status(i);
  866. return;
  867. }
  868. /* Notifications to virtqueues mean output has occurred. */
  869. for (vq = i->vq; vq; vq = vq->next) {
  870. if (vq->config.pfn != addr/getpagesize())
  871. continue;
  872. /* Guest should acknowledge (and set features!) before
  873. * using the device. */
  874. if (i->desc->status == 0) {
  875. warnx("%s gave early output", i->name);
  876. return;
  877. }
  878. if (strcmp(vq->dev->name, "console") != 0)
  879. verbose("Output to %s\n", vq->dev->name);
  880. if (vq->handle_output)
  881. vq->handle_output(vq, false);
  882. return;
  883. }
  884. }
  885. /* Early console write is done using notify on a nul-terminated string
  886. * in Guest memory. */
  887. if (addr >= guest_limit)
  888. errx(1, "Bad NOTIFY %#lx", addr);
  889. write(STDOUT_FILENO, from_guest_phys(addr),
  890. strnlen(from_guest_phys(addr), guest_limit - addr));
  891. }
  892. static void handle_timeout(void)
  893. {
  894. char buf[32];
  895. struct device *i;
  896. struct virtqueue *vq;
  897. /* Clear the pipe */
  898. read(timeoutpipe[0], buf, sizeof(buf));
  899. /* Check each device and virtqueue: flush blocked ones. */
  900. for (i = devices.dev; i; i = i->next) {
  901. for (vq = i->vq; vq; vq = vq->next) {
  902. if (!vq->blocked)
  903. continue;
  904. vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  905. vq->blocked = false;
  906. if (vq->handle_output)
  907. vq->handle_output(vq, true);
  908. }
  909. }
  910. }
  911. /* This is called when the Waker wakes us up: check for incoming file
  912. * descriptors. */
  913. static void handle_input(void)
  914. {
  915. /* select() wants a zeroed timeval to mean "don't wait". */
  916. struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
  917. for (;;) {
  918. struct device *i;
  919. fd_set fds = devices.infds;
  920. int num;
  921. num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
  922. /* Could get interrupted */
  923. if (num < 0)
  924. continue;
  925. /* If nothing is ready, we're done. */
  926. if (num == 0)
  927. break;
  928. /* Otherwise, call the device(s) which have readable file
  929. * descriptors and a method of handling them. */
  930. for (i = devices.dev; i; i = i->next) {
  931. if (i->handle_input && FD_ISSET(i->fd, &fds)) {
  932. if (i->handle_input(i))
  933. continue;
  934. /* If handle_input() returns false, it means we
  935. * should no longer service it. Networking and
  936. * console do this when there's no input
  937. * buffers to deliver into. Console also uses
  938. * it when it discovers that stdin is closed. */
  939. FD_CLR(i->fd, &devices.infds);
  940. }
  941. }
  942. /* Is this the timeout fd? */
  943. if (FD_ISSET(timeoutpipe[0], &fds))
  944. handle_timeout();
  945. }
  946. }
  947. /*L:190
  948. * Device Setup
  949. *
  950. * All devices need a descriptor so the Guest knows it exists, and a "struct
  951. * device" so the Launcher can keep track of it. We have common helper
  952. * routines to allocate and manage them.
  953. */
  954. /* The layout of the device page is a "struct lguest_device_desc" followed by a
  955. * number of virtqueue descriptors, then two sets of feature bits, then an
  956. * array of configuration bytes. This routine returns the configuration
  957. * pointer. */
  958. static u8 *device_config(const struct device *dev)
  959. {
  960. return (void *)(dev->desc + 1)
  961. + dev->num_vq * sizeof(struct lguest_vqconfig)
  962. + dev->feature_len * 2;
  963. }
  964. /* This routine allocates a new "struct lguest_device_desc" from descriptor
  965. * table page just above the Guest's normal memory. It returns a pointer to
  966. * that descriptor. */
  967. static struct lguest_device_desc *new_dev_desc(u16 type)
  968. {
  969. struct lguest_device_desc d = { .type = type };
  970. void *p;
  971. /* Figure out where the next device config is, based on the last one. */
  972. if (devices.lastdev)
  973. p = device_config(devices.lastdev)
  974. + devices.lastdev->desc->config_len;
  975. else
  976. p = devices.descpage;
  977. /* We only have one page for all the descriptors. */
  978. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  979. errx(1, "Too many devices");
  980. /* p might not be aligned, so we memcpy in. */
  981. return memcpy(p, &d, sizeof(d));
  982. }
  983. /* Each device descriptor is followed by the description of its virtqueues. We
  984. * specify how many descriptors the virtqueue is to have. */
  985. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  986. void (*handle_output)(struct virtqueue *, bool))
  987. {
  988. unsigned int pages;
  989. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  990. void *p;
  991. /* First we need some memory for this virtqueue. */
  992. pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
  993. / getpagesize();
  994. p = get_pages(pages);
  995. /* Initialize the virtqueue */
  996. vq->next = NULL;
  997. vq->last_avail_idx = 0;
  998. vq->dev = dev;
  999. vq->blocked = false;
  1000. /* Initialize the configuration. */
  1001. vq->config.num = num_descs;
  1002. vq->config.irq = devices.next_irq++;
  1003. vq->config.pfn = to_guest_phys(p) / getpagesize();
  1004. /* Initialize the vring. */
  1005. vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
  1006. /* Append virtqueue to this device's descriptor. We use
  1007. * device_config() to get the end of the device's current virtqueues;
  1008. * we check that we haven't added any config or feature information
  1009. * yet, otherwise we'd be overwriting them. */
  1010. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  1011. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  1012. dev->num_vq++;
  1013. dev->desc->num_vq++;
  1014. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  1015. /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
  1016. * second. */
  1017. for (i = &dev->vq; *i; i = &(*i)->next);
  1018. *i = vq;
  1019. /* Set the routine to call when the Guest does something to this
  1020. * virtqueue. */
  1021. vq->handle_output = handle_output;
  1022. /* As an optimization, set the advisory "Don't Notify Me" flag if we
  1023. * don't have a handler */
  1024. if (!handle_output)
  1025. vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
  1026. }
  1027. /* The first half of the feature bitmask is for us to advertise features. The
  1028. * second half is for the Guest to accept features. */
  1029. static void add_feature(struct device *dev, unsigned bit)
  1030. {
  1031. u8 *features = get_feature_bits(dev);
  1032. /* We can't extend the feature bits once we've added config bytes */
  1033. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  1034. assert(dev->desc->config_len == 0);
  1035. dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
  1036. }
  1037. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  1038. }
  1039. /* This routine sets the configuration fields for an existing device's
  1040. * descriptor. It only works for the last device, but that's OK because that's
  1041. * how we use it. */
  1042. static void set_config(struct device *dev, unsigned len, const void *conf)
  1043. {
  1044. /* Check we haven't overflowed our single page. */
  1045. if (device_config(dev) + len > devices.descpage + getpagesize())
  1046. errx(1, "Too many devices");
  1047. /* Copy in the config information, and store the length. */
  1048. memcpy(device_config(dev), conf, len);
  1049. dev->desc->config_len = len;
  1050. }
  1051. /* This routine does all the creation and setup of a new device, including
  1052. * calling new_dev_desc() to allocate the descriptor and device memory.
  1053. *
  1054. * See what I mean about userspace being boring? */
  1055. static struct device *new_device(const char *name, u16 type, int fd,
  1056. bool (*handle_input)(struct device *))
  1057. {
  1058. struct device *dev = malloc(sizeof(*dev));
  1059. /* Now we populate the fields one at a time. */
  1060. dev->fd = fd;
  1061. /* If we have an input handler for this file descriptor, then we add it
  1062. * to the device_list's fdset and maxfd. */
  1063. if (handle_input)
  1064. add_device_fd(dev->fd);
  1065. dev->desc = new_dev_desc(type);
  1066. dev->handle_input = handle_input;
  1067. dev->name = name;
  1068. dev->vq = NULL;
  1069. dev->ready = NULL;
  1070. dev->feature_len = 0;
  1071. dev->num_vq = 0;
  1072. /* Append to device list. Prepending to a single-linked list is
  1073. * easier, but the user expects the devices to be arranged on the bus
  1074. * in command-line order. The first network device on the command line
  1075. * is eth0, the first block device /dev/vda, etc. */
  1076. if (devices.lastdev)
  1077. devices.lastdev->next = dev;
  1078. else
  1079. devices.dev = dev;
  1080. devices.lastdev = dev;
  1081. return dev;
  1082. }
  1083. /* Our first setup routine is the console. It's a fairly simple device, but
  1084. * UNIX tty handling makes it uglier than it could be. */
  1085. static void setup_console(void)
  1086. {
  1087. struct device *dev;
  1088. /* If we can save the initial standard input settings... */
  1089. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1090. struct termios term = orig_term;
  1091. /* Then we turn off echo, line buffering and ^C etc. We want a
  1092. * raw input stream to the Guest. */
  1093. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1094. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1095. /* If we exit gracefully, the original settings will be
  1096. * restored so the user can see what they're typing. */
  1097. atexit(restore_term);
  1098. }
  1099. dev = new_device("console", VIRTIO_ID_CONSOLE,
  1100. STDIN_FILENO, handle_console_input);
  1101. /* We store the console state in dev->priv, and initialize it. */
  1102. dev->priv = malloc(sizeof(struct console_abort));
  1103. ((struct console_abort *)dev->priv)->count = 0;
  1104. /* The console needs two virtqueues: the input then the output. When
  1105. * they put something the input queue, we make sure we're listening to
  1106. * stdin. When they put something in the output queue, we write it to
  1107. * stdout. */
  1108. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1109. add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
  1110. verbose("device %u: console\n", devices.device_num++);
  1111. }
  1112. /*:*/
  1113. static void timeout_alarm(int sig)
  1114. {
  1115. write(timeoutpipe[1], "", 1);
  1116. }
  1117. static void setup_timeout(void)
  1118. {
  1119. if (pipe(timeoutpipe) != 0)
  1120. err(1, "Creating timeout pipe");
  1121. if (fcntl(timeoutpipe[1], F_SETFL,
  1122. fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
  1123. err(1, "Making timeout pipe nonblocking");
  1124. add_device_fd(timeoutpipe[0]);
  1125. signal(SIGALRM, timeout_alarm);
  1126. }
  1127. /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
  1128. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1129. * used to send packets to another guest in a 1:1 manner.
  1130. *
  1131. * More sopisticated is to use one of the tools developed for project like UML
  1132. * to do networking.
  1133. *
  1134. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1135. * completely generic ("here's my vring, attach to your vring") and would work
  1136. * for any traffic. Of course, namespace and permissions issues need to be
  1137. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1138. * multiple inter-guest channels behind one interface, although it would
  1139. * require some manner of hotplugging new virtio channels.
  1140. *
  1141. * Finally, we could implement a virtio network switch in the kernel. :*/
  1142. static u32 str2ip(const char *ipaddr)
  1143. {
  1144. unsigned int b[4];
  1145. if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
  1146. errx(1, "Failed to parse IP address '%s'", ipaddr);
  1147. return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
  1148. }
  1149. static void str2mac(const char *macaddr, unsigned char mac[6])
  1150. {
  1151. unsigned int m[6];
  1152. if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
  1153. &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
  1154. errx(1, "Failed to parse mac address '%s'", macaddr);
  1155. mac[0] = m[0];
  1156. mac[1] = m[1];
  1157. mac[2] = m[2];
  1158. mac[3] = m[3];
  1159. mac[4] = m[4];
  1160. mac[5] = m[5];
  1161. }
  1162. /* This code is "adapted" from libbridge: it attaches the Host end of the
  1163. * network device to the bridge device specified by the command line.
  1164. *
  1165. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1166. * dislike bridging), and I just try not to break it. */
  1167. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1168. {
  1169. int ifidx;
  1170. struct ifreq ifr;
  1171. if (!*br_name)
  1172. errx(1, "must specify bridge name");
  1173. ifidx = if_nametoindex(if_name);
  1174. if (!ifidx)
  1175. errx(1, "interface %s does not exist!", if_name);
  1176. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1177. ifr.ifr_name[IFNAMSIZ-1] = '\0';
  1178. ifr.ifr_ifindex = ifidx;
  1179. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1180. err(1, "can't add %s to bridge %s", if_name, br_name);
  1181. }
  1182. /* This sets up the Host end of the network device with an IP address, brings
  1183. * it up so packets will flow, the copies the MAC address into the hwaddr
  1184. * pointer. */
  1185. static void configure_device(int fd, const char *tapif, u32 ipaddr)
  1186. {
  1187. struct ifreq ifr;
  1188. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1189. memset(&ifr, 0, sizeof(ifr));
  1190. strcpy(ifr.ifr_name, tapif);
  1191. /* Don't read these incantations. Just cut & paste them like I did! */
  1192. sin->sin_family = AF_INET;
  1193. sin->sin_addr.s_addr = htonl(ipaddr);
  1194. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1195. err(1, "Setting %s interface address", tapif);
  1196. ifr.ifr_flags = IFF_UP;
  1197. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1198. err(1, "Bringing interface %s up", tapif);
  1199. }
  1200. static int get_tun_device(char tapif[IFNAMSIZ])
  1201. {
  1202. struct ifreq ifr;
  1203. int netfd;
  1204. /* Start with this zeroed. Messy but sure. */
  1205. memset(&ifr, 0, sizeof(ifr));
  1206. /* We open the /dev/net/tun device and tell it we want a tap device. A
  1207. * tap device is like a tun device, only somehow different. To tell
  1208. * the truth, I completely blundered my way through this code, but it
  1209. * works now! */
  1210. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1211. ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
  1212. strcpy(ifr.ifr_name, "tap%d");
  1213. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1214. err(1, "configuring /dev/net/tun");
  1215. if (ioctl(netfd, TUNSETOFFLOAD,
  1216. TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
  1217. err(1, "Could not set features for tun device");
  1218. /* We don't need checksums calculated for packets coming in this
  1219. * device: trust us! */
  1220. ioctl(netfd, TUNSETNOCSUM, 1);
  1221. memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
  1222. return netfd;
  1223. }
  1224. /*L:195 Our network is a Host<->Guest network. This can either use bridging or
  1225. * routing, but the principle is the same: it uses the "tun" device to inject
  1226. * packets into the Host as if they came in from a normal network card. We
  1227. * just shunt packets between the Guest and the tun device. */
  1228. static void setup_tun_net(char *arg)
  1229. {
  1230. struct device *dev;
  1231. int netfd, ipfd;
  1232. u32 ip = INADDR_ANY;
  1233. bool bridging = false;
  1234. char tapif[IFNAMSIZ], *p;
  1235. struct virtio_net_config conf;
  1236. netfd = get_tun_device(tapif);
  1237. /* First we create a new network device. */
  1238. dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
  1239. /* Network devices need a receive and a send queue, just like
  1240. * console. */
  1241. add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
  1242. add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
  1243. /* We need a socket to perform the magic network ioctls to bring up the
  1244. * tap interface, connect to the bridge etc. Any socket will do! */
  1245. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1246. if (ipfd < 0)
  1247. err(1, "opening IP socket");
  1248. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1249. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1250. arg += strlen(BRIDGE_PFX);
  1251. bridging = true;
  1252. }
  1253. /* A mac address may follow the bridge name or IP address */
  1254. p = strchr(arg, ':');
  1255. if (p) {
  1256. str2mac(p+1, conf.mac);
  1257. add_feature(dev, VIRTIO_NET_F_MAC);
  1258. *p = '\0';
  1259. }
  1260. /* arg is now either an IP address or a bridge name */
  1261. if (bridging)
  1262. add_to_bridge(ipfd, tapif, arg);
  1263. else
  1264. ip = str2ip(arg);
  1265. /* Set up the tun device. */
  1266. configure_device(ipfd, tapif, ip);
  1267. add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  1268. /* Expect Guest to handle everything except UFO */
  1269. add_feature(dev, VIRTIO_NET_F_CSUM);
  1270. add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
  1271. add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
  1272. add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
  1273. add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
  1274. add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
  1275. add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
  1276. add_feature(dev, VIRTIO_NET_F_HOST_ECN);
  1277. set_config(dev, sizeof(conf), &conf);
  1278. /* We don't need the socket any more; setup is done. */
  1279. close(ipfd);
  1280. devices.device_num++;
  1281. if (bridging)
  1282. verbose("device %u: tun %s attached to bridge: %s\n",
  1283. devices.device_num, tapif, arg);
  1284. else
  1285. verbose("device %u: tun %s: %s\n",
  1286. devices.device_num, tapif, arg);
  1287. }
  1288. /* Our block (disk) device should be really simple: the Guest asks for a block
  1289. * number and we read or write that position in the file. Unfortunately, that
  1290. * was amazingly slow: the Guest waits until the read is finished before
  1291. * running anything else, even if it could have been doing useful work.
  1292. *
  1293. * We could use async I/O, except it's reputed to suck so hard that characters
  1294. * actually go missing from your code when you try to use it.
  1295. *
  1296. * So we farm the I/O out to thread, and communicate with it via a pipe. */
  1297. /* This hangs off device->priv. */
  1298. struct vblk_info
  1299. {
  1300. /* The size of the file. */
  1301. off64_t len;
  1302. /* The file descriptor for the file. */
  1303. int fd;
  1304. /* IO thread listens on this file descriptor [0]. */
  1305. int workpipe[2];
  1306. /* IO thread writes to this file descriptor to mark it done, then
  1307. * Launcher triggers interrupt to Guest. */
  1308. int done_fd;
  1309. };
  1310. /*L:210
  1311. * The Disk
  1312. *
  1313. * Remember that the block device is handled by a separate I/O thread. We head
  1314. * straight into the core of that thread here:
  1315. */
  1316. static bool service_io(struct device *dev)
  1317. {
  1318. struct vblk_info *vblk = dev->priv;
  1319. unsigned int head, out_num, in_num, wlen;
  1320. int ret;
  1321. u8 *in;
  1322. struct virtio_blk_outhdr *out;
  1323. struct iovec iov[dev->vq->vring.num];
  1324. off64_t off;
  1325. /* See if there's a request waiting. If not, nothing to do. */
  1326. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1327. if (head == dev->vq->vring.num)
  1328. return false;
  1329. /* Every block request should contain at least one output buffer
  1330. * (detailing the location on disk and the type of request) and one
  1331. * input buffer (to hold the result). */
  1332. if (out_num == 0 || in_num == 0)
  1333. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1334. head, out_num, in_num);
  1335. out = convert(&iov[0], struct virtio_blk_outhdr);
  1336. in = convert(&iov[out_num+in_num-1], u8);
  1337. off = out->sector * 512;
  1338. /* The block device implements "barriers", where the Guest indicates
  1339. * that it wants all previous writes to occur before this write. We
  1340. * don't have a way of asking our kernel to do a barrier, so we just
  1341. * synchronize all the data in the file. Pretty poor, no? */
  1342. if (out->type & VIRTIO_BLK_T_BARRIER)
  1343. fdatasync(vblk->fd);
  1344. /* In general the virtio block driver is allowed to try SCSI commands.
  1345. * It'd be nice if we supported eject, for example, but we don't. */
  1346. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1347. fprintf(stderr, "Scsi commands unsupported\n");
  1348. *in = VIRTIO_BLK_S_UNSUPP;
  1349. wlen = sizeof(*in);
  1350. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1351. /* Write */
  1352. /* Move to the right location in the block file. This can fail
  1353. * if they try to write past end. */
  1354. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1355. err(1, "Bad seek to sector %llu", out->sector);
  1356. ret = writev(vblk->fd, iov+1, out_num-1);
  1357. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1358. /* Grr... Now we know how long the descriptor they sent was, we
  1359. * make sure they didn't try to write over the end of the block
  1360. * file (possibly extending it). */
  1361. if (ret > 0 && off + ret > vblk->len) {
  1362. /* Trim it back to the correct length */
  1363. ftruncate64(vblk->fd, vblk->len);
  1364. /* Die, bad Guest, die. */
  1365. errx(1, "Write past end %llu+%u", off, ret);
  1366. }
  1367. wlen = sizeof(*in);
  1368. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1369. } else {
  1370. /* Read */
  1371. /* Move to the right location in the block file. This can fail
  1372. * if they try to read past end. */
  1373. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1374. err(1, "Bad seek to sector %llu", out->sector);
  1375. ret = readv(vblk->fd, iov+1, in_num-1);
  1376. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1377. if (ret >= 0) {
  1378. wlen = sizeof(*in) + ret;
  1379. *in = VIRTIO_BLK_S_OK;
  1380. } else {
  1381. wlen = sizeof(*in);
  1382. *in = VIRTIO_BLK_S_IOERR;
  1383. }
  1384. }
  1385. /* OK, so we noted that it was pretty poor to use an fdatasync as a
  1386. * barrier. But Christoph Hellwig points out that we need a sync
  1387. * *afterwards* as well: "Barriers specify no reordering to the front
  1388. * or the back." And Jens Axboe confirmed it, so here we are: */
  1389. if (out->type & VIRTIO_BLK_T_BARRIER)
  1390. fdatasync(vblk->fd);
  1391. /* We can't trigger an IRQ, because we're not the Launcher. It does
  1392. * that when we tell it we're done. */
  1393. add_used(dev->vq, head, wlen);
  1394. return true;
  1395. }
  1396. /* This is the thread which actually services the I/O. */
  1397. static int io_thread(void *_dev)
  1398. {
  1399. struct device *dev = _dev;
  1400. struct vblk_info *vblk = dev->priv;
  1401. char c;
  1402. /* Close other side of workpipe so we get 0 read when main dies. */
  1403. close(vblk->workpipe[1]);
  1404. /* Close the other side of the done_fd pipe. */
  1405. close(dev->fd);
  1406. /* When this read fails, it means Launcher died, so we follow. */
  1407. while (read(vblk->workpipe[0], &c, 1) == 1) {
  1408. /* We acknowledge each request immediately to reduce latency,
  1409. * rather than waiting until we've done them all. I haven't
  1410. * measured to see if it makes any difference.
  1411. *
  1412. * That would be an interesting test, wouldn't it? You could
  1413. * also try having more than one I/O thread. */
  1414. while (service_io(dev))
  1415. write(vblk->done_fd, &c, 1);
  1416. }
  1417. return 0;
  1418. }
  1419. /* Now we've seen the I/O thread, we return to the Launcher to see what happens
  1420. * when that thread tells us it's completed some I/O. */
  1421. static bool handle_io_finish(struct device *dev)
  1422. {
  1423. char c;
  1424. /* If the I/O thread died, presumably it printed the error, so we
  1425. * simply exit. */
  1426. if (read(dev->fd, &c, 1) != 1)
  1427. exit(1);
  1428. /* It did some work, so trigger the irq. */
  1429. trigger_irq(dev->vq);
  1430. return true;
  1431. }
  1432. /* When the Guest submits some I/O, we just need to wake the I/O thread. */
  1433. static void handle_virtblk_output(struct virtqueue *vq, bool timeout)
  1434. {
  1435. struct vblk_info *vblk = vq->dev->priv;
  1436. char c = 0;
  1437. /* Wake up I/O thread and tell it to go to work! */
  1438. if (write(vblk->workpipe[1], &c, 1) != 1)
  1439. /* Presumably it indicated why it died. */
  1440. exit(1);
  1441. }
  1442. /*L:198 This actually sets up a virtual block device. */
  1443. static void setup_block_file(const char *filename)
  1444. {
  1445. int p[2];
  1446. struct device *dev;
  1447. struct vblk_info *vblk;
  1448. void *stack;
  1449. struct virtio_blk_config conf;
  1450. /* This is the pipe the I/O thread will use to tell us I/O is done. */
  1451. pipe(p);
  1452. /* The device responds to return from I/O thread. */
  1453. dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
  1454. /* The device has one virtqueue, where the Guest places requests. */
  1455. add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
  1456. /* Allocate the room for our own bookkeeping */
  1457. vblk = dev->priv = malloc(sizeof(*vblk));
  1458. /* First we open the file and store the length. */
  1459. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1460. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1461. /* We support barriers. */
  1462. add_feature(dev, VIRTIO_BLK_F_BARRIER);
  1463. /* Tell Guest how many sectors this device has. */
  1464. conf.capacity = cpu_to_le64(vblk->len / 512);
  1465. /* Tell Guest not to put in too many descriptors at once: two are used
  1466. * for the in and out elements. */
  1467. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1468. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1469. set_config(dev, sizeof(conf), &conf);
  1470. /* The I/O thread writes to this end of the pipe when done. */
  1471. vblk->done_fd = p[1];
  1472. /* This is the second pipe, which is how we tell the I/O thread about
  1473. * more work. */
  1474. pipe(vblk->workpipe);
  1475. /* Create stack for thread and run it. Since stack grows upwards, we
  1476. * point the stack pointer to the end of this region. */
  1477. stack = malloc(32768);
  1478. /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
  1479. * becoming a zombie. */
  1480. if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
  1481. err(1, "Creating clone");
  1482. /* We don't need to keep the I/O thread's end of the pipes open. */
  1483. close(vblk->done_fd);
  1484. close(vblk->workpipe[0]);
  1485. verbose("device %u: virtblock %llu sectors\n",
  1486. devices.device_num, le64_to_cpu(conf.capacity));
  1487. }
  1488. /* Our random number generator device reads from /dev/random into the Guest's
  1489. * input buffers. The usual case is that the Guest doesn't want random numbers
  1490. * and so has no buffers although /dev/random is still readable, whereas
  1491. * console is the reverse.
  1492. *
  1493. * The same logic applies, however. */
  1494. static bool handle_rng_input(struct device *dev)
  1495. {
  1496. int len;
  1497. unsigned int head, in_num, out_num, totlen = 0;
  1498. struct iovec iov[dev->vq->vring.num];
  1499. /* First we need a buffer from the Guests's virtqueue. */
  1500. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1501. /* If they're not ready for input, stop listening to this file
  1502. * descriptor. We'll start again once they add an input buffer. */
  1503. if (head == dev->vq->vring.num)
  1504. return false;
  1505. if (out_num)
  1506. errx(1, "Output buffers in rng?");
  1507. /* This is why we convert to iovecs: the readv() call uses them, and so
  1508. * it reads straight into the Guest's buffer. We loop to make sure we
  1509. * fill it. */
  1510. while (!iov_empty(iov, in_num)) {
  1511. len = readv(dev->fd, iov, in_num);
  1512. if (len <= 0)
  1513. err(1, "Read from /dev/random gave %i", len);
  1514. iov_consume(iov, in_num, len);
  1515. totlen += len;
  1516. }
  1517. /* Tell the Guest about the new input. */
  1518. add_used_and_trigger(dev->vq, head, totlen);
  1519. /* Everything went OK! */
  1520. return true;
  1521. }
  1522. /* And this creates a "hardware" random number device for the Guest. */
  1523. static void setup_rng(void)
  1524. {
  1525. struct device *dev;
  1526. int fd;
  1527. fd = open_or_die("/dev/random", O_RDONLY);
  1528. /* The device responds to return from I/O thread. */
  1529. dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
  1530. /* The device has one virtqueue, where the Guest places inbufs. */
  1531. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1532. verbose("device %u: rng\n", devices.device_num++);
  1533. }
  1534. /* That's the end of device setup. */
  1535. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1536. static void __attribute__((noreturn)) restart_guest(void)
  1537. {
  1538. unsigned int i;
  1539. /* Since we don't track all open fds, we simply close everything beyond
  1540. * stderr. */
  1541. for (i = 3; i < FD_SETSIZE; i++)
  1542. close(i);
  1543. /* The exec automatically gets rid of the I/O and Waker threads. */
  1544. execv(main_args[0], main_args);
  1545. err(1, "Could not exec %s", main_args[0]);
  1546. }
  1547. /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
  1548. * its input and output, and finally, lays it to rest. */
  1549. static void __attribute__((noreturn)) run_guest(void)
  1550. {
  1551. for (;;) {
  1552. unsigned long args[] = { LHREQ_BREAK, 0 };
  1553. unsigned long notify_addr;
  1554. int readval;
  1555. /* We read from the /dev/lguest device to run the Guest. */
  1556. readval = pread(lguest_fd, &notify_addr,
  1557. sizeof(notify_addr), cpu_id);
  1558. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1559. if (readval == sizeof(notify_addr)) {
  1560. verbose("Notify on address %#lx\n", notify_addr);
  1561. handle_output(notify_addr);
  1562. continue;
  1563. /* ENOENT means the Guest died. Reading tells us why. */
  1564. } else if (errno == ENOENT) {
  1565. char reason[1024] = { 0 };
  1566. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1567. errx(1, "%s", reason);
  1568. /* ERESTART means that we need to reboot the guest */
  1569. } else if (errno == ERESTART) {
  1570. restart_guest();
  1571. /* EAGAIN means a signal (timeout).
  1572. * Anything else means a bug or incompatible change. */
  1573. } else if (errno != EAGAIN)
  1574. err(1, "Running guest failed");
  1575. /* Only service input on thread for CPU 0. */
  1576. if (cpu_id != 0)
  1577. continue;
  1578. /* Service input, then unset the BREAK to release the Waker. */
  1579. handle_input();
  1580. if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
  1581. err(1, "Resetting break");
  1582. }
  1583. }
  1584. /*L:240
  1585. * This is the end of the Launcher. The good news: we are over halfway
  1586. * through! The bad news: the most fiendish part of the code still lies ahead
  1587. * of us.
  1588. *
  1589. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1590. * "make Host".
  1591. :*/
  1592. static struct option opts[] = {
  1593. { "verbose", 0, NULL, 'v' },
  1594. { "tunnet", 1, NULL, 't' },
  1595. { "block", 1, NULL, 'b' },
  1596. { "rng", 0, NULL, 'r' },
  1597. { "initrd", 1, NULL, 'i' },
  1598. { NULL },
  1599. };
  1600. static void usage(void)
  1601. {
  1602. errx(1, "Usage: lguest [--verbose] "
  1603. "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
  1604. "|--block=<filename>|--initrd=<filename>]...\n"
  1605. "<mem-in-mb> vmlinux [args...]");
  1606. }
  1607. /*L:105 The main routine is where the real work begins: */
  1608. int main(int argc, char *argv[])
  1609. {
  1610. /* Memory, top-level pagetable, code startpoint and size of the
  1611. * (optional) initrd. */
  1612. unsigned long mem = 0, start, initrd_size = 0;
  1613. /* Two temporaries. */
  1614. int i, c;
  1615. /* The boot information for the Guest. */
  1616. struct boot_params *boot;
  1617. /* If they specify an initrd file to load. */
  1618. const char *initrd_name = NULL;
  1619. /* Save the args: we "reboot" by execing ourselves again. */
  1620. main_args = argv;
  1621. /* We don't "wait" for the children, so prevent them from becoming
  1622. * zombies. */
  1623. signal(SIGCHLD, SIG_IGN);
  1624. /* First we initialize the device list. Since console and network
  1625. * device receive input from a file descriptor, we keep an fdset
  1626. * (infds) and the maximum fd number (max_infd) with the head of the
  1627. * list. We also keep a pointer to the last device. Finally, we keep
  1628. * the next interrupt number to use for devices (1: remember that 0 is
  1629. * used by the timer). */
  1630. FD_ZERO(&devices.infds);
  1631. devices.max_infd = -1;
  1632. devices.lastdev = NULL;
  1633. devices.next_irq = 1;
  1634. cpu_id = 0;
  1635. /* We need to know how much memory so we can set up the device
  1636. * descriptor and memory pages for the devices as we parse the command
  1637. * line. So we quickly look through the arguments to find the amount
  1638. * of memory now. */
  1639. for (i = 1; i < argc; i++) {
  1640. if (argv[i][0] != '-') {
  1641. mem = atoi(argv[i]) * 1024 * 1024;
  1642. /* We start by mapping anonymous pages over all of
  1643. * guest-physical memory range. This fills it with 0,
  1644. * and ensures that the Guest won't be killed when it
  1645. * tries to access it. */
  1646. guest_base = map_zeroed_pages(mem / getpagesize()
  1647. + DEVICE_PAGES);
  1648. guest_limit = mem;
  1649. guest_max = mem + DEVICE_PAGES*getpagesize();
  1650. devices.descpage = get_pages(1);
  1651. break;
  1652. }
  1653. }
  1654. /* The options are fairly straight-forward */
  1655. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1656. switch (c) {
  1657. case 'v':
  1658. verbose = true;
  1659. break;
  1660. case 't':
  1661. setup_tun_net(optarg);
  1662. break;
  1663. case 'b':
  1664. setup_block_file(optarg);
  1665. break;
  1666. case 'r':
  1667. setup_rng();
  1668. break;
  1669. case 'i':
  1670. initrd_name = optarg;
  1671. break;
  1672. default:
  1673. warnx("Unknown argument %s", argv[optind]);
  1674. usage();
  1675. }
  1676. }
  1677. /* After the other arguments we expect memory and kernel image name,
  1678. * followed by command line arguments for the kernel. */
  1679. if (optind + 2 > argc)
  1680. usage();
  1681. verbose("Guest base is at %p\n", guest_base);
  1682. /* We always have a console device */
  1683. setup_console();
  1684. /* We can timeout waiting for Guest network transmit. */
  1685. setup_timeout();
  1686. /* Now we load the kernel */
  1687. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1688. /* Boot information is stashed at physical address 0 */
  1689. boot = from_guest_phys(0);
  1690. /* Map the initrd image if requested (at top of physical memory) */
  1691. if (initrd_name) {
  1692. initrd_size = load_initrd(initrd_name, mem);
  1693. /* These are the location in the Linux boot header where the
  1694. * start and size of the initrd are expected to be found. */
  1695. boot->hdr.ramdisk_image = mem - initrd_size;
  1696. boot->hdr.ramdisk_size = initrd_size;
  1697. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1698. boot->hdr.type_of_loader = 0xFF;
  1699. }
  1700. /* The Linux boot header contains an "E820" memory map: ours is a
  1701. * simple, single region. */
  1702. boot->e820_entries = 1;
  1703. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1704. /* The boot header contains a command line pointer: we put the command
  1705. * line after the boot header. */
  1706. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1707. /* We use a simple helper to copy the arguments separated by spaces. */
  1708. concat((char *)(boot + 1), argv+optind+2);
  1709. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1710. boot->hdr.version = 0x207;
  1711. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1712. boot->hdr.hardware_subarch = 1;
  1713. /* Tell the entry path not to try to reload segment registers. */
  1714. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1715. /* We tell the kernel to initialize the Guest: this returns the open
  1716. * /dev/lguest file descriptor. */
  1717. tell_kernel(start);
  1718. /* We clone off a thread, which wakes the Launcher whenever one of the
  1719. * input file descriptors needs attention. We call this the Waker, and
  1720. * we'll cover it in a moment. */
  1721. setup_waker();
  1722. /* Finally, run the Guest. This doesn't return. */
  1723. run_guest();
  1724. }
  1725. /*:*/
  1726. /*M:999
  1727. * Mastery is done: you now know everything I do.
  1728. *
  1729. * But surely you have seen code, features and bugs in your wanderings which
  1730. * you now yearn to attack? That is the real game, and I look forward to you
  1731. * patching and forking lguest into the Your-Name-Here-visor.
  1732. *
  1733. * Farewell, and good coding!
  1734. * Rusty Russell.
  1735. */