sched.c 165 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <asm/tlb.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __attribute__((weak)) sched_clock(void)
  70. {
  71. return (unsigned long long)jiffies * (1000000000 / HZ);
  72. }
  73. /*
  74. * Convert user-nice values [ -20 ... 0 ... 19 ]
  75. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  76. * and back.
  77. */
  78. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  79. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  80. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  81. /*
  82. * 'User priority' is the nice value converted to something we
  83. * can work with better when scaling various scheduler parameters,
  84. * it's a [ 0 ... 39 ] range.
  85. */
  86. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  87. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  88. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  89. /*
  90. * Some helpers for converting nanosecond timing to jiffy resolution
  91. */
  92. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  93. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  100. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. #ifdef CONFIG_SMP
  106. /*
  107. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  108. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  109. */
  110. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  111. {
  112. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  113. }
  114. /*
  115. * Each time a sched group cpu_power is changed,
  116. * we must compute its reciprocal value
  117. */
  118. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  119. {
  120. sg->__cpu_power += val;
  121. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  122. }
  123. #endif
  124. #define SCALE_PRIO(x, prio) \
  125. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  126. /*
  127. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  128. * to time slice values: [800ms ... 100ms ... 5ms]
  129. */
  130. static unsigned int static_prio_timeslice(int static_prio)
  131. {
  132. if (static_prio == NICE_TO_PRIO(19))
  133. return 1;
  134. if (static_prio < NICE_TO_PRIO(0))
  135. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  136. else
  137. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  138. }
  139. static inline int rt_policy(int policy)
  140. {
  141. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  142. return 1;
  143. return 0;
  144. }
  145. static inline int task_has_rt_policy(struct task_struct *p)
  146. {
  147. return rt_policy(p->policy);
  148. }
  149. /*
  150. * This is the priority-queue data structure of the RT scheduling class:
  151. */
  152. struct rt_prio_array {
  153. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  154. struct list_head queue[MAX_RT_PRIO];
  155. };
  156. struct load_stat {
  157. struct load_weight load;
  158. u64 load_update_start, load_update_last;
  159. unsigned long delta_fair, delta_exec, delta_stat;
  160. };
  161. /* CFS-related fields in a runqueue */
  162. struct cfs_rq {
  163. struct load_weight load;
  164. unsigned long nr_running;
  165. s64 fair_clock;
  166. u64 exec_clock;
  167. s64 wait_runtime;
  168. u64 sleeper_bonus;
  169. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  170. struct rb_root tasks_timeline;
  171. struct rb_node *rb_leftmost;
  172. struct rb_node *rb_load_balance_curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. /* 'curr' points to currently running entity on this cfs_rq.
  175. * It is set to NULL otherwise (i.e when none are currently running).
  176. */
  177. struct sched_entity *curr;
  178. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  179. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  180. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  181. * (like users, containers etc.)
  182. *
  183. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  184. * list is used during load balance.
  185. */
  186. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  187. #endif
  188. };
  189. /* Real-Time classes' related field in a runqueue: */
  190. struct rt_rq {
  191. struct rt_prio_array active;
  192. int rt_load_balance_idx;
  193. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  194. };
  195. /*
  196. * This is the main, per-CPU runqueue data structure.
  197. *
  198. * Locking rule: those places that want to lock multiple runqueues
  199. * (such as the load balancing or the thread migration code), lock
  200. * acquire operations must be ordered by ascending &runqueue.
  201. */
  202. struct rq {
  203. spinlock_t lock; /* runqueue lock */
  204. /*
  205. * nr_running and cpu_load should be in the same cacheline because
  206. * remote CPUs use both these fields when doing load calculation.
  207. */
  208. unsigned long nr_running;
  209. #define CPU_LOAD_IDX_MAX 5
  210. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  211. unsigned char idle_at_tick;
  212. #ifdef CONFIG_NO_HZ
  213. unsigned char in_nohz_recently;
  214. #endif
  215. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  216. unsigned long nr_load_updates;
  217. u64 nr_switches;
  218. struct cfs_rq cfs;
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  221. #endif
  222. struct rt_rq rt;
  223. /*
  224. * This is part of a global counter where only the total sum
  225. * over all CPUs matters. A task can increase this counter on
  226. * one CPU and if it got migrated afterwards it may decrease
  227. * it on another CPU. Always updated under the runqueue lock:
  228. */
  229. unsigned long nr_uninterruptible;
  230. struct task_struct *curr, *idle;
  231. unsigned long next_balance;
  232. struct mm_struct *prev_mm;
  233. u64 clock, prev_clock_raw;
  234. s64 clock_max_delta;
  235. unsigned int clock_warps, clock_overflows;
  236. unsigned int clock_unstable_events;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Update the per-runqueue clock, as finegrained as the platform can give
  281. * us, but without assuming monotonicity, etc.:
  282. */
  283. static void __update_rq_clock(struct rq *rq)
  284. {
  285. u64 prev_raw = rq->prev_clock_raw;
  286. u64 now = sched_clock();
  287. s64 delta = now - prev_raw;
  288. u64 clock = rq->clock;
  289. #ifdef CONFIG_SCHED_DEBUG
  290. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  291. #endif
  292. /*
  293. * Protect against sched_clock() occasionally going backwards:
  294. */
  295. if (unlikely(delta < 0)) {
  296. clock++;
  297. rq->clock_warps++;
  298. } else {
  299. /*
  300. * Catch too large forward jumps too:
  301. */
  302. if (unlikely(delta > 2*TICK_NSEC)) {
  303. clock++;
  304. rq->clock_overflows++;
  305. } else {
  306. if (unlikely(delta > rq->clock_max_delta))
  307. rq->clock_max_delta = delta;
  308. clock += delta;
  309. }
  310. }
  311. rq->prev_clock_raw = now;
  312. rq->clock = clock;
  313. }
  314. static void update_rq_clock(struct rq *rq)
  315. {
  316. if (likely(smp_processor_id() == cpu_of(rq)))
  317. __update_rq_clock(rq);
  318. }
  319. /*
  320. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  321. * See detach_destroy_domains: synchronize_sched for details.
  322. *
  323. * The domain tree of any CPU may only be accessed from within
  324. * preempt-disabled sections.
  325. */
  326. #define for_each_domain(cpu, __sd) \
  327. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  328. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  329. #define this_rq() (&__get_cpu_var(runqueues))
  330. #define task_rq(p) cpu_rq(task_cpu(p))
  331. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  332. /*
  333. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  334. * clock constructed from sched_clock():
  335. */
  336. unsigned long long cpu_clock(int cpu)
  337. {
  338. unsigned long long now;
  339. unsigned long flags;
  340. struct rq *rq;
  341. local_irq_save(flags);
  342. rq = cpu_rq(cpu);
  343. update_rq_clock(rq);
  344. now = rq->clock;
  345. local_irq_restore(flags);
  346. return now;
  347. }
  348. #ifdef CONFIG_FAIR_GROUP_SCHED
  349. /* Change a task's ->cfs_rq if it moves across CPUs */
  350. static inline void set_task_cfs_rq(struct task_struct *p)
  351. {
  352. p->se.cfs_rq = &task_rq(p)->cfs;
  353. }
  354. #else
  355. static inline void set_task_cfs_rq(struct task_struct *p)
  356. {
  357. }
  358. #endif
  359. #ifndef prepare_arch_switch
  360. # define prepare_arch_switch(next) do { } while (0)
  361. #endif
  362. #ifndef finish_arch_switch
  363. # define finish_arch_switch(prev) do { } while (0)
  364. #endif
  365. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  366. static inline int task_running(struct rq *rq, struct task_struct *p)
  367. {
  368. return rq->curr == p;
  369. }
  370. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  371. {
  372. }
  373. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  374. {
  375. #ifdef CONFIG_DEBUG_SPINLOCK
  376. /* this is a valid case when another task releases the spinlock */
  377. rq->lock.owner = current;
  378. #endif
  379. /*
  380. * If we are tracking spinlock dependencies then we have to
  381. * fix up the runqueue lock - which gets 'carried over' from
  382. * prev into current:
  383. */
  384. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  385. spin_unlock_irq(&rq->lock);
  386. }
  387. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  388. static inline int task_running(struct rq *rq, struct task_struct *p)
  389. {
  390. #ifdef CONFIG_SMP
  391. return p->oncpu;
  392. #else
  393. return rq->curr == p;
  394. #endif
  395. }
  396. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  397. {
  398. #ifdef CONFIG_SMP
  399. /*
  400. * We can optimise this out completely for !SMP, because the
  401. * SMP rebalancing from interrupt is the only thing that cares
  402. * here.
  403. */
  404. next->oncpu = 1;
  405. #endif
  406. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  407. spin_unlock_irq(&rq->lock);
  408. #else
  409. spin_unlock(&rq->lock);
  410. #endif
  411. }
  412. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  413. {
  414. #ifdef CONFIG_SMP
  415. /*
  416. * After ->oncpu is cleared, the task can be moved to a different CPU.
  417. * We must ensure this doesn't happen until the switch is completely
  418. * finished.
  419. */
  420. smp_wmb();
  421. prev->oncpu = 0;
  422. #endif
  423. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  424. local_irq_enable();
  425. #endif
  426. }
  427. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  428. /*
  429. * __task_rq_lock - lock the runqueue a given task resides on.
  430. * Must be called interrupts disabled.
  431. */
  432. static inline struct rq *__task_rq_lock(struct task_struct *p)
  433. __acquires(rq->lock)
  434. {
  435. struct rq *rq;
  436. repeat_lock_task:
  437. rq = task_rq(p);
  438. spin_lock(&rq->lock);
  439. if (unlikely(rq != task_rq(p))) {
  440. spin_unlock(&rq->lock);
  441. goto repeat_lock_task;
  442. }
  443. return rq;
  444. }
  445. /*
  446. * task_rq_lock - lock the runqueue a given task resides on and disable
  447. * interrupts. Note the ordering: we can safely lookup the task_rq without
  448. * explicitly disabling preemption.
  449. */
  450. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  451. __acquires(rq->lock)
  452. {
  453. struct rq *rq;
  454. repeat_lock_task:
  455. local_irq_save(*flags);
  456. rq = task_rq(p);
  457. spin_lock(&rq->lock);
  458. if (unlikely(rq != task_rq(p))) {
  459. spin_unlock_irqrestore(&rq->lock, *flags);
  460. goto repeat_lock_task;
  461. }
  462. return rq;
  463. }
  464. static inline void __task_rq_unlock(struct rq *rq)
  465. __releases(rq->lock)
  466. {
  467. spin_unlock(&rq->lock);
  468. }
  469. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  470. __releases(rq->lock)
  471. {
  472. spin_unlock_irqrestore(&rq->lock, *flags);
  473. }
  474. /*
  475. * this_rq_lock - lock this runqueue and disable interrupts.
  476. */
  477. static inline struct rq *this_rq_lock(void)
  478. __acquires(rq->lock)
  479. {
  480. struct rq *rq;
  481. local_irq_disable();
  482. rq = this_rq();
  483. spin_lock(&rq->lock);
  484. return rq;
  485. }
  486. /*
  487. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  488. */
  489. void sched_clock_unstable_event(void)
  490. {
  491. unsigned long flags;
  492. struct rq *rq;
  493. rq = task_rq_lock(current, &flags);
  494. rq->prev_clock_raw = sched_clock();
  495. rq->clock_unstable_events++;
  496. task_rq_unlock(rq, &flags);
  497. }
  498. /*
  499. * resched_task - mark a task 'to be rescheduled now'.
  500. *
  501. * On UP this means the setting of the need_resched flag, on SMP it
  502. * might also involve a cross-CPU call to trigger the scheduler on
  503. * the target CPU.
  504. */
  505. #ifdef CONFIG_SMP
  506. #ifndef tsk_is_polling
  507. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  508. #endif
  509. static void resched_task(struct task_struct *p)
  510. {
  511. int cpu;
  512. assert_spin_locked(&task_rq(p)->lock);
  513. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  514. return;
  515. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  516. cpu = task_cpu(p);
  517. if (cpu == smp_processor_id())
  518. return;
  519. /* NEED_RESCHED must be visible before we test polling */
  520. smp_mb();
  521. if (!tsk_is_polling(p))
  522. smp_send_reschedule(cpu);
  523. }
  524. static void resched_cpu(int cpu)
  525. {
  526. struct rq *rq = cpu_rq(cpu);
  527. unsigned long flags;
  528. if (!spin_trylock_irqsave(&rq->lock, flags))
  529. return;
  530. resched_task(cpu_curr(cpu));
  531. spin_unlock_irqrestore(&rq->lock, flags);
  532. }
  533. #else
  534. static inline void resched_task(struct task_struct *p)
  535. {
  536. assert_spin_locked(&task_rq(p)->lock);
  537. set_tsk_need_resched(p);
  538. }
  539. #endif
  540. static u64 div64_likely32(u64 divident, unsigned long divisor)
  541. {
  542. #if BITS_PER_LONG == 32
  543. if (likely(divident <= 0xffffffffULL))
  544. return (u32)divident / divisor;
  545. do_div(divident, divisor);
  546. return divident;
  547. #else
  548. return divident / divisor;
  549. #endif
  550. }
  551. #if BITS_PER_LONG == 32
  552. # define WMULT_CONST (~0UL)
  553. #else
  554. # define WMULT_CONST (1UL << 32)
  555. #endif
  556. #define WMULT_SHIFT 32
  557. static unsigned long
  558. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  559. struct load_weight *lw)
  560. {
  561. u64 tmp;
  562. if (unlikely(!lw->inv_weight))
  563. lw->inv_weight = WMULT_CONST / lw->weight;
  564. tmp = (u64)delta_exec * weight;
  565. /*
  566. * Check whether we'd overflow the 64-bit multiplication:
  567. */
  568. if (unlikely(tmp > WMULT_CONST)) {
  569. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  570. >> (WMULT_SHIFT/2);
  571. } else {
  572. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  573. }
  574. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  575. }
  576. static inline unsigned long
  577. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  578. {
  579. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  580. }
  581. static void update_load_add(struct load_weight *lw, unsigned long inc)
  582. {
  583. lw->weight += inc;
  584. lw->inv_weight = 0;
  585. }
  586. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  587. {
  588. lw->weight -= dec;
  589. lw->inv_weight = 0;
  590. }
  591. /*
  592. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  593. * of tasks with abnormal "nice" values across CPUs the contribution that
  594. * each task makes to its run queue's load is weighted according to its
  595. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  596. * scaled version of the new time slice allocation that they receive on time
  597. * slice expiry etc.
  598. */
  599. #define WEIGHT_IDLEPRIO 2
  600. #define WMULT_IDLEPRIO (1 << 31)
  601. /*
  602. * Nice levels are multiplicative, with a gentle 10% change for every
  603. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  604. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  605. * that remained on nice 0.
  606. *
  607. * The "10% effect" is relative and cumulative: from _any_ nice level,
  608. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  609. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  610. * If a task goes up by ~10% and another task goes down by ~10% then
  611. * the relative distance between them is ~25%.)
  612. */
  613. static const int prio_to_weight[40] = {
  614. /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
  615. /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
  616. /* 0 */ NICE_0_LOAD /* 1024 */,
  617. /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
  618. /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
  619. };
  620. /*
  621. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  622. *
  623. * In cases where the weight does not change often, we can use the
  624. * precalculated inverse to speed up arithmetics by turning divisions
  625. * into multiplications:
  626. */
  627. static const u32 prio_to_wmult[40] = {
  628. /* -20 */ 48356, 60446, 75558, 94446, 118058,
  629. /* -15 */ 147573, 184467, 230589, 288233, 360285,
  630. /* -10 */ 450347, 562979, 703746, 879575, 1099582,
  631. /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
  632. /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
  633. /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
  634. /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
  635. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  636. };
  637. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  638. /*
  639. * runqueue iterator, to support SMP load-balancing between different
  640. * scheduling classes, without having to expose their internal data
  641. * structures to the load-balancing proper:
  642. */
  643. struct rq_iterator {
  644. void *arg;
  645. struct task_struct *(*start)(void *);
  646. struct task_struct *(*next)(void *);
  647. };
  648. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  649. unsigned long max_nr_move, unsigned long max_load_move,
  650. struct sched_domain *sd, enum cpu_idle_type idle,
  651. int *all_pinned, unsigned long *load_moved,
  652. int *this_best_prio, struct rq_iterator *iterator);
  653. #include "sched_stats.h"
  654. #include "sched_rt.c"
  655. #include "sched_fair.c"
  656. #include "sched_idletask.c"
  657. #ifdef CONFIG_SCHED_DEBUG
  658. # include "sched_debug.c"
  659. #endif
  660. #define sched_class_highest (&rt_sched_class)
  661. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  662. {
  663. if (rq->curr != rq->idle && ls->load.weight) {
  664. ls->delta_exec += ls->delta_stat;
  665. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  666. ls->delta_stat = 0;
  667. }
  668. }
  669. /*
  670. * Update delta_exec, delta_fair fields for rq.
  671. *
  672. * delta_fair clock advances at a rate inversely proportional to
  673. * total load (rq->ls.load.weight) on the runqueue, while
  674. * delta_exec advances at the same rate as wall-clock (provided
  675. * cpu is not idle).
  676. *
  677. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  678. * runqueue over any given interval. This (smoothened) load is used
  679. * during load balance.
  680. *
  681. * This function is called /before/ updating rq->ls.load
  682. * and when switching tasks.
  683. */
  684. static void update_curr_load(struct rq *rq)
  685. {
  686. struct load_stat *ls = &rq->ls;
  687. u64 start;
  688. start = ls->load_update_start;
  689. ls->load_update_start = rq->clock;
  690. ls->delta_stat += rq->clock - start;
  691. /*
  692. * Stagger updates to ls->delta_fair. Very frequent updates
  693. * can be expensive.
  694. */
  695. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  696. __update_curr_load(rq, ls);
  697. }
  698. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  699. {
  700. update_curr_load(rq);
  701. update_load_add(&rq->ls.load, p->se.load.weight);
  702. }
  703. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  704. {
  705. update_curr_load(rq);
  706. update_load_sub(&rq->ls.load, p->se.load.weight);
  707. }
  708. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  709. {
  710. rq->nr_running++;
  711. inc_load(rq, p);
  712. }
  713. static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  714. {
  715. rq->nr_running--;
  716. dec_load(rq, p);
  717. }
  718. static void set_load_weight(struct task_struct *p)
  719. {
  720. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  721. p->se.wait_runtime = 0;
  722. if (task_has_rt_policy(p)) {
  723. p->se.load.weight = prio_to_weight[0] * 2;
  724. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  725. return;
  726. }
  727. /*
  728. * SCHED_IDLE tasks get minimal weight:
  729. */
  730. if (p->policy == SCHED_IDLE) {
  731. p->se.load.weight = WEIGHT_IDLEPRIO;
  732. p->se.load.inv_weight = WMULT_IDLEPRIO;
  733. return;
  734. }
  735. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  736. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  737. }
  738. static void
  739. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
  740. {
  741. sched_info_queued(p);
  742. p->sched_class->enqueue_task(rq, p, wakeup);
  743. p->se.on_rq = 1;
  744. }
  745. static void
  746. dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  747. {
  748. p->sched_class->dequeue_task(rq, p, sleep);
  749. p->se.on_rq = 0;
  750. }
  751. /*
  752. * __normal_prio - return the priority that is based on the static prio
  753. */
  754. static inline int __normal_prio(struct task_struct *p)
  755. {
  756. return p->static_prio;
  757. }
  758. /*
  759. * Calculate the expected normal priority: i.e. priority
  760. * without taking RT-inheritance into account. Might be
  761. * boosted by interactivity modifiers. Changes upon fork,
  762. * setprio syscalls, and whenever the interactivity
  763. * estimator recalculates.
  764. */
  765. static inline int normal_prio(struct task_struct *p)
  766. {
  767. int prio;
  768. if (task_has_rt_policy(p))
  769. prio = MAX_RT_PRIO-1 - p->rt_priority;
  770. else
  771. prio = __normal_prio(p);
  772. return prio;
  773. }
  774. /*
  775. * Calculate the current priority, i.e. the priority
  776. * taken into account by the scheduler. This value might
  777. * be boosted by RT tasks, or might be boosted by
  778. * interactivity modifiers. Will be RT if the task got
  779. * RT-boosted. If not then it returns p->normal_prio.
  780. */
  781. static int effective_prio(struct task_struct *p)
  782. {
  783. p->normal_prio = normal_prio(p);
  784. /*
  785. * If we are RT tasks or we were boosted to RT priority,
  786. * keep the priority unchanged. Otherwise, update priority
  787. * to the normal priority:
  788. */
  789. if (!rt_prio(p->prio))
  790. return p->normal_prio;
  791. return p->prio;
  792. }
  793. /*
  794. * activate_task - move a task to the runqueue.
  795. */
  796. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  797. {
  798. u64 now;
  799. update_rq_clock(rq);
  800. now = rq->clock;
  801. if (p->state == TASK_UNINTERRUPTIBLE)
  802. rq->nr_uninterruptible--;
  803. enqueue_task(rq, p, wakeup, now);
  804. inc_nr_running(p, rq);
  805. }
  806. /*
  807. * activate_idle_task - move idle task to the _front_ of runqueue.
  808. */
  809. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  810. {
  811. u64 now;
  812. update_rq_clock(rq);
  813. now = rq->clock;
  814. if (p->state == TASK_UNINTERRUPTIBLE)
  815. rq->nr_uninterruptible--;
  816. enqueue_task(rq, p, 0, now);
  817. inc_nr_running(p, rq);
  818. }
  819. /*
  820. * deactivate_task - remove a task from the runqueue.
  821. */
  822. static void
  823. deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  824. {
  825. if (p->state == TASK_UNINTERRUPTIBLE)
  826. rq->nr_uninterruptible++;
  827. dequeue_task(rq, p, sleep, now);
  828. dec_nr_running(p, rq, now);
  829. }
  830. /**
  831. * task_curr - is this task currently executing on a CPU?
  832. * @p: the task in question.
  833. */
  834. inline int task_curr(const struct task_struct *p)
  835. {
  836. return cpu_curr(task_cpu(p)) == p;
  837. }
  838. /* Used instead of source_load when we know the type == 0 */
  839. unsigned long weighted_cpuload(const int cpu)
  840. {
  841. return cpu_rq(cpu)->ls.load.weight;
  842. }
  843. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  844. {
  845. #ifdef CONFIG_SMP
  846. task_thread_info(p)->cpu = cpu;
  847. set_task_cfs_rq(p);
  848. #endif
  849. }
  850. #ifdef CONFIG_SMP
  851. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  852. {
  853. int old_cpu = task_cpu(p);
  854. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  855. u64 clock_offset, fair_clock_offset;
  856. clock_offset = old_rq->clock - new_rq->clock;
  857. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  858. if (p->se.wait_start_fair)
  859. p->se.wait_start_fair -= fair_clock_offset;
  860. if (p->se.sleep_start_fair)
  861. p->se.sleep_start_fair -= fair_clock_offset;
  862. #ifdef CONFIG_SCHEDSTATS
  863. if (p->se.wait_start)
  864. p->se.wait_start -= clock_offset;
  865. if (p->se.sleep_start)
  866. p->se.sleep_start -= clock_offset;
  867. if (p->se.block_start)
  868. p->se.block_start -= clock_offset;
  869. #endif
  870. __set_task_cpu(p, new_cpu);
  871. }
  872. struct migration_req {
  873. struct list_head list;
  874. struct task_struct *task;
  875. int dest_cpu;
  876. struct completion done;
  877. };
  878. /*
  879. * The task's runqueue lock must be held.
  880. * Returns true if you have to wait for migration thread.
  881. */
  882. static int
  883. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  884. {
  885. struct rq *rq = task_rq(p);
  886. /*
  887. * If the task is not on a runqueue (and not running), then
  888. * it is sufficient to simply update the task's cpu field.
  889. */
  890. if (!p->se.on_rq && !task_running(rq, p)) {
  891. set_task_cpu(p, dest_cpu);
  892. return 0;
  893. }
  894. init_completion(&req->done);
  895. req->task = p;
  896. req->dest_cpu = dest_cpu;
  897. list_add(&req->list, &rq->migration_queue);
  898. return 1;
  899. }
  900. /*
  901. * wait_task_inactive - wait for a thread to unschedule.
  902. *
  903. * The caller must ensure that the task *will* unschedule sometime soon,
  904. * else this function might spin for a *long* time. This function can't
  905. * be called with interrupts off, or it may introduce deadlock with
  906. * smp_call_function() if an IPI is sent by the same process we are
  907. * waiting to become inactive.
  908. */
  909. void wait_task_inactive(struct task_struct *p)
  910. {
  911. unsigned long flags;
  912. int running, on_rq;
  913. struct rq *rq;
  914. repeat:
  915. /*
  916. * We do the initial early heuristics without holding
  917. * any task-queue locks at all. We'll only try to get
  918. * the runqueue lock when things look like they will
  919. * work out!
  920. */
  921. rq = task_rq(p);
  922. /*
  923. * If the task is actively running on another CPU
  924. * still, just relax and busy-wait without holding
  925. * any locks.
  926. *
  927. * NOTE! Since we don't hold any locks, it's not
  928. * even sure that "rq" stays as the right runqueue!
  929. * But we don't care, since "task_running()" will
  930. * return false if the runqueue has changed and p
  931. * is actually now running somewhere else!
  932. */
  933. while (task_running(rq, p))
  934. cpu_relax();
  935. /*
  936. * Ok, time to look more closely! We need the rq
  937. * lock now, to be *sure*. If we're wrong, we'll
  938. * just go back and repeat.
  939. */
  940. rq = task_rq_lock(p, &flags);
  941. running = task_running(rq, p);
  942. on_rq = p->se.on_rq;
  943. task_rq_unlock(rq, &flags);
  944. /*
  945. * Was it really running after all now that we
  946. * checked with the proper locks actually held?
  947. *
  948. * Oops. Go back and try again..
  949. */
  950. if (unlikely(running)) {
  951. cpu_relax();
  952. goto repeat;
  953. }
  954. /*
  955. * It's not enough that it's not actively running,
  956. * it must be off the runqueue _entirely_, and not
  957. * preempted!
  958. *
  959. * So if it wa still runnable (but just not actively
  960. * running right now), it's preempted, and we should
  961. * yield - it could be a while.
  962. */
  963. if (unlikely(on_rq)) {
  964. yield();
  965. goto repeat;
  966. }
  967. /*
  968. * Ahh, all good. It wasn't running, and it wasn't
  969. * runnable, which means that it will never become
  970. * running in the future either. We're all done!
  971. */
  972. }
  973. /***
  974. * kick_process - kick a running thread to enter/exit the kernel
  975. * @p: the to-be-kicked thread
  976. *
  977. * Cause a process which is running on another CPU to enter
  978. * kernel-mode, without any delay. (to get signals handled.)
  979. *
  980. * NOTE: this function doesnt have to take the runqueue lock,
  981. * because all it wants to ensure is that the remote task enters
  982. * the kernel. If the IPI races and the task has been migrated
  983. * to another CPU then no harm is done and the purpose has been
  984. * achieved as well.
  985. */
  986. void kick_process(struct task_struct *p)
  987. {
  988. int cpu;
  989. preempt_disable();
  990. cpu = task_cpu(p);
  991. if ((cpu != smp_processor_id()) && task_curr(p))
  992. smp_send_reschedule(cpu);
  993. preempt_enable();
  994. }
  995. /*
  996. * Return a low guess at the load of a migration-source cpu weighted
  997. * according to the scheduling class and "nice" value.
  998. *
  999. * We want to under-estimate the load of migration sources, to
  1000. * balance conservatively.
  1001. */
  1002. static inline unsigned long source_load(int cpu, int type)
  1003. {
  1004. struct rq *rq = cpu_rq(cpu);
  1005. unsigned long total = weighted_cpuload(cpu);
  1006. if (type == 0)
  1007. return total;
  1008. return min(rq->cpu_load[type-1], total);
  1009. }
  1010. /*
  1011. * Return a high guess at the load of a migration-target cpu weighted
  1012. * according to the scheduling class and "nice" value.
  1013. */
  1014. static inline unsigned long target_load(int cpu, int type)
  1015. {
  1016. struct rq *rq = cpu_rq(cpu);
  1017. unsigned long total = weighted_cpuload(cpu);
  1018. if (type == 0)
  1019. return total;
  1020. return max(rq->cpu_load[type-1], total);
  1021. }
  1022. /*
  1023. * Return the average load per task on the cpu's run queue
  1024. */
  1025. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. unsigned long total = weighted_cpuload(cpu);
  1029. unsigned long n = rq->nr_running;
  1030. return n ? total / n : SCHED_LOAD_SCALE;
  1031. }
  1032. /*
  1033. * find_idlest_group finds and returns the least busy CPU group within the
  1034. * domain.
  1035. */
  1036. static struct sched_group *
  1037. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1038. {
  1039. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1040. unsigned long min_load = ULONG_MAX, this_load = 0;
  1041. int load_idx = sd->forkexec_idx;
  1042. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1043. do {
  1044. unsigned long load, avg_load;
  1045. int local_group;
  1046. int i;
  1047. /* Skip over this group if it has no CPUs allowed */
  1048. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1049. goto nextgroup;
  1050. local_group = cpu_isset(this_cpu, group->cpumask);
  1051. /* Tally up the load of all CPUs in the group */
  1052. avg_load = 0;
  1053. for_each_cpu_mask(i, group->cpumask) {
  1054. /* Bias balancing toward cpus of our domain */
  1055. if (local_group)
  1056. load = source_load(i, load_idx);
  1057. else
  1058. load = target_load(i, load_idx);
  1059. avg_load += load;
  1060. }
  1061. /* Adjust by relative CPU power of the group */
  1062. avg_load = sg_div_cpu_power(group,
  1063. avg_load * SCHED_LOAD_SCALE);
  1064. if (local_group) {
  1065. this_load = avg_load;
  1066. this = group;
  1067. } else if (avg_load < min_load) {
  1068. min_load = avg_load;
  1069. idlest = group;
  1070. }
  1071. nextgroup:
  1072. group = group->next;
  1073. } while (group != sd->groups);
  1074. if (!idlest || 100*this_load < imbalance*min_load)
  1075. return NULL;
  1076. return idlest;
  1077. }
  1078. /*
  1079. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1080. */
  1081. static int
  1082. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1083. {
  1084. cpumask_t tmp;
  1085. unsigned long load, min_load = ULONG_MAX;
  1086. int idlest = -1;
  1087. int i;
  1088. /* Traverse only the allowed CPUs */
  1089. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1090. for_each_cpu_mask(i, tmp) {
  1091. load = weighted_cpuload(i);
  1092. if (load < min_load || (load == min_load && i == this_cpu)) {
  1093. min_load = load;
  1094. idlest = i;
  1095. }
  1096. }
  1097. return idlest;
  1098. }
  1099. /*
  1100. * sched_balance_self: balance the current task (running on cpu) in domains
  1101. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1102. * SD_BALANCE_EXEC.
  1103. *
  1104. * Balance, ie. select the least loaded group.
  1105. *
  1106. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1107. *
  1108. * preempt must be disabled.
  1109. */
  1110. static int sched_balance_self(int cpu, int flag)
  1111. {
  1112. struct task_struct *t = current;
  1113. struct sched_domain *tmp, *sd = NULL;
  1114. for_each_domain(cpu, tmp) {
  1115. /*
  1116. * If power savings logic is enabled for a domain, stop there.
  1117. */
  1118. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1119. break;
  1120. if (tmp->flags & flag)
  1121. sd = tmp;
  1122. }
  1123. while (sd) {
  1124. cpumask_t span;
  1125. struct sched_group *group;
  1126. int new_cpu, weight;
  1127. if (!(sd->flags & flag)) {
  1128. sd = sd->child;
  1129. continue;
  1130. }
  1131. span = sd->span;
  1132. group = find_idlest_group(sd, t, cpu);
  1133. if (!group) {
  1134. sd = sd->child;
  1135. continue;
  1136. }
  1137. new_cpu = find_idlest_cpu(group, t, cpu);
  1138. if (new_cpu == -1 || new_cpu == cpu) {
  1139. /* Now try balancing at a lower domain level of cpu */
  1140. sd = sd->child;
  1141. continue;
  1142. }
  1143. /* Now try balancing at a lower domain level of new_cpu */
  1144. cpu = new_cpu;
  1145. sd = NULL;
  1146. weight = cpus_weight(span);
  1147. for_each_domain(cpu, tmp) {
  1148. if (weight <= cpus_weight(tmp->span))
  1149. break;
  1150. if (tmp->flags & flag)
  1151. sd = tmp;
  1152. }
  1153. /* while loop will break here if sd == NULL */
  1154. }
  1155. return cpu;
  1156. }
  1157. #endif /* CONFIG_SMP */
  1158. /*
  1159. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1160. * not idle and an idle cpu is available. The span of cpus to
  1161. * search starts with cpus closest then further out as needed,
  1162. * so we always favor a closer, idle cpu.
  1163. *
  1164. * Returns the CPU we should wake onto.
  1165. */
  1166. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1167. static int wake_idle(int cpu, struct task_struct *p)
  1168. {
  1169. cpumask_t tmp;
  1170. struct sched_domain *sd;
  1171. int i;
  1172. /*
  1173. * If it is idle, then it is the best cpu to run this task.
  1174. *
  1175. * This cpu is also the best, if it has more than one task already.
  1176. * Siblings must be also busy(in most cases) as they didn't already
  1177. * pickup the extra load from this cpu and hence we need not check
  1178. * sibling runqueue info. This will avoid the checks and cache miss
  1179. * penalities associated with that.
  1180. */
  1181. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1182. return cpu;
  1183. for_each_domain(cpu, sd) {
  1184. if (sd->flags & SD_WAKE_IDLE) {
  1185. cpus_and(tmp, sd->span, p->cpus_allowed);
  1186. for_each_cpu_mask(i, tmp) {
  1187. if (idle_cpu(i))
  1188. return i;
  1189. }
  1190. } else {
  1191. break;
  1192. }
  1193. }
  1194. return cpu;
  1195. }
  1196. #else
  1197. static inline int wake_idle(int cpu, struct task_struct *p)
  1198. {
  1199. return cpu;
  1200. }
  1201. #endif
  1202. /***
  1203. * try_to_wake_up - wake up a thread
  1204. * @p: the to-be-woken-up thread
  1205. * @state: the mask of task states that can be woken
  1206. * @sync: do a synchronous wakeup?
  1207. *
  1208. * Put it on the run-queue if it's not already there. The "current"
  1209. * thread is always on the run-queue (except when the actual
  1210. * re-schedule is in progress), and as such you're allowed to do
  1211. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1212. * runnable without the overhead of this.
  1213. *
  1214. * returns failure only if the task is already active.
  1215. */
  1216. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1217. {
  1218. int cpu, this_cpu, success = 0;
  1219. unsigned long flags;
  1220. long old_state;
  1221. struct rq *rq;
  1222. #ifdef CONFIG_SMP
  1223. struct sched_domain *sd, *this_sd = NULL;
  1224. unsigned long load, this_load;
  1225. int new_cpu;
  1226. #endif
  1227. rq = task_rq_lock(p, &flags);
  1228. old_state = p->state;
  1229. if (!(old_state & state))
  1230. goto out;
  1231. if (p->se.on_rq)
  1232. goto out_running;
  1233. cpu = task_cpu(p);
  1234. this_cpu = smp_processor_id();
  1235. #ifdef CONFIG_SMP
  1236. if (unlikely(task_running(rq, p)))
  1237. goto out_activate;
  1238. new_cpu = cpu;
  1239. schedstat_inc(rq, ttwu_cnt);
  1240. if (cpu == this_cpu) {
  1241. schedstat_inc(rq, ttwu_local);
  1242. goto out_set_cpu;
  1243. }
  1244. for_each_domain(this_cpu, sd) {
  1245. if (cpu_isset(cpu, sd->span)) {
  1246. schedstat_inc(sd, ttwu_wake_remote);
  1247. this_sd = sd;
  1248. break;
  1249. }
  1250. }
  1251. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1252. goto out_set_cpu;
  1253. /*
  1254. * Check for affine wakeup and passive balancing possibilities.
  1255. */
  1256. if (this_sd) {
  1257. int idx = this_sd->wake_idx;
  1258. unsigned int imbalance;
  1259. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1260. load = source_load(cpu, idx);
  1261. this_load = target_load(this_cpu, idx);
  1262. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1263. if (this_sd->flags & SD_WAKE_AFFINE) {
  1264. unsigned long tl = this_load;
  1265. unsigned long tl_per_task;
  1266. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1267. /*
  1268. * If sync wakeup then subtract the (maximum possible)
  1269. * effect of the currently running task from the load
  1270. * of the current CPU:
  1271. */
  1272. if (sync)
  1273. tl -= current->se.load.weight;
  1274. if ((tl <= load &&
  1275. tl + target_load(cpu, idx) <= tl_per_task) ||
  1276. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1277. /*
  1278. * This domain has SD_WAKE_AFFINE and
  1279. * p is cache cold in this domain, and
  1280. * there is no bad imbalance.
  1281. */
  1282. schedstat_inc(this_sd, ttwu_move_affine);
  1283. goto out_set_cpu;
  1284. }
  1285. }
  1286. /*
  1287. * Start passive balancing when half the imbalance_pct
  1288. * limit is reached.
  1289. */
  1290. if (this_sd->flags & SD_WAKE_BALANCE) {
  1291. if (imbalance*this_load <= 100*load) {
  1292. schedstat_inc(this_sd, ttwu_move_balance);
  1293. goto out_set_cpu;
  1294. }
  1295. }
  1296. }
  1297. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1298. out_set_cpu:
  1299. new_cpu = wake_idle(new_cpu, p);
  1300. if (new_cpu != cpu) {
  1301. set_task_cpu(p, new_cpu);
  1302. task_rq_unlock(rq, &flags);
  1303. /* might preempt at this point */
  1304. rq = task_rq_lock(p, &flags);
  1305. old_state = p->state;
  1306. if (!(old_state & state))
  1307. goto out;
  1308. if (p->se.on_rq)
  1309. goto out_running;
  1310. this_cpu = smp_processor_id();
  1311. cpu = task_cpu(p);
  1312. }
  1313. out_activate:
  1314. #endif /* CONFIG_SMP */
  1315. activate_task(rq, p, 1);
  1316. /*
  1317. * Sync wakeups (i.e. those types of wakeups where the waker
  1318. * has indicated that it will leave the CPU in short order)
  1319. * don't trigger a preemption, if the woken up task will run on
  1320. * this cpu. (in this case the 'I will reschedule' promise of
  1321. * the waker guarantees that the freshly woken up task is going
  1322. * to be considered on this CPU.)
  1323. */
  1324. if (!sync || cpu != this_cpu)
  1325. check_preempt_curr(rq, p);
  1326. success = 1;
  1327. out_running:
  1328. p->state = TASK_RUNNING;
  1329. out:
  1330. task_rq_unlock(rq, &flags);
  1331. return success;
  1332. }
  1333. int fastcall wake_up_process(struct task_struct *p)
  1334. {
  1335. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1336. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1337. }
  1338. EXPORT_SYMBOL(wake_up_process);
  1339. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1340. {
  1341. return try_to_wake_up(p, state, 0);
  1342. }
  1343. /*
  1344. * Perform scheduler related setup for a newly forked process p.
  1345. * p is forked by current.
  1346. *
  1347. * __sched_fork() is basic setup used by init_idle() too:
  1348. */
  1349. static void __sched_fork(struct task_struct *p)
  1350. {
  1351. p->se.wait_start_fair = 0;
  1352. p->se.exec_start = 0;
  1353. p->se.sum_exec_runtime = 0;
  1354. p->se.delta_exec = 0;
  1355. p->se.delta_fair_run = 0;
  1356. p->se.delta_fair_sleep = 0;
  1357. p->se.wait_runtime = 0;
  1358. p->se.sleep_start_fair = 0;
  1359. #ifdef CONFIG_SCHEDSTATS
  1360. p->se.wait_start = 0;
  1361. p->se.sum_wait_runtime = 0;
  1362. p->se.sum_sleep_runtime = 0;
  1363. p->se.sleep_start = 0;
  1364. p->se.block_start = 0;
  1365. p->se.sleep_max = 0;
  1366. p->se.block_max = 0;
  1367. p->se.exec_max = 0;
  1368. p->se.wait_max = 0;
  1369. p->se.wait_runtime_overruns = 0;
  1370. p->se.wait_runtime_underruns = 0;
  1371. #endif
  1372. INIT_LIST_HEAD(&p->run_list);
  1373. p->se.on_rq = 0;
  1374. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1375. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1376. #endif
  1377. /*
  1378. * We mark the process as running here, but have not actually
  1379. * inserted it onto the runqueue yet. This guarantees that
  1380. * nobody will actually run it, and a signal or other external
  1381. * event cannot wake it up and insert it on the runqueue either.
  1382. */
  1383. p->state = TASK_RUNNING;
  1384. }
  1385. /*
  1386. * fork()/clone()-time setup:
  1387. */
  1388. void sched_fork(struct task_struct *p, int clone_flags)
  1389. {
  1390. int cpu = get_cpu();
  1391. __sched_fork(p);
  1392. #ifdef CONFIG_SMP
  1393. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1394. #endif
  1395. __set_task_cpu(p, cpu);
  1396. /*
  1397. * Make sure we do not leak PI boosting priority to the child:
  1398. */
  1399. p->prio = current->normal_prio;
  1400. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1401. if (likely(sched_info_on()))
  1402. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1403. #endif
  1404. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1405. p->oncpu = 0;
  1406. #endif
  1407. #ifdef CONFIG_PREEMPT
  1408. /* Want to start with kernel preemption disabled. */
  1409. task_thread_info(p)->preempt_count = 1;
  1410. #endif
  1411. put_cpu();
  1412. }
  1413. /*
  1414. * After fork, child runs first. (default) If set to 0 then
  1415. * parent will (try to) run first.
  1416. */
  1417. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1418. /*
  1419. * wake_up_new_task - wake up a newly created task for the first time.
  1420. *
  1421. * This function will do some initial scheduler statistics housekeeping
  1422. * that must be done for every newly created context, then puts the task
  1423. * on the runqueue and wakes it.
  1424. */
  1425. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1426. {
  1427. unsigned long flags;
  1428. struct rq *rq;
  1429. int this_cpu;
  1430. u64 now;
  1431. rq = task_rq_lock(p, &flags);
  1432. BUG_ON(p->state != TASK_RUNNING);
  1433. this_cpu = smp_processor_id(); /* parent's CPU */
  1434. update_rq_clock(rq);
  1435. now = rq->clock;
  1436. p->prio = effective_prio(p);
  1437. if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
  1438. (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
  1439. !current->se.on_rq) {
  1440. activate_task(rq, p, 0);
  1441. } else {
  1442. /*
  1443. * Let the scheduling class do new task startup
  1444. * management (if any):
  1445. */
  1446. p->sched_class->task_new(rq, p);
  1447. inc_nr_running(p, rq);
  1448. }
  1449. check_preempt_curr(rq, p);
  1450. task_rq_unlock(rq, &flags);
  1451. }
  1452. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1453. /**
  1454. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1455. * @notifier: notifier struct to register
  1456. */
  1457. void preempt_notifier_register(struct preempt_notifier *notifier)
  1458. {
  1459. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1460. }
  1461. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1462. /**
  1463. * preempt_notifier_unregister - no longer interested in preemption notifications
  1464. * @notifier: notifier struct to unregister
  1465. *
  1466. * This is safe to call from within a preemption notifier.
  1467. */
  1468. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1469. {
  1470. hlist_del(&notifier->link);
  1471. }
  1472. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1473. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1474. {
  1475. struct preempt_notifier *notifier;
  1476. struct hlist_node *node;
  1477. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1478. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1479. }
  1480. static void
  1481. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1482. struct task_struct *next)
  1483. {
  1484. struct preempt_notifier *notifier;
  1485. struct hlist_node *node;
  1486. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1487. notifier->ops->sched_out(notifier, next);
  1488. }
  1489. #else
  1490. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1491. {
  1492. }
  1493. static void
  1494. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1495. struct task_struct *next)
  1496. {
  1497. }
  1498. #endif
  1499. /**
  1500. * prepare_task_switch - prepare to switch tasks
  1501. * @rq: the runqueue preparing to switch
  1502. * @prev: the current task that is being switched out
  1503. * @next: the task we are going to switch to.
  1504. *
  1505. * This is called with the rq lock held and interrupts off. It must
  1506. * be paired with a subsequent finish_task_switch after the context
  1507. * switch.
  1508. *
  1509. * prepare_task_switch sets up locking and calls architecture specific
  1510. * hooks.
  1511. */
  1512. static inline void
  1513. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1514. struct task_struct *next)
  1515. {
  1516. fire_sched_out_preempt_notifiers(prev, next);
  1517. prepare_lock_switch(rq, next);
  1518. prepare_arch_switch(next);
  1519. }
  1520. /**
  1521. * finish_task_switch - clean up after a task-switch
  1522. * @rq: runqueue associated with task-switch
  1523. * @prev: the thread we just switched away from.
  1524. *
  1525. * finish_task_switch must be called after the context switch, paired
  1526. * with a prepare_task_switch call before the context switch.
  1527. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1528. * and do any other architecture-specific cleanup actions.
  1529. *
  1530. * Note that we may have delayed dropping an mm in context_switch(). If
  1531. * so, we finish that here outside of the runqueue lock. (Doing it
  1532. * with the lock held can cause deadlocks; see schedule() for
  1533. * details.)
  1534. */
  1535. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1536. __releases(rq->lock)
  1537. {
  1538. struct mm_struct *mm = rq->prev_mm;
  1539. long prev_state;
  1540. rq->prev_mm = NULL;
  1541. /*
  1542. * A task struct has one reference for the use as "current".
  1543. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1544. * schedule one last time. The schedule call will never return, and
  1545. * the scheduled task must drop that reference.
  1546. * The test for TASK_DEAD must occur while the runqueue locks are
  1547. * still held, otherwise prev could be scheduled on another cpu, die
  1548. * there before we look at prev->state, and then the reference would
  1549. * be dropped twice.
  1550. * Manfred Spraul <manfred@colorfullife.com>
  1551. */
  1552. prev_state = prev->state;
  1553. finish_arch_switch(prev);
  1554. finish_lock_switch(rq, prev);
  1555. fire_sched_in_preempt_notifiers(current);
  1556. if (mm)
  1557. mmdrop(mm);
  1558. if (unlikely(prev_state == TASK_DEAD)) {
  1559. /*
  1560. * Remove function-return probe instances associated with this
  1561. * task and put them back on the free list.
  1562. */
  1563. kprobe_flush_task(prev);
  1564. put_task_struct(prev);
  1565. }
  1566. }
  1567. /**
  1568. * schedule_tail - first thing a freshly forked thread must call.
  1569. * @prev: the thread we just switched away from.
  1570. */
  1571. asmlinkage void schedule_tail(struct task_struct *prev)
  1572. __releases(rq->lock)
  1573. {
  1574. struct rq *rq = this_rq();
  1575. finish_task_switch(rq, prev);
  1576. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1577. /* In this case, finish_task_switch does not reenable preemption */
  1578. preempt_enable();
  1579. #endif
  1580. if (current->set_child_tid)
  1581. put_user(current->pid, current->set_child_tid);
  1582. }
  1583. /*
  1584. * context_switch - switch to the new MM and the new
  1585. * thread's register state.
  1586. */
  1587. static inline void
  1588. context_switch(struct rq *rq, struct task_struct *prev,
  1589. struct task_struct *next)
  1590. {
  1591. struct mm_struct *mm, *oldmm;
  1592. prepare_task_switch(rq, prev, next);
  1593. mm = next->mm;
  1594. oldmm = prev->active_mm;
  1595. /*
  1596. * For paravirt, this is coupled with an exit in switch_to to
  1597. * combine the page table reload and the switch backend into
  1598. * one hypercall.
  1599. */
  1600. arch_enter_lazy_cpu_mode();
  1601. if (unlikely(!mm)) {
  1602. next->active_mm = oldmm;
  1603. atomic_inc(&oldmm->mm_count);
  1604. enter_lazy_tlb(oldmm, next);
  1605. } else
  1606. switch_mm(oldmm, mm, next);
  1607. if (unlikely(!prev->mm)) {
  1608. prev->active_mm = NULL;
  1609. rq->prev_mm = oldmm;
  1610. }
  1611. /*
  1612. * Since the runqueue lock will be released by the next
  1613. * task (which is an invalid locking op but in the case
  1614. * of the scheduler it's an obvious special-case), so we
  1615. * do an early lockdep release here:
  1616. */
  1617. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1618. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1619. #endif
  1620. /* Here we just switch the register state and the stack. */
  1621. switch_to(prev, next, prev);
  1622. barrier();
  1623. /*
  1624. * this_rq must be evaluated again because prev may have moved
  1625. * CPUs since it called schedule(), thus the 'rq' on its stack
  1626. * frame will be invalid.
  1627. */
  1628. finish_task_switch(this_rq(), prev);
  1629. }
  1630. /*
  1631. * nr_running, nr_uninterruptible and nr_context_switches:
  1632. *
  1633. * externally visible scheduler statistics: current number of runnable
  1634. * threads, current number of uninterruptible-sleeping threads, total
  1635. * number of context switches performed since bootup.
  1636. */
  1637. unsigned long nr_running(void)
  1638. {
  1639. unsigned long i, sum = 0;
  1640. for_each_online_cpu(i)
  1641. sum += cpu_rq(i)->nr_running;
  1642. return sum;
  1643. }
  1644. unsigned long nr_uninterruptible(void)
  1645. {
  1646. unsigned long i, sum = 0;
  1647. for_each_possible_cpu(i)
  1648. sum += cpu_rq(i)->nr_uninterruptible;
  1649. /*
  1650. * Since we read the counters lockless, it might be slightly
  1651. * inaccurate. Do not allow it to go below zero though:
  1652. */
  1653. if (unlikely((long)sum < 0))
  1654. sum = 0;
  1655. return sum;
  1656. }
  1657. unsigned long long nr_context_switches(void)
  1658. {
  1659. int i;
  1660. unsigned long long sum = 0;
  1661. for_each_possible_cpu(i)
  1662. sum += cpu_rq(i)->nr_switches;
  1663. return sum;
  1664. }
  1665. unsigned long nr_iowait(void)
  1666. {
  1667. unsigned long i, sum = 0;
  1668. for_each_possible_cpu(i)
  1669. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1670. return sum;
  1671. }
  1672. unsigned long nr_active(void)
  1673. {
  1674. unsigned long i, running = 0, uninterruptible = 0;
  1675. for_each_online_cpu(i) {
  1676. running += cpu_rq(i)->nr_running;
  1677. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1678. }
  1679. if (unlikely((long)uninterruptible < 0))
  1680. uninterruptible = 0;
  1681. return running + uninterruptible;
  1682. }
  1683. /*
  1684. * Update rq->cpu_load[] statistics. This function is usually called every
  1685. * scheduler tick (TICK_NSEC).
  1686. */
  1687. static void update_cpu_load(struct rq *this_rq)
  1688. {
  1689. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1690. unsigned long total_load = this_rq->ls.load.weight;
  1691. unsigned long this_load = total_load;
  1692. struct load_stat *ls = &this_rq->ls;
  1693. u64 now;
  1694. int i, scale;
  1695. __update_rq_clock(this_rq);
  1696. now = this_rq->clock;
  1697. this_rq->nr_load_updates++;
  1698. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1699. goto do_avg;
  1700. /* Update delta_fair/delta_exec fields first */
  1701. update_curr_load(this_rq);
  1702. fair_delta64 = ls->delta_fair + 1;
  1703. ls->delta_fair = 0;
  1704. exec_delta64 = ls->delta_exec + 1;
  1705. ls->delta_exec = 0;
  1706. sample_interval64 = this_rq->clock - ls->load_update_last;
  1707. ls->load_update_last = this_rq->clock;
  1708. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1709. sample_interval64 = TICK_NSEC;
  1710. if (exec_delta64 > sample_interval64)
  1711. exec_delta64 = sample_interval64;
  1712. idle_delta64 = sample_interval64 - exec_delta64;
  1713. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1714. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1715. this_load = (unsigned long)tmp64;
  1716. do_avg:
  1717. /* Update our load: */
  1718. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1719. unsigned long old_load, new_load;
  1720. /* scale is effectively 1 << i now, and >> i divides by scale */
  1721. old_load = this_rq->cpu_load[i];
  1722. new_load = this_load;
  1723. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1724. }
  1725. }
  1726. #ifdef CONFIG_SMP
  1727. /*
  1728. * double_rq_lock - safely lock two runqueues
  1729. *
  1730. * Note this does not disable interrupts like task_rq_lock,
  1731. * you need to do so manually before calling.
  1732. */
  1733. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1734. __acquires(rq1->lock)
  1735. __acquires(rq2->lock)
  1736. {
  1737. BUG_ON(!irqs_disabled());
  1738. if (rq1 == rq2) {
  1739. spin_lock(&rq1->lock);
  1740. __acquire(rq2->lock); /* Fake it out ;) */
  1741. } else {
  1742. if (rq1 < rq2) {
  1743. spin_lock(&rq1->lock);
  1744. spin_lock(&rq2->lock);
  1745. } else {
  1746. spin_lock(&rq2->lock);
  1747. spin_lock(&rq1->lock);
  1748. }
  1749. }
  1750. }
  1751. /*
  1752. * double_rq_unlock - safely unlock two runqueues
  1753. *
  1754. * Note this does not restore interrupts like task_rq_unlock,
  1755. * you need to do so manually after calling.
  1756. */
  1757. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1758. __releases(rq1->lock)
  1759. __releases(rq2->lock)
  1760. {
  1761. spin_unlock(&rq1->lock);
  1762. if (rq1 != rq2)
  1763. spin_unlock(&rq2->lock);
  1764. else
  1765. __release(rq2->lock);
  1766. }
  1767. /*
  1768. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1769. */
  1770. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1771. __releases(this_rq->lock)
  1772. __acquires(busiest->lock)
  1773. __acquires(this_rq->lock)
  1774. {
  1775. if (unlikely(!irqs_disabled())) {
  1776. /* printk() doesn't work good under rq->lock */
  1777. spin_unlock(&this_rq->lock);
  1778. BUG_ON(1);
  1779. }
  1780. if (unlikely(!spin_trylock(&busiest->lock))) {
  1781. if (busiest < this_rq) {
  1782. spin_unlock(&this_rq->lock);
  1783. spin_lock(&busiest->lock);
  1784. spin_lock(&this_rq->lock);
  1785. } else
  1786. spin_lock(&busiest->lock);
  1787. }
  1788. }
  1789. /*
  1790. * If dest_cpu is allowed for this process, migrate the task to it.
  1791. * This is accomplished by forcing the cpu_allowed mask to only
  1792. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1793. * the cpu_allowed mask is restored.
  1794. */
  1795. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1796. {
  1797. struct migration_req req;
  1798. unsigned long flags;
  1799. struct rq *rq;
  1800. rq = task_rq_lock(p, &flags);
  1801. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1802. || unlikely(cpu_is_offline(dest_cpu)))
  1803. goto out;
  1804. /* force the process onto the specified CPU */
  1805. if (migrate_task(p, dest_cpu, &req)) {
  1806. /* Need to wait for migration thread (might exit: take ref). */
  1807. struct task_struct *mt = rq->migration_thread;
  1808. get_task_struct(mt);
  1809. task_rq_unlock(rq, &flags);
  1810. wake_up_process(mt);
  1811. put_task_struct(mt);
  1812. wait_for_completion(&req.done);
  1813. return;
  1814. }
  1815. out:
  1816. task_rq_unlock(rq, &flags);
  1817. }
  1818. /*
  1819. * sched_exec - execve() is a valuable balancing opportunity, because at
  1820. * this point the task has the smallest effective memory and cache footprint.
  1821. */
  1822. void sched_exec(void)
  1823. {
  1824. int new_cpu, this_cpu = get_cpu();
  1825. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1826. put_cpu();
  1827. if (new_cpu != this_cpu)
  1828. sched_migrate_task(current, new_cpu);
  1829. }
  1830. /*
  1831. * pull_task - move a task from a remote runqueue to the local runqueue.
  1832. * Both runqueues must be locked.
  1833. */
  1834. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1835. struct rq *this_rq, int this_cpu)
  1836. {
  1837. update_rq_clock(src_rq);
  1838. deactivate_task(src_rq, p, 0, src_rq->clock);
  1839. set_task_cpu(p, this_cpu);
  1840. activate_task(this_rq, p, 0);
  1841. /*
  1842. * Note that idle threads have a prio of MAX_PRIO, for this test
  1843. * to be always true for them.
  1844. */
  1845. check_preempt_curr(this_rq, p);
  1846. }
  1847. /*
  1848. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1849. */
  1850. static
  1851. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1852. struct sched_domain *sd, enum cpu_idle_type idle,
  1853. int *all_pinned)
  1854. {
  1855. /*
  1856. * We do not migrate tasks that are:
  1857. * 1) running (obviously), or
  1858. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1859. * 3) are cache-hot on their current CPU.
  1860. */
  1861. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1862. return 0;
  1863. *all_pinned = 0;
  1864. if (task_running(rq, p))
  1865. return 0;
  1866. /*
  1867. * Aggressive migration if too many balance attempts have failed:
  1868. */
  1869. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1870. return 1;
  1871. return 1;
  1872. }
  1873. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1874. unsigned long max_nr_move, unsigned long max_load_move,
  1875. struct sched_domain *sd, enum cpu_idle_type idle,
  1876. int *all_pinned, unsigned long *load_moved,
  1877. int *this_best_prio, struct rq_iterator *iterator)
  1878. {
  1879. int pulled = 0, pinned = 0, skip_for_load;
  1880. struct task_struct *p;
  1881. long rem_load_move = max_load_move;
  1882. if (max_nr_move == 0 || max_load_move == 0)
  1883. goto out;
  1884. pinned = 1;
  1885. /*
  1886. * Start the load-balancing iterator:
  1887. */
  1888. p = iterator->start(iterator->arg);
  1889. next:
  1890. if (!p)
  1891. goto out;
  1892. /*
  1893. * To help distribute high priority tasks accross CPUs we don't
  1894. * skip a task if it will be the highest priority task (i.e. smallest
  1895. * prio value) on its new queue regardless of its load weight
  1896. */
  1897. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1898. SCHED_LOAD_SCALE_FUZZ;
  1899. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1900. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1901. p = iterator->next(iterator->arg);
  1902. goto next;
  1903. }
  1904. pull_task(busiest, p, this_rq, this_cpu);
  1905. pulled++;
  1906. rem_load_move -= p->se.load.weight;
  1907. /*
  1908. * We only want to steal up to the prescribed number of tasks
  1909. * and the prescribed amount of weighted load.
  1910. */
  1911. if (pulled < max_nr_move && rem_load_move > 0) {
  1912. if (p->prio < *this_best_prio)
  1913. *this_best_prio = p->prio;
  1914. p = iterator->next(iterator->arg);
  1915. goto next;
  1916. }
  1917. out:
  1918. /*
  1919. * Right now, this is the only place pull_task() is called,
  1920. * so we can safely collect pull_task() stats here rather than
  1921. * inside pull_task().
  1922. */
  1923. schedstat_add(sd, lb_gained[idle], pulled);
  1924. if (all_pinned)
  1925. *all_pinned = pinned;
  1926. *load_moved = max_load_move - rem_load_move;
  1927. return pulled;
  1928. }
  1929. /*
  1930. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1931. * this_rq, as part of a balancing operation within domain "sd".
  1932. * Returns 1 if successful and 0 otherwise.
  1933. *
  1934. * Called with both runqueues locked.
  1935. */
  1936. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1937. unsigned long max_load_move,
  1938. struct sched_domain *sd, enum cpu_idle_type idle,
  1939. int *all_pinned)
  1940. {
  1941. struct sched_class *class = sched_class_highest;
  1942. unsigned long total_load_moved = 0;
  1943. int this_best_prio = this_rq->curr->prio;
  1944. do {
  1945. total_load_moved +=
  1946. class->load_balance(this_rq, this_cpu, busiest,
  1947. ULONG_MAX, max_load_move - total_load_moved,
  1948. sd, idle, all_pinned, &this_best_prio);
  1949. class = class->next;
  1950. } while (class && max_load_move > total_load_moved);
  1951. return total_load_moved > 0;
  1952. }
  1953. /*
  1954. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1955. * part of active balancing operations within "domain".
  1956. * Returns 1 if successful and 0 otherwise.
  1957. *
  1958. * Called with both runqueues locked.
  1959. */
  1960. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1961. struct sched_domain *sd, enum cpu_idle_type idle)
  1962. {
  1963. struct sched_class *class;
  1964. int this_best_prio = MAX_PRIO;
  1965. for (class = sched_class_highest; class; class = class->next)
  1966. if (class->load_balance(this_rq, this_cpu, busiest,
  1967. 1, ULONG_MAX, sd, idle, NULL,
  1968. &this_best_prio))
  1969. return 1;
  1970. return 0;
  1971. }
  1972. /*
  1973. * find_busiest_group finds and returns the busiest CPU group within the
  1974. * domain. It calculates and returns the amount of weighted load which
  1975. * should be moved to restore balance via the imbalance parameter.
  1976. */
  1977. static struct sched_group *
  1978. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1979. unsigned long *imbalance, enum cpu_idle_type idle,
  1980. int *sd_idle, cpumask_t *cpus, int *balance)
  1981. {
  1982. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1983. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1984. unsigned long max_pull;
  1985. unsigned long busiest_load_per_task, busiest_nr_running;
  1986. unsigned long this_load_per_task, this_nr_running;
  1987. int load_idx;
  1988. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1989. int power_savings_balance = 1;
  1990. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1991. unsigned long min_nr_running = ULONG_MAX;
  1992. struct sched_group *group_min = NULL, *group_leader = NULL;
  1993. #endif
  1994. max_load = this_load = total_load = total_pwr = 0;
  1995. busiest_load_per_task = busiest_nr_running = 0;
  1996. this_load_per_task = this_nr_running = 0;
  1997. if (idle == CPU_NOT_IDLE)
  1998. load_idx = sd->busy_idx;
  1999. else if (idle == CPU_NEWLY_IDLE)
  2000. load_idx = sd->newidle_idx;
  2001. else
  2002. load_idx = sd->idle_idx;
  2003. do {
  2004. unsigned long load, group_capacity;
  2005. int local_group;
  2006. int i;
  2007. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2008. unsigned long sum_nr_running, sum_weighted_load;
  2009. local_group = cpu_isset(this_cpu, group->cpumask);
  2010. if (local_group)
  2011. balance_cpu = first_cpu(group->cpumask);
  2012. /* Tally up the load of all CPUs in the group */
  2013. sum_weighted_load = sum_nr_running = avg_load = 0;
  2014. for_each_cpu_mask(i, group->cpumask) {
  2015. struct rq *rq;
  2016. if (!cpu_isset(i, *cpus))
  2017. continue;
  2018. rq = cpu_rq(i);
  2019. if (*sd_idle && rq->nr_running)
  2020. *sd_idle = 0;
  2021. /* Bias balancing toward cpus of our domain */
  2022. if (local_group) {
  2023. if (idle_cpu(i) && !first_idle_cpu) {
  2024. first_idle_cpu = 1;
  2025. balance_cpu = i;
  2026. }
  2027. load = target_load(i, load_idx);
  2028. } else
  2029. load = source_load(i, load_idx);
  2030. avg_load += load;
  2031. sum_nr_running += rq->nr_running;
  2032. sum_weighted_load += weighted_cpuload(i);
  2033. }
  2034. /*
  2035. * First idle cpu or the first cpu(busiest) in this sched group
  2036. * is eligible for doing load balancing at this and above
  2037. * domains. In the newly idle case, we will allow all the cpu's
  2038. * to do the newly idle load balance.
  2039. */
  2040. if (idle != CPU_NEWLY_IDLE && local_group &&
  2041. balance_cpu != this_cpu && balance) {
  2042. *balance = 0;
  2043. goto ret;
  2044. }
  2045. total_load += avg_load;
  2046. total_pwr += group->__cpu_power;
  2047. /* Adjust by relative CPU power of the group */
  2048. avg_load = sg_div_cpu_power(group,
  2049. avg_load * SCHED_LOAD_SCALE);
  2050. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2051. if (local_group) {
  2052. this_load = avg_load;
  2053. this = group;
  2054. this_nr_running = sum_nr_running;
  2055. this_load_per_task = sum_weighted_load;
  2056. } else if (avg_load > max_load &&
  2057. sum_nr_running > group_capacity) {
  2058. max_load = avg_load;
  2059. busiest = group;
  2060. busiest_nr_running = sum_nr_running;
  2061. busiest_load_per_task = sum_weighted_load;
  2062. }
  2063. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2064. /*
  2065. * Busy processors will not participate in power savings
  2066. * balance.
  2067. */
  2068. if (idle == CPU_NOT_IDLE ||
  2069. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2070. goto group_next;
  2071. /*
  2072. * If the local group is idle or completely loaded
  2073. * no need to do power savings balance at this domain
  2074. */
  2075. if (local_group && (this_nr_running >= group_capacity ||
  2076. !this_nr_running))
  2077. power_savings_balance = 0;
  2078. /*
  2079. * If a group is already running at full capacity or idle,
  2080. * don't include that group in power savings calculations
  2081. */
  2082. if (!power_savings_balance || sum_nr_running >= group_capacity
  2083. || !sum_nr_running)
  2084. goto group_next;
  2085. /*
  2086. * Calculate the group which has the least non-idle load.
  2087. * This is the group from where we need to pick up the load
  2088. * for saving power
  2089. */
  2090. if ((sum_nr_running < min_nr_running) ||
  2091. (sum_nr_running == min_nr_running &&
  2092. first_cpu(group->cpumask) <
  2093. first_cpu(group_min->cpumask))) {
  2094. group_min = group;
  2095. min_nr_running = sum_nr_running;
  2096. min_load_per_task = sum_weighted_load /
  2097. sum_nr_running;
  2098. }
  2099. /*
  2100. * Calculate the group which is almost near its
  2101. * capacity but still has some space to pick up some load
  2102. * from other group and save more power
  2103. */
  2104. if (sum_nr_running <= group_capacity - 1) {
  2105. if (sum_nr_running > leader_nr_running ||
  2106. (sum_nr_running == leader_nr_running &&
  2107. first_cpu(group->cpumask) >
  2108. first_cpu(group_leader->cpumask))) {
  2109. group_leader = group;
  2110. leader_nr_running = sum_nr_running;
  2111. }
  2112. }
  2113. group_next:
  2114. #endif
  2115. group = group->next;
  2116. } while (group != sd->groups);
  2117. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2118. goto out_balanced;
  2119. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2120. if (this_load >= avg_load ||
  2121. 100*max_load <= sd->imbalance_pct*this_load)
  2122. goto out_balanced;
  2123. busiest_load_per_task /= busiest_nr_running;
  2124. /*
  2125. * We're trying to get all the cpus to the average_load, so we don't
  2126. * want to push ourselves above the average load, nor do we wish to
  2127. * reduce the max loaded cpu below the average load, as either of these
  2128. * actions would just result in more rebalancing later, and ping-pong
  2129. * tasks around. Thus we look for the minimum possible imbalance.
  2130. * Negative imbalances (*we* are more loaded than anyone else) will
  2131. * be counted as no imbalance for these purposes -- we can't fix that
  2132. * by pulling tasks to us. Be careful of negative numbers as they'll
  2133. * appear as very large values with unsigned longs.
  2134. */
  2135. if (max_load <= busiest_load_per_task)
  2136. goto out_balanced;
  2137. /*
  2138. * In the presence of smp nice balancing, certain scenarios can have
  2139. * max load less than avg load(as we skip the groups at or below
  2140. * its cpu_power, while calculating max_load..)
  2141. */
  2142. if (max_load < avg_load) {
  2143. *imbalance = 0;
  2144. goto small_imbalance;
  2145. }
  2146. /* Don't want to pull so many tasks that a group would go idle */
  2147. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2148. /* How much load to actually move to equalise the imbalance */
  2149. *imbalance = min(max_pull * busiest->__cpu_power,
  2150. (avg_load - this_load) * this->__cpu_power)
  2151. / SCHED_LOAD_SCALE;
  2152. /*
  2153. * if *imbalance is less than the average load per runnable task
  2154. * there is no gaurantee that any tasks will be moved so we'll have
  2155. * a think about bumping its value to force at least one task to be
  2156. * moved
  2157. */
  2158. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2159. unsigned long tmp, pwr_now, pwr_move;
  2160. unsigned int imbn;
  2161. small_imbalance:
  2162. pwr_move = pwr_now = 0;
  2163. imbn = 2;
  2164. if (this_nr_running) {
  2165. this_load_per_task /= this_nr_running;
  2166. if (busiest_load_per_task > this_load_per_task)
  2167. imbn = 1;
  2168. } else
  2169. this_load_per_task = SCHED_LOAD_SCALE;
  2170. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2171. busiest_load_per_task * imbn) {
  2172. *imbalance = busiest_load_per_task;
  2173. return busiest;
  2174. }
  2175. /*
  2176. * OK, we don't have enough imbalance to justify moving tasks,
  2177. * however we may be able to increase total CPU power used by
  2178. * moving them.
  2179. */
  2180. pwr_now += busiest->__cpu_power *
  2181. min(busiest_load_per_task, max_load);
  2182. pwr_now += this->__cpu_power *
  2183. min(this_load_per_task, this_load);
  2184. pwr_now /= SCHED_LOAD_SCALE;
  2185. /* Amount of load we'd subtract */
  2186. tmp = sg_div_cpu_power(busiest,
  2187. busiest_load_per_task * SCHED_LOAD_SCALE);
  2188. if (max_load > tmp)
  2189. pwr_move += busiest->__cpu_power *
  2190. min(busiest_load_per_task, max_load - tmp);
  2191. /* Amount of load we'd add */
  2192. if (max_load * busiest->__cpu_power <
  2193. busiest_load_per_task * SCHED_LOAD_SCALE)
  2194. tmp = sg_div_cpu_power(this,
  2195. max_load * busiest->__cpu_power);
  2196. else
  2197. tmp = sg_div_cpu_power(this,
  2198. busiest_load_per_task * SCHED_LOAD_SCALE);
  2199. pwr_move += this->__cpu_power *
  2200. min(this_load_per_task, this_load + tmp);
  2201. pwr_move /= SCHED_LOAD_SCALE;
  2202. /* Move if we gain throughput */
  2203. if (pwr_move <= pwr_now)
  2204. goto out_balanced;
  2205. *imbalance = busiest_load_per_task;
  2206. }
  2207. return busiest;
  2208. out_balanced:
  2209. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2210. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2211. goto ret;
  2212. if (this == group_leader && group_leader != group_min) {
  2213. *imbalance = min_load_per_task;
  2214. return group_min;
  2215. }
  2216. #endif
  2217. ret:
  2218. *imbalance = 0;
  2219. return NULL;
  2220. }
  2221. /*
  2222. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2223. */
  2224. static struct rq *
  2225. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2226. unsigned long imbalance, cpumask_t *cpus)
  2227. {
  2228. struct rq *busiest = NULL, *rq;
  2229. unsigned long max_load = 0;
  2230. int i;
  2231. for_each_cpu_mask(i, group->cpumask) {
  2232. unsigned long wl;
  2233. if (!cpu_isset(i, *cpus))
  2234. continue;
  2235. rq = cpu_rq(i);
  2236. wl = weighted_cpuload(i);
  2237. if (rq->nr_running == 1 && wl > imbalance)
  2238. continue;
  2239. if (wl > max_load) {
  2240. max_load = wl;
  2241. busiest = rq;
  2242. }
  2243. }
  2244. return busiest;
  2245. }
  2246. /*
  2247. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2248. * so long as it is large enough.
  2249. */
  2250. #define MAX_PINNED_INTERVAL 512
  2251. /*
  2252. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2253. * tasks if there is an imbalance.
  2254. */
  2255. static int load_balance(int this_cpu, struct rq *this_rq,
  2256. struct sched_domain *sd, enum cpu_idle_type idle,
  2257. int *balance)
  2258. {
  2259. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2260. struct sched_group *group;
  2261. unsigned long imbalance;
  2262. struct rq *busiest;
  2263. cpumask_t cpus = CPU_MASK_ALL;
  2264. unsigned long flags;
  2265. /*
  2266. * When power savings policy is enabled for the parent domain, idle
  2267. * sibling can pick up load irrespective of busy siblings. In this case,
  2268. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2269. * portraying it as CPU_NOT_IDLE.
  2270. */
  2271. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2272. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2273. sd_idle = 1;
  2274. schedstat_inc(sd, lb_cnt[idle]);
  2275. redo:
  2276. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2277. &cpus, balance);
  2278. if (*balance == 0)
  2279. goto out_balanced;
  2280. if (!group) {
  2281. schedstat_inc(sd, lb_nobusyg[idle]);
  2282. goto out_balanced;
  2283. }
  2284. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2285. if (!busiest) {
  2286. schedstat_inc(sd, lb_nobusyq[idle]);
  2287. goto out_balanced;
  2288. }
  2289. BUG_ON(busiest == this_rq);
  2290. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2291. ld_moved = 0;
  2292. if (busiest->nr_running > 1) {
  2293. /*
  2294. * Attempt to move tasks. If find_busiest_group has found
  2295. * an imbalance but busiest->nr_running <= 1, the group is
  2296. * still unbalanced. ld_moved simply stays zero, so it is
  2297. * correctly treated as an imbalance.
  2298. */
  2299. local_irq_save(flags);
  2300. double_rq_lock(this_rq, busiest);
  2301. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2302. imbalance, sd, idle, &all_pinned);
  2303. double_rq_unlock(this_rq, busiest);
  2304. local_irq_restore(flags);
  2305. /*
  2306. * some other cpu did the load balance for us.
  2307. */
  2308. if (ld_moved && this_cpu != smp_processor_id())
  2309. resched_cpu(this_cpu);
  2310. /* All tasks on this runqueue were pinned by CPU affinity */
  2311. if (unlikely(all_pinned)) {
  2312. cpu_clear(cpu_of(busiest), cpus);
  2313. if (!cpus_empty(cpus))
  2314. goto redo;
  2315. goto out_balanced;
  2316. }
  2317. }
  2318. if (!ld_moved) {
  2319. schedstat_inc(sd, lb_failed[idle]);
  2320. sd->nr_balance_failed++;
  2321. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2322. spin_lock_irqsave(&busiest->lock, flags);
  2323. /* don't kick the migration_thread, if the curr
  2324. * task on busiest cpu can't be moved to this_cpu
  2325. */
  2326. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2327. spin_unlock_irqrestore(&busiest->lock, flags);
  2328. all_pinned = 1;
  2329. goto out_one_pinned;
  2330. }
  2331. if (!busiest->active_balance) {
  2332. busiest->active_balance = 1;
  2333. busiest->push_cpu = this_cpu;
  2334. active_balance = 1;
  2335. }
  2336. spin_unlock_irqrestore(&busiest->lock, flags);
  2337. if (active_balance)
  2338. wake_up_process(busiest->migration_thread);
  2339. /*
  2340. * We've kicked active balancing, reset the failure
  2341. * counter.
  2342. */
  2343. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2344. }
  2345. } else
  2346. sd->nr_balance_failed = 0;
  2347. if (likely(!active_balance)) {
  2348. /* We were unbalanced, so reset the balancing interval */
  2349. sd->balance_interval = sd->min_interval;
  2350. } else {
  2351. /*
  2352. * If we've begun active balancing, start to back off. This
  2353. * case may not be covered by the all_pinned logic if there
  2354. * is only 1 task on the busy runqueue (because we don't call
  2355. * move_tasks).
  2356. */
  2357. if (sd->balance_interval < sd->max_interval)
  2358. sd->balance_interval *= 2;
  2359. }
  2360. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2361. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2362. return -1;
  2363. return ld_moved;
  2364. out_balanced:
  2365. schedstat_inc(sd, lb_balanced[idle]);
  2366. sd->nr_balance_failed = 0;
  2367. out_one_pinned:
  2368. /* tune up the balancing interval */
  2369. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2370. (sd->balance_interval < sd->max_interval))
  2371. sd->balance_interval *= 2;
  2372. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2373. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2374. return -1;
  2375. return 0;
  2376. }
  2377. /*
  2378. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2379. * tasks if there is an imbalance.
  2380. *
  2381. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2382. * this_rq is locked.
  2383. */
  2384. static int
  2385. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2386. {
  2387. struct sched_group *group;
  2388. struct rq *busiest = NULL;
  2389. unsigned long imbalance;
  2390. int ld_moved = 0;
  2391. int sd_idle = 0;
  2392. int all_pinned = 0;
  2393. cpumask_t cpus = CPU_MASK_ALL;
  2394. /*
  2395. * When power savings policy is enabled for the parent domain, idle
  2396. * sibling can pick up load irrespective of busy siblings. In this case,
  2397. * let the state of idle sibling percolate up as IDLE, instead of
  2398. * portraying it as CPU_NOT_IDLE.
  2399. */
  2400. if (sd->flags & SD_SHARE_CPUPOWER &&
  2401. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2402. sd_idle = 1;
  2403. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2404. redo:
  2405. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2406. &sd_idle, &cpus, NULL);
  2407. if (!group) {
  2408. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2409. goto out_balanced;
  2410. }
  2411. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2412. &cpus);
  2413. if (!busiest) {
  2414. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2415. goto out_balanced;
  2416. }
  2417. BUG_ON(busiest == this_rq);
  2418. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2419. ld_moved = 0;
  2420. if (busiest->nr_running > 1) {
  2421. /* Attempt to move tasks */
  2422. double_lock_balance(this_rq, busiest);
  2423. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2424. imbalance, sd, CPU_NEWLY_IDLE,
  2425. &all_pinned);
  2426. spin_unlock(&busiest->lock);
  2427. if (unlikely(all_pinned)) {
  2428. cpu_clear(cpu_of(busiest), cpus);
  2429. if (!cpus_empty(cpus))
  2430. goto redo;
  2431. }
  2432. }
  2433. if (!ld_moved) {
  2434. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2435. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2436. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2437. return -1;
  2438. } else
  2439. sd->nr_balance_failed = 0;
  2440. return ld_moved;
  2441. out_balanced:
  2442. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2443. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2444. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2445. return -1;
  2446. sd->nr_balance_failed = 0;
  2447. return 0;
  2448. }
  2449. /*
  2450. * idle_balance is called by schedule() if this_cpu is about to become
  2451. * idle. Attempts to pull tasks from other CPUs.
  2452. */
  2453. static void idle_balance(int this_cpu, struct rq *this_rq)
  2454. {
  2455. struct sched_domain *sd;
  2456. int pulled_task = -1;
  2457. unsigned long next_balance = jiffies + HZ;
  2458. for_each_domain(this_cpu, sd) {
  2459. unsigned long interval;
  2460. if (!(sd->flags & SD_LOAD_BALANCE))
  2461. continue;
  2462. if (sd->flags & SD_BALANCE_NEWIDLE)
  2463. /* If we've pulled tasks over stop searching: */
  2464. pulled_task = load_balance_newidle(this_cpu,
  2465. this_rq, sd);
  2466. interval = msecs_to_jiffies(sd->balance_interval);
  2467. if (time_after(next_balance, sd->last_balance + interval))
  2468. next_balance = sd->last_balance + interval;
  2469. if (pulled_task)
  2470. break;
  2471. }
  2472. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2473. /*
  2474. * We are going idle. next_balance may be set based on
  2475. * a busy processor. So reset next_balance.
  2476. */
  2477. this_rq->next_balance = next_balance;
  2478. }
  2479. }
  2480. /*
  2481. * active_load_balance is run by migration threads. It pushes running tasks
  2482. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2483. * running on each physical CPU where possible, and avoids physical /
  2484. * logical imbalances.
  2485. *
  2486. * Called with busiest_rq locked.
  2487. */
  2488. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2489. {
  2490. int target_cpu = busiest_rq->push_cpu;
  2491. struct sched_domain *sd;
  2492. struct rq *target_rq;
  2493. /* Is there any task to move? */
  2494. if (busiest_rq->nr_running <= 1)
  2495. return;
  2496. target_rq = cpu_rq(target_cpu);
  2497. /*
  2498. * This condition is "impossible", if it occurs
  2499. * we need to fix it. Originally reported by
  2500. * Bjorn Helgaas on a 128-cpu setup.
  2501. */
  2502. BUG_ON(busiest_rq == target_rq);
  2503. /* move a task from busiest_rq to target_rq */
  2504. double_lock_balance(busiest_rq, target_rq);
  2505. /* Search for an sd spanning us and the target CPU. */
  2506. for_each_domain(target_cpu, sd) {
  2507. if ((sd->flags & SD_LOAD_BALANCE) &&
  2508. cpu_isset(busiest_cpu, sd->span))
  2509. break;
  2510. }
  2511. if (likely(sd)) {
  2512. schedstat_inc(sd, alb_cnt);
  2513. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2514. sd, CPU_IDLE))
  2515. schedstat_inc(sd, alb_pushed);
  2516. else
  2517. schedstat_inc(sd, alb_failed);
  2518. }
  2519. spin_unlock(&target_rq->lock);
  2520. }
  2521. #ifdef CONFIG_NO_HZ
  2522. static struct {
  2523. atomic_t load_balancer;
  2524. cpumask_t cpu_mask;
  2525. } nohz ____cacheline_aligned = {
  2526. .load_balancer = ATOMIC_INIT(-1),
  2527. .cpu_mask = CPU_MASK_NONE,
  2528. };
  2529. /*
  2530. * This routine will try to nominate the ilb (idle load balancing)
  2531. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2532. * load balancing on behalf of all those cpus. If all the cpus in the system
  2533. * go into this tickless mode, then there will be no ilb owner (as there is
  2534. * no need for one) and all the cpus will sleep till the next wakeup event
  2535. * arrives...
  2536. *
  2537. * For the ilb owner, tick is not stopped. And this tick will be used
  2538. * for idle load balancing. ilb owner will still be part of
  2539. * nohz.cpu_mask..
  2540. *
  2541. * While stopping the tick, this cpu will become the ilb owner if there
  2542. * is no other owner. And will be the owner till that cpu becomes busy
  2543. * or if all cpus in the system stop their ticks at which point
  2544. * there is no need for ilb owner.
  2545. *
  2546. * When the ilb owner becomes busy, it nominates another owner, during the
  2547. * next busy scheduler_tick()
  2548. */
  2549. int select_nohz_load_balancer(int stop_tick)
  2550. {
  2551. int cpu = smp_processor_id();
  2552. if (stop_tick) {
  2553. cpu_set(cpu, nohz.cpu_mask);
  2554. cpu_rq(cpu)->in_nohz_recently = 1;
  2555. /*
  2556. * If we are going offline and still the leader, give up!
  2557. */
  2558. if (cpu_is_offline(cpu) &&
  2559. atomic_read(&nohz.load_balancer) == cpu) {
  2560. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2561. BUG();
  2562. return 0;
  2563. }
  2564. /* time for ilb owner also to sleep */
  2565. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2566. if (atomic_read(&nohz.load_balancer) == cpu)
  2567. atomic_set(&nohz.load_balancer, -1);
  2568. return 0;
  2569. }
  2570. if (atomic_read(&nohz.load_balancer) == -1) {
  2571. /* make me the ilb owner */
  2572. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2573. return 1;
  2574. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2575. return 1;
  2576. } else {
  2577. if (!cpu_isset(cpu, nohz.cpu_mask))
  2578. return 0;
  2579. cpu_clear(cpu, nohz.cpu_mask);
  2580. if (atomic_read(&nohz.load_balancer) == cpu)
  2581. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2582. BUG();
  2583. }
  2584. return 0;
  2585. }
  2586. #endif
  2587. static DEFINE_SPINLOCK(balancing);
  2588. /*
  2589. * It checks each scheduling domain to see if it is due to be balanced,
  2590. * and initiates a balancing operation if so.
  2591. *
  2592. * Balancing parameters are set up in arch_init_sched_domains.
  2593. */
  2594. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2595. {
  2596. int balance = 1;
  2597. struct rq *rq = cpu_rq(cpu);
  2598. unsigned long interval;
  2599. struct sched_domain *sd;
  2600. /* Earliest time when we have to do rebalance again */
  2601. unsigned long next_balance = jiffies + 60*HZ;
  2602. for_each_domain(cpu, sd) {
  2603. if (!(sd->flags & SD_LOAD_BALANCE))
  2604. continue;
  2605. interval = sd->balance_interval;
  2606. if (idle != CPU_IDLE)
  2607. interval *= sd->busy_factor;
  2608. /* scale ms to jiffies */
  2609. interval = msecs_to_jiffies(interval);
  2610. if (unlikely(!interval))
  2611. interval = 1;
  2612. if (interval > HZ*NR_CPUS/10)
  2613. interval = HZ*NR_CPUS/10;
  2614. if (sd->flags & SD_SERIALIZE) {
  2615. if (!spin_trylock(&balancing))
  2616. goto out;
  2617. }
  2618. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2619. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2620. /*
  2621. * We've pulled tasks over so either we're no
  2622. * longer idle, or one of our SMT siblings is
  2623. * not idle.
  2624. */
  2625. idle = CPU_NOT_IDLE;
  2626. }
  2627. sd->last_balance = jiffies;
  2628. }
  2629. if (sd->flags & SD_SERIALIZE)
  2630. spin_unlock(&balancing);
  2631. out:
  2632. if (time_after(next_balance, sd->last_balance + interval))
  2633. next_balance = sd->last_balance + interval;
  2634. /*
  2635. * Stop the load balance at this level. There is another
  2636. * CPU in our sched group which is doing load balancing more
  2637. * actively.
  2638. */
  2639. if (!balance)
  2640. break;
  2641. }
  2642. rq->next_balance = next_balance;
  2643. }
  2644. /*
  2645. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2646. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2647. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2648. */
  2649. static void run_rebalance_domains(struct softirq_action *h)
  2650. {
  2651. int this_cpu = smp_processor_id();
  2652. struct rq *this_rq = cpu_rq(this_cpu);
  2653. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2654. CPU_IDLE : CPU_NOT_IDLE;
  2655. rebalance_domains(this_cpu, idle);
  2656. #ifdef CONFIG_NO_HZ
  2657. /*
  2658. * If this cpu is the owner for idle load balancing, then do the
  2659. * balancing on behalf of the other idle cpus whose ticks are
  2660. * stopped.
  2661. */
  2662. if (this_rq->idle_at_tick &&
  2663. atomic_read(&nohz.load_balancer) == this_cpu) {
  2664. cpumask_t cpus = nohz.cpu_mask;
  2665. struct rq *rq;
  2666. int balance_cpu;
  2667. cpu_clear(this_cpu, cpus);
  2668. for_each_cpu_mask(balance_cpu, cpus) {
  2669. /*
  2670. * If this cpu gets work to do, stop the load balancing
  2671. * work being done for other cpus. Next load
  2672. * balancing owner will pick it up.
  2673. */
  2674. if (need_resched())
  2675. break;
  2676. rebalance_domains(balance_cpu, SCHED_IDLE);
  2677. rq = cpu_rq(balance_cpu);
  2678. if (time_after(this_rq->next_balance, rq->next_balance))
  2679. this_rq->next_balance = rq->next_balance;
  2680. }
  2681. }
  2682. #endif
  2683. }
  2684. /*
  2685. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2686. *
  2687. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2688. * idle load balancing owner or decide to stop the periodic load balancing,
  2689. * if the whole system is idle.
  2690. */
  2691. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2692. {
  2693. #ifdef CONFIG_NO_HZ
  2694. /*
  2695. * If we were in the nohz mode recently and busy at the current
  2696. * scheduler tick, then check if we need to nominate new idle
  2697. * load balancer.
  2698. */
  2699. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2700. rq->in_nohz_recently = 0;
  2701. if (atomic_read(&nohz.load_balancer) == cpu) {
  2702. cpu_clear(cpu, nohz.cpu_mask);
  2703. atomic_set(&nohz.load_balancer, -1);
  2704. }
  2705. if (atomic_read(&nohz.load_balancer) == -1) {
  2706. /*
  2707. * simple selection for now: Nominate the
  2708. * first cpu in the nohz list to be the next
  2709. * ilb owner.
  2710. *
  2711. * TBD: Traverse the sched domains and nominate
  2712. * the nearest cpu in the nohz.cpu_mask.
  2713. */
  2714. int ilb = first_cpu(nohz.cpu_mask);
  2715. if (ilb != NR_CPUS)
  2716. resched_cpu(ilb);
  2717. }
  2718. }
  2719. /*
  2720. * If this cpu is idle and doing idle load balancing for all the
  2721. * cpus with ticks stopped, is it time for that to stop?
  2722. */
  2723. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2724. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2725. resched_cpu(cpu);
  2726. return;
  2727. }
  2728. /*
  2729. * If this cpu is idle and the idle load balancing is done by
  2730. * someone else, then no need raise the SCHED_SOFTIRQ
  2731. */
  2732. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2733. cpu_isset(cpu, nohz.cpu_mask))
  2734. return;
  2735. #endif
  2736. if (time_after_eq(jiffies, rq->next_balance))
  2737. raise_softirq(SCHED_SOFTIRQ);
  2738. }
  2739. #else /* CONFIG_SMP */
  2740. /*
  2741. * on UP we do not need to balance between CPUs:
  2742. */
  2743. static inline void idle_balance(int cpu, struct rq *rq)
  2744. {
  2745. }
  2746. /* Avoid "used but not defined" warning on UP */
  2747. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2748. unsigned long max_nr_move, unsigned long max_load_move,
  2749. struct sched_domain *sd, enum cpu_idle_type idle,
  2750. int *all_pinned, unsigned long *load_moved,
  2751. int *this_best_prio, struct rq_iterator *iterator)
  2752. {
  2753. *load_moved = 0;
  2754. return 0;
  2755. }
  2756. #endif
  2757. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2758. EXPORT_PER_CPU_SYMBOL(kstat);
  2759. /*
  2760. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2761. * that have not yet been banked in case the task is currently running.
  2762. */
  2763. unsigned long long task_sched_runtime(struct task_struct *p)
  2764. {
  2765. unsigned long flags;
  2766. u64 ns, delta_exec;
  2767. struct rq *rq;
  2768. rq = task_rq_lock(p, &flags);
  2769. ns = p->se.sum_exec_runtime;
  2770. if (rq->curr == p) {
  2771. update_rq_clock(rq);
  2772. delta_exec = rq->clock - p->se.exec_start;
  2773. if ((s64)delta_exec > 0)
  2774. ns += delta_exec;
  2775. }
  2776. task_rq_unlock(rq, &flags);
  2777. return ns;
  2778. }
  2779. /*
  2780. * Account user cpu time to a process.
  2781. * @p: the process that the cpu time gets accounted to
  2782. * @hardirq_offset: the offset to subtract from hardirq_count()
  2783. * @cputime: the cpu time spent in user space since the last update
  2784. */
  2785. void account_user_time(struct task_struct *p, cputime_t cputime)
  2786. {
  2787. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2788. cputime64_t tmp;
  2789. p->utime = cputime_add(p->utime, cputime);
  2790. /* Add user time to cpustat. */
  2791. tmp = cputime_to_cputime64(cputime);
  2792. if (TASK_NICE(p) > 0)
  2793. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2794. else
  2795. cpustat->user = cputime64_add(cpustat->user, tmp);
  2796. }
  2797. /*
  2798. * Account system cpu time to a process.
  2799. * @p: the process that the cpu time gets accounted to
  2800. * @hardirq_offset: the offset to subtract from hardirq_count()
  2801. * @cputime: the cpu time spent in kernel space since the last update
  2802. */
  2803. void account_system_time(struct task_struct *p, int hardirq_offset,
  2804. cputime_t cputime)
  2805. {
  2806. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2807. struct rq *rq = this_rq();
  2808. cputime64_t tmp;
  2809. p->stime = cputime_add(p->stime, cputime);
  2810. /* Add system time to cpustat. */
  2811. tmp = cputime_to_cputime64(cputime);
  2812. if (hardirq_count() - hardirq_offset)
  2813. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2814. else if (softirq_count())
  2815. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2816. else if (p != rq->idle)
  2817. cpustat->system = cputime64_add(cpustat->system, tmp);
  2818. else if (atomic_read(&rq->nr_iowait) > 0)
  2819. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2820. else
  2821. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2822. /* Account for system time used */
  2823. acct_update_integrals(p);
  2824. }
  2825. /*
  2826. * Account for involuntary wait time.
  2827. * @p: the process from which the cpu time has been stolen
  2828. * @steal: the cpu time spent in involuntary wait
  2829. */
  2830. void account_steal_time(struct task_struct *p, cputime_t steal)
  2831. {
  2832. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2833. cputime64_t tmp = cputime_to_cputime64(steal);
  2834. struct rq *rq = this_rq();
  2835. if (p == rq->idle) {
  2836. p->stime = cputime_add(p->stime, steal);
  2837. if (atomic_read(&rq->nr_iowait) > 0)
  2838. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2839. else
  2840. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2841. } else
  2842. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2843. }
  2844. /*
  2845. * This function gets called by the timer code, with HZ frequency.
  2846. * We call it with interrupts disabled.
  2847. *
  2848. * It also gets called by the fork code, when changing the parent's
  2849. * timeslices.
  2850. */
  2851. void scheduler_tick(void)
  2852. {
  2853. int cpu = smp_processor_id();
  2854. struct rq *rq = cpu_rq(cpu);
  2855. struct task_struct *curr = rq->curr;
  2856. spin_lock(&rq->lock);
  2857. update_cpu_load(rq);
  2858. if (curr != rq->idle) /* FIXME: needed? */
  2859. curr->sched_class->task_tick(rq, curr);
  2860. spin_unlock(&rq->lock);
  2861. #ifdef CONFIG_SMP
  2862. rq->idle_at_tick = idle_cpu(cpu);
  2863. trigger_load_balance(rq, cpu);
  2864. #endif
  2865. }
  2866. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2867. void fastcall add_preempt_count(int val)
  2868. {
  2869. /*
  2870. * Underflow?
  2871. */
  2872. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2873. return;
  2874. preempt_count() += val;
  2875. /*
  2876. * Spinlock count overflowing soon?
  2877. */
  2878. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2879. PREEMPT_MASK - 10);
  2880. }
  2881. EXPORT_SYMBOL(add_preempt_count);
  2882. void fastcall sub_preempt_count(int val)
  2883. {
  2884. /*
  2885. * Underflow?
  2886. */
  2887. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2888. return;
  2889. /*
  2890. * Is the spinlock portion underflowing?
  2891. */
  2892. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2893. !(preempt_count() & PREEMPT_MASK)))
  2894. return;
  2895. preempt_count() -= val;
  2896. }
  2897. EXPORT_SYMBOL(sub_preempt_count);
  2898. #endif
  2899. /*
  2900. * Print scheduling while atomic bug:
  2901. */
  2902. static noinline void __schedule_bug(struct task_struct *prev)
  2903. {
  2904. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2905. prev->comm, preempt_count(), prev->pid);
  2906. debug_show_held_locks(prev);
  2907. if (irqs_disabled())
  2908. print_irqtrace_events(prev);
  2909. dump_stack();
  2910. }
  2911. /*
  2912. * Various schedule()-time debugging checks and statistics:
  2913. */
  2914. static inline void schedule_debug(struct task_struct *prev)
  2915. {
  2916. /*
  2917. * Test if we are atomic. Since do_exit() needs to call into
  2918. * schedule() atomically, we ignore that path for now.
  2919. * Otherwise, whine if we are scheduling when we should not be.
  2920. */
  2921. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2922. __schedule_bug(prev);
  2923. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2924. schedstat_inc(this_rq(), sched_cnt);
  2925. }
  2926. /*
  2927. * Pick up the highest-prio task:
  2928. */
  2929. static inline struct task_struct *
  2930. pick_next_task(struct rq *rq, struct task_struct *prev)
  2931. {
  2932. struct sched_class *class;
  2933. struct task_struct *p;
  2934. /*
  2935. * Optimization: we know that if all tasks are in
  2936. * the fair class we can call that function directly:
  2937. */
  2938. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2939. p = fair_sched_class.pick_next_task(rq);
  2940. if (likely(p))
  2941. return p;
  2942. }
  2943. class = sched_class_highest;
  2944. for ( ; ; ) {
  2945. p = class->pick_next_task(rq);
  2946. if (p)
  2947. return p;
  2948. /*
  2949. * Will never be NULL as the idle class always
  2950. * returns a non-NULL p:
  2951. */
  2952. class = class->next;
  2953. }
  2954. }
  2955. /*
  2956. * schedule() is the main scheduler function.
  2957. */
  2958. asmlinkage void __sched schedule(void)
  2959. {
  2960. struct task_struct *prev, *next;
  2961. long *switch_count;
  2962. struct rq *rq;
  2963. u64 now;
  2964. int cpu;
  2965. need_resched:
  2966. preempt_disable();
  2967. cpu = smp_processor_id();
  2968. rq = cpu_rq(cpu);
  2969. rcu_qsctr_inc(cpu);
  2970. prev = rq->curr;
  2971. switch_count = &prev->nivcsw;
  2972. release_kernel_lock(prev);
  2973. need_resched_nonpreemptible:
  2974. schedule_debug(prev);
  2975. spin_lock_irq(&rq->lock);
  2976. clear_tsk_need_resched(prev);
  2977. __update_rq_clock(rq);
  2978. now = rq->clock;
  2979. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2980. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2981. unlikely(signal_pending(prev)))) {
  2982. prev->state = TASK_RUNNING;
  2983. } else {
  2984. deactivate_task(rq, prev, 1, now);
  2985. }
  2986. switch_count = &prev->nvcsw;
  2987. }
  2988. if (unlikely(!rq->nr_running))
  2989. idle_balance(cpu, rq);
  2990. prev->sched_class->put_prev_task(rq, prev);
  2991. next = pick_next_task(rq, prev);
  2992. sched_info_switch(prev, next);
  2993. if (likely(prev != next)) {
  2994. rq->nr_switches++;
  2995. rq->curr = next;
  2996. ++*switch_count;
  2997. context_switch(rq, prev, next); /* unlocks the rq */
  2998. } else
  2999. spin_unlock_irq(&rq->lock);
  3000. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3001. cpu = smp_processor_id();
  3002. rq = cpu_rq(cpu);
  3003. goto need_resched_nonpreemptible;
  3004. }
  3005. preempt_enable_no_resched();
  3006. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3007. goto need_resched;
  3008. }
  3009. EXPORT_SYMBOL(schedule);
  3010. #ifdef CONFIG_PREEMPT
  3011. /*
  3012. * this is the entry point to schedule() from in-kernel preemption
  3013. * off of preempt_enable. Kernel preemptions off return from interrupt
  3014. * occur there and call schedule directly.
  3015. */
  3016. asmlinkage void __sched preempt_schedule(void)
  3017. {
  3018. struct thread_info *ti = current_thread_info();
  3019. #ifdef CONFIG_PREEMPT_BKL
  3020. struct task_struct *task = current;
  3021. int saved_lock_depth;
  3022. #endif
  3023. /*
  3024. * If there is a non-zero preempt_count or interrupts are disabled,
  3025. * we do not want to preempt the current task. Just return..
  3026. */
  3027. if (likely(ti->preempt_count || irqs_disabled()))
  3028. return;
  3029. need_resched:
  3030. add_preempt_count(PREEMPT_ACTIVE);
  3031. /*
  3032. * We keep the big kernel semaphore locked, but we
  3033. * clear ->lock_depth so that schedule() doesnt
  3034. * auto-release the semaphore:
  3035. */
  3036. #ifdef CONFIG_PREEMPT_BKL
  3037. saved_lock_depth = task->lock_depth;
  3038. task->lock_depth = -1;
  3039. #endif
  3040. schedule();
  3041. #ifdef CONFIG_PREEMPT_BKL
  3042. task->lock_depth = saved_lock_depth;
  3043. #endif
  3044. sub_preempt_count(PREEMPT_ACTIVE);
  3045. /* we could miss a preemption opportunity between schedule and now */
  3046. barrier();
  3047. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3048. goto need_resched;
  3049. }
  3050. EXPORT_SYMBOL(preempt_schedule);
  3051. /*
  3052. * this is the entry point to schedule() from kernel preemption
  3053. * off of irq context.
  3054. * Note, that this is called and return with irqs disabled. This will
  3055. * protect us against recursive calling from irq.
  3056. */
  3057. asmlinkage void __sched preempt_schedule_irq(void)
  3058. {
  3059. struct thread_info *ti = current_thread_info();
  3060. #ifdef CONFIG_PREEMPT_BKL
  3061. struct task_struct *task = current;
  3062. int saved_lock_depth;
  3063. #endif
  3064. /* Catch callers which need to be fixed */
  3065. BUG_ON(ti->preempt_count || !irqs_disabled());
  3066. need_resched:
  3067. add_preempt_count(PREEMPT_ACTIVE);
  3068. /*
  3069. * We keep the big kernel semaphore locked, but we
  3070. * clear ->lock_depth so that schedule() doesnt
  3071. * auto-release the semaphore:
  3072. */
  3073. #ifdef CONFIG_PREEMPT_BKL
  3074. saved_lock_depth = task->lock_depth;
  3075. task->lock_depth = -1;
  3076. #endif
  3077. local_irq_enable();
  3078. schedule();
  3079. local_irq_disable();
  3080. #ifdef CONFIG_PREEMPT_BKL
  3081. task->lock_depth = saved_lock_depth;
  3082. #endif
  3083. sub_preempt_count(PREEMPT_ACTIVE);
  3084. /* we could miss a preemption opportunity between schedule and now */
  3085. barrier();
  3086. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3087. goto need_resched;
  3088. }
  3089. #endif /* CONFIG_PREEMPT */
  3090. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3091. void *key)
  3092. {
  3093. return try_to_wake_up(curr->private, mode, sync);
  3094. }
  3095. EXPORT_SYMBOL(default_wake_function);
  3096. /*
  3097. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3098. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3099. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3100. *
  3101. * There are circumstances in which we can try to wake a task which has already
  3102. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3103. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3104. */
  3105. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3106. int nr_exclusive, int sync, void *key)
  3107. {
  3108. struct list_head *tmp, *next;
  3109. list_for_each_safe(tmp, next, &q->task_list) {
  3110. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3111. unsigned flags = curr->flags;
  3112. if (curr->func(curr, mode, sync, key) &&
  3113. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3114. break;
  3115. }
  3116. }
  3117. /**
  3118. * __wake_up - wake up threads blocked on a waitqueue.
  3119. * @q: the waitqueue
  3120. * @mode: which threads
  3121. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3122. * @key: is directly passed to the wakeup function
  3123. */
  3124. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3125. int nr_exclusive, void *key)
  3126. {
  3127. unsigned long flags;
  3128. spin_lock_irqsave(&q->lock, flags);
  3129. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3130. spin_unlock_irqrestore(&q->lock, flags);
  3131. }
  3132. EXPORT_SYMBOL(__wake_up);
  3133. /*
  3134. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3135. */
  3136. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3137. {
  3138. __wake_up_common(q, mode, 1, 0, NULL);
  3139. }
  3140. /**
  3141. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3142. * @q: the waitqueue
  3143. * @mode: which threads
  3144. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3145. *
  3146. * The sync wakeup differs that the waker knows that it will schedule
  3147. * away soon, so while the target thread will be woken up, it will not
  3148. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3149. * with each other. This can prevent needless bouncing between CPUs.
  3150. *
  3151. * On UP it can prevent extra preemption.
  3152. */
  3153. void fastcall
  3154. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3155. {
  3156. unsigned long flags;
  3157. int sync = 1;
  3158. if (unlikely(!q))
  3159. return;
  3160. if (unlikely(!nr_exclusive))
  3161. sync = 0;
  3162. spin_lock_irqsave(&q->lock, flags);
  3163. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3164. spin_unlock_irqrestore(&q->lock, flags);
  3165. }
  3166. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3167. void fastcall complete(struct completion *x)
  3168. {
  3169. unsigned long flags;
  3170. spin_lock_irqsave(&x->wait.lock, flags);
  3171. x->done++;
  3172. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3173. 1, 0, NULL);
  3174. spin_unlock_irqrestore(&x->wait.lock, flags);
  3175. }
  3176. EXPORT_SYMBOL(complete);
  3177. void fastcall complete_all(struct completion *x)
  3178. {
  3179. unsigned long flags;
  3180. spin_lock_irqsave(&x->wait.lock, flags);
  3181. x->done += UINT_MAX/2;
  3182. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3183. 0, 0, NULL);
  3184. spin_unlock_irqrestore(&x->wait.lock, flags);
  3185. }
  3186. EXPORT_SYMBOL(complete_all);
  3187. void fastcall __sched wait_for_completion(struct completion *x)
  3188. {
  3189. might_sleep();
  3190. spin_lock_irq(&x->wait.lock);
  3191. if (!x->done) {
  3192. DECLARE_WAITQUEUE(wait, current);
  3193. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3194. __add_wait_queue_tail(&x->wait, &wait);
  3195. do {
  3196. __set_current_state(TASK_UNINTERRUPTIBLE);
  3197. spin_unlock_irq(&x->wait.lock);
  3198. schedule();
  3199. spin_lock_irq(&x->wait.lock);
  3200. } while (!x->done);
  3201. __remove_wait_queue(&x->wait, &wait);
  3202. }
  3203. x->done--;
  3204. spin_unlock_irq(&x->wait.lock);
  3205. }
  3206. EXPORT_SYMBOL(wait_for_completion);
  3207. unsigned long fastcall __sched
  3208. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3209. {
  3210. might_sleep();
  3211. spin_lock_irq(&x->wait.lock);
  3212. if (!x->done) {
  3213. DECLARE_WAITQUEUE(wait, current);
  3214. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3215. __add_wait_queue_tail(&x->wait, &wait);
  3216. do {
  3217. __set_current_state(TASK_UNINTERRUPTIBLE);
  3218. spin_unlock_irq(&x->wait.lock);
  3219. timeout = schedule_timeout(timeout);
  3220. spin_lock_irq(&x->wait.lock);
  3221. if (!timeout) {
  3222. __remove_wait_queue(&x->wait, &wait);
  3223. goto out;
  3224. }
  3225. } while (!x->done);
  3226. __remove_wait_queue(&x->wait, &wait);
  3227. }
  3228. x->done--;
  3229. out:
  3230. spin_unlock_irq(&x->wait.lock);
  3231. return timeout;
  3232. }
  3233. EXPORT_SYMBOL(wait_for_completion_timeout);
  3234. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3235. {
  3236. int ret = 0;
  3237. might_sleep();
  3238. spin_lock_irq(&x->wait.lock);
  3239. if (!x->done) {
  3240. DECLARE_WAITQUEUE(wait, current);
  3241. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3242. __add_wait_queue_tail(&x->wait, &wait);
  3243. do {
  3244. if (signal_pending(current)) {
  3245. ret = -ERESTARTSYS;
  3246. __remove_wait_queue(&x->wait, &wait);
  3247. goto out;
  3248. }
  3249. __set_current_state(TASK_INTERRUPTIBLE);
  3250. spin_unlock_irq(&x->wait.lock);
  3251. schedule();
  3252. spin_lock_irq(&x->wait.lock);
  3253. } while (!x->done);
  3254. __remove_wait_queue(&x->wait, &wait);
  3255. }
  3256. x->done--;
  3257. out:
  3258. spin_unlock_irq(&x->wait.lock);
  3259. return ret;
  3260. }
  3261. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3262. unsigned long fastcall __sched
  3263. wait_for_completion_interruptible_timeout(struct completion *x,
  3264. unsigned long timeout)
  3265. {
  3266. might_sleep();
  3267. spin_lock_irq(&x->wait.lock);
  3268. if (!x->done) {
  3269. DECLARE_WAITQUEUE(wait, current);
  3270. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3271. __add_wait_queue_tail(&x->wait, &wait);
  3272. do {
  3273. if (signal_pending(current)) {
  3274. timeout = -ERESTARTSYS;
  3275. __remove_wait_queue(&x->wait, &wait);
  3276. goto out;
  3277. }
  3278. __set_current_state(TASK_INTERRUPTIBLE);
  3279. spin_unlock_irq(&x->wait.lock);
  3280. timeout = schedule_timeout(timeout);
  3281. spin_lock_irq(&x->wait.lock);
  3282. if (!timeout) {
  3283. __remove_wait_queue(&x->wait, &wait);
  3284. goto out;
  3285. }
  3286. } while (!x->done);
  3287. __remove_wait_queue(&x->wait, &wait);
  3288. }
  3289. x->done--;
  3290. out:
  3291. spin_unlock_irq(&x->wait.lock);
  3292. return timeout;
  3293. }
  3294. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3295. static inline void
  3296. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3297. {
  3298. spin_lock_irqsave(&q->lock, *flags);
  3299. __add_wait_queue(q, wait);
  3300. spin_unlock(&q->lock);
  3301. }
  3302. static inline void
  3303. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3304. {
  3305. spin_lock_irq(&q->lock);
  3306. __remove_wait_queue(q, wait);
  3307. spin_unlock_irqrestore(&q->lock, *flags);
  3308. }
  3309. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3310. {
  3311. unsigned long flags;
  3312. wait_queue_t wait;
  3313. init_waitqueue_entry(&wait, current);
  3314. current->state = TASK_INTERRUPTIBLE;
  3315. sleep_on_head(q, &wait, &flags);
  3316. schedule();
  3317. sleep_on_tail(q, &wait, &flags);
  3318. }
  3319. EXPORT_SYMBOL(interruptible_sleep_on);
  3320. long __sched
  3321. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3322. {
  3323. unsigned long flags;
  3324. wait_queue_t wait;
  3325. init_waitqueue_entry(&wait, current);
  3326. current->state = TASK_INTERRUPTIBLE;
  3327. sleep_on_head(q, &wait, &flags);
  3328. timeout = schedule_timeout(timeout);
  3329. sleep_on_tail(q, &wait, &flags);
  3330. return timeout;
  3331. }
  3332. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3333. void __sched sleep_on(wait_queue_head_t *q)
  3334. {
  3335. unsigned long flags;
  3336. wait_queue_t wait;
  3337. init_waitqueue_entry(&wait, current);
  3338. current->state = TASK_UNINTERRUPTIBLE;
  3339. sleep_on_head(q, &wait, &flags);
  3340. schedule();
  3341. sleep_on_tail(q, &wait, &flags);
  3342. }
  3343. EXPORT_SYMBOL(sleep_on);
  3344. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3345. {
  3346. unsigned long flags;
  3347. wait_queue_t wait;
  3348. init_waitqueue_entry(&wait, current);
  3349. current->state = TASK_UNINTERRUPTIBLE;
  3350. sleep_on_head(q, &wait, &flags);
  3351. timeout = schedule_timeout(timeout);
  3352. sleep_on_tail(q, &wait, &flags);
  3353. return timeout;
  3354. }
  3355. EXPORT_SYMBOL(sleep_on_timeout);
  3356. #ifdef CONFIG_RT_MUTEXES
  3357. /*
  3358. * rt_mutex_setprio - set the current priority of a task
  3359. * @p: task
  3360. * @prio: prio value (kernel-internal form)
  3361. *
  3362. * This function changes the 'effective' priority of a task. It does
  3363. * not touch ->normal_prio like __setscheduler().
  3364. *
  3365. * Used by the rt_mutex code to implement priority inheritance logic.
  3366. */
  3367. void rt_mutex_setprio(struct task_struct *p, int prio)
  3368. {
  3369. unsigned long flags;
  3370. int oldprio, on_rq;
  3371. struct rq *rq;
  3372. u64 now;
  3373. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3374. rq = task_rq_lock(p, &flags);
  3375. update_rq_clock(rq);
  3376. now = rq->clock;
  3377. oldprio = p->prio;
  3378. on_rq = p->se.on_rq;
  3379. if (on_rq)
  3380. dequeue_task(rq, p, 0, now);
  3381. if (rt_prio(prio))
  3382. p->sched_class = &rt_sched_class;
  3383. else
  3384. p->sched_class = &fair_sched_class;
  3385. p->prio = prio;
  3386. if (on_rq) {
  3387. enqueue_task(rq, p, 0, now);
  3388. /*
  3389. * Reschedule if we are currently running on this runqueue and
  3390. * our priority decreased, or if we are not currently running on
  3391. * this runqueue and our priority is higher than the current's
  3392. */
  3393. if (task_running(rq, p)) {
  3394. if (p->prio > oldprio)
  3395. resched_task(rq->curr);
  3396. } else {
  3397. check_preempt_curr(rq, p);
  3398. }
  3399. }
  3400. task_rq_unlock(rq, &flags);
  3401. }
  3402. #endif
  3403. void set_user_nice(struct task_struct *p, long nice)
  3404. {
  3405. int old_prio, delta, on_rq;
  3406. unsigned long flags;
  3407. struct rq *rq;
  3408. u64 now;
  3409. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3410. return;
  3411. /*
  3412. * We have to be careful, if called from sys_setpriority(),
  3413. * the task might be in the middle of scheduling on another CPU.
  3414. */
  3415. rq = task_rq_lock(p, &flags);
  3416. update_rq_clock(rq);
  3417. now = rq->clock;
  3418. /*
  3419. * The RT priorities are set via sched_setscheduler(), but we still
  3420. * allow the 'normal' nice value to be set - but as expected
  3421. * it wont have any effect on scheduling until the task is
  3422. * SCHED_FIFO/SCHED_RR:
  3423. */
  3424. if (task_has_rt_policy(p)) {
  3425. p->static_prio = NICE_TO_PRIO(nice);
  3426. goto out_unlock;
  3427. }
  3428. on_rq = p->se.on_rq;
  3429. if (on_rq) {
  3430. dequeue_task(rq, p, 0, now);
  3431. dec_load(rq, p);
  3432. }
  3433. p->static_prio = NICE_TO_PRIO(nice);
  3434. set_load_weight(p);
  3435. old_prio = p->prio;
  3436. p->prio = effective_prio(p);
  3437. delta = p->prio - old_prio;
  3438. if (on_rq) {
  3439. enqueue_task(rq, p, 0, now);
  3440. inc_load(rq, p);
  3441. /*
  3442. * If the task increased its priority or is running and
  3443. * lowered its priority, then reschedule its CPU:
  3444. */
  3445. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3446. resched_task(rq->curr);
  3447. }
  3448. out_unlock:
  3449. task_rq_unlock(rq, &flags);
  3450. }
  3451. EXPORT_SYMBOL(set_user_nice);
  3452. /*
  3453. * can_nice - check if a task can reduce its nice value
  3454. * @p: task
  3455. * @nice: nice value
  3456. */
  3457. int can_nice(const struct task_struct *p, const int nice)
  3458. {
  3459. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3460. int nice_rlim = 20 - nice;
  3461. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3462. capable(CAP_SYS_NICE));
  3463. }
  3464. #ifdef __ARCH_WANT_SYS_NICE
  3465. /*
  3466. * sys_nice - change the priority of the current process.
  3467. * @increment: priority increment
  3468. *
  3469. * sys_setpriority is a more generic, but much slower function that
  3470. * does similar things.
  3471. */
  3472. asmlinkage long sys_nice(int increment)
  3473. {
  3474. long nice, retval;
  3475. /*
  3476. * Setpriority might change our priority at the same moment.
  3477. * We don't have to worry. Conceptually one call occurs first
  3478. * and we have a single winner.
  3479. */
  3480. if (increment < -40)
  3481. increment = -40;
  3482. if (increment > 40)
  3483. increment = 40;
  3484. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3485. if (nice < -20)
  3486. nice = -20;
  3487. if (nice > 19)
  3488. nice = 19;
  3489. if (increment < 0 && !can_nice(current, nice))
  3490. return -EPERM;
  3491. retval = security_task_setnice(current, nice);
  3492. if (retval)
  3493. return retval;
  3494. set_user_nice(current, nice);
  3495. return 0;
  3496. }
  3497. #endif
  3498. /**
  3499. * task_prio - return the priority value of a given task.
  3500. * @p: the task in question.
  3501. *
  3502. * This is the priority value as seen by users in /proc.
  3503. * RT tasks are offset by -200. Normal tasks are centered
  3504. * around 0, value goes from -16 to +15.
  3505. */
  3506. int task_prio(const struct task_struct *p)
  3507. {
  3508. return p->prio - MAX_RT_PRIO;
  3509. }
  3510. /**
  3511. * task_nice - return the nice value of a given task.
  3512. * @p: the task in question.
  3513. */
  3514. int task_nice(const struct task_struct *p)
  3515. {
  3516. return TASK_NICE(p);
  3517. }
  3518. EXPORT_SYMBOL_GPL(task_nice);
  3519. /**
  3520. * idle_cpu - is a given cpu idle currently?
  3521. * @cpu: the processor in question.
  3522. */
  3523. int idle_cpu(int cpu)
  3524. {
  3525. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3526. }
  3527. /**
  3528. * idle_task - return the idle task for a given cpu.
  3529. * @cpu: the processor in question.
  3530. */
  3531. struct task_struct *idle_task(int cpu)
  3532. {
  3533. return cpu_rq(cpu)->idle;
  3534. }
  3535. /**
  3536. * find_process_by_pid - find a process with a matching PID value.
  3537. * @pid: the pid in question.
  3538. */
  3539. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3540. {
  3541. return pid ? find_task_by_pid(pid) : current;
  3542. }
  3543. /* Actually do priority change: must hold rq lock. */
  3544. static void
  3545. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3546. {
  3547. BUG_ON(p->se.on_rq);
  3548. p->policy = policy;
  3549. switch (p->policy) {
  3550. case SCHED_NORMAL:
  3551. case SCHED_BATCH:
  3552. case SCHED_IDLE:
  3553. p->sched_class = &fair_sched_class;
  3554. break;
  3555. case SCHED_FIFO:
  3556. case SCHED_RR:
  3557. p->sched_class = &rt_sched_class;
  3558. break;
  3559. }
  3560. p->rt_priority = prio;
  3561. p->normal_prio = normal_prio(p);
  3562. /* we are holding p->pi_lock already */
  3563. p->prio = rt_mutex_getprio(p);
  3564. set_load_weight(p);
  3565. }
  3566. /**
  3567. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3568. * @p: the task in question.
  3569. * @policy: new policy.
  3570. * @param: structure containing the new RT priority.
  3571. *
  3572. * NOTE that the task may be already dead.
  3573. */
  3574. int sched_setscheduler(struct task_struct *p, int policy,
  3575. struct sched_param *param)
  3576. {
  3577. int retval, oldprio, oldpolicy = -1, on_rq;
  3578. unsigned long flags;
  3579. struct rq *rq;
  3580. /* may grab non-irq protected spin_locks */
  3581. BUG_ON(in_interrupt());
  3582. recheck:
  3583. /* double check policy once rq lock held */
  3584. if (policy < 0)
  3585. policy = oldpolicy = p->policy;
  3586. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3587. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3588. policy != SCHED_IDLE)
  3589. return -EINVAL;
  3590. /*
  3591. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3592. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3593. * SCHED_BATCH and SCHED_IDLE is 0.
  3594. */
  3595. if (param->sched_priority < 0 ||
  3596. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3597. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3598. return -EINVAL;
  3599. if (rt_policy(policy) != (param->sched_priority != 0))
  3600. return -EINVAL;
  3601. /*
  3602. * Allow unprivileged RT tasks to decrease priority:
  3603. */
  3604. if (!capable(CAP_SYS_NICE)) {
  3605. if (rt_policy(policy)) {
  3606. unsigned long rlim_rtprio;
  3607. if (!lock_task_sighand(p, &flags))
  3608. return -ESRCH;
  3609. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3610. unlock_task_sighand(p, &flags);
  3611. /* can't set/change the rt policy */
  3612. if (policy != p->policy && !rlim_rtprio)
  3613. return -EPERM;
  3614. /* can't increase priority */
  3615. if (param->sched_priority > p->rt_priority &&
  3616. param->sched_priority > rlim_rtprio)
  3617. return -EPERM;
  3618. }
  3619. /*
  3620. * Like positive nice levels, dont allow tasks to
  3621. * move out of SCHED_IDLE either:
  3622. */
  3623. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3624. return -EPERM;
  3625. /* can't change other user's priorities */
  3626. if ((current->euid != p->euid) &&
  3627. (current->euid != p->uid))
  3628. return -EPERM;
  3629. }
  3630. retval = security_task_setscheduler(p, policy, param);
  3631. if (retval)
  3632. return retval;
  3633. /*
  3634. * make sure no PI-waiters arrive (or leave) while we are
  3635. * changing the priority of the task:
  3636. */
  3637. spin_lock_irqsave(&p->pi_lock, flags);
  3638. /*
  3639. * To be able to change p->policy safely, the apropriate
  3640. * runqueue lock must be held.
  3641. */
  3642. rq = __task_rq_lock(p);
  3643. /* recheck policy now with rq lock held */
  3644. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3645. policy = oldpolicy = -1;
  3646. __task_rq_unlock(rq);
  3647. spin_unlock_irqrestore(&p->pi_lock, flags);
  3648. goto recheck;
  3649. }
  3650. on_rq = p->se.on_rq;
  3651. if (on_rq) {
  3652. update_rq_clock(rq);
  3653. deactivate_task(rq, p, 0, rq->clock);
  3654. }
  3655. oldprio = p->prio;
  3656. __setscheduler(rq, p, policy, param->sched_priority);
  3657. if (on_rq) {
  3658. activate_task(rq, p, 0);
  3659. /*
  3660. * Reschedule if we are currently running on this runqueue and
  3661. * our priority decreased, or if we are not currently running on
  3662. * this runqueue and our priority is higher than the current's
  3663. */
  3664. if (task_running(rq, p)) {
  3665. if (p->prio > oldprio)
  3666. resched_task(rq->curr);
  3667. } else {
  3668. check_preempt_curr(rq, p);
  3669. }
  3670. }
  3671. __task_rq_unlock(rq);
  3672. spin_unlock_irqrestore(&p->pi_lock, flags);
  3673. rt_mutex_adjust_pi(p);
  3674. return 0;
  3675. }
  3676. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3677. static int
  3678. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3679. {
  3680. struct sched_param lparam;
  3681. struct task_struct *p;
  3682. int retval;
  3683. if (!param || pid < 0)
  3684. return -EINVAL;
  3685. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3686. return -EFAULT;
  3687. rcu_read_lock();
  3688. retval = -ESRCH;
  3689. p = find_process_by_pid(pid);
  3690. if (p != NULL)
  3691. retval = sched_setscheduler(p, policy, &lparam);
  3692. rcu_read_unlock();
  3693. return retval;
  3694. }
  3695. /**
  3696. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3697. * @pid: the pid in question.
  3698. * @policy: new policy.
  3699. * @param: structure containing the new RT priority.
  3700. */
  3701. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3702. struct sched_param __user *param)
  3703. {
  3704. /* negative values for policy are not valid */
  3705. if (policy < 0)
  3706. return -EINVAL;
  3707. return do_sched_setscheduler(pid, policy, param);
  3708. }
  3709. /**
  3710. * sys_sched_setparam - set/change the RT priority of a thread
  3711. * @pid: the pid in question.
  3712. * @param: structure containing the new RT priority.
  3713. */
  3714. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3715. {
  3716. return do_sched_setscheduler(pid, -1, param);
  3717. }
  3718. /**
  3719. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3720. * @pid: the pid in question.
  3721. */
  3722. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3723. {
  3724. struct task_struct *p;
  3725. int retval = -EINVAL;
  3726. if (pid < 0)
  3727. goto out_nounlock;
  3728. retval = -ESRCH;
  3729. read_lock(&tasklist_lock);
  3730. p = find_process_by_pid(pid);
  3731. if (p) {
  3732. retval = security_task_getscheduler(p);
  3733. if (!retval)
  3734. retval = p->policy;
  3735. }
  3736. read_unlock(&tasklist_lock);
  3737. out_nounlock:
  3738. return retval;
  3739. }
  3740. /**
  3741. * sys_sched_getscheduler - get the RT priority of a thread
  3742. * @pid: the pid in question.
  3743. * @param: structure containing the RT priority.
  3744. */
  3745. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3746. {
  3747. struct sched_param lp;
  3748. struct task_struct *p;
  3749. int retval = -EINVAL;
  3750. if (!param || pid < 0)
  3751. goto out_nounlock;
  3752. read_lock(&tasklist_lock);
  3753. p = find_process_by_pid(pid);
  3754. retval = -ESRCH;
  3755. if (!p)
  3756. goto out_unlock;
  3757. retval = security_task_getscheduler(p);
  3758. if (retval)
  3759. goto out_unlock;
  3760. lp.sched_priority = p->rt_priority;
  3761. read_unlock(&tasklist_lock);
  3762. /*
  3763. * This one might sleep, we cannot do it with a spinlock held ...
  3764. */
  3765. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3766. out_nounlock:
  3767. return retval;
  3768. out_unlock:
  3769. read_unlock(&tasklist_lock);
  3770. return retval;
  3771. }
  3772. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3773. {
  3774. cpumask_t cpus_allowed;
  3775. struct task_struct *p;
  3776. int retval;
  3777. mutex_lock(&sched_hotcpu_mutex);
  3778. read_lock(&tasklist_lock);
  3779. p = find_process_by_pid(pid);
  3780. if (!p) {
  3781. read_unlock(&tasklist_lock);
  3782. mutex_unlock(&sched_hotcpu_mutex);
  3783. return -ESRCH;
  3784. }
  3785. /*
  3786. * It is not safe to call set_cpus_allowed with the
  3787. * tasklist_lock held. We will bump the task_struct's
  3788. * usage count and then drop tasklist_lock.
  3789. */
  3790. get_task_struct(p);
  3791. read_unlock(&tasklist_lock);
  3792. retval = -EPERM;
  3793. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3794. !capable(CAP_SYS_NICE))
  3795. goto out_unlock;
  3796. retval = security_task_setscheduler(p, 0, NULL);
  3797. if (retval)
  3798. goto out_unlock;
  3799. cpus_allowed = cpuset_cpus_allowed(p);
  3800. cpus_and(new_mask, new_mask, cpus_allowed);
  3801. retval = set_cpus_allowed(p, new_mask);
  3802. out_unlock:
  3803. put_task_struct(p);
  3804. mutex_unlock(&sched_hotcpu_mutex);
  3805. return retval;
  3806. }
  3807. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3808. cpumask_t *new_mask)
  3809. {
  3810. if (len < sizeof(cpumask_t)) {
  3811. memset(new_mask, 0, sizeof(cpumask_t));
  3812. } else if (len > sizeof(cpumask_t)) {
  3813. len = sizeof(cpumask_t);
  3814. }
  3815. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3816. }
  3817. /**
  3818. * sys_sched_setaffinity - set the cpu affinity of a process
  3819. * @pid: pid of the process
  3820. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3821. * @user_mask_ptr: user-space pointer to the new cpu mask
  3822. */
  3823. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3824. unsigned long __user *user_mask_ptr)
  3825. {
  3826. cpumask_t new_mask;
  3827. int retval;
  3828. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3829. if (retval)
  3830. return retval;
  3831. return sched_setaffinity(pid, new_mask);
  3832. }
  3833. /*
  3834. * Represents all cpu's present in the system
  3835. * In systems capable of hotplug, this map could dynamically grow
  3836. * as new cpu's are detected in the system via any platform specific
  3837. * method, such as ACPI for e.g.
  3838. */
  3839. cpumask_t cpu_present_map __read_mostly;
  3840. EXPORT_SYMBOL(cpu_present_map);
  3841. #ifndef CONFIG_SMP
  3842. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3843. EXPORT_SYMBOL(cpu_online_map);
  3844. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3845. EXPORT_SYMBOL(cpu_possible_map);
  3846. #endif
  3847. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3848. {
  3849. struct task_struct *p;
  3850. int retval;
  3851. mutex_lock(&sched_hotcpu_mutex);
  3852. read_lock(&tasklist_lock);
  3853. retval = -ESRCH;
  3854. p = find_process_by_pid(pid);
  3855. if (!p)
  3856. goto out_unlock;
  3857. retval = security_task_getscheduler(p);
  3858. if (retval)
  3859. goto out_unlock;
  3860. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3861. out_unlock:
  3862. read_unlock(&tasklist_lock);
  3863. mutex_unlock(&sched_hotcpu_mutex);
  3864. return retval;
  3865. }
  3866. /**
  3867. * sys_sched_getaffinity - get the cpu affinity of a process
  3868. * @pid: pid of the process
  3869. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3870. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3871. */
  3872. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3873. unsigned long __user *user_mask_ptr)
  3874. {
  3875. int ret;
  3876. cpumask_t mask;
  3877. if (len < sizeof(cpumask_t))
  3878. return -EINVAL;
  3879. ret = sched_getaffinity(pid, &mask);
  3880. if (ret < 0)
  3881. return ret;
  3882. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3883. return -EFAULT;
  3884. return sizeof(cpumask_t);
  3885. }
  3886. /**
  3887. * sys_sched_yield - yield the current processor to other threads.
  3888. *
  3889. * This function yields the current CPU to other tasks. If there are no
  3890. * other threads running on this CPU then this function will return.
  3891. */
  3892. asmlinkage long sys_sched_yield(void)
  3893. {
  3894. struct rq *rq = this_rq_lock();
  3895. schedstat_inc(rq, yld_cnt);
  3896. if (unlikely(rq->nr_running == 1))
  3897. schedstat_inc(rq, yld_act_empty);
  3898. else
  3899. current->sched_class->yield_task(rq, current);
  3900. /*
  3901. * Since we are going to call schedule() anyway, there's
  3902. * no need to preempt or enable interrupts:
  3903. */
  3904. __release(rq->lock);
  3905. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3906. _raw_spin_unlock(&rq->lock);
  3907. preempt_enable_no_resched();
  3908. schedule();
  3909. return 0;
  3910. }
  3911. static void __cond_resched(void)
  3912. {
  3913. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3914. __might_sleep(__FILE__, __LINE__);
  3915. #endif
  3916. /*
  3917. * The BKS might be reacquired before we have dropped
  3918. * PREEMPT_ACTIVE, which could trigger a second
  3919. * cond_resched() call.
  3920. */
  3921. do {
  3922. add_preempt_count(PREEMPT_ACTIVE);
  3923. schedule();
  3924. sub_preempt_count(PREEMPT_ACTIVE);
  3925. } while (need_resched());
  3926. }
  3927. int __sched cond_resched(void)
  3928. {
  3929. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3930. system_state == SYSTEM_RUNNING) {
  3931. __cond_resched();
  3932. return 1;
  3933. }
  3934. return 0;
  3935. }
  3936. EXPORT_SYMBOL(cond_resched);
  3937. /*
  3938. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3939. * call schedule, and on return reacquire the lock.
  3940. *
  3941. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3942. * operations here to prevent schedule() from being called twice (once via
  3943. * spin_unlock(), once by hand).
  3944. */
  3945. int cond_resched_lock(spinlock_t *lock)
  3946. {
  3947. int ret = 0;
  3948. if (need_lockbreak(lock)) {
  3949. spin_unlock(lock);
  3950. cpu_relax();
  3951. ret = 1;
  3952. spin_lock(lock);
  3953. }
  3954. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3955. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3956. _raw_spin_unlock(lock);
  3957. preempt_enable_no_resched();
  3958. __cond_resched();
  3959. ret = 1;
  3960. spin_lock(lock);
  3961. }
  3962. return ret;
  3963. }
  3964. EXPORT_SYMBOL(cond_resched_lock);
  3965. int __sched cond_resched_softirq(void)
  3966. {
  3967. BUG_ON(!in_softirq());
  3968. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3969. local_bh_enable();
  3970. __cond_resched();
  3971. local_bh_disable();
  3972. return 1;
  3973. }
  3974. return 0;
  3975. }
  3976. EXPORT_SYMBOL(cond_resched_softirq);
  3977. /**
  3978. * yield - yield the current processor to other threads.
  3979. *
  3980. * This is a shortcut for kernel-space yielding - it marks the
  3981. * thread runnable and calls sys_sched_yield().
  3982. */
  3983. void __sched yield(void)
  3984. {
  3985. set_current_state(TASK_RUNNING);
  3986. sys_sched_yield();
  3987. }
  3988. EXPORT_SYMBOL(yield);
  3989. /*
  3990. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3991. * that process accounting knows that this is a task in IO wait state.
  3992. *
  3993. * But don't do that if it is a deliberate, throttling IO wait (this task
  3994. * has set its backing_dev_info: the queue against which it should throttle)
  3995. */
  3996. void __sched io_schedule(void)
  3997. {
  3998. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3999. delayacct_blkio_start();
  4000. atomic_inc(&rq->nr_iowait);
  4001. schedule();
  4002. atomic_dec(&rq->nr_iowait);
  4003. delayacct_blkio_end();
  4004. }
  4005. EXPORT_SYMBOL(io_schedule);
  4006. long __sched io_schedule_timeout(long timeout)
  4007. {
  4008. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4009. long ret;
  4010. delayacct_blkio_start();
  4011. atomic_inc(&rq->nr_iowait);
  4012. ret = schedule_timeout(timeout);
  4013. atomic_dec(&rq->nr_iowait);
  4014. delayacct_blkio_end();
  4015. return ret;
  4016. }
  4017. /**
  4018. * sys_sched_get_priority_max - return maximum RT priority.
  4019. * @policy: scheduling class.
  4020. *
  4021. * this syscall returns the maximum rt_priority that can be used
  4022. * by a given scheduling class.
  4023. */
  4024. asmlinkage long sys_sched_get_priority_max(int policy)
  4025. {
  4026. int ret = -EINVAL;
  4027. switch (policy) {
  4028. case SCHED_FIFO:
  4029. case SCHED_RR:
  4030. ret = MAX_USER_RT_PRIO-1;
  4031. break;
  4032. case SCHED_NORMAL:
  4033. case SCHED_BATCH:
  4034. case SCHED_IDLE:
  4035. ret = 0;
  4036. break;
  4037. }
  4038. return ret;
  4039. }
  4040. /**
  4041. * sys_sched_get_priority_min - return minimum RT priority.
  4042. * @policy: scheduling class.
  4043. *
  4044. * this syscall returns the minimum rt_priority that can be used
  4045. * by a given scheduling class.
  4046. */
  4047. asmlinkage long sys_sched_get_priority_min(int policy)
  4048. {
  4049. int ret = -EINVAL;
  4050. switch (policy) {
  4051. case SCHED_FIFO:
  4052. case SCHED_RR:
  4053. ret = 1;
  4054. break;
  4055. case SCHED_NORMAL:
  4056. case SCHED_BATCH:
  4057. case SCHED_IDLE:
  4058. ret = 0;
  4059. }
  4060. return ret;
  4061. }
  4062. /**
  4063. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4064. * @pid: pid of the process.
  4065. * @interval: userspace pointer to the timeslice value.
  4066. *
  4067. * this syscall writes the default timeslice value of a given process
  4068. * into the user-space timespec buffer. A value of '0' means infinity.
  4069. */
  4070. asmlinkage
  4071. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4072. {
  4073. struct task_struct *p;
  4074. int retval = -EINVAL;
  4075. struct timespec t;
  4076. if (pid < 0)
  4077. goto out_nounlock;
  4078. retval = -ESRCH;
  4079. read_lock(&tasklist_lock);
  4080. p = find_process_by_pid(pid);
  4081. if (!p)
  4082. goto out_unlock;
  4083. retval = security_task_getscheduler(p);
  4084. if (retval)
  4085. goto out_unlock;
  4086. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4087. 0 : static_prio_timeslice(p->static_prio), &t);
  4088. read_unlock(&tasklist_lock);
  4089. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4090. out_nounlock:
  4091. return retval;
  4092. out_unlock:
  4093. read_unlock(&tasklist_lock);
  4094. return retval;
  4095. }
  4096. static const char stat_nam[] = "RSDTtZX";
  4097. static void show_task(struct task_struct *p)
  4098. {
  4099. unsigned long free = 0;
  4100. unsigned state;
  4101. state = p->state ? __ffs(p->state) + 1 : 0;
  4102. printk("%-13.13s %c", p->comm,
  4103. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4104. #if BITS_PER_LONG == 32
  4105. if (state == TASK_RUNNING)
  4106. printk(" running ");
  4107. else
  4108. printk(" %08lx ", thread_saved_pc(p));
  4109. #else
  4110. if (state == TASK_RUNNING)
  4111. printk(" running task ");
  4112. else
  4113. printk(" %016lx ", thread_saved_pc(p));
  4114. #endif
  4115. #ifdef CONFIG_DEBUG_STACK_USAGE
  4116. {
  4117. unsigned long *n = end_of_stack(p);
  4118. while (!*n)
  4119. n++;
  4120. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4121. }
  4122. #endif
  4123. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4124. if (state != TASK_RUNNING)
  4125. show_stack(p, NULL);
  4126. }
  4127. void show_state_filter(unsigned long state_filter)
  4128. {
  4129. struct task_struct *g, *p;
  4130. #if BITS_PER_LONG == 32
  4131. printk(KERN_INFO
  4132. " task PC stack pid father\n");
  4133. #else
  4134. printk(KERN_INFO
  4135. " task PC stack pid father\n");
  4136. #endif
  4137. read_lock(&tasklist_lock);
  4138. do_each_thread(g, p) {
  4139. /*
  4140. * reset the NMI-timeout, listing all files on a slow
  4141. * console might take alot of time:
  4142. */
  4143. touch_nmi_watchdog();
  4144. if (!state_filter || (p->state & state_filter))
  4145. show_task(p);
  4146. } while_each_thread(g, p);
  4147. touch_all_softlockup_watchdogs();
  4148. #ifdef CONFIG_SCHED_DEBUG
  4149. sysrq_sched_debug_show();
  4150. #endif
  4151. read_unlock(&tasklist_lock);
  4152. /*
  4153. * Only show locks if all tasks are dumped:
  4154. */
  4155. if (state_filter == -1)
  4156. debug_show_all_locks();
  4157. }
  4158. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4159. {
  4160. idle->sched_class = &idle_sched_class;
  4161. }
  4162. /**
  4163. * init_idle - set up an idle thread for a given CPU
  4164. * @idle: task in question
  4165. * @cpu: cpu the idle task belongs to
  4166. *
  4167. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4168. * flag, to make booting more robust.
  4169. */
  4170. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4171. {
  4172. struct rq *rq = cpu_rq(cpu);
  4173. unsigned long flags;
  4174. __sched_fork(idle);
  4175. idle->se.exec_start = sched_clock();
  4176. idle->prio = idle->normal_prio = MAX_PRIO;
  4177. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4178. __set_task_cpu(idle, cpu);
  4179. spin_lock_irqsave(&rq->lock, flags);
  4180. rq->curr = rq->idle = idle;
  4181. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4182. idle->oncpu = 1;
  4183. #endif
  4184. spin_unlock_irqrestore(&rq->lock, flags);
  4185. /* Set the preempt count _outside_ the spinlocks! */
  4186. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4187. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4188. #else
  4189. task_thread_info(idle)->preempt_count = 0;
  4190. #endif
  4191. /*
  4192. * The idle tasks have their own, simple scheduling class:
  4193. */
  4194. idle->sched_class = &idle_sched_class;
  4195. }
  4196. /*
  4197. * In a system that switches off the HZ timer nohz_cpu_mask
  4198. * indicates which cpus entered this state. This is used
  4199. * in the rcu update to wait only for active cpus. For system
  4200. * which do not switch off the HZ timer nohz_cpu_mask should
  4201. * always be CPU_MASK_NONE.
  4202. */
  4203. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4204. /*
  4205. * Increase the granularity value when there are more CPUs,
  4206. * because with more CPUs the 'effective latency' as visible
  4207. * to users decreases. But the relationship is not linear,
  4208. * so pick a second-best guess by going with the log2 of the
  4209. * number of CPUs.
  4210. *
  4211. * This idea comes from the SD scheduler of Con Kolivas:
  4212. */
  4213. static inline void sched_init_granularity(void)
  4214. {
  4215. unsigned int factor = 1 + ilog2(num_online_cpus());
  4216. const unsigned long gran_limit = 100000000;
  4217. sysctl_sched_granularity *= factor;
  4218. if (sysctl_sched_granularity > gran_limit)
  4219. sysctl_sched_granularity = gran_limit;
  4220. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4221. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4222. }
  4223. #ifdef CONFIG_SMP
  4224. /*
  4225. * This is how migration works:
  4226. *
  4227. * 1) we queue a struct migration_req structure in the source CPU's
  4228. * runqueue and wake up that CPU's migration thread.
  4229. * 2) we down() the locked semaphore => thread blocks.
  4230. * 3) migration thread wakes up (implicitly it forces the migrated
  4231. * thread off the CPU)
  4232. * 4) it gets the migration request and checks whether the migrated
  4233. * task is still in the wrong runqueue.
  4234. * 5) if it's in the wrong runqueue then the migration thread removes
  4235. * it and puts it into the right queue.
  4236. * 6) migration thread up()s the semaphore.
  4237. * 7) we wake up and the migration is done.
  4238. */
  4239. /*
  4240. * Change a given task's CPU affinity. Migrate the thread to a
  4241. * proper CPU and schedule it away if the CPU it's executing on
  4242. * is removed from the allowed bitmask.
  4243. *
  4244. * NOTE: the caller must have a valid reference to the task, the
  4245. * task must not exit() & deallocate itself prematurely. The
  4246. * call is not atomic; no spinlocks may be held.
  4247. */
  4248. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4249. {
  4250. struct migration_req req;
  4251. unsigned long flags;
  4252. struct rq *rq;
  4253. int ret = 0;
  4254. rq = task_rq_lock(p, &flags);
  4255. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4256. ret = -EINVAL;
  4257. goto out;
  4258. }
  4259. p->cpus_allowed = new_mask;
  4260. /* Can the task run on the task's current CPU? If so, we're done */
  4261. if (cpu_isset(task_cpu(p), new_mask))
  4262. goto out;
  4263. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4264. /* Need help from migration thread: drop lock and wait. */
  4265. task_rq_unlock(rq, &flags);
  4266. wake_up_process(rq->migration_thread);
  4267. wait_for_completion(&req.done);
  4268. tlb_migrate_finish(p->mm);
  4269. return 0;
  4270. }
  4271. out:
  4272. task_rq_unlock(rq, &flags);
  4273. return ret;
  4274. }
  4275. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4276. /*
  4277. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4278. * this because either it can't run here any more (set_cpus_allowed()
  4279. * away from this CPU, or CPU going down), or because we're
  4280. * attempting to rebalance this task on exec (sched_exec).
  4281. *
  4282. * So we race with normal scheduler movements, but that's OK, as long
  4283. * as the task is no longer on this CPU.
  4284. *
  4285. * Returns non-zero if task was successfully migrated.
  4286. */
  4287. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4288. {
  4289. struct rq *rq_dest, *rq_src;
  4290. int ret = 0, on_rq;
  4291. if (unlikely(cpu_is_offline(dest_cpu)))
  4292. return ret;
  4293. rq_src = cpu_rq(src_cpu);
  4294. rq_dest = cpu_rq(dest_cpu);
  4295. double_rq_lock(rq_src, rq_dest);
  4296. /* Already moved. */
  4297. if (task_cpu(p) != src_cpu)
  4298. goto out;
  4299. /* Affinity changed (again). */
  4300. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4301. goto out;
  4302. on_rq = p->se.on_rq;
  4303. if (on_rq) {
  4304. update_rq_clock(rq_src);
  4305. deactivate_task(rq_src, p, 0, rq_src->clock);
  4306. }
  4307. set_task_cpu(p, dest_cpu);
  4308. if (on_rq) {
  4309. activate_task(rq_dest, p, 0);
  4310. check_preempt_curr(rq_dest, p);
  4311. }
  4312. ret = 1;
  4313. out:
  4314. double_rq_unlock(rq_src, rq_dest);
  4315. return ret;
  4316. }
  4317. /*
  4318. * migration_thread - this is a highprio system thread that performs
  4319. * thread migration by bumping thread off CPU then 'pushing' onto
  4320. * another runqueue.
  4321. */
  4322. static int migration_thread(void *data)
  4323. {
  4324. int cpu = (long)data;
  4325. struct rq *rq;
  4326. rq = cpu_rq(cpu);
  4327. BUG_ON(rq->migration_thread != current);
  4328. set_current_state(TASK_INTERRUPTIBLE);
  4329. while (!kthread_should_stop()) {
  4330. struct migration_req *req;
  4331. struct list_head *head;
  4332. spin_lock_irq(&rq->lock);
  4333. if (cpu_is_offline(cpu)) {
  4334. spin_unlock_irq(&rq->lock);
  4335. goto wait_to_die;
  4336. }
  4337. if (rq->active_balance) {
  4338. active_load_balance(rq, cpu);
  4339. rq->active_balance = 0;
  4340. }
  4341. head = &rq->migration_queue;
  4342. if (list_empty(head)) {
  4343. spin_unlock_irq(&rq->lock);
  4344. schedule();
  4345. set_current_state(TASK_INTERRUPTIBLE);
  4346. continue;
  4347. }
  4348. req = list_entry(head->next, struct migration_req, list);
  4349. list_del_init(head->next);
  4350. spin_unlock(&rq->lock);
  4351. __migrate_task(req->task, cpu, req->dest_cpu);
  4352. local_irq_enable();
  4353. complete(&req->done);
  4354. }
  4355. __set_current_state(TASK_RUNNING);
  4356. return 0;
  4357. wait_to_die:
  4358. /* Wait for kthread_stop */
  4359. set_current_state(TASK_INTERRUPTIBLE);
  4360. while (!kthread_should_stop()) {
  4361. schedule();
  4362. set_current_state(TASK_INTERRUPTIBLE);
  4363. }
  4364. __set_current_state(TASK_RUNNING);
  4365. return 0;
  4366. }
  4367. #ifdef CONFIG_HOTPLUG_CPU
  4368. /*
  4369. * Figure out where task on dead CPU should go, use force if neccessary.
  4370. * NOTE: interrupts should be disabled by the caller
  4371. */
  4372. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4373. {
  4374. unsigned long flags;
  4375. cpumask_t mask;
  4376. struct rq *rq;
  4377. int dest_cpu;
  4378. restart:
  4379. /* On same node? */
  4380. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4381. cpus_and(mask, mask, p->cpus_allowed);
  4382. dest_cpu = any_online_cpu(mask);
  4383. /* On any allowed CPU? */
  4384. if (dest_cpu == NR_CPUS)
  4385. dest_cpu = any_online_cpu(p->cpus_allowed);
  4386. /* No more Mr. Nice Guy. */
  4387. if (dest_cpu == NR_CPUS) {
  4388. rq = task_rq_lock(p, &flags);
  4389. cpus_setall(p->cpus_allowed);
  4390. dest_cpu = any_online_cpu(p->cpus_allowed);
  4391. task_rq_unlock(rq, &flags);
  4392. /*
  4393. * Don't tell them about moving exiting tasks or
  4394. * kernel threads (both mm NULL), since they never
  4395. * leave kernel.
  4396. */
  4397. if (p->mm && printk_ratelimit())
  4398. printk(KERN_INFO "process %d (%s) no "
  4399. "longer affine to cpu%d\n",
  4400. p->pid, p->comm, dead_cpu);
  4401. }
  4402. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4403. goto restart;
  4404. }
  4405. /*
  4406. * While a dead CPU has no uninterruptible tasks queued at this point,
  4407. * it might still have a nonzero ->nr_uninterruptible counter, because
  4408. * for performance reasons the counter is not stricly tracking tasks to
  4409. * their home CPUs. So we just add the counter to another CPU's counter,
  4410. * to keep the global sum constant after CPU-down:
  4411. */
  4412. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4413. {
  4414. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4415. unsigned long flags;
  4416. local_irq_save(flags);
  4417. double_rq_lock(rq_src, rq_dest);
  4418. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4419. rq_src->nr_uninterruptible = 0;
  4420. double_rq_unlock(rq_src, rq_dest);
  4421. local_irq_restore(flags);
  4422. }
  4423. /* Run through task list and migrate tasks from the dead cpu. */
  4424. static void migrate_live_tasks(int src_cpu)
  4425. {
  4426. struct task_struct *p, *t;
  4427. write_lock_irq(&tasklist_lock);
  4428. do_each_thread(t, p) {
  4429. if (p == current)
  4430. continue;
  4431. if (task_cpu(p) == src_cpu)
  4432. move_task_off_dead_cpu(src_cpu, p);
  4433. } while_each_thread(t, p);
  4434. write_unlock_irq(&tasklist_lock);
  4435. }
  4436. /*
  4437. * Schedules idle task to be the next runnable task on current CPU.
  4438. * It does so by boosting its priority to highest possible and adding it to
  4439. * the _front_ of the runqueue. Used by CPU offline code.
  4440. */
  4441. void sched_idle_next(void)
  4442. {
  4443. int this_cpu = smp_processor_id();
  4444. struct rq *rq = cpu_rq(this_cpu);
  4445. struct task_struct *p = rq->idle;
  4446. unsigned long flags;
  4447. /* cpu has to be offline */
  4448. BUG_ON(cpu_online(this_cpu));
  4449. /*
  4450. * Strictly not necessary since rest of the CPUs are stopped by now
  4451. * and interrupts disabled on the current cpu.
  4452. */
  4453. spin_lock_irqsave(&rq->lock, flags);
  4454. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4455. /* Add idle task to the _front_ of its priority queue: */
  4456. activate_idle_task(p, rq);
  4457. spin_unlock_irqrestore(&rq->lock, flags);
  4458. }
  4459. /*
  4460. * Ensures that the idle task is using init_mm right before its cpu goes
  4461. * offline.
  4462. */
  4463. void idle_task_exit(void)
  4464. {
  4465. struct mm_struct *mm = current->active_mm;
  4466. BUG_ON(cpu_online(smp_processor_id()));
  4467. if (mm != &init_mm)
  4468. switch_mm(mm, &init_mm, current);
  4469. mmdrop(mm);
  4470. }
  4471. /* called under rq->lock with disabled interrupts */
  4472. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4473. {
  4474. struct rq *rq = cpu_rq(dead_cpu);
  4475. /* Must be exiting, otherwise would be on tasklist. */
  4476. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4477. /* Cannot have done final schedule yet: would have vanished. */
  4478. BUG_ON(p->state == TASK_DEAD);
  4479. get_task_struct(p);
  4480. /*
  4481. * Drop lock around migration; if someone else moves it,
  4482. * that's OK. No task can be added to this CPU, so iteration is
  4483. * fine.
  4484. * NOTE: interrupts should be left disabled --dev@
  4485. */
  4486. spin_unlock(&rq->lock);
  4487. move_task_off_dead_cpu(dead_cpu, p);
  4488. spin_lock(&rq->lock);
  4489. put_task_struct(p);
  4490. }
  4491. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4492. static void migrate_dead_tasks(unsigned int dead_cpu)
  4493. {
  4494. struct rq *rq = cpu_rq(dead_cpu);
  4495. struct task_struct *next;
  4496. for ( ; ; ) {
  4497. if (!rq->nr_running)
  4498. break;
  4499. update_rq_clock(rq);
  4500. next = pick_next_task(rq, rq->curr);
  4501. if (!next)
  4502. break;
  4503. migrate_dead(dead_cpu, next);
  4504. }
  4505. }
  4506. #endif /* CONFIG_HOTPLUG_CPU */
  4507. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4508. static struct ctl_table sd_ctl_dir[] = {
  4509. {
  4510. .procname = "sched_domain",
  4511. .mode = 0755,
  4512. },
  4513. {0,},
  4514. };
  4515. static struct ctl_table sd_ctl_root[] = {
  4516. {
  4517. .procname = "kernel",
  4518. .mode = 0755,
  4519. .child = sd_ctl_dir,
  4520. },
  4521. {0,},
  4522. };
  4523. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4524. {
  4525. struct ctl_table *entry =
  4526. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4527. BUG_ON(!entry);
  4528. memset(entry, 0, n * sizeof(struct ctl_table));
  4529. return entry;
  4530. }
  4531. static void
  4532. set_table_entry(struct ctl_table *entry,
  4533. const char *procname, void *data, int maxlen,
  4534. mode_t mode, proc_handler *proc_handler)
  4535. {
  4536. entry->procname = procname;
  4537. entry->data = data;
  4538. entry->maxlen = maxlen;
  4539. entry->mode = mode;
  4540. entry->proc_handler = proc_handler;
  4541. }
  4542. static struct ctl_table *
  4543. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4544. {
  4545. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4546. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4547. sizeof(long), 0644, proc_doulongvec_minmax);
  4548. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4549. sizeof(long), 0644, proc_doulongvec_minmax);
  4550. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4551. sizeof(int), 0644, proc_dointvec_minmax);
  4552. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4553. sizeof(int), 0644, proc_dointvec_minmax);
  4554. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4555. sizeof(int), 0644, proc_dointvec_minmax);
  4556. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4557. sizeof(int), 0644, proc_dointvec_minmax);
  4558. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4559. sizeof(int), 0644, proc_dointvec_minmax);
  4560. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4561. sizeof(int), 0644, proc_dointvec_minmax);
  4562. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4563. sizeof(int), 0644, proc_dointvec_minmax);
  4564. set_table_entry(&table[10], "cache_nice_tries",
  4565. &sd->cache_nice_tries,
  4566. sizeof(int), 0644, proc_dointvec_minmax);
  4567. set_table_entry(&table[12], "flags", &sd->flags,
  4568. sizeof(int), 0644, proc_dointvec_minmax);
  4569. return table;
  4570. }
  4571. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4572. {
  4573. struct ctl_table *entry, *table;
  4574. struct sched_domain *sd;
  4575. int domain_num = 0, i;
  4576. char buf[32];
  4577. for_each_domain(cpu, sd)
  4578. domain_num++;
  4579. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4580. i = 0;
  4581. for_each_domain(cpu, sd) {
  4582. snprintf(buf, 32, "domain%d", i);
  4583. entry->procname = kstrdup(buf, GFP_KERNEL);
  4584. entry->mode = 0755;
  4585. entry->child = sd_alloc_ctl_domain_table(sd);
  4586. entry++;
  4587. i++;
  4588. }
  4589. return table;
  4590. }
  4591. static struct ctl_table_header *sd_sysctl_header;
  4592. static void init_sched_domain_sysctl(void)
  4593. {
  4594. int i, cpu_num = num_online_cpus();
  4595. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4596. char buf[32];
  4597. sd_ctl_dir[0].child = entry;
  4598. for (i = 0; i < cpu_num; i++, entry++) {
  4599. snprintf(buf, 32, "cpu%d", i);
  4600. entry->procname = kstrdup(buf, GFP_KERNEL);
  4601. entry->mode = 0755;
  4602. entry->child = sd_alloc_ctl_cpu_table(i);
  4603. }
  4604. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4605. }
  4606. #else
  4607. static void init_sched_domain_sysctl(void)
  4608. {
  4609. }
  4610. #endif
  4611. /*
  4612. * migration_call - callback that gets triggered when a CPU is added.
  4613. * Here we can start up the necessary migration thread for the new CPU.
  4614. */
  4615. static int __cpuinit
  4616. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4617. {
  4618. struct task_struct *p;
  4619. int cpu = (long)hcpu;
  4620. unsigned long flags;
  4621. struct rq *rq;
  4622. switch (action) {
  4623. case CPU_LOCK_ACQUIRE:
  4624. mutex_lock(&sched_hotcpu_mutex);
  4625. break;
  4626. case CPU_UP_PREPARE:
  4627. case CPU_UP_PREPARE_FROZEN:
  4628. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4629. if (IS_ERR(p))
  4630. return NOTIFY_BAD;
  4631. kthread_bind(p, cpu);
  4632. /* Must be high prio: stop_machine expects to yield to it. */
  4633. rq = task_rq_lock(p, &flags);
  4634. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4635. task_rq_unlock(rq, &flags);
  4636. cpu_rq(cpu)->migration_thread = p;
  4637. break;
  4638. case CPU_ONLINE:
  4639. case CPU_ONLINE_FROZEN:
  4640. /* Strictly unneccessary, as first user will wake it. */
  4641. wake_up_process(cpu_rq(cpu)->migration_thread);
  4642. break;
  4643. #ifdef CONFIG_HOTPLUG_CPU
  4644. case CPU_UP_CANCELED:
  4645. case CPU_UP_CANCELED_FROZEN:
  4646. if (!cpu_rq(cpu)->migration_thread)
  4647. break;
  4648. /* Unbind it from offline cpu so it can run. Fall thru. */
  4649. kthread_bind(cpu_rq(cpu)->migration_thread,
  4650. any_online_cpu(cpu_online_map));
  4651. kthread_stop(cpu_rq(cpu)->migration_thread);
  4652. cpu_rq(cpu)->migration_thread = NULL;
  4653. break;
  4654. case CPU_DEAD:
  4655. case CPU_DEAD_FROZEN:
  4656. migrate_live_tasks(cpu);
  4657. rq = cpu_rq(cpu);
  4658. kthread_stop(rq->migration_thread);
  4659. rq->migration_thread = NULL;
  4660. /* Idle task back to normal (off runqueue, low prio) */
  4661. rq = task_rq_lock(rq->idle, &flags);
  4662. update_rq_clock(rq);
  4663. deactivate_task(rq, rq->idle, 0, rq->clock);
  4664. rq->idle->static_prio = MAX_PRIO;
  4665. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4666. rq->idle->sched_class = &idle_sched_class;
  4667. migrate_dead_tasks(cpu);
  4668. task_rq_unlock(rq, &flags);
  4669. migrate_nr_uninterruptible(rq);
  4670. BUG_ON(rq->nr_running != 0);
  4671. /* No need to migrate the tasks: it was best-effort if
  4672. * they didn't take sched_hotcpu_mutex. Just wake up
  4673. * the requestors. */
  4674. spin_lock_irq(&rq->lock);
  4675. while (!list_empty(&rq->migration_queue)) {
  4676. struct migration_req *req;
  4677. req = list_entry(rq->migration_queue.next,
  4678. struct migration_req, list);
  4679. list_del_init(&req->list);
  4680. complete(&req->done);
  4681. }
  4682. spin_unlock_irq(&rq->lock);
  4683. break;
  4684. #endif
  4685. case CPU_LOCK_RELEASE:
  4686. mutex_unlock(&sched_hotcpu_mutex);
  4687. break;
  4688. }
  4689. return NOTIFY_OK;
  4690. }
  4691. /* Register at highest priority so that task migration (migrate_all_tasks)
  4692. * happens before everything else.
  4693. */
  4694. static struct notifier_block __cpuinitdata migration_notifier = {
  4695. .notifier_call = migration_call,
  4696. .priority = 10
  4697. };
  4698. int __init migration_init(void)
  4699. {
  4700. void *cpu = (void *)(long)smp_processor_id();
  4701. int err;
  4702. /* Start one for the boot CPU: */
  4703. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4704. BUG_ON(err == NOTIFY_BAD);
  4705. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4706. register_cpu_notifier(&migration_notifier);
  4707. return 0;
  4708. }
  4709. #endif
  4710. #ifdef CONFIG_SMP
  4711. /* Number of possible processor ids */
  4712. int nr_cpu_ids __read_mostly = NR_CPUS;
  4713. EXPORT_SYMBOL(nr_cpu_ids);
  4714. #undef SCHED_DOMAIN_DEBUG
  4715. #ifdef SCHED_DOMAIN_DEBUG
  4716. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4717. {
  4718. int level = 0;
  4719. if (!sd) {
  4720. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4721. return;
  4722. }
  4723. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4724. do {
  4725. int i;
  4726. char str[NR_CPUS];
  4727. struct sched_group *group = sd->groups;
  4728. cpumask_t groupmask;
  4729. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4730. cpus_clear(groupmask);
  4731. printk(KERN_DEBUG);
  4732. for (i = 0; i < level + 1; i++)
  4733. printk(" ");
  4734. printk("domain %d: ", level);
  4735. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4736. printk("does not load-balance\n");
  4737. if (sd->parent)
  4738. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4739. " has parent");
  4740. break;
  4741. }
  4742. printk("span %s\n", str);
  4743. if (!cpu_isset(cpu, sd->span))
  4744. printk(KERN_ERR "ERROR: domain->span does not contain "
  4745. "CPU%d\n", cpu);
  4746. if (!cpu_isset(cpu, group->cpumask))
  4747. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4748. " CPU%d\n", cpu);
  4749. printk(KERN_DEBUG);
  4750. for (i = 0; i < level + 2; i++)
  4751. printk(" ");
  4752. printk("groups:");
  4753. do {
  4754. if (!group) {
  4755. printk("\n");
  4756. printk(KERN_ERR "ERROR: group is NULL\n");
  4757. break;
  4758. }
  4759. if (!group->__cpu_power) {
  4760. printk("\n");
  4761. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4762. "set\n");
  4763. }
  4764. if (!cpus_weight(group->cpumask)) {
  4765. printk("\n");
  4766. printk(KERN_ERR "ERROR: empty group\n");
  4767. }
  4768. if (cpus_intersects(groupmask, group->cpumask)) {
  4769. printk("\n");
  4770. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4771. }
  4772. cpus_or(groupmask, groupmask, group->cpumask);
  4773. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4774. printk(" %s", str);
  4775. group = group->next;
  4776. } while (group != sd->groups);
  4777. printk("\n");
  4778. if (!cpus_equal(sd->span, groupmask))
  4779. printk(KERN_ERR "ERROR: groups don't span "
  4780. "domain->span\n");
  4781. level++;
  4782. sd = sd->parent;
  4783. if (!sd)
  4784. continue;
  4785. if (!cpus_subset(groupmask, sd->span))
  4786. printk(KERN_ERR "ERROR: parent span is not a superset "
  4787. "of domain->span\n");
  4788. } while (sd);
  4789. }
  4790. #else
  4791. # define sched_domain_debug(sd, cpu) do { } while (0)
  4792. #endif
  4793. static int sd_degenerate(struct sched_domain *sd)
  4794. {
  4795. if (cpus_weight(sd->span) == 1)
  4796. return 1;
  4797. /* Following flags need at least 2 groups */
  4798. if (sd->flags & (SD_LOAD_BALANCE |
  4799. SD_BALANCE_NEWIDLE |
  4800. SD_BALANCE_FORK |
  4801. SD_BALANCE_EXEC |
  4802. SD_SHARE_CPUPOWER |
  4803. SD_SHARE_PKG_RESOURCES)) {
  4804. if (sd->groups != sd->groups->next)
  4805. return 0;
  4806. }
  4807. /* Following flags don't use groups */
  4808. if (sd->flags & (SD_WAKE_IDLE |
  4809. SD_WAKE_AFFINE |
  4810. SD_WAKE_BALANCE))
  4811. return 0;
  4812. return 1;
  4813. }
  4814. static int
  4815. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4816. {
  4817. unsigned long cflags = sd->flags, pflags = parent->flags;
  4818. if (sd_degenerate(parent))
  4819. return 1;
  4820. if (!cpus_equal(sd->span, parent->span))
  4821. return 0;
  4822. /* Does parent contain flags not in child? */
  4823. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4824. if (cflags & SD_WAKE_AFFINE)
  4825. pflags &= ~SD_WAKE_BALANCE;
  4826. /* Flags needing groups don't count if only 1 group in parent */
  4827. if (parent->groups == parent->groups->next) {
  4828. pflags &= ~(SD_LOAD_BALANCE |
  4829. SD_BALANCE_NEWIDLE |
  4830. SD_BALANCE_FORK |
  4831. SD_BALANCE_EXEC |
  4832. SD_SHARE_CPUPOWER |
  4833. SD_SHARE_PKG_RESOURCES);
  4834. }
  4835. if (~cflags & pflags)
  4836. return 0;
  4837. return 1;
  4838. }
  4839. /*
  4840. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4841. * hold the hotplug lock.
  4842. */
  4843. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4844. {
  4845. struct rq *rq = cpu_rq(cpu);
  4846. struct sched_domain *tmp;
  4847. /* Remove the sched domains which do not contribute to scheduling. */
  4848. for (tmp = sd; tmp; tmp = tmp->parent) {
  4849. struct sched_domain *parent = tmp->parent;
  4850. if (!parent)
  4851. break;
  4852. if (sd_parent_degenerate(tmp, parent)) {
  4853. tmp->parent = parent->parent;
  4854. if (parent->parent)
  4855. parent->parent->child = tmp;
  4856. }
  4857. }
  4858. if (sd && sd_degenerate(sd)) {
  4859. sd = sd->parent;
  4860. if (sd)
  4861. sd->child = NULL;
  4862. }
  4863. sched_domain_debug(sd, cpu);
  4864. rcu_assign_pointer(rq->sd, sd);
  4865. }
  4866. /* cpus with isolated domains */
  4867. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4868. /* Setup the mask of cpus configured for isolated domains */
  4869. static int __init isolated_cpu_setup(char *str)
  4870. {
  4871. int ints[NR_CPUS], i;
  4872. str = get_options(str, ARRAY_SIZE(ints), ints);
  4873. cpus_clear(cpu_isolated_map);
  4874. for (i = 1; i <= ints[0]; i++)
  4875. if (ints[i] < NR_CPUS)
  4876. cpu_set(ints[i], cpu_isolated_map);
  4877. return 1;
  4878. }
  4879. __setup ("isolcpus=", isolated_cpu_setup);
  4880. /*
  4881. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4882. * to a function which identifies what group(along with sched group) a CPU
  4883. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4884. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4885. *
  4886. * init_sched_build_groups will build a circular linked list of the groups
  4887. * covered by the given span, and will set each group's ->cpumask correctly,
  4888. * and ->cpu_power to 0.
  4889. */
  4890. static void
  4891. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4892. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4893. struct sched_group **sg))
  4894. {
  4895. struct sched_group *first = NULL, *last = NULL;
  4896. cpumask_t covered = CPU_MASK_NONE;
  4897. int i;
  4898. for_each_cpu_mask(i, span) {
  4899. struct sched_group *sg;
  4900. int group = group_fn(i, cpu_map, &sg);
  4901. int j;
  4902. if (cpu_isset(i, covered))
  4903. continue;
  4904. sg->cpumask = CPU_MASK_NONE;
  4905. sg->__cpu_power = 0;
  4906. for_each_cpu_mask(j, span) {
  4907. if (group_fn(j, cpu_map, NULL) != group)
  4908. continue;
  4909. cpu_set(j, covered);
  4910. cpu_set(j, sg->cpumask);
  4911. }
  4912. if (!first)
  4913. first = sg;
  4914. if (last)
  4915. last->next = sg;
  4916. last = sg;
  4917. }
  4918. last->next = first;
  4919. }
  4920. #define SD_NODES_PER_DOMAIN 16
  4921. #ifdef CONFIG_NUMA
  4922. /**
  4923. * find_next_best_node - find the next node to include in a sched_domain
  4924. * @node: node whose sched_domain we're building
  4925. * @used_nodes: nodes already in the sched_domain
  4926. *
  4927. * Find the next node to include in a given scheduling domain. Simply
  4928. * finds the closest node not already in the @used_nodes map.
  4929. *
  4930. * Should use nodemask_t.
  4931. */
  4932. static int find_next_best_node(int node, unsigned long *used_nodes)
  4933. {
  4934. int i, n, val, min_val, best_node = 0;
  4935. min_val = INT_MAX;
  4936. for (i = 0; i < MAX_NUMNODES; i++) {
  4937. /* Start at @node */
  4938. n = (node + i) % MAX_NUMNODES;
  4939. if (!nr_cpus_node(n))
  4940. continue;
  4941. /* Skip already used nodes */
  4942. if (test_bit(n, used_nodes))
  4943. continue;
  4944. /* Simple min distance search */
  4945. val = node_distance(node, n);
  4946. if (val < min_val) {
  4947. min_val = val;
  4948. best_node = n;
  4949. }
  4950. }
  4951. set_bit(best_node, used_nodes);
  4952. return best_node;
  4953. }
  4954. /**
  4955. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4956. * @node: node whose cpumask we're constructing
  4957. * @size: number of nodes to include in this span
  4958. *
  4959. * Given a node, construct a good cpumask for its sched_domain to span. It
  4960. * should be one that prevents unnecessary balancing, but also spreads tasks
  4961. * out optimally.
  4962. */
  4963. static cpumask_t sched_domain_node_span(int node)
  4964. {
  4965. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4966. cpumask_t span, nodemask;
  4967. int i;
  4968. cpus_clear(span);
  4969. bitmap_zero(used_nodes, MAX_NUMNODES);
  4970. nodemask = node_to_cpumask(node);
  4971. cpus_or(span, span, nodemask);
  4972. set_bit(node, used_nodes);
  4973. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4974. int next_node = find_next_best_node(node, used_nodes);
  4975. nodemask = node_to_cpumask(next_node);
  4976. cpus_or(span, span, nodemask);
  4977. }
  4978. return span;
  4979. }
  4980. #endif
  4981. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4982. /*
  4983. * SMT sched-domains:
  4984. */
  4985. #ifdef CONFIG_SCHED_SMT
  4986. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4987. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4988. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4989. struct sched_group **sg)
  4990. {
  4991. if (sg)
  4992. *sg = &per_cpu(sched_group_cpus, cpu);
  4993. return cpu;
  4994. }
  4995. #endif
  4996. /*
  4997. * multi-core sched-domains:
  4998. */
  4999. #ifdef CONFIG_SCHED_MC
  5000. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5001. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5002. #endif
  5003. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5004. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5005. struct sched_group **sg)
  5006. {
  5007. int group;
  5008. cpumask_t mask = cpu_sibling_map[cpu];
  5009. cpus_and(mask, mask, *cpu_map);
  5010. group = first_cpu(mask);
  5011. if (sg)
  5012. *sg = &per_cpu(sched_group_core, group);
  5013. return group;
  5014. }
  5015. #elif defined(CONFIG_SCHED_MC)
  5016. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5017. struct sched_group **sg)
  5018. {
  5019. if (sg)
  5020. *sg = &per_cpu(sched_group_core, cpu);
  5021. return cpu;
  5022. }
  5023. #endif
  5024. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5025. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5026. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5027. struct sched_group **sg)
  5028. {
  5029. int group;
  5030. #ifdef CONFIG_SCHED_MC
  5031. cpumask_t mask = cpu_coregroup_map(cpu);
  5032. cpus_and(mask, mask, *cpu_map);
  5033. group = first_cpu(mask);
  5034. #elif defined(CONFIG_SCHED_SMT)
  5035. cpumask_t mask = cpu_sibling_map[cpu];
  5036. cpus_and(mask, mask, *cpu_map);
  5037. group = first_cpu(mask);
  5038. #else
  5039. group = cpu;
  5040. #endif
  5041. if (sg)
  5042. *sg = &per_cpu(sched_group_phys, group);
  5043. return group;
  5044. }
  5045. #ifdef CONFIG_NUMA
  5046. /*
  5047. * The init_sched_build_groups can't handle what we want to do with node
  5048. * groups, so roll our own. Now each node has its own list of groups which
  5049. * gets dynamically allocated.
  5050. */
  5051. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5052. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5053. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5054. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5055. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5056. struct sched_group **sg)
  5057. {
  5058. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5059. int group;
  5060. cpus_and(nodemask, nodemask, *cpu_map);
  5061. group = first_cpu(nodemask);
  5062. if (sg)
  5063. *sg = &per_cpu(sched_group_allnodes, group);
  5064. return group;
  5065. }
  5066. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5067. {
  5068. struct sched_group *sg = group_head;
  5069. int j;
  5070. if (!sg)
  5071. return;
  5072. next_sg:
  5073. for_each_cpu_mask(j, sg->cpumask) {
  5074. struct sched_domain *sd;
  5075. sd = &per_cpu(phys_domains, j);
  5076. if (j != first_cpu(sd->groups->cpumask)) {
  5077. /*
  5078. * Only add "power" once for each
  5079. * physical package.
  5080. */
  5081. continue;
  5082. }
  5083. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5084. }
  5085. sg = sg->next;
  5086. if (sg != group_head)
  5087. goto next_sg;
  5088. }
  5089. #endif
  5090. #ifdef CONFIG_NUMA
  5091. /* Free memory allocated for various sched_group structures */
  5092. static void free_sched_groups(const cpumask_t *cpu_map)
  5093. {
  5094. int cpu, i;
  5095. for_each_cpu_mask(cpu, *cpu_map) {
  5096. struct sched_group **sched_group_nodes
  5097. = sched_group_nodes_bycpu[cpu];
  5098. if (!sched_group_nodes)
  5099. continue;
  5100. for (i = 0; i < MAX_NUMNODES; i++) {
  5101. cpumask_t nodemask = node_to_cpumask(i);
  5102. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5103. cpus_and(nodemask, nodemask, *cpu_map);
  5104. if (cpus_empty(nodemask))
  5105. continue;
  5106. if (sg == NULL)
  5107. continue;
  5108. sg = sg->next;
  5109. next_sg:
  5110. oldsg = sg;
  5111. sg = sg->next;
  5112. kfree(oldsg);
  5113. if (oldsg != sched_group_nodes[i])
  5114. goto next_sg;
  5115. }
  5116. kfree(sched_group_nodes);
  5117. sched_group_nodes_bycpu[cpu] = NULL;
  5118. }
  5119. }
  5120. #else
  5121. static void free_sched_groups(const cpumask_t *cpu_map)
  5122. {
  5123. }
  5124. #endif
  5125. /*
  5126. * Initialize sched groups cpu_power.
  5127. *
  5128. * cpu_power indicates the capacity of sched group, which is used while
  5129. * distributing the load between different sched groups in a sched domain.
  5130. * Typically cpu_power for all the groups in a sched domain will be same unless
  5131. * there are asymmetries in the topology. If there are asymmetries, group
  5132. * having more cpu_power will pickup more load compared to the group having
  5133. * less cpu_power.
  5134. *
  5135. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5136. * the maximum number of tasks a group can handle in the presence of other idle
  5137. * or lightly loaded groups in the same sched domain.
  5138. */
  5139. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5140. {
  5141. struct sched_domain *child;
  5142. struct sched_group *group;
  5143. WARN_ON(!sd || !sd->groups);
  5144. if (cpu != first_cpu(sd->groups->cpumask))
  5145. return;
  5146. child = sd->child;
  5147. sd->groups->__cpu_power = 0;
  5148. /*
  5149. * For perf policy, if the groups in child domain share resources
  5150. * (for example cores sharing some portions of the cache hierarchy
  5151. * or SMT), then set this domain groups cpu_power such that each group
  5152. * can handle only one task, when there are other idle groups in the
  5153. * same sched domain.
  5154. */
  5155. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5156. (child->flags &
  5157. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5158. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5159. return;
  5160. }
  5161. /*
  5162. * add cpu_power of each child group to this groups cpu_power
  5163. */
  5164. group = child->groups;
  5165. do {
  5166. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5167. group = group->next;
  5168. } while (group != child->groups);
  5169. }
  5170. /*
  5171. * Build sched domains for a given set of cpus and attach the sched domains
  5172. * to the individual cpus
  5173. */
  5174. static int build_sched_domains(const cpumask_t *cpu_map)
  5175. {
  5176. int i;
  5177. #ifdef CONFIG_NUMA
  5178. struct sched_group **sched_group_nodes = NULL;
  5179. int sd_allnodes = 0;
  5180. /*
  5181. * Allocate the per-node list of sched groups
  5182. */
  5183. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5184. GFP_KERNEL);
  5185. if (!sched_group_nodes) {
  5186. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5187. return -ENOMEM;
  5188. }
  5189. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5190. #endif
  5191. /*
  5192. * Set up domains for cpus specified by the cpu_map.
  5193. */
  5194. for_each_cpu_mask(i, *cpu_map) {
  5195. struct sched_domain *sd = NULL, *p;
  5196. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5197. cpus_and(nodemask, nodemask, *cpu_map);
  5198. #ifdef CONFIG_NUMA
  5199. if (cpus_weight(*cpu_map) >
  5200. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5201. sd = &per_cpu(allnodes_domains, i);
  5202. *sd = SD_ALLNODES_INIT;
  5203. sd->span = *cpu_map;
  5204. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5205. p = sd;
  5206. sd_allnodes = 1;
  5207. } else
  5208. p = NULL;
  5209. sd = &per_cpu(node_domains, i);
  5210. *sd = SD_NODE_INIT;
  5211. sd->span = sched_domain_node_span(cpu_to_node(i));
  5212. sd->parent = p;
  5213. if (p)
  5214. p->child = sd;
  5215. cpus_and(sd->span, sd->span, *cpu_map);
  5216. #endif
  5217. p = sd;
  5218. sd = &per_cpu(phys_domains, i);
  5219. *sd = SD_CPU_INIT;
  5220. sd->span = nodemask;
  5221. sd->parent = p;
  5222. if (p)
  5223. p->child = sd;
  5224. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5225. #ifdef CONFIG_SCHED_MC
  5226. p = sd;
  5227. sd = &per_cpu(core_domains, i);
  5228. *sd = SD_MC_INIT;
  5229. sd->span = cpu_coregroup_map(i);
  5230. cpus_and(sd->span, sd->span, *cpu_map);
  5231. sd->parent = p;
  5232. p->child = sd;
  5233. cpu_to_core_group(i, cpu_map, &sd->groups);
  5234. #endif
  5235. #ifdef CONFIG_SCHED_SMT
  5236. p = sd;
  5237. sd = &per_cpu(cpu_domains, i);
  5238. *sd = SD_SIBLING_INIT;
  5239. sd->span = cpu_sibling_map[i];
  5240. cpus_and(sd->span, sd->span, *cpu_map);
  5241. sd->parent = p;
  5242. p->child = sd;
  5243. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5244. #endif
  5245. }
  5246. #ifdef CONFIG_SCHED_SMT
  5247. /* Set up CPU (sibling) groups */
  5248. for_each_cpu_mask(i, *cpu_map) {
  5249. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5250. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5251. if (i != first_cpu(this_sibling_map))
  5252. continue;
  5253. init_sched_build_groups(this_sibling_map, cpu_map,
  5254. &cpu_to_cpu_group);
  5255. }
  5256. #endif
  5257. #ifdef CONFIG_SCHED_MC
  5258. /* Set up multi-core groups */
  5259. for_each_cpu_mask(i, *cpu_map) {
  5260. cpumask_t this_core_map = cpu_coregroup_map(i);
  5261. cpus_and(this_core_map, this_core_map, *cpu_map);
  5262. if (i != first_cpu(this_core_map))
  5263. continue;
  5264. init_sched_build_groups(this_core_map, cpu_map,
  5265. &cpu_to_core_group);
  5266. }
  5267. #endif
  5268. /* Set up physical groups */
  5269. for (i = 0; i < MAX_NUMNODES; i++) {
  5270. cpumask_t nodemask = node_to_cpumask(i);
  5271. cpus_and(nodemask, nodemask, *cpu_map);
  5272. if (cpus_empty(nodemask))
  5273. continue;
  5274. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5275. }
  5276. #ifdef CONFIG_NUMA
  5277. /* Set up node groups */
  5278. if (sd_allnodes)
  5279. init_sched_build_groups(*cpu_map, cpu_map,
  5280. &cpu_to_allnodes_group);
  5281. for (i = 0; i < MAX_NUMNODES; i++) {
  5282. /* Set up node groups */
  5283. struct sched_group *sg, *prev;
  5284. cpumask_t nodemask = node_to_cpumask(i);
  5285. cpumask_t domainspan;
  5286. cpumask_t covered = CPU_MASK_NONE;
  5287. int j;
  5288. cpus_and(nodemask, nodemask, *cpu_map);
  5289. if (cpus_empty(nodemask)) {
  5290. sched_group_nodes[i] = NULL;
  5291. continue;
  5292. }
  5293. domainspan = sched_domain_node_span(i);
  5294. cpus_and(domainspan, domainspan, *cpu_map);
  5295. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5296. if (!sg) {
  5297. printk(KERN_WARNING "Can not alloc domain group for "
  5298. "node %d\n", i);
  5299. goto error;
  5300. }
  5301. sched_group_nodes[i] = sg;
  5302. for_each_cpu_mask(j, nodemask) {
  5303. struct sched_domain *sd;
  5304. sd = &per_cpu(node_domains, j);
  5305. sd->groups = sg;
  5306. }
  5307. sg->__cpu_power = 0;
  5308. sg->cpumask = nodemask;
  5309. sg->next = sg;
  5310. cpus_or(covered, covered, nodemask);
  5311. prev = sg;
  5312. for (j = 0; j < MAX_NUMNODES; j++) {
  5313. cpumask_t tmp, notcovered;
  5314. int n = (i + j) % MAX_NUMNODES;
  5315. cpus_complement(notcovered, covered);
  5316. cpus_and(tmp, notcovered, *cpu_map);
  5317. cpus_and(tmp, tmp, domainspan);
  5318. if (cpus_empty(tmp))
  5319. break;
  5320. nodemask = node_to_cpumask(n);
  5321. cpus_and(tmp, tmp, nodemask);
  5322. if (cpus_empty(tmp))
  5323. continue;
  5324. sg = kmalloc_node(sizeof(struct sched_group),
  5325. GFP_KERNEL, i);
  5326. if (!sg) {
  5327. printk(KERN_WARNING
  5328. "Can not alloc domain group for node %d\n", j);
  5329. goto error;
  5330. }
  5331. sg->__cpu_power = 0;
  5332. sg->cpumask = tmp;
  5333. sg->next = prev->next;
  5334. cpus_or(covered, covered, tmp);
  5335. prev->next = sg;
  5336. prev = sg;
  5337. }
  5338. }
  5339. #endif
  5340. /* Calculate CPU power for physical packages and nodes */
  5341. #ifdef CONFIG_SCHED_SMT
  5342. for_each_cpu_mask(i, *cpu_map) {
  5343. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5344. init_sched_groups_power(i, sd);
  5345. }
  5346. #endif
  5347. #ifdef CONFIG_SCHED_MC
  5348. for_each_cpu_mask(i, *cpu_map) {
  5349. struct sched_domain *sd = &per_cpu(core_domains, i);
  5350. init_sched_groups_power(i, sd);
  5351. }
  5352. #endif
  5353. for_each_cpu_mask(i, *cpu_map) {
  5354. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5355. init_sched_groups_power(i, sd);
  5356. }
  5357. #ifdef CONFIG_NUMA
  5358. for (i = 0; i < MAX_NUMNODES; i++)
  5359. init_numa_sched_groups_power(sched_group_nodes[i]);
  5360. if (sd_allnodes) {
  5361. struct sched_group *sg;
  5362. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5363. init_numa_sched_groups_power(sg);
  5364. }
  5365. #endif
  5366. /* Attach the domains */
  5367. for_each_cpu_mask(i, *cpu_map) {
  5368. struct sched_domain *sd;
  5369. #ifdef CONFIG_SCHED_SMT
  5370. sd = &per_cpu(cpu_domains, i);
  5371. #elif defined(CONFIG_SCHED_MC)
  5372. sd = &per_cpu(core_domains, i);
  5373. #else
  5374. sd = &per_cpu(phys_domains, i);
  5375. #endif
  5376. cpu_attach_domain(sd, i);
  5377. }
  5378. return 0;
  5379. #ifdef CONFIG_NUMA
  5380. error:
  5381. free_sched_groups(cpu_map);
  5382. return -ENOMEM;
  5383. #endif
  5384. }
  5385. /*
  5386. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5387. */
  5388. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5389. {
  5390. cpumask_t cpu_default_map;
  5391. int err;
  5392. /*
  5393. * Setup mask for cpus without special case scheduling requirements.
  5394. * For now this just excludes isolated cpus, but could be used to
  5395. * exclude other special cases in the future.
  5396. */
  5397. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5398. err = build_sched_domains(&cpu_default_map);
  5399. return err;
  5400. }
  5401. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5402. {
  5403. free_sched_groups(cpu_map);
  5404. }
  5405. /*
  5406. * Detach sched domains from a group of cpus specified in cpu_map
  5407. * These cpus will now be attached to the NULL domain
  5408. */
  5409. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5410. {
  5411. int i;
  5412. for_each_cpu_mask(i, *cpu_map)
  5413. cpu_attach_domain(NULL, i);
  5414. synchronize_sched();
  5415. arch_destroy_sched_domains(cpu_map);
  5416. }
  5417. /*
  5418. * Partition sched domains as specified by the cpumasks below.
  5419. * This attaches all cpus from the cpumasks to the NULL domain,
  5420. * waits for a RCU quiescent period, recalculates sched
  5421. * domain information and then attaches them back to the
  5422. * correct sched domains
  5423. * Call with hotplug lock held
  5424. */
  5425. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5426. {
  5427. cpumask_t change_map;
  5428. int err = 0;
  5429. cpus_and(*partition1, *partition1, cpu_online_map);
  5430. cpus_and(*partition2, *partition2, cpu_online_map);
  5431. cpus_or(change_map, *partition1, *partition2);
  5432. /* Detach sched domains from all of the affected cpus */
  5433. detach_destroy_domains(&change_map);
  5434. if (!cpus_empty(*partition1))
  5435. err = build_sched_domains(partition1);
  5436. if (!err && !cpus_empty(*partition2))
  5437. err = build_sched_domains(partition2);
  5438. return err;
  5439. }
  5440. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5441. int arch_reinit_sched_domains(void)
  5442. {
  5443. int err;
  5444. mutex_lock(&sched_hotcpu_mutex);
  5445. detach_destroy_domains(&cpu_online_map);
  5446. err = arch_init_sched_domains(&cpu_online_map);
  5447. mutex_unlock(&sched_hotcpu_mutex);
  5448. return err;
  5449. }
  5450. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5451. {
  5452. int ret;
  5453. if (buf[0] != '0' && buf[0] != '1')
  5454. return -EINVAL;
  5455. if (smt)
  5456. sched_smt_power_savings = (buf[0] == '1');
  5457. else
  5458. sched_mc_power_savings = (buf[0] == '1');
  5459. ret = arch_reinit_sched_domains();
  5460. return ret ? ret : count;
  5461. }
  5462. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5463. {
  5464. int err = 0;
  5465. #ifdef CONFIG_SCHED_SMT
  5466. if (smt_capable())
  5467. err = sysfs_create_file(&cls->kset.kobj,
  5468. &attr_sched_smt_power_savings.attr);
  5469. #endif
  5470. #ifdef CONFIG_SCHED_MC
  5471. if (!err && mc_capable())
  5472. err = sysfs_create_file(&cls->kset.kobj,
  5473. &attr_sched_mc_power_savings.attr);
  5474. #endif
  5475. return err;
  5476. }
  5477. #endif
  5478. #ifdef CONFIG_SCHED_MC
  5479. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5480. {
  5481. return sprintf(page, "%u\n", sched_mc_power_savings);
  5482. }
  5483. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5484. const char *buf, size_t count)
  5485. {
  5486. return sched_power_savings_store(buf, count, 0);
  5487. }
  5488. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5489. sched_mc_power_savings_store);
  5490. #endif
  5491. #ifdef CONFIG_SCHED_SMT
  5492. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5493. {
  5494. return sprintf(page, "%u\n", sched_smt_power_savings);
  5495. }
  5496. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5497. const char *buf, size_t count)
  5498. {
  5499. return sched_power_savings_store(buf, count, 1);
  5500. }
  5501. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5502. sched_smt_power_savings_store);
  5503. #endif
  5504. /*
  5505. * Force a reinitialization of the sched domains hierarchy. The domains
  5506. * and groups cannot be updated in place without racing with the balancing
  5507. * code, so we temporarily attach all running cpus to the NULL domain
  5508. * which will prevent rebalancing while the sched domains are recalculated.
  5509. */
  5510. static int update_sched_domains(struct notifier_block *nfb,
  5511. unsigned long action, void *hcpu)
  5512. {
  5513. switch (action) {
  5514. case CPU_UP_PREPARE:
  5515. case CPU_UP_PREPARE_FROZEN:
  5516. case CPU_DOWN_PREPARE:
  5517. case CPU_DOWN_PREPARE_FROZEN:
  5518. detach_destroy_domains(&cpu_online_map);
  5519. return NOTIFY_OK;
  5520. case CPU_UP_CANCELED:
  5521. case CPU_UP_CANCELED_FROZEN:
  5522. case CPU_DOWN_FAILED:
  5523. case CPU_DOWN_FAILED_FROZEN:
  5524. case CPU_ONLINE:
  5525. case CPU_ONLINE_FROZEN:
  5526. case CPU_DEAD:
  5527. case CPU_DEAD_FROZEN:
  5528. /*
  5529. * Fall through and re-initialise the domains.
  5530. */
  5531. break;
  5532. default:
  5533. return NOTIFY_DONE;
  5534. }
  5535. /* The hotplug lock is already held by cpu_up/cpu_down */
  5536. arch_init_sched_domains(&cpu_online_map);
  5537. return NOTIFY_OK;
  5538. }
  5539. void __init sched_init_smp(void)
  5540. {
  5541. cpumask_t non_isolated_cpus;
  5542. mutex_lock(&sched_hotcpu_mutex);
  5543. arch_init_sched_domains(&cpu_online_map);
  5544. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5545. if (cpus_empty(non_isolated_cpus))
  5546. cpu_set(smp_processor_id(), non_isolated_cpus);
  5547. mutex_unlock(&sched_hotcpu_mutex);
  5548. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5549. hotcpu_notifier(update_sched_domains, 0);
  5550. init_sched_domain_sysctl();
  5551. /* Move init over to a non-isolated CPU */
  5552. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5553. BUG();
  5554. sched_init_granularity();
  5555. }
  5556. #else
  5557. void __init sched_init_smp(void)
  5558. {
  5559. sched_init_granularity();
  5560. }
  5561. #endif /* CONFIG_SMP */
  5562. int in_sched_functions(unsigned long addr)
  5563. {
  5564. /* Linker adds these: start and end of __sched functions */
  5565. extern char __sched_text_start[], __sched_text_end[];
  5566. return in_lock_functions(addr) ||
  5567. (addr >= (unsigned long)__sched_text_start
  5568. && addr < (unsigned long)__sched_text_end);
  5569. }
  5570. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5571. {
  5572. cfs_rq->tasks_timeline = RB_ROOT;
  5573. cfs_rq->fair_clock = 1;
  5574. #ifdef CONFIG_FAIR_GROUP_SCHED
  5575. cfs_rq->rq = rq;
  5576. #endif
  5577. }
  5578. void __init sched_init(void)
  5579. {
  5580. u64 now = sched_clock();
  5581. int highest_cpu = 0;
  5582. int i, j;
  5583. /*
  5584. * Link up the scheduling class hierarchy:
  5585. */
  5586. rt_sched_class.next = &fair_sched_class;
  5587. fair_sched_class.next = &idle_sched_class;
  5588. idle_sched_class.next = NULL;
  5589. for_each_possible_cpu(i) {
  5590. struct rt_prio_array *array;
  5591. struct rq *rq;
  5592. rq = cpu_rq(i);
  5593. spin_lock_init(&rq->lock);
  5594. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5595. rq->nr_running = 0;
  5596. rq->clock = 1;
  5597. init_cfs_rq(&rq->cfs, rq);
  5598. #ifdef CONFIG_FAIR_GROUP_SCHED
  5599. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5600. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5601. #endif
  5602. rq->ls.load_update_last = now;
  5603. rq->ls.load_update_start = now;
  5604. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5605. rq->cpu_load[j] = 0;
  5606. #ifdef CONFIG_SMP
  5607. rq->sd = NULL;
  5608. rq->active_balance = 0;
  5609. rq->next_balance = jiffies;
  5610. rq->push_cpu = 0;
  5611. rq->cpu = i;
  5612. rq->migration_thread = NULL;
  5613. INIT_LIST_HEAD(&rq->migration_queue);
  5614. #endif
  5615. atomic_set(&rq->nr_iowait, 0);
  5616. array = &rq->rt.active;
  5617. for (j = 0; j < MAX_RT_PRIO; j++) {
  5618. INIT_LIST_HEAD(array->queue + j);
  5619. __clear_bit(j, array->bitmap);
  5620. }
  5621. highest_cpu = i;
  5622. /* delimiter for bitsearch: */
  5623. __set_bit(MAX_RT_PRIO, array->bitmap);
  5624. }
  5625. set_load_weight(&init_task);
  5626. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5627. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5628. #endif
  5629. #ifdef CONFIG_SMP
  5630. nr_cpu_ids = highest_cpu + 1;
  5631. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5632. #endif
  5633. #ifdef CONFIG_RT_MUTEXES
  5634. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5635. #endif
  5636. /*
  5637. * The boot idle thread does lazy MMU switching as well:
  5638. */
  5639. atomic_inc(&init_mm.mm_count);
  5640. enter_lazy_tlb(&init_mm, current);
  5641. /*
  5642. * Make us the idle thread. Technically, schedule() should not be
  5643. * called from this thread, however somewhere below it might be,
  5644. * but because we are the idle thread, we just pick up running again
  5645. * when this runqueue becomes "idle".
  5646. */
  5647. init_idle(current, smp_processor_id());
  5648. /*
  5649. * During early bootup we pretend to be a normal task:
  5650. */
  5651. current->sched_class = &fair_sched_class;
  5652. }
  5653. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5654. void __might_sleep(char *file, int line)
  5655. {
  5656. #ifdef in_atomic
  5657. static unsigned long prev_jiffy; /* ratelimiting */
  5658. if ((in_atomic() || irqs_disabled()) &&
  5659. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5660. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5661. return;
  5662. prev_jiffy = jiffies;
  5663. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5664. " context at %s:%d\n", file, line);
  5665. printk("in_atomic():%d, irqs_disabled():%d\n",
  5666. in_atomic(), irqs_disabled());
  5667. debug_show_held_locks(current);
  5668. if (irqs_disabled())
  5669. print_irqtrace_events(current);
  5670. dump_stack();
  5671. }
  5672. #endif
  5673. }
  5674. EXPORT_SYMBOL(__might_sleep);
  5675. #endif
  5676. #ifdef CONFIG_MAGIC_SYSRQ
  5677. void normalize_rt_tasks(void)
  5678. {
  5679. struct task_struct *g, *p;
  5680. unsigned long flags;
  5681. struct rq *rq;
  5682. int on_rq;
  5683. read_lock_irq(&tasklist_lock);
  5684. do_each_thread(g, p) {
  5685. p->se.fair_key = 0;
  5686. p->se.wait_runtime = 0;
  5687. p->se.exec_start = 0;
  5688. p->se.wait_start_fair = 0;
  5689. p->se.sleep_start_fair = 0;
  5690. #ifdef CONFIG_SCHEDSTATS
  5691. p->se.wait_start = 0;
  5692. p->se.sleep_start = 0;
  5693. p->se.block_start = 0;
  5694. #endif
  5695. task_rq(p)->cfs.fair_clock = 0;
  5696. task_rq(p)->clock = 0;
  5697. if (!rt_task(p)) {
  5698. /*
  5699. * Renice negative nice level userspace
  5700. * tasks back to 0:
  5701. */
  5702. if (TASK_NICE(p) < 0 && p->mm)
  5703. set_user_nice(p, 0);
  5704. continue;
  5705. }
  5706. spin_lock_irqsave(&p->pi_lock, flags);
  5707. rq = __task_rq_lock(p);
  5708. #ifdef CONFIG_SMP
  5709. /*
  5710. * Do not touch the migration thread:
  5711. */
  5712. if (p == rq->migration_thread)
  5713. goto out_unlock;
  5714. #endif
  5715. on_rq = p->se.on_rq;
  5716. if (on_rq) {
  5717. update_rq_clock(task_rq(p));
  5718. deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
  5719. }
  5720. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5721. if (on_rq) {
  5722. activate_task(task_rq(p), p, 0);
  5723. resched_task(rq->curr);
  5724. }
  5725. #ifdef CONFIG_SMP
  5726. out_unlock:
  5727. #endif
  5728. __task_rq_unlock(rq);
  5729. spin_unlock_irqrestore(&p->pi_lock, flags);
  5730. } while_each_thread(g, p);
  5731. read_unlock_irq(&tasklist_lock);
  5732. }
  5733. #endif /* CONFIG_MAGIC_SYSRQ */
  5734. #ifdef CONFIG_IA64
  5735. /*
  5736. * These functions are only useful for the IA64 MCA handling.
  5737. *
  5738. * They can only be called when the whole system has been
  5739. * stopped - every CPU needs to be quiescent, and no scheduling
  5740. * activity can take place. Using them for anything else would
  5741. * be a serious bug, and as a result, they aren't even visible
  5742. * under any other configuration.
  5743. */
  5744. /**
  5745. * curr_task - return the current task for a given cpu.
  5746. * @cpu: the processor in question.
  5747. *
  5748. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5749. */
  5750. struct task_struct *curr_task(int cpu)
  5751. {
  5752. return cpu_curr(cpu);
  5753. }
  5754. /**
  5755. * set_curr_task - set the current task for a given cpu.
  5756. * @cpu: the processor in question.
  5757. * @p: the task pointer to set.
  5758. *
  5759. * Description: This function must only be used when non-maskable interrupts
  5760. * are serviced on a separate stack. It allows the architecture to switch the
  5761. * notion of the current task on a cpu in a non-blocking manner. This function
  5762. * must be called with all CPU's synchronized, and interrupts disabled, the
  5763. * and caller must save the original value of the current task (see
  5764. * curr_task() above) and restore that value before reenabling interrupts and
  5765. * re-starting the system.
  5766. *
  5767. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5768. */
  5769. void set_curr_task(int cpu, struct task_struct *p)
  5770. {
  5771. cpu_curr(cpu) = p;
  5772. }
  5773. #endif