ieee80211_sta.c 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "ieee80211_rate.h"
  32. #include "ieee80211_led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  54. #define ERP_INFO_USE_PROTECTION BIT(1)
  55. /* mgmt header + 1 byte action code */
  56. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  57. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  58. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  59. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  60. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  61. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  62. /* next values represent the buffer size for A-MPDU frame.
  63. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  64. #define IEEE80211_MIN_AMPDU_BUF 0x8
  65. #define IEEE80211_MAX_AMPDU_BUF 0x40
  66. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  67. u8 *ssid, size_t ssid_len);
  68. static struct ieee80211_sta_bss *
  69. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  70. u8 *ssid, u8 ssid_len);
  71. static void ieee80211_rx_bss_put(struct net_device *dev,
  72. struct ieee80211_sta_bss *bss);
  73. static int ieee80211_sta_find_ibss(struct net_device *dev,
  74. struct ieee80211_if_sta *ifsta);
  75. static int ieee80211_sta_wep_configured(struct net_device *dev);
  76. static int ieee80211_sta_start_scan(struct net_device *dev,
  77. u8 *ssid, size_t ssid_len);
  78. static int ieee80211_sta_config_auth(struct net_device *dev,
  79. struct ieee80211_if_sta *ifsta);
  80. void ieee802_11_parse_elems(u8 *start, size_t len,
  81. struct ieee802_11_elems *elems)
  82. {
  83. size_t left = len;
  84. u8 *pos = start;
  85. memset(elems, 0, sizeof(*elems));
  86. while (left >= 2) {
  87. u8 id, elen;
  88. id = *pos++;
  89. elen = *pos++;
  90. left -= 2;
  91. if (elen > left)
  92. return;
  93. switch (id) {
  94. case WLAN_EID_SSID:
  95. elems->ssid = pos;
  96. elems->ssid_len = elen;
  97. break;
  98. case WLAN_EID_SUPP_RATES:
  99. elems->supp_rates = pos;
  100. elems->supp_rates_len = elen;
  101. break;
  102. case WLAN_EID_FH_PARAMS:
  103. elems->fh_params = pos;
  104. elems->fh_params_len = elen;
  105. break;
  106. case WLAN_EID_DS_PARAMS:
  107. elems->ds_params = pos;
  108. elems->ds_params_len = elen;
  109. break;
  110. case WLAN_EID_CF_PARAMS:
  111. elems->cf_params = pos;
  112. elems->cf_params_len = elen;
  113. break;
  114. case WLAN_EID_TIM:
  115. elems->tim = pos;
  116. elems->tim_len = elen;
  117. break;
  118. case WLAN_EID_IBSS_PARAMS:
  119. elems->ibss_params = pos;
  120. elems->ibss_params_len = elen;
  121. break;
  122. case WLAN_EID_CHALLENGE:
  123. elems->challenge = pos;
  124. elems->challenge_len = elen;
  125. break;
  126. case WLAN_EID_WPA:
  127. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  128. pos[2] == 0xf2) {
  129. /* Microsoft OUI (00:50:F2) */
  130. if (pos[3] == 1) {
  131. /* OUI Type 1 - WPA IE */
  132. elems->wpa = pos;
  133. elems->wpa_len = elen;
  134. } else if (elen >= 5 && pos[3] == 2) {
  135. if (pos[4] == 0) {
  136. elems->wmm_info = pos;
  137. elems->wmm_info_len = elen;
  138. } else if (pos[4] == 1) {
  139. elems->wmm_param = pos;
  140. elems->wmm_param_len = elen;
  141. }
  142. }
  143. }
  144. break;
  145. case WLAN_EID_RSN:
  146. elems->rsn = pos;
  147. elems->rsn_len = elen;
  148. break;
  149. case WLAN_EID_ERP_INFO:
  150. elems->erp_info = pos;
  151. elems->erp_info_len = elen;
  152. break;
  153. case WLAN_EID_EXT_SUPP_RATES:
  154. elems->ext_supp_rates = pos;
  155. elems->ext_supp_rates_len = elen;
  156. break;
  157. case WLAN_EID_HT_CAPABILITY:
  158. elems->ht_cap_elem = pos;
  159. elems->ht_cap_elem_len = elen;
  160. break;
  161. case WLAN_EID_HT_EXTRA_INFO:
  162. elems->ht_info_elem = pos;
  163. elems->ht_info_elem_len = elen;
  164. break;
  165. case WLAN_EID_MESH_ID:
  166. elems->mesh_id = pos;
  167. elems->mesh_id_len = elen;
  168. break;
  169. case WLAN_EID_MESH_CONFIG:
  170. elems->mesh_config = pos;
  171. elems->mesh_config_len = elen;
  172. break;
  173. case WLAN_EID_PEER_LINK:
  174. elems->peer_link = pos;
  175. elems->peer_link_len = elen;
  176. break;
  177. case WLAN_EID_PREQ:
  178. elems->preq = pos;
  179. elems->preq_len = elen;
  180. break;
  181. case WLAN_EID_PREP:
  182. elems->prep = pos;
  183. elems->prep_len = elen;
  184. break;
  185. case WLAN_EID_PERR:
  186. elems->perr = pos;
  187. elems->perr_len = elen;
  188. break;
  189. default:
  190. break;
  191. }
  192. left -= elen;
  193. pos += elen;
  194. }
  195. }
  196. static int ecw2cw(int ecw)
  197. {
  198. return (1 << ecw) - 1;
  199. }
  200. static void ieee80211_sta_wmm_params(struct net_device *dev,
  201. struct ieee80211_if_sta *ifsta,
  202. u8 *wmm_param, size_t wmm_param_len)
  203. {
  204. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  205. struct ieee80211_tx_queue_params params;
  206. size_t left;
  207. int count;
  208. u8 *pos;
  209. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  210. return;
  211. count = wmm_param[6] & 0x0f;
  212. if (count == ifsta->wmm_last_param_set)
  213. return;
  214. ifsta->wmm_last_param_set = count;
  215. pos = wmm_param + 8;
  216. left = wmm_param_len - 8;
  217. memset(&params, 0, sizeof(params));
  218. if (!local->ops->conf_tx)
  219. return;
  220. local->wmm_acm = 0;
  221. for (; left >= 4; left -= 4, pos += 4) {
  222. int aci = (pos[0] >> 5) & 0x03;
  223. int acm = (pos[0] >> 4) & 0x01;
  224. int queue;
  225. switch (aci) {
  226. case 1:
  227. queue = IEEE80211_TX_QUEUE_DATA3;
  228. if (acm) {
  229. local->wmm_acm |= BIT(0) | BIT(3);
  230. }
  231. break;
  232. case 2:
  233. queue = IEEE80211_TX_QUEUE_DATA1;
  234. if (acm) {
  235. local->wmm_acm |= BIT(4) | BIT(5);
  236. }
  237. break;
  238. case 3:
  239. queue = IEEE80211_TX_QUEUE_DATA0;
  240. if (acm) {
  241. local->wmm_acm |= BIT(6) | BIT(7);
  242. }
  243. break;
  244. case 0:
  245. default:
  246. queue = IEEE80211_TX_QUEUE_DATA2;
  247. if (acm) {
  248. local->wmm_acm |= BIT(1) | BIT(2);
  249. }
  250. break;
  251. }
  252. params.aifs = pos[0] & 0x0f;
  253. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  254. params.cw_min = ecw2cw(pos[1] & 0x0f);
  255. params.txop = pos[2] | (pos[3] << 8);
  256. #ifdef CONFIG_MAC80211_DEBUG
  257. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  258. "cWmin=%d cWmax=%d txop=%d\n",
  259. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  260. params.cw_max, params.txop);
  261. #endif
  262. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  263. * AC for now) */
  264. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  265. printk(KERN_DEBUG "%s: failed to set TX queue "
  266. "parameters for queue %d\n", dev->name, queue);
  267. }
  268. }
  269. }
  270. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  271. u8 erp_value)
  272. {
  273. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  274. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  275. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  276. bool preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
  277. DECLARE_MAC_BUF(mac);
  278. u32 changed = 0;
  279. if (use_protection != bss_conf->use_cts_prot) {
  280. if (net_ratelimit()) {
  281. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  282. "%s)\n",
  283. sdata->dev->name,
  284. use_protection ? "enabled" : "disabled",
  285. print_mac(mac, ifsta->bssid));
  286. }
  287. bss_conf->use_cts_prot = use_protection;
  288. changed |= BSS_CHANGED_ERP_CTS_PROT;
  289. }
  290. if (preamble_mode != bss_conf->use_short_preamble) {
  291. if (net_ratelimit()) {
  292. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  293. " (BSSID=%s)\n",
  294. sdata->dev->name,
  295. (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
  296. "short" : "long",
  297. print_mac(mac, ifsta->bssid));
  298. }
  299. bss_conf->use_short_preamble = preamble_mode;
  300. changed |= BSS_CHANGED_ERP_PREAMBLE;
  301. }
  302. return changed;
  303. }
  304. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  305. struct ieee80211_ht_info *ht_info)
  306. {
  307. if (ht_info == NULL)
  308. return -EINVAL;
  309. memset(ht_info, 0, sizeof(*ht_info));
  310. if (ht_cap_ie) {
  311. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  312. ht_info->ht_supported = 1;
  313. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  314. ht_info->ampdu_factor =
  315. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  316. ht_info->ampdu_density =
  317. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  318. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  319. } else
  320. ht_info->ht_supported = 0;
  321. return 0;
  322. }
  323. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  324. struct ieee80211_ht_addt_info *ht_add_info_ie,
  325. struct ieee80211_ht_bss_info *bss_info)
  326. {
  327. if (bss_info == NULL)
  328. return -EINVAL;
  329. memset(bss_info, 0, sizeof(*bss_info));
  330. if (ht_add_info_ie) {
  331. u16 op_mode;
  332. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  333. bss_info->primary_channel = ht_add_info_ie->control_chan;
  334. bss_info->bss_cap = ht_add_info_ie->ht_param;
  335. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  336. }
  337. return 0;
  338. }
  339. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  340. struct ieee80211_if_sta *ifsta)
  341. {
  342. char *buf;
  343. size_t len;
  344. int i;
  345. union iwreq_data wrqu;
  346. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  347. return;
  348. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  349. ifsta->assocresp_ies_len), GFP_KERNEL);
  350. if (!buf)
  351. return;
  352. len = sprintf(buf, "ASSOCINFO(");
  353. if (ifsta->assocreq_ies) {
  354. len += sprintf(buf + len, "ReqIEs=");
  355. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  356. len += sprintf(buf + len, "%02x",
  357. ifsta->assocreq_ies[i]);
  358. }
  359. }
  360. if (ifsta->assocresp_ies) {
  361. if (ifsta->assocreq_ies)
  362. len += sprintf(buf + len, " ");
  363. len += sprintf(buf + len, "RespIEs=");
  364. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  365. len += sprintf(buf + len, "%02x",
  366. ifsta->assocresp_ies[i]);
  367. }
  368. }
  369. len += sprintf(buf + len, ")");
  370. if (len > IW_CUSTOM_MAX) {
  371. len = sprintf(buf, "ASSOCRESPIE=");
  372. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  373. len += sprintf(buf + len, "%02x",
  374. ifsta->assocresp_ies[i]);
  375. }
  376. }
  377. memset(&wrqu, 0, sizeof(wrqu));
  378. wrqu.data.length = len;
  379. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  380. kfree(buf);
  381. }
  382. static void ieee80211_set_associated(struct net_device *dev,
  383. struct ieee80211_if_sta *ifsta,
  384. bool assoc)
  385. {
  386. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  387. struct ieee80211_local *local = sdata->local;
  388. union iwreq_data wrqu;
  389. u32 changed = BSS_CHANGED_ASSOC;
  390. if (assoc) {
  391. struct ieee80211_sta_bss *bss;
  392. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  393. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  394. return;
  395. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  396. local->hw.conf.channel->center_freq,
  397. ifsta->ssid, ifsta->ssid_len);
  398. if (bss) {
  399. if (bss->has_erp_value)
  400. changed |= ieee80211_handle_erp_ie(
  401. sdata, bss->erp_value);
  402. ieee80211_rx_bss_put(dev, bss);
  403. }
  404. netif_carrier_on(dev);
  405. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  406. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  407. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  408. ieee80211_sta_send_associnfo(dev, ifsta);
  409. } else {
  410. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  411. netif_carrier_off(dev);
  412. ieee80211_reset_erp_info(dev);
  413. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  414. }
  415. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  416. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  417. ifsta->last_probe = jiffies;
  418. ieee80211_led_assoc(local, assoc);
  419. sdata->bss_conf.assoc = assoc;
  420. ieee80211_bss_info_change_notify(sdata, changed);
  421. }
  422. static void ieee80211_set_disassoc(struct net_device *dev,
  423. struct ieee80211_if_sta *ifsta, int deauth)
  424. {
  425. if (deauth)
  426. ifsta->auth_tries = 0;
  427. ifsta->assoc_tries = 0;
  428. ieee80211_set_associated(dev, ifsta, 0);
  429. }
  430. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  431. int encrypt)
  432. {
  433. struct ieee80211_sub_if_data *sdata;
  434. struct ieee80211_tx_packet_data *pkt_data;
  435. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  436. skb->dev = sdata->local->mdev;
  437. skb_set_mac_header(skb, 0);
  438. skb_set_network_header(skb, 0);
  439. skb_set_transport_header(skb, 0);
  440. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  441. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  442. pkt_data->ifindex = sdata->dev->ifindex;
  443. if (!encrypt)
  444. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  445. dev_queue_xmit(skb);
  446. }
  447. static void ieee80211_send_auth(struct net_device *dev,
  448. struct ieee80211_if_sta *ifsta,
  449. int transaction, u8 *extra, size_t extra_len,
  450. int encrypt)
  451. {
  452. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  453. struct sk_buff *skb;
  454. struct ieee80211_mgmt *mgmt;
  455. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  456. sizeof(*mgmt) + 6 + extra_len);
  457. if (!skb) {
  458. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  459. "frame\n", dev->name);
  460. return;
  461. }
  462. skb_reserve(skb, local->hw.extra_tx_headroom);
  463. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  464. memset(mgmt, 0, 24 + 6);
  465. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  466. IEEE80211_STYPE_AUTH);
  467. if (encrypt)
  468. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  469. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  470. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  471. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  472. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  473. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  474. ifsta->auth_transaction = transaction + 1;
  475. mgmt->u.auth.status_code = cpu_to_le16(0);
  476. if (extra)
  477. memcpy(skb_put(skb, extra_len), extra, extra_len);
  478. ieee80211_sta_tx(dev, skb, encrypt);
  479. }
  480. static void ieee80211_authenticate(struct net_device *dev,
  481. struct ieee80211_if_sta *ifsta)
  482. {
  483. DECLARE_MAC_BUF(mac);
  484. ifsta->auth_tries++;
  485. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  486. printk(KERN_DEBUG "%s: authentication with AP %s"
  487. " timed out\n",
  488. dev->name, print_mac(mac, ifsta->bssid));
  489. ifsta->state = IEEE80211_DISABLED;
  490. return;
  491. }
  492. ifsta->state = IEEE80211_AUTHENTICATE;
  493. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  494. dev->name, print_mac(mac, ifsta->bssid));
  495. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  496. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  497. }
  498. static void ieee80211_send_assoc(struct net_device *dev,
  499. struct ieee80211_if_sta *ifsta)
  500. {
  501. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  502. struct sk_buff *skb;
  503. struct ieee80211_mgmt *mgmt;
  504. u8 *pos, *ies;
  505. int i, len;
  506. u16 capab;
  507. struct ieee80211_sta_bss *bss;
  508. int wmm = 0;
  509. struct ieee80211_supported_band *sband;
  510. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  511. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  512. ifsta->ssid_len);
  513. if (!skb) {
  514. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  515. "frame\n", dev->name);
  516. return;
  517. }
  518. skb_reserve(skb, local->hw.extra_tx_headroom);
  519. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  520. capab = ifsta->capab;
  521. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  522. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  523. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  524. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  525. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  526. }
  527. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  528. local->hw.conf.channel->center_freq,
  529. ifsta->ssid, ifsta->ssid_len);
  530. if (bss) {
  531. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  532. capab |= WLAN_CAPABILITY_PRIVACY;
  533. if (bss->wmm_ie) {
  534. wmm = 1;
  535. }
  536. ieee80211_rx_bss_put(dev, bss);
  537. }
  538. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  539. memset(mgmt, 0, 24);
  540. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  541. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  542. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  543. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  544. skb_put(skb, 10);
  545. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  546. IEEE80211_STYPE_REASSOC_REQ);
  547. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  548. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  549. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  550. ETH_ALEN);
  551. } else {
  552. skb_put(skb, 4);
  553. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  554. IEEE80211_STYPE_ASSOC_REQ);
  555. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  556. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  557. }
  558. /* SSID */
  559. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  560. *pos++ = WLAN_EID_SSID;
  561. *pos++ = ifsta->ssid_len;
  562. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  563. len = sband->n_bitrates;
  564. if (len > 8)
  565. len = 8;
  566. pos = skb_put(skb, len + 2);
  567. *pos++ = WLAN_EID_SUPP_RATES;
  568. *pos++ = len;
  569. for (i = 0; i < len; i++) {
  570. int rate = sband->bitrates[i].bitrate;
  571. *pos++ = (u8) (rate / 5);
  572. }
  573. if (sband->n_bitrates > len) {
  574. pos = skb_put(skb, sband->n_bitrates - len + 2);
  575. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  576. *pos++ = sband->n_bitrates - len;
  577. for (i = len; i < sband->n_bitrates; i++) {
  578. int rate = sband->bitrates[i].bitrate;
  579. *pos++ = (u8) (rate / 5);
  580. }
  581. }
  582. if (ifsta->extra_ie) {
  583. pos = skb_put(skb, ifsta->extra_ie_len);
  584. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  585. }
  586. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  587. pos = skb_put(skb, 9);
  588. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  589. *pos++ = 7; /* len */
  590. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  591. *pos++ = 0x50;
  592. *pos++ = 0xf2;
  593. *pos++ = 2; /* WME */
  594. *pos++ = 0; /* WME info */
  595. *pos++ = 1; /* WME ver */
  596. *pos++ = 0;
  597. }
  598. /* wmm support is a must to HT */
  599. if (wmm && sband->ht_info.ht_supported) {
  600. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  601. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  602. *pos++ = WLAN_EID_HT_CAPABILITY;
  603. *pos++ = sizeof(struct ieee80211_ht_cap);
  604. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  605. memcpy(pos, &tmp, sizeof(u16));
  606. pos += sizeof(u16);
  607. /* TODO: needs a define here for << 2 */
  608. *pos++ = sband->ht_info.ampdu_factor |
  609. (sband->ht_info.ampdu_density << 2);
  610. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  611. }
  612. kfree(ifsta->assocreq_ies);
  613. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  614. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  615. if (ifsta->assocreq_ies)
  616. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  617. ieee80211_sta_tx(dev, skb, 0);
  618. }
  619. static void ieee80211_send_deauth(struct net_device *dev,
  620. struct ieee80211_if_sta *ifsta, u16 reason)
  621. {
  622. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  623. struct sk_buff *skb;
  624. struct ieee80211_mgmt *mgmt;
  625. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  626. if (!skb) {
  627. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  628. "frame\n", dev->name);
  629. return;
  630. }
  631. skb_reserve(skb, local->hw.extra_tx_headroom);
  632. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  633. memset(mgmt, 0, 24);
  634. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  635. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  636. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  637. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  638. IEEE80211_STYPE_DEAUTH);
  639. skb_put(skb, 2);
  640. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  641. ieee80211_sta_tx(dev, skb, 0);
  642. }
  643. static void ieee80211_send_disassoc(struct net_device *dev,
  644. struct ieee80211_if_sta *ifsta, u16 reason)
  645. {
  646. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  647. struct sk_buff *skb;
  648. struct ieee80211_mgmt *mgmt;
  649. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  650. if (!skb) {
  651. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  652. "frame\n", dev->name);
  653. return;
  654. }
  655. skb_reserve(skb, local->hw.extra_tx_headroom);
  656. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  657. memset(mgmt, 0, 24);
  658. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  659. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  660. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  661. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  662. IEEE80211_STYPE_DISASSOC);
  663. skb_put(skb, 2);
  664. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  665. ieee80211_sta_tx(dev, skb, 0);
  666. }
  667. static int ieee80211_privacy_mismatch(struct net_device *dev,
  668. struct ieee80211_if_sta *ifsta)
  669. {
  670. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  671. struct ieee80211_sta_bss *bss;
  672. int bss_privacy;
  673. int wep_privacy;
  674. int privacy_invoked;
  675. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  676. return 0;
  677. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  678. local->hw.conf.channel->center_freq,
  679. ifsta->ssid, ifsta->ssid_len);
  680. if (!bss)
  681. return 0;
  682. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  683. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  684. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  685. ieee80211_rx_bss_put(dev, bss);
  686. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  687. return 0;
  688. return 1;
  689. }
  690. static void ieee80211_associate(struct net_device *dev,
  691. struct ieee80211_if_sta *ifsta)
  692. {
  693. DECLARE_MAC_BUF(mac);
  694. ifsta->assoc_tries++;
  695. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  696. printk(KERN_DEBUG "%s: association with AP %s"
  697. " timed out\n",
  698. dev->name, print_mac(mac, ifsta->bssid));
  699. ifsta->state = IEEE80211_DISABLED;
  700. return;
  701. }
  702. ifsta->state = IEEE80211_ASSOCIATE;
  703. printk(KERN_DEBUG "%s: associate with AP %s\n",
  704. dev->name, print_mac(mac, ifsta->bssid));
  705. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  706. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  707. "mixed-cell disabled - abort association\n", dev->name);
  708. ifsta->state = IEEE80211_DISABLED;
  709. return;
  710. }
  711. ieee80211_send_assoc(dev, ifsta);
  712. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  713. }
  714. static void ieee80211_associated(struct net_device *dev,
  715. struct ieee80211_if_sta *ifsta)
  716. {
  717. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  718. struct sta_info *sta;
  719. int disassoc;
  720. DECLARE_MAC_BUF(mac);
  721. /* TODO: start monitoring current AP signal quality and number of
  722. * missed beacons. Scan other channels every now and then and search
  723. * for better APs. */
  724. /* TODO: remove expired BSSes */
  725. ifsta->state = IEEE80211_ASSOCIATED;
  726. rcu_read_lock();
  727. sta = sta_info_get(local, ifsta->bssid);
  728. if (!sta) {
  729. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  730. dev->name, print_mac(mac, ifsta->bssid));
  731. disassoc = 1;
  732. } else {
  733. disassoc = 0;
  734. if (time_after(jiffies,
  735. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  736. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  737. printk(KERN_DEBUG "%s: No ProbeResp from "
  738. "current AP %s - assume out of "
  739. "range\n",
  740. dev->name, print_mac(mac, ifsta->bssid));
  741. disassoc = 1;
  742. sta_info_unlink(&sta);
  743. } else
  744. ieee80211_send_probe_req(dev, ifsta->bssid,
  745. local->scan_ssid,
  746. local->scan_ssid_len);
  747. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  748. } else {
  749. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  750. if (time_after(jiffies, ifsta->last_probe +
  751. IEEE80211_PROBE_INTERVAL)) {
  752. ifsta->last_probe = jiffies;
  753. ieee80211_send_probe_req(dev, ifsta->bssid,
  754. ifsta->ssid,
  755. ifsta->ssid_len);
  756. }
  757. }
  758. }
  759. rcu_read_unlock();
  760. if (disassoc && sta) {
  761. synchronize_rcu();
  762. rtnl_lock();
  763. sta_info_destroy(sta);
  764. rtnl_unlock();
  765. }
  766. if (disassoc) {
  767. ifsta->state = IEEE80211_DISABLED;
  768. ieee80211_set_associated(dev, ifsta, 0);
  769. } else {
  770. mod_timer(&ifsta->timer, jiffies +
  771. IEEE80211_MONITORING_INTERVAL);
  772. }
  773. }
  774. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  775. u8 *ssid, size_t ssid_len)
  776. {
  777. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  778. struct ieee80211_supported_band *sband;
  779. struct sk_buff *skb;
  780. struct ieee80211_mgmt *mgmt;
  781. u8 *pos, *supp_rates, *esupp_rates = NULL;
  782. int i;
  783. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  784. if (!skb) {
  785. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  786. "request\n", dev->name);
  787. return;
  788. }
  789. skb_reserve(skb, local->hw.extra_tx_headroom);
  790. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  791. memset(mgmt, 0, 24);
  792. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  793. IEEE80211_STYPE_PROBE_REQ);
  794. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  795. if (dst) {
  796. memcpy(mgmt->da, dst, ETH_ALEN);
  797. memcpy(mgmt->bssid, dst, ETH_ALEN);
  798. } else {
  799. memset(mgmt->da, 0xff, ETH_ALEN);
  800. memset(mgmt->bssid, 0xff, ETH_ALEN);
  801. }
  802. pos = skb_put(skb, 2 + ssid_len);
  803. *pos++ = WLAN_EID_SSID;
  804. *pos++ = ssid_len;
  805. memcpy(pos, ssid, ssid_len);
  806. supp_rates = skb_put(skb, 2);
  807. supp_rates[0] = WLAN_EID_SUPP_RATES;
  808. supp_rates[1] = 0;
  809. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  810. for (i = 0; i < sband->n_bitrates; i++) {
  811. struct ieee80211_rate *rate = &sband->bitrates[i];
  812. if (esupp_rates) {
  813. pos = skb_put(skb, 1);
  814. esupp_rates[1]++;
  815. } else if (supp_rates[1] == 8) {
  816. esupp_rates = skb_put(skb, 3);
  817. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  818. esupp_rates[1] = 1;
  819. pos = &esupp_rates[2];
  820. } else {
  821. pos = skb_put(skb, 1);
  822. supp_rates[1]++;
  823. }
  824. *pos = rate->bitrate / 5;
  825. }
  826. ieee80211_sta_tx(dev, skb, 0);
  827. }
  828. static int ieee80211_sta_wep_configured(struct net_device *dev)
  829. {
  830. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  831. if (!sdata || !sdata->default_key ||
  832. sdata->default_key->conf.alg != ALG_WEP)
  833. return 0;
  834. return 1;
  835. }
  836. static void ieee80211_auth_completed(struct net_device *dev,
  837. struct ieee80211_if_sta *ifsta)
  838. {
  839. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  840. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  841. ieee80211_associate(dev, ifsta);
  842. }
  843. static void ieee80211_auth_challenge(struct net_device *dev,
  844. struct ieee80211_if_sta *ifsta,
  845. struct ieee80211_mgmt *mgmt,
  846. size_t len)
  847. {
  848. u8 *pos;
  849. struct ieee802_11_elems elems;
  850. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  851. pos = mgmt->u.auth.variable;
  852. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  853. if (!elems.challenge) {
  854. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  855. "frame\n", dev->name);
  856. return;
  857. }
  858. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  859. elems.challenge_len + 2, 1);
  860. }
  861. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  862. u8 dialog_token, u16 status, u16 policy,
  863. u16 buf_size, u16 timeout)
  864. {
  865. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  866. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  867. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  868. struct sk_buff *skb;
  869. struct ieee80211_mgmt *mgmt;
  870. u16 capab;
  871. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  872. sizeof(mgmt->u.action.u.addba_resp));
  873. if (!skb) {
  874. printk(KERN_DEBUG "%s: failed to allocate buffer "
  875. "for addba resp frame\n", dev->name);
  876. return;
  877. }
  878. skb_reserve(skb, local->hw.extra_tx_headroom);
  879. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  880. memset(mgmt, 0, 24);
  881. memcpy(mgmt->da, da, ETH_ALEN);
  882. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  883. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  884. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  885. else
  886. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  887. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  888. IEEE80211_STYPE_ACTION);
  889. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  890. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  891. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  892. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  893. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  894. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  895. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  896. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  897. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  898. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  899. ieee80211_sta_tx(dev, skb, 0);
  900. return;
  901. }
  902. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  903. u16 tid, u8 dialog_token, u16 start_seq_num,
  904. u16 agg_size, u16 timeout)
  905. {
  906. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  907. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  908. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  909. struct sk_buff *skb;
  910. struct ieee80211_mgmt *mgmt;
  911. u16 capab;
  912. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  913. sizeof(mgmt->u.action.u.addba_req));
  914. if (!skb) {
  915. printk(KERN_ERR "%s: failed to allocate buffer "
  916. "for addba request frame\n", dev->name);
  917. return;
  918. }
  919. skb_reserve(skb, local->hw.extra_tx_headroom);
  920. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  921. memset(mgmt, 0, 24);
  922. memcpy(mgmt->da, da, ETH_ALEN);
  923. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  924. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  925. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  926. else
  927. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  928. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  929. IEEE80211_STYPE_ACTION);
  930. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  931. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  932. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  933. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  934. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  935. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  936. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  937. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  938. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  939. mgmt->u.action.u.addba_req.start_seq_num =
  940. cpu_to_le16(start_seq_num << 4);
  941. ieee80211_sta_tx(dev, skb, 0);
  942. }
  943. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  944. struct ieee80211_mgmt *mgmt,
  945. size_t len)
  946. {
  947. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  948. struct ieee80211_hw *hw = &local->hw;
  949. struct ieee80211_conf *conf = &hw->conf;
  950. struct sta_info *sta;
  951. struct tid_ampdu_rx *tid_agg_rx;
  952. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  953. u8 dialog_token;
  954. int ret = -EOPNOTSUPP;
  955. DECLARE_MAC_BUF(mac);
  956. rcu_read_lock();
  957. sta = sta_info_get(local, mgmt->sa);
  958. if (!sta) {
  959. rcu_read_unlock();
  960. return;
  961. }
  962. /* extract session parameters from addba request frame */
  963. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  964. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  965. start_seq_num =
  966. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  967. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  968. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  969. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  970. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  971. status = WLAN_STATUS_REQUEST_DECLINED;
  972. /* sanity check for incoming parameters:
  973. * check if configuration can support the BA policy
  974. * and if buffer size does not exceeds max value */
  975. if (((ba_policy != 1)
  976. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  977. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  978. status = WLAN_STATUS_INVALID_QOS_PARAM;
  979. #ifdef CONFIG_MAC80211_HT_DEBUG
  980. if (net_ratelimit())
  981. printk(KERN_DEBUG "Block Ack Req with bad params from "
  982. "%s on tid %u. policy %d, buffer size %d\n",
  983. print_mac(mac, mgmt->sa), tid, ba_policy,
  984. buf_size);
  985. #endif /* CONFIG_MAC80211_HT_DEBUG */
  986. goto end_no_lock;
  987. }
  988. /* determine default buffer size */
  989. if (buf_size == 0) {
  990. struct ieee80211_supported_band *sband;
  991. sband = local->hw.wiphy->bands[conf->channel->band];
  992. buf_size = IEEE80211_MIN_AMPDU_BUF;
  993. buf_size = buf_size << sband->ht_info.ampdu_factor;
  994. }
  995. tid_agg_rx = &sta->ampdu_mlme.tid_rx[tid];
  996. /* examine state machine */
  997. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  998. if (tid_agg_rx->state != HT_AGG_STATE_IDLE) {
  999. #ifdef CONFIG_MAC80211_HT_DEBUG
  1000. if (net_ratelimit())
  1001. printk(KERN_DEBUG "unexpected Block Ack Req from "
  1002. "%s on tid %u\n",
  1003. print_mac(mac, mgmt->sa), tid);
  1004. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1005. goto end;
  1006. }
  1007. /* prepare reordering buffer */
  1008. tid_agg_rx->reorder_buf =
  1009. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1010. if (!tid_agg_rx->reorder_buf) {
  1011. if (net_ratelimit())
  1012. printk(KERN_ERR "can not allocate reordering buffer "
  1013. "to tid %d\n", tid);
  1014. goto end;
  1015. }
  1016. memset(tid_agg_rx->reorder_buf, 0,
  1017. buf_size * sizeof(struct sk_buf *));
  1018. if (local->ops->ampdu_action)
  1019. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1020. sta->addr, tid, &start_seq_num);
  1021. #ifdef CONFIG_MAC80211_HT_DEBUG
  1022. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  1023. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1024. if (ret) {
  1025. kfree(tid_agg_rx->reorder_buf);
  1026. goto end;
  1027. }
  1028. /* change state and send addba resp */
  1029. tid_agg_rx->state = HT_AGG_STATE_OPERATIONAL;
  1030. tid_agg_rx->dialog_token = dialog_token;
  1031. tid_agg_rx->ssn = start_seq_num;
  1032. tid_agg_rx->head_seq_num = start_seq_num;
  1033. tid_agg_rx->buf_size = buf_size;
  1034. tid_agg_rx->timeout = timeout;
  1035. tid_agg_rx->stored_mpdu_num = 0;
  1036. status = WLAN_STATUS_SUCCESS;
  1037. end:
  1038. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1039. end_no_lock:
  1040. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1041. dialog_token, status, 1, buf_size, timeout);
  1042. rcu_read_unlock();
  1043. }
  1044. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1045. struct ieee80211_mgmt *mgmt,
  1046. size_t len)
  1047. {
  1048. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1049. struct ieee80211_hw *hw = &local->hw;
  1050. struct sta_info *sta;
  1051. u16 capab;
  1052. u16 tid;
  1053. u8 *state;
  1054. rcu_read_lock();
  1055. sta = sta_info_get(local, mgmt->sa);
  1056. if (!sta) {
  1057. rcu_read_unlock();
  1058. return;
  1059. }
  1060. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1061. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1062. state = &sta->ampdu_mlme.tid_tx[tid].state;
  1063. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1064. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1065. sta->ampdu_mlme.tid_tx[tid].dialog_token) {
  1066. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1067. #ifdef CONFIG_MAC80211_HT_DEBUG
  1068. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1069. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1070. rcu_read_unlock();
  1071. return;
  1072. }
  1073. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid].addba_resp_timer);
  1074. #ifdef CONFIG_MAC80211_HT_DEBUG
  1075. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1076. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1077. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1078. == WLAN_STATUS_SUCCESS) {
  1079. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1080. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1081. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1082. "%d\n", *state);
  1083. rcu_read_unlock();
  1084. return;
  1085. }
  1086. if (*state & HT_ADDBA_RECEIVED_MSK)
  1087. printk(KERN_DEBUG "double addBA response\n");
  1088. *state |= HT_ADDBA_RECEIVED_MSK;
  1089. sta->ampdu_mlme.tid_tx[tid].addba_req_num = 0;
  1090. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1091. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1092. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1093. }
  1094. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1095. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1096. } else {
  1097. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1098. sta->ampdu_mlme.tid_tx[tid].addba_req_num++;
  1099. /* this will allow the state check in stop_BA_session */
  1100. *state = HT_AGG_STATE_OPERATIONAL;
  1101. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1102. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1103. WLAN_BACK_INITIATOR);
  1104. }
  1105. rcu_read_unlock();
  1106. }
  1107. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1108. u16 initiator, u16 reason_code)
  1109. {
  1110. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1111. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1112. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1113. struct sk_buff *skb;
  1114. struct ieee80211_mgmt *mgmt;
  1115. u16 params;
  1116. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1117. sizeof(mgmt->u.action.u.delba));
  1118. if (!skb) {
  1119. printk(KERN_ERR "%s: failed to allocate buffer "
  1120. "for delba frame\n", dev->name);
  1121. return;
  1122. }
  1123. skb_reserve(skb, local->hw.extra_tx_headroom);
  1124. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1125. memset(mgmt, 0, 24);
  1126. memcpy(mgmt->da, da, ETH_ALEN);
  1127. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1128. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1129. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1130. else
  1131. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1132. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1133. IEEE80211_STYPE_ACTION);
  1134. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1135. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1136. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1137. params = (u16)(initiator << 11); /* bit 11 initiator */
  1138. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1139. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1140. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1141. ieee80211_sta_tx(dev, skb, 0);
  1142. }
  1143. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1144. u16 initiator, u16 reason)
  1145. {
  1146. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1147. struct ieee80211_hw *hw = &local->hw;
  1148. struct sta_info *sta;
  1149. int ret, i;
  1150. rcu_read_lock();
  1151. sta = sta_info_get(local, ra);
  1152. if (!sta) {
  1153. rcu_read_unlock();
  1154. return;
  1155. }
  1156. /* check if TID is in operational state */
  1157. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1158. if (sta->ampdu_mlme.tid_rx[tid].state
  1159. != HT_AGG_STATE_OPERATIONAL) {
  1160. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1161. rcu_read_unlock();
  1162. return;
  1163. }
  1164. sta->ampdu_mlme.tid_rx[tid].state =
  1165. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1166. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1167. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1168. /* stop HW Rx aggregation. ampdu_action existence
  1169. * already verified in session init so we add the BUG_ON */
  1170. BUG_ON(!local->ops->ampdu_action);
  1171. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1172. ra, tid, NULL);
  1173. if (ret)
  1174. printk(KERN_DEBUG "HW problem - can not stop rx "
  1175. "aggergation for tid %d\n", tid);
  1176. /* shutdown timer has not expired */
  1177. if (initiator != WLAN_BACK_TIMER)
  1178. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid].
  1179. session_timer);
  1180. /* check if this is a self generated aggregation halt */
  1181. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1182. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1183. /* free the reordering buffer */
  1184. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid].buf_size; i++) {
  1185. if (sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]) {
  1186. /* release the reordered frames */
  1187. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]);
  1188. sta->ampdu_mlme.tid_rx[tid].stored_mpdu_num--;
  1189. sta->ampdu_mlme.tid_rx[tid].reorder_buf[i] = NULL;
  1190. }
  1191. }
  1192. kfree(sta->ampdu_mlme.tid_rx[tid].reorder_buf);
  1193. sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_IDLE;
  1194. rcu_read_unlock();
  1195. }
  1196. static void ieee80211_sta_process_delba(struct net_device *dev,
  1197. struct ieee80211_mgmt *mgmt, size_t len)
  1198. {
  1199. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1200. struct sta_info *sta;
  1201. u16 tid, params;
  1202. u16 initiator;
  1203. DECLARE_MAC_BUF(mac);
  1204. rcu_read_lock();
  1205. sta = sta_info_get(local, mgmt->sa);
  1206. if (!sta) {
  1207. rcu_read_unlock();
  1208. return;
  1209. }
  1210. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1211. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1212. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1213. #ifdef CONFIG_MAC80211_HT_DEBUG
  1214. if (net_ratelimit())
  1215. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1216. print_mac(mac, mgmt->sa),
  1217. initiator ? "recipient" : "initiator", tid,
  1218. mgmt->u.action.u.delba.reason_code);
  1219. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1220. if (initiator == WLAN_BACK_INITIATOR)
  1221. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1222. WLAN_BACK_INITIATOR, 0);
  1223. else { /* WLAN_BACK_RECIPIENT */
  1224. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1225. sta->ampdu_mlme.tid_tx[tid].state =
  1226. HT_AGG_STATE_OPERATIONAL;
  1227. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1228. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1229. WLAN_BACK_RECIPIENT);
  1230. }
  1231. rcu_read_unlock();
  1232. }
  1233. /*
  1234. * After sending add Block Ack request we activated a timer until
  1235. * add Block Ack response will arrive from the recipient.
  1236. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1237. */
  1238. void sta_addba_resp_timer_expired(unsigned long data)
  1239. {
  1240. /* not an elegant detour, but there is no choice as the timer passes
  1241. * only one argument, and both sta_info and TID are needed, so init
  1242. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1243. * array gives the sta through container_of */
  1244. u16 tid = *(int *)data;
  1245. struct sta_info *temp_sta = container_of((void *)data,
  1246. struct sta_info, timer_to_tid[tid]);
  1247. struct ieee80211_local *local = temp_sta->local;
  1248. struct ieee80211_hw *hw = &local->hw;
  1249. struct sta_info *sta;
  1250. u8 *state;
  1251. rcu_read_lock();
  1252. sta = sta_info_get(local, temp_sta->addr);
  1253. if (!sta) {
  1254. rcu_read_unlock();
  1255. return;
  1256. }
  1257. state = &sta->ampdu_mlme.tid_tx[tid].state;
  1258. /* check if the TID waits for addBA response */
  1259. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1260. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1261. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1262. *state = HT_AGG_STATE_IDLE;
  1263. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1264. "expecting addBA response there", tid);
  1265. goto timer_expired_exit;
  1266. }
  1267. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1268. /* go through the state check in stop_BA_session */
  1269. *state = HT_AGG_STATE_OPERATIONAL;
  1270. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1271. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1272. WLAN_BACK_INITIATOR);
  1273. timer_expired_exit:
  1274. rcu_read_unlock();
  1275. }
  1276. /*
  1277. * After receiving Block Ack Request (BAR) we activated a
  1278. * timer after each frame arrives from the originator.
  1279. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1280. */
  1281. void sta_rx_agg_session_timer_expired(unsigned long data)
  1282. {
  1283. /* not an elegant detour, but there is no choice as the timer passes
  1284. * only one argument, and verious sta_info are needed here, so init
  1285. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1286. * array gives the sta through container_of */
  1287. u8 *ptid = (u8 *)data;
  1288. u8 *timer_to_id = ptid - *ptid;
  1289. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1290. timer_to_tid[0]);
  1291. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1292. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1293. (u16)*ptid, WLAN_BACK_TIMER,
  1294. WLAN_REASON_QSTA_TIMEOUT);
  1295. }
  1296. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1297. struct ieee80211_if_sta *ifsta,
  1298. struct ieee80211_mgmt *mgmt,
  1299. size_t len)
  1300. {
  1301. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1302. u16 auth_alg, auth_transaction, status_code;
  1303. DECLARE_MAC_BUF(mac);
  1304. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1305. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1306. printk(KERN_DEBUG "%s: authentication frame received from "
  1307. "%s, but not in authenticate state - ignored\n",
  1308. dev->name, print_mac(mac, mgmt->sa));
  1309. return;
  1310. }
  1311. if (len < 24 + 6) {
  1312. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1313. "received from %s - ignored\n",
  1314. dev->name, len, print_mac(mac, mgmt->sa));
  1315. return;
  1316. }
  1317. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1318. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1319. printk(KERN_DEBUG "%s: authentication frame received from "
  1320. "unknown AP (SA=%s BSSID=%s) - "
  1321. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1322. print_mac(mac, mgmt->bssid));
  1323. return;
  1324. }
  1325. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1326. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1327. printk(KERN_DEBUG "%s: authentication frame received from "
  1328. "unknown BSSID (SA=%s BSSID=%s) - "
  1329. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1330. print_mac(mac, mgmt->bssid));
  1331. return;
  1332. }
  1333. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1334. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1335. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1336. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1337. "transaction=%d status=%d)\n",
  1338. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1339. auth_transaction, status_code);
  1340. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1341. /* IEEE 802.11 standard does not require authentication in IBSS
  1342. * networks and most implementations do not seem to use it.
  1343. * However, try to reply to authentication attempts if someone
  1344. * has actually implemented this.
  1345. * TODO: Could implement shared key authentication. */
  1346. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1347. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1348. "frame (alg=%d transaction=%d)\n",
  1349. dev->name, auth_alg, auth_transaction);
  1350. return;
  1351. }
  1352. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1353. }
  1354. if (auth_alg != ifsta->auth_alg ||
  1355. auth_transaction != ifsta->auth_transaction) {
  1356. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1357. "(alg=%d transaction=%d)\n",
  1358. dev->name, auth_alg, auth_transaction);
  1359. return;
  1360. }
  1361. if (status_code != WLAN_STATUS_SUCCESS) {
  1362. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1363. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1364. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1365. u8 algs[3];
  1366. const int num_algs = ARRAY_SIZE(algs);
  1367. int i, pos;
  1368. algs[0] = algs[1] = algs[2] = 0xff;
  1369. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1370. algs[0] = WLAN_AUTH_OPEN;
  1371. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1372. algs[1] = WLAN_AUTH_SHARED_KEY;
  1373. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1374. algs[2] = WLAN_AUTH_LEAP;
  1375. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1376. pos = 0;
  1377. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1378. pos = 1;
  1379. else
  1380. pos = 2;
  1381. for (i = 0; i < num_algs; i++) {
  1382. pos++;
  1383. if (pos >= num_algs)
  1384. pos = 0;
  1385. if (algs[pos] == ifsta->auth_alg ||
  1386. algs[pos] == 0xff)
  1387. continue;
  1388. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1389. !ieee80211_sta_wep_configured(dev))
  1390. continue;
  1391. ifsta->auth_alg = algs[pos];
  1392. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1393. "next try\n",
  1394. dev->name, ifsta->auth_alg);
  1395. break;
  1396. }
  1397. }
  1398. return;
  1399. }
  1400. switch (ifsta->auth_alg) {
  1401. case WLAN_AUTH_OPEN:
  1402. case WLAN_AUTH_LEAP:
  1403. ieee80211_auth_completed(dev, ifsta);
  1404. break;
  1405. case WLAN_AUTH_SHARED_KEY:
  1406. if (ifsta->auth_transaction == 4)
  1407. ieee80211_auth_completed(dev, ifsta);
  1408. else
  1409. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1410. break;
  1411. }
  1412. }
  1413. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1414. struct ieee80211_if_sta *ifsta,
  1415. struct ieee80211_mgmt *mgmt,
  1416. size_t len)
  1417. {
  1418. u16 reason_code;
  1419. DECLARE_MAC_BUF(mac);
  1420. if (len < 24 + 2) {
  1421. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1422. "received from %s - ignored\n",
  1423. dev->name, len, print_mac(mac, mgmt->sa));
  1424. return;
  1425. }
  1426. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1427. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1428. "unknown AP (SA=%s BSSID=%s) - "
  1429. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1430. print_mac(mac, mgmt->bssid));
  1431. return;
  1432. }
  1433. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1434. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1435. " (reason=%d)\n",
  1436. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1437. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1438. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1439. }
  1440. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1441. ifsta->state == IEEE80211_ASSOCIATE ||
  1442. ifsta->state == IEEE80211_ASSOCIATED) {
  1443. ifsta->state = IEEE80211_AUTHENTICATE;
  1444. mod_timer(&ifsta->timer, jiffies +
  1445. IEEE80211_RETRY_AUTH_INTERVAL);
  1446. }
  1447. ieee80211_set_disassoc(dev, ifsta, 1);
  1448. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1449. }
  1450. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1451. struct ieee80211_if_sta *ifsta,
  1452. struct ieee80211_mgmt *mgmt,
  1453. size_t len)
  1454. {
  1455. u16 reason_code;
  1456. DECLARE_MAC_BUF(mac);
  1457. if (len < 24 + 2) {
  1458. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1459. "received from %s - ignored\n",
  1460. dev->name, len, print_mac(mac, mgmt->sa));
  1461. return;
  1462. }
  1463. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1464. printk(KERN_DEBUG "%s: disassociation frame received from "
  1465. "unknown AP (SA=%s BSSID=%s) - "
  1466. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1467. print_mac(mac, mgmt->bssid));
  1468. return;
  1469. }
  1470. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1471. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1472. " (reason=%d)\n",
  1473. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1474. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1475. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1476. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1477. ifsta->state = IEEE80211_ASSOCIATE;
  1478. mod_timer(&ifsta->timer, jiffies +
  1479. IEEE80211_RETRY_AUTH_INTERVAL);
  1480. }
  1481. ieee80211_set_disassoc(dev, ifsta, 0);
  1482. }
  1483. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1484. struct ieee80211_if_sta *ifsta,
  1485. struct ieee80211_mgmt *mgmt,
  1486. size_t len,
  1487. int reassoc)
  1488. {
  1489. struct ieee80211_local *local = sdata->local;
  1490. struct net_device *dev = sdata->dev;
  1491. struct ieee80211_supported_band *sband;
  1492. struct sta_info *sta;
  1493. u64 rates, basic_rates;
  1494. u16 capab_info, status_code, aid;
  1495. struct ieee802_11_elems elems;
  1496. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1497. u8 *pos;
  1498. int i, j;
  1499. DECLARE_MAC_BUF(mac);
  1500. bool have_higher_than_11mbit = false;
  1501. /* AssocResp and ReassocResp have identical structure, so process both
  1502. * of them in this function. */
  1503. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1504. printk(KERN_DEBUG "%s: association frame received from "
  1505. "%s, but not in associate state - ignored\n",
  1506. dev->name, print_mac(mac, mgmt->sa));
  1507. return;
  1508. }
  1509. if (len < 24 + 6) {
  1510. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1511. "received from %s - ignored\n",
  1512. dev->name, len, print_mac(mac, mgmt->sa));
  1513. return;
  1514. }
  1515. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1516. printk(KERN_DEBUG "%s: association frame received from "
  1517. "unknown AP (SA=%s BSSID=%s) - "
  1518. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1519. print_mac(mac, mgmt->bssid));
  1520. return;
  1521. }
  1522. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1523. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1524. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1525. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1526. "status=%d aid=%d)\n",
  1527. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1528. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1529. if (status_code != WLAN_STATUS_SUCCESS) {
  1530. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1531. dev->name, status_code);
  1532. /* if this was a reassociation, ensure we try a "full"
  1533. * association next time. This works around some broken APs
  1534. * which do not correctly reject reassociation requests. */
  1535. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1536. return;
  1537. }
  1538. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1539. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1540. "set\n", dev->name, aid);
  1541. aid &= ~(BIT(15) | BIT(14));
  1542. pos = mgmt->u.assoc_resp.variable;
  1543. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1544. if (!elems.supp_rates) {
  1545. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1546. dev->name);
  1547. return;
  1548. }
  1549. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1550. ifsta->aid = aid;
  1551. ifsta->ap_capab = capab_info;
  1552. kfree(ifsta->assocresp_ies);
  1553. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1554. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1555. if (ifsta->assocresp_ies)
  1556. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1557. rcu_read_lock();
  1558. /* Add STA entry for the AP */
  1559. sta = sta_info_get(local, ifsta->bssid);
  1560. if (!sta) {
  1561. struct ieee80211_sta_bss *bss;
  1562. int err;
  1563. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1564. if (!sta) {
  1565. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1566. " the AP\n", dev->name);
  1567. rcu_read_unlock();
  1568. return;
  1569. }
  1570. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1571. local->hw.conf.channel->center_freq,
  1572. ifsta->ssid, ifsta->ssid_len);
  1573. if (bss) {
  1574. sta->last_rssi = bss->rssi;
  1575. sta->last_signal = bss->signal;
  1576. sta->last_noise = bss->noise;
  1577. ieee80211_rx_bss_put(dev, bss);
  1578. }
  1579. err = sta_info_insert(sta);
  1580. if (err) {
  1581. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1582. " the AP (error %d)\n", dev->name, err);
  1583. sta_info_destroy(sta);
  1584. rcu_read_unlock();
  1585. return;
  1586. }
  1587. }
  1588. /*
  1589. * FIXME: Do we really need to update the sta_info's information here?
  1590. * We already know about the AP (we found it in our list) so it
  1591. * should already be filled with the right info, no?
  1592. * As is stands, all this is racy because typically we assume
  1593. * the information that is filled in here (except flags) doesn't
  1594. * change while a STA structure is alive. As such, it should move
  1595. * to between the sta_info_alloc() and sta_info_insert() above.
  1596. */
  1597. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1598. WLAN_STA_AUTHORIZED;
  1599. rates = 0;
  1600. basic_rates = 0;
  1601. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1602. for (i = 0; i < elems.supp_rates_len; i++) {
  1603. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1604. if (rate > 110)
  1605. have_higher_than_11mbit = true;
  1606. for (j = 0; j < sband->n_bitrates; j++) {
  1607. if (sband->bitrates[j].bitrate == rate)
  1608. rates |= BIT(j);
  1609. if (elems.supp_rates[i] & 0x80)
  1610. basic_rates |= BIT(j);
  1611. }
  1612. }
  1613. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1614. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1615. if (rate > 110)
  1616. have_higher_than_11mbit = true;
  1617. for (j = 0; j < sband->n_bitrates; j++) {
  1618. if (sband->bitrates[j].bitrate == rate)
  1619. rates |= BIT(j);
  1620. if (elems.ext_supp_rates[i] & 0x80)
  1621. basic_rates |= BIT(j);
  1622. }
  1623. }
  1624. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1625. sdata->basic_rates = basic_rates;
  1626. /* cf. IEEE 802.11 9.2.12 */
  1627. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1628. have_higher_than_11mbit)
  1629. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1630. else
  1631. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1632. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1633. local->ops->conf_ht) {
  1634. struct ieee80211_ht_bss_info bss_info;
  1635. ieee80211_ht_cap_ie_to_ht_info(
  1636. (struct ieee80211_ht_cap *)
  1637. elems.ht_cap_elem, &sta->ht_info);
  1638. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1639. (struct ieee80211_ht_addt_info *)
  1640. elems.ht_info_elem, &bss_info);
  1641. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1642. }
  1643. rate_control_rate_init(sta, local);
  1644. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1645. sta->flags |= WLAN_STA_WME;
  1646. rcu_read_unlock();
  1647. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1648. elems.wmm_param_len);
  1649. } else
  1650. rcu_read_unlock();
  1651. /* set AID, ieee80211_set_associated() will tell the driver */
  1652. bss_conf->aid = aid;
  1653. ieee80211_set_associated(dev, ifsta, 1);
  1654. ieee80211_associated(dev, ifsta);
  1655. }
  1656. /* Caller must hold local->sta_bss_lock */
  1657. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1658. struct ieee80211_sta_bss *bss)
  1659. {
  1660. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1661. u8 hash_idx;
  1662. if (bss_mesh_cfg(bss))
  1663. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1664. bss_mesh_id_len(bss));
  1665. else
  1666. hash_idx = STA_HASH(bss->bssid);
  1667. bss->hnext = local->sta_bss_hash[hash_idx];
  1668. local->sta_bss_hash[hash_idx] = bss;
  1669. }
  1670. /* Caller must hold local->sta_bss_lock */
  1671. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1672. struct ieee80211_sta_bss *bss)
  1673. {
  1674. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1675. struct ieee80211_sta_bss *b, *prev = NULL;
  1676. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1677. while (b) {
  1678. if (b == bss) {
  1679. if (!prev)
  1680. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1681. bss->hnext;
  1682. else
  1683. prev->hnext = bss->hnext;
  1684. break;
  1685. }
  1686. prev = b;
  1687. b = b->hnext;
  1688. }
  1689. }
  1690. static struct ieee80211_sta_bss *
  1691. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1692. u8 *ssid, u8 ssid_len)
  1693. {
  1694. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1695. struct ieee80211_sta_bss *bss;
  1696. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1697. if (!bss)
  1698. return NULL;
  1699. atomic_inc(&bss->users);
  1700. atomic_inc(&bss->users);
  1701. memcpy(bss->bssid, bssid, ETH_ALEN);
  1702. bss->freq = freq;
  1703. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1704. memcpy(bss->ssid, ssid, ssid_len);
  1705. bss->ssid_len = ssid_len;
  1706. }
  1707. spin_lock_bh(&local->sta_bss_lock);
  1708. /* TODO: order by RSSI? */
  1709. list_add_tail(&bss->list, &local->sta_bss_list);
  1710. __ieee80211_rx_bss_hash_add(dev, bss);
  1711. spin_unlock_bh(&local->sta_bss_lock);
  1712. return bss;
  1713. }
  1714. static struct ieee80211_sta_bss *
  1715. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1716. u8 *ssid, u8 ssid_len)
  1717. {
  1718. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1719. struct ieee80211_sta_bss *bss;
  1720. spin_lock_bh(&local->sta_bss_lock);
  1721. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1722. while (bss) {
  1723. if (!bss_mesh_cfg(bss) &&
  1724. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1725. bss->freq == freq &&
  1726. bss->ssid_len == ssid_len &&
  1727. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1728. atomic_inc(&bss->users);
  1729. break;
  1730. }
  1731. bss = bss->hnext;
  1732. }
  1733. spin_unlock_bh(&local->sta_bss_lock);
  1734. return bss;
  1735. }
  1736. #ifdef CONFIG_MAC80211_MESH
  1737. static struct ieee80211_sta_bss *
  1738. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1739. u8 *mesh_cfg, int freq)
  1740. {
  1741. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1742. struct ieee80211_sta_bss *bss;
  1743. spin_lock_bh(&local->sta_bss_lock);
  1744. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1745. while (bss) {
  1746. if (bss_mesh_cfg(bss) &&
  1747. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1748. bss->freq == freq &&
  1749. mesh_id_len == bss->mesh_id_len &&
  1750. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1751. mesh_id_len))) {
  1752. atomic_inc(&bss->users);
  1753. break;
  1754. }
  1755. bss = bss->hnext;
  1756. }
  1757. spin_unlock_bh(&local->sta_bss_lock);
  1758. return bss;
  1759. }
  1760. static struct ieee80211_sta_bss *
  1761. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1762. u8 *mesh_cfg, int freq)
  1763. {
  1764. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1765. struct ieee80211_sta_bss *bss;
  1766. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1767. if (!bss)
  1768. return NULL;
  1769. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1770. if (!bss->mesh_cfg) {
  1771. kfree(bss);
  1772. return NULL;
  1773. }
  1774. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1775. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1776. if (!bss->mesh_id) {
  1777. kfree(bss->mesh_cfg);
  1778. kfree(bss);
  1779. return NULL;
  1780. }
  1781. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1782. }
  1783. atomic_inc(&bss->users);
  1784. atomic_inc(&bss->users);
  1785. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1786. bss->mesh_id_len = mesh_id_len;
  1787. bss->freq = freq;
  1788. spin_lock_bh(&local->sta_bss_lock);
  1789. /* TODO: order by RSSI? */
  1790. list_add_tail(&bss->list, &local->sta_bss_list);
  1791. __ieee80211_rx_bss_hash_add(dev, bss);
  1792. spin_unlock_bh(&local->sta_bss_lock);
  1793. return bss;
  1794. }
  1795. #endif
  1796. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1797. {
  1798. kfree(bss->wpa_ie);
  1799. kfree(bss->rsn_ie);
  1800. kfree(bss->wmm_ie);
  1801. kfree(bss->ht_ie);
  1802. kfree(bss_mesh_id(bss));
  1803. kfree(bss_mesh_cfg(bss));
  1804. kfree(bss);
  1805. }
  1806. static void ieee80211_rx_bss_put(struct net_device *dev,
  1807. struct ieee80211_sta_bss *bss)
  1808. {
  1809. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1810. if (!atomic_dec_and_test(&bss->users))
  1811. return;
  1812. spin_lock_bh(&local->sta_bss_lock);
  1813. __ieee80211_rx_bss_hash_del(dev, bss);
  1814. list_del(&bss->list);
  1815. spin_unlock_bh(&local->sta_bss_lock);
  1816. ieee80211_rx_bss_free(bss);
  1817. }
  1818. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1819. {
  1820. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1821. spin_lock_init(&local->sta_bss_lock);
  1822. INIT_LIST_HEAD(&local->sta_bss_list);
  1823. }
  1824. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1825. {
  1826. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1827. struct ieee80211_sta_bss *bss, *tmp;
  1828. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1829. ieee80211_rx_bss_put(dev, bss);
  1830. }
  1831. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1832. struct ieee80211_if_sta *ifsta,
  1833. struct ieee80211_sta_bss *bss)
  1834. {
  1835. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1836. int res, rates, i, j;
  1837. struct sk_buff *skb;
  1838. struct ieee80211_mgmt *mgmt;
  1839. struct ieee80211_tx_control control;
  1840. struct rate_selection ratesel;
  1841. u8 *pos;
  1842. struct ieee80211_sub_if_data *sdata;
  1843. struct ieee80211_supported_band *sband;
  1844. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1845. /* Remove possible STA entries from other IBSS networks. */
  1846. sta_info_flush(local, NULL);
  1847. if (local->ops->reset_tsf) {
  1848. /* Reset own TSF to allow time synchronization work. */
  1849. local->ops->reset_tsf(local_to_hw(local));
  1850. }
  1851. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1852. res = ieee80211_if_config(dev);
  1853. if (res)
  1854. return res;
  1855. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  1856. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1857. sdata->drop_unencrypted = bss->capability &
  1858. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  1859. res = ieee80211_set_freq(local, bss->freq);
  1860. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  1861. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  1862. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  1863. return -1;
  1864. }
  1865. /* Set beacon template */
  1866. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  1867. do {
  1868. if (!skb)
  1869. break;
  1870. skb_reserve(skb, local->hw.extra_tx_headroom);
  1871. mgmt = (struct ieee80211_mgmt *)
  1872. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  1873. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  1874. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1875. IEEE80211_STYPE_BEACON);
  1876. memset(mgmt->da, 0xff, ETH_ALEN);
  1877. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1878. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1879. mgmt->u.beacon.beacon_int =
  1880. cpu_to_le16(local->hw.conf.beacon_int);
  1881. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  1882. pos = skb_put(skb, 2 + ifsta->ssid_len);
  1883. *pos++ = WLAN_EID_SSID;
  1884. *pos++ = ifsta->ssid_len;
  1885. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  1886. rates = bss->supp_rates_len;
  1887. if (rates > 8)
  1888. rates = 8;
  1889. pos = skb_put(skb, 2 + rates);
  1890. *pos++ = WLAN_EID_SUPP_RATES;
  1891. *pos++ = rates;
  1892. memcpy(pos, bss->supp_rates, rates);
  1893. if (bss->band == IEEE80211_BAND_2GHZ) {
  1894. pos = skb_put(skb, 2 + 1);
  1895. *pos++ = WLAN_EID_DS_PARAMS;
  1896. *pos++ = 1;
  1897. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  1898. }
  1899. pos = skb_put(skb, 2 + 2);
  1900. *pos++ = WLAN_EID_IBSS_PARAMS;
  1901. *pos++ = 2;
  1902. /* FIX: set ATIM window based on scan results */
  1903. *pos++ = 0;
  1904. *pos++ = 0;
  1905. if (bss->supp_rates_len > 8) {
  1906. rates = bss->supp_rates_len - 8;
  1907. pos = skb_put(skb, 2 + rates);
  1908. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  1909. *pos++ = rates;
  1910. memcpy(pos, &bss->supp_rates[8], rates);
  1911. }
  1912. memset(&control, 0, sizeof(control));
  1913. rate_control_get_rate(dev, sband, skb, &ratesel);
  1914. if (!ratesel.rate) {
  1915. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  1916. "for IBSS beacon\n", dev->name);
  1917. break;
  1918. }
  1919. control.vif = &sdata->vif;
  1920. control.tx_rate = ratesel.rate;
  1921. if (sdata->bss_conf.use_short_preamble &&
  1922. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  1923. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  1924. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  1925. control.flags |= IEEE80211_TXCTL_NO_ACK;
  1926. control.retry_limit = 1;
  1927. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  1928. if (ifsta->probe_resp) {
  1929. mgmt = (struct ieee80211_mgmt *)
  1930. ifsta->probe_resp->data;
  1931. mgmt->frame_control =
  1932. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1933. IEEE80211_STYPE_PROBE_RESP);
  1934. } else {
  1935. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  1936. "template for IBSS\n", dev->name);
  1937. }
  1938. if (local->ops->beacon_update &&
  1939. local->ops->beacon_update(local_to_hw(local),
  1940. skb, &control) == 0) {
  1941. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  1942. "template\n", dev->name);
  1943. skb = NULL;
  1944. }
  1945. rates = 0;
  1946. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1947. for (i = 0; i < bss->supp_rates_len; i++) {
  1948. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  1949. for (j = 0; j < sband->n_bitrates; j++)
  1950. if (sband->bitrates[j].bitrate == bitrate)
  1951. rates |= BIT(j);
  1952. }
  1953. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  1954. } while (0);
  1955. if (skb) {
  1956. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  1957. "template\n", dev->name);
  1958. dev_kfree_skb(skb);
  1959. }
  1960. ifsta->state = IEEE80211_IBSS_JOINED;
  1961. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  1962. ieee80211_rx_bss_put(dev, bss);
  1963. return res;
  1964. }
  1965. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  1966. struct ieee802_11_elems *elems,
  1967. enum ieee80211_band band)
  1968. {
  1969. struct ieee80211_supported_band *sband;
  1970. struct ieee80211_rate *bitrates;
  1971. size_t num_rates;
  1972. u64 supp_rates;
  1973. int i, j;
  1974. sband = local->hw.wiphy->bands[band];
  1975. if (!sband) {
  1976. WARN_ON(1);
  1977. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1978. }
  1979. bitrates = sband->bitrates;
  1980. num_rates = sband->n_bitrates;
  1981. supp_rates = 0;
  1982. for (i = 0; i < elems->supp_rates_len +
  1983. elems->ext_supp_rates_len; i++) {
  1984. u8 rate = 0;
  1985. int own_rate;
  1986. if (i < elems->supp_rates_len)
  1987. rate = elems->supp_rates[i];
  1988. else if (elems->ext_supp_rates)
  1989. rate = elems->ext_supp_rates
  1990. [i - elems->supp_rates_len];
  1991. own_rate = 5 * (rate & 0x7f);
  1992. for (j = 0; j < num_rates; j++)
  1993. if (bitrates[j].bitrate == own_rate)
  1994. supp_rates |= BIT(j);
  1995. }
  1996. return supp_rates;
  1997. }
  1998. static void ieee80211_rx_bss_info(struct net_device *dev,
  1999. struct ieee80211_mgmt *mgmt,
  2000. size_t len,
  2001. struct ieee80211_rx_status *rx_status,
  2002. int beacon)
  2003. {
  2004. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2005. struct ieee802_11_elems elems;
  2006. size_t baselen;
  2007. int freq, clen;
  2008. struct ieee80211_sta_bss *bss;
  2009. struct sta_info *sta;
  2010. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2011. u64 beacon_timestamp, rx_timestamp;
  2012. DECLARE_MAC_BUF(mac);
  2013. DECLARE_MAC_BUF(mac2);
  2014. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2015. return; /* ignore ProbeResp to foreign address */
  2016. #if 0
  2017. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  2018. dev->name, beacon ? "Beacon" : "Probe Response",
  2019. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  2020. #endif
  2021. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2022. if (baselen > len)
  2023. return;
  2024. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2025. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2026. if (ieee80211_vif_is_mesh(&sdata->vif) && elems.mesh_id &&
  2027. elems.mesh_config && mesh_matches_local(&elems, dev)) {
  2028. u64 rates = ieee80211_sta_get_rates(local, &elems,
  2029. rx_status->band);
  2030. mesh_neighbour_update(mgmt->sa, rates, dev,
  2031. mesh_peer_accepts_plinks(&elems, dev));
  2032. }
  2033. rcu_read_lock();
  2034. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  2035. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2036. (sta = sta_info_get(local, mgmt->sa))) {
  2037. u64 prev_rates;
  2038. u64 supp_rates = ieee80211_sta_get_rates(local, &elems,
  2039. rx_status->band);
  2040. prev_rates = sta->supp_rates[rx_status->band];
  2041. sta->supp_rates[rx_status->band] &= supp_rates;
  2042. if (sta->supp_rates[rx_status->band] == 0) {
  2043. /* No matching rates - this should not really happen.
  2044. * Make sure that at least one rate is marked
  2045. * supported to avoid issues with TX rate ctrl. */
  2046. sta->supp_rates[rx_status->band] =
  2047. sdata->u.sta.supp_rates_bits[rx_status->band];
  2048. }
  2049. if (sta->supp_rates[rx_status->band] != prev_rates) {
  2050. printk(KERN_DEBUG "%s: updated supp_rates set for "
  2051. "%s based on beacon info (0x%llx & 0x%llx -> "
  2052. "0x%llx)\n",
  2053. dev->name, print_mac(mac, sta->addr),
  2054. (unsigned long long) prev_rates,
  2055. (unsigned long long) supp_rates,
  2056. (unsigned long long) sta->supp_rates[rx_status->band]);
  2057. }
  2058. }
  2059. rcu_read_unlock();
  2060. if (elems.ds_params && elems.ds_params_len == 1)
  2061. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  2062. else
  2063. freq = rx_status->freq;
  2064. #ifdef CONFIG_MAC80211_MESH
  2065. if (elems.mesh_config)
  2066. bss = ieee80211_rx_mesh_bss_get(dev, elems.mesh_id,
  2067. elems.mesh_id_len, elems.mesh_config, freq);
  2068. else
  2069. #endif
  2070. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2071. elems.ssid, elems.ssid_len);
  2072. if (!bss) {
  2073. #ifdef CONFIG_MAC80211_MESH
  2074. if (elems.mesh_config)
  2075. bss = ieee80211_rx_mesh_bss_add(dev, elems.mesh_id,
  2076. elems.mesh_id_len, elems.mesh_config, freq);
  2077. else
  2078. #endif
  2079. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2080. elems.ssid, elems.ssid_len);
  2081. if (!bss)
  2082. return;
  2083. } else {
  2084. #if 0
  2085. /* TODO: order by RSSI? */
  2086. spin_lock_bh(&local->sta_bss_lock);
  2087. list_move_tail(&bss->list, &local->sta_bss_list);
  2088. spin_unlock_bh(&local->sta_bss_lock);
  2089. #endif
  2090. }
  2091. bss->band = rx_status->band;
  2092. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2093. bss->probe_resp && beacon) {
  2094. /* STA mode:
  2095. * Do not allow beacon to override data from Probe Response. */
  2096. ieee80211_rx_bss_put(dev, bss);
  2097. return;
  2098. }
  2099. /* save the ERP value so that it is available at association time */
  2100. if (elems.erp_info && elems.erp_info_len >= 1) {
  2101. bss->erp_value = elems.erp_info[0];
  2102. bss->has_erp_value = 1;
  2103. }
  2104. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2105. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2106. bss->supp_rates_len = 0;
  2107. if (elems.supp_rates) {
  2108. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2109. if (clen > elems.supp_rates_len)
  2110. clen = elems.supp_rates_len;
  2111. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  2112. clen);
  2113. bss->supp_rates_len += clen;
  2114. }
  2115. if (elems.ext_supp_rates) {
  2116. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2117. if (clen > elems.ext_supp_rates_len)
  2118. clen = elems.ext_supp_rates_len;
  2119. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2120. elems.ext_supp_rates, clen);
  2121. bss->supp_rates_len += clen;
  2122. }
  2123. if (elems.wpa &&
  2124. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  2125. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  2126. kfree(bss->wpa_ie);
  2127. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2128. if (bss->wpa_ie) {
  2129. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2130. bss->wpa_ie_len = elems.wpa_len + 2;
  2131. } else
  2132. bss->wpa_ie_len = 0;
  2133. } else if (!elems.wpa && bss->wpa_ie) {
  2134. kfree(bss->wpa_ie);
  2135. bss->wpa_ie = NULL;
  2136. bss->wpa_ie_len = 0;
  2137. }
  2138. if (elems.rsn &&
  2139. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2140. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2141. kfree(bss->rsn_ie);
  2142. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2143. if (bss->rsn_ie) {
  2144. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2145. bss->rsn_ie_len = elems.rsn_len + 2;
  2146. } else
  2147. bss->rsn_ie_len = 0;
  2148. } else if (!elems.rsn && bss->rsn_ie) {
  2149. kfree(bss->rsn_ie);
  2150. bss->rsn_ie = NULL;
  2151. bss->rsn_ie_len = 0;
  2152. }
  2153. if (elems.wmm_param &&
  2154. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2155. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2156. kfree(bss->wmm_ie);
  2157. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2158. if (bss->wmm_ie) {
  2159. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2160. elems.wmm_param_len + 2);
  2161. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2162. } else
  2163. bss->wmm_ie_len = 0;
  2164. } else if (!elems.wmm_param && bss->wmm_ie) {
  2165. kfree(bss->wmm_ie);
  2166. bss->wmm_ie = NULL;
  2167. bss->wmm_ie_len = 0;
  2168. }
  2169. if (elems.ht_cap_elem &&
  2170. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2171. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2172. kfree(bss->ht_ie);
  2173. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2174. if (bss->ht_ie) {
  2175. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2176. elems.ht_cap_elem_len + 2);
  2177. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2178. } else
  2179. bss->ht_ie_len = 0;
  2180. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2181. kfree(bss->ht_ie);
  2182. bss->ht_ie = NULL;
  2183. bss->ht_ie_len = 0;
  2184. }
  2185. bss->timestamp = beacon_timestamp;
  2186. bss->last_update = jiffies;
  2187. bss->rssi = rx_status->ssi;
  2188. bss->signal = rx_status->signal;
  2189. bss->noise = rx_status->noise;
  2190. if (!beacon)
  2191. bss->probe_resp++;
  2192. /* check if we need to merge IBSS */
  2193. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2194. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2195. bss->capability & WLAN_CAPABILITY_IBSS &&
  2196. bss->freq == local->oper_channel->center_freq &&
  2197. elems.ssid_len == sdata->u.sta.ssid_len &&
  2198. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2199. if (rx_status->flag & RX_FLAG_TSFT) {
  2200. /* in order for correct IBSS merging we need mactime
  2201. *
  2202. * since mactime is defined as the time the first data
  2203. * symbol of the frame hits the PHY, and the timestamp
  2204. * of the beacon is defined as "the time that the data
  2205. * symbol containing the first bit of the timestamp is
  2206. * transmitted to the PHY plus the transmitting STA’s
  2207. * delays through its local PHY from the MAC-PHY
  2208. * interface to its interface with the WM"
  2209. * (802.11 11.1.2) - equals the time this bit arrives at
  2210. * the receiver - we have to take into account the
  2211. * offset between the two.
  2212. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2213. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2214. */
  2215. int rate = local->hw.wiphy->bands[rx_status->band]->
  2216. bitrates[rx_status->rate_idx].bitrate;
  2217. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2218. } else if (local && local->ops && local->ops->get_tsf)
  2219. /* second best option: get current TSF */
  2220. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2221. else
  2222. /* can't merge without knowing the TSF */
  2223. rx_timestamp = -1LLU;
  2224. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2225. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2226. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2227. print_mac(mac, mgmt->sa),
  2228. print_mac(mac2, mgmt->bssid),
  2229. (unsigned long long)rx_timestamp,
  2230. (unsigned long long)beacon_timestamp,
  2231. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2232. jiffies);
  2233. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2234. if (beacon_timestamp > rx_timestamp) {
  2235. #ifndef CONFIG_MAC80211_IBSS_DEBUG
  2236. if (net_ratelimit())
  2237. #endif
  2238. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2239. "local TSF - IBSS merge with BSSID %s\n",
  2240. dev->name, print_mac(mac, mgmt->bssid));
  2241. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2242. ieee80211_ibss_add_sta(dev, NULL,
  2243. mgmt->bssid, mgmt->sa);
  2244. }
  2245. }
  2246. ieee80211_rx_bss_put(dev, bss);
  2247. }
  2248. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2249. struct ieee80211_mgmt *mgmt,
  2250. size_t len,
  2251. struct ieee80211_rx_status *rx_status)
  2252. {
  2253. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2254. }
  2255. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2256. struct ieee80211_mgmt *mgmt,
  2257. size_t len,
  2258. struct ieee80211_rx_status *rx_status)
  2259. {
  2260. struct ieee80211_sub_if_data *sdata;
  2261. struct ieee80211_if_sta *ifsta;
  2262. size_t baselen;
  2263. struct ieee802_11_elems elems;
  2264. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2265. struct ieee80211_conf *conf = &local->hw.conf;
  2266. u32 changed = 0;
  2267. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2268. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2269. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2270. return;
  2271. ifsta = &sdata->u.sta;
  2272. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2273. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2274. return;
  2275. /* Process beacon from the current BSS */
  2276. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2277. if (baselen > len)
  2278. return;
  2279. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2280. if (elems.erp_info && elems.erp_info_len >= 1)
  2281. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2282. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2283. elems.wmm_param && local->ops->conf_ht &&
  2284. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2285. struct ieee80211_ht_bss_info bss_info;
  2286. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2287. (struct ieee80211_ht_addt_info *)
  2288. elems.ht_info_elem, &bss_info);
  2289. /* check if AP changed bss inforamation */
  2290. if ((conf->ht_bss_conf.primary_channel !=
  2291. bss_info.primary_channel) ||
  2292. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  2293. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  2294. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  2295. &bss_info);
  2296. }
  2297. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2298. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2299. elems.wmm_param_len);
  2300. }
  2301. ieee80211_bss_info_change_notify(sdata, changed);
  2302. }
  2303. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2304. struct ieee80211_if_sta *ifsta,
  2305. struct ieee80211_mgmt *mgmt,
  2306. size_t len,
  2307. struct ieee80211_rx_status *rx_status)
  2308. {
  2309. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2310. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2311. int tx_last_beacon;
  2312. struct sk_buff *skb;
  2313. struct ieee80211_mgmt *resp;
  2314. u8 *pos, *end;
  2315. DECLARE_MAC_BUF(mac);
  2316. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2317. DECLARE_MAC_BUF(mac2);
  2318. DECLARE_MAC_BUF(mac3);
  2319. #endif
  2320. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2321. ifsta->state != IEEE80211_IBSS_JOINED ||
  2322. len < 24 + 2 || !ifsta->probe_resp)
  2323. return;
  2324. if (local->ops->tx_last_beacon)
  2325. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2326. else
  2327. tx_last_beacon = 1;
  2328. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2329. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2330. "%s (tx_last_beacon=%d)\n",
  2331. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2332. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2333. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2334. if (!tx_last_beacon)
  2335. return;
  2336. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2337. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2338. return;
  2339. end = ((u8 *) mgmt) + len;
  2340. pos = mgmt->u.probe_req.variable;
  2341. if (pos[0] != WLAN_EID_SSID ||
  2342. pos + 2 + pos[1] > end) {
  2343. if (net_ratelimit()) {
  2344. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2345. "from %s\n",
  2346. dev->name, print_mac(mac, mgmt->sa));
  2347. }
  2348. return;
  2349. }
  2350. if (pos[1] != 0 &&
  2351. (pos[1] != ifsta->ssid_len ||
  2352. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2353. /* Ignore ProbeReq for foreign SSID */
  2354. return;
  2355. }
  2356. /* Reply with ProbeResp */
  2357. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2358. if (!skb)
  2359. return;
  2360. resp = (struct ieee80211_mgmt *) skb->data;
  2361. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2362. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2363. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2364. dev->name, print_mac(mac, resp->da));
  2365. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2366. ieee80211_sta_tx(dev, skb, 0);
  2367. }
  2368. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2369. struct ieee80211_if_sta *ifsta,
  2370. struct ieee80211_mgmt *mgmt,
  2371. size_t len,
  2372. struct ieee80211_rx_status *rx_status)
  2373. {
  2374. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2375. if (len < IEEE80211_MIN_ACTION_SIZE)
  2376. return;
  2377. switch (mgmt->u.action.category) {
  2378. case WLAN_CATEGORY_BACK:
  2379. switch (mgmt->u.action.u.addba_req.action_code) {
  2380. case WLAN_ACTION_ADDBA_REQ:
  2381. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2382. sizeof(mgmt->u.action.u.addba_req)))
  2383. break;
  2384. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2385. break;
  2386. case WLAN_ACTION_ADDBA_RESP:
  2387. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2388. sizeof(mgmt->u.action.u.addba_resp)))
  2389. break;
  2390. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2391. break;
  2392. case WLAN_ACTION_DELBA:
  2393. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2394. sizeof(mgmt->u.action.u.delba)))
  2395. break;
  2396. ieee80211_sta_process_delba(dev, mgmt, len);
  2397. break;
  2398. default:
  2399. if (net_ratelimit())
  2400. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2401. dev->name);
  2402. break;
  2403. }
  2404. break;
  2405. case PLINK_CATEGORY:
  2406. if (ieee80211_vif_is_mesh(&sdata->vif))
  2407. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2408. break;
  2409. case MESH_PATH_SEL_CATEGORY:
  2410. if (ieee80211_vif_is_mesh(&sdata->vif))
  2411. mesh_rx_path_sel_frame(dev, mgmt, len);
  2412. break;
  2413. default:
  2414. if (net_ratelimit())
  2415. printk(KERN_DEBUG "%s: Rx unknown action frame - "
  2416. "category=%d\n", dev->name, mgmt->u.action.category);
  2417. break;
  2418. }
  2419. }
  2420. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2421. struct ieee80211_rx_status *rx_status)
  2422. {
  2423. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2424. struct ieee80211_sub_if_data *sdata;
  2425. struct ieee80211_if_sta *ifsta;
  2426. struct ieee80211_mgmt *mgmt;
  2427. u16 fc;
  2428. if (skb->len < 24)
  2429. goto fail;
  2430. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2431. ifsta = &sdata->u.sta;
  2432. mgmt = (struct ieee80211_mgmt *) skb->data;
  2433. fc = le16_to_cpu(mgmt->frame_control);
  2434. switch (fc & IEEE80211_FCTL_STYPE) {
  2435. case IEEE80211_STYPE_PROBE_REQ:
  2436. case IEEE80211_STYPE_PROBE_RESP:
  2437. case IEEE80211_STYPE_BEACON:
  2438. case IEEE80211_STYPE_ACTION:
  2439. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2440. case IEEE80211_STYPE_AUTH:
  2441. case IEEE80211_STYPE_ASSOC_RESP:
  2442. case IEEE80211_STYPE_REASSOC_RESP:
  2443. case IEEE80211_STYPE_DEAUTH:
  2444. case IEEE80211_STYPE_DISASSOC:
  2445. skb_queue_tail(&ifsta->skb_queue, skb);
  2446. queue_work(local->hw.workqueue, &ifsta->work);
  2447. return;
  2448. default:
  2449. printk(KERN_DEBUG "%s: received unknown management frame - "
  2450. "stype=%d\n", dev->name,
  2451. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2452. break;
  2453. }
  2454. fail:
  2455. kfree_skb(skb);
  2456. }
  2457. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2458. struct sk_buff *skb)
  2459. {
  2460. struct ieee80211_rx_status *rx_status;
  2461. struct ieee80211_sub_if_data *sdata;
  2462. struct ieee80211_if_sta *ifsta;
  2463. struct ieee80211_mgmt *mgmt;
  2464. u16 fc;
  2465. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2466. ifsta = &sdata->u.sta;
  2467. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2468. mgmt = (struct ieee80211_mgmt *) skb->data;
  2469. fc = le16_to_cpu(mgmt->frame_control);
  2470. switch (fc & IEEE80211_FCTL_STYPE) {
  2471. case IEEE80211_STYPE_PROBE_REQ:
  2472. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2473. rx_status);
  2474. break;
  2475. case IEEE80211_STYPE_PROBE_RESP:
  2476. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2477. break;
  2478. case IEEE80211_STYPE_BEACON:
  2479. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2480. break;
  2481. case IEEE80211_STYPE_AUTH:
  2482. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2483. break;
  2484. case IEEE80211_STYPE_ASSOC_RESP:
  2485. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2486. break;
  2487. case IEEE80211_STYPE_REASSOC_RESP:
  2488. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2489. break;
  2490. case IEEE80211_STYPE_DEAUTH:
  2491. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2492. break;
  2493. case IEEE80211_STYPE_DISASSOC:
  2494. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2495. break;
  2496. case IEEE80211_STYPE_ACTION:
  2497. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2498. break;
  2499. }
  2500. kfree_skb(skb);
  2501. }
  2502. ieee80211_rx_result
  2503. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2504. struct ieee80211_rx_status *rx_status)
  2505. {
  2506. struct ieee80211_mgmt *mgmt;
  2507. u16 fc;
  2508. if (skb->len < 2)
  2509. return RX_DROP_UNUSABLE;
  2510. mgmt = (struct ieee80211_mgmt *) skb->data;
  2511. fc = le16_to_cpu(mgmt->frame_control);
  2512. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2513. return RX_CONTINUE;
  2514. if (skb->len < 24)
  2515. return RX_DROP_MONITOR;
  2516. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2517. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2518. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2519. skb->len, rx_status);
  2520. dev_kfree_skb(skb);
  2521. return RX_QUEUED;
  2522. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2523. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2524. rx_status);
  2525. dev_kfree_skb(skb);
  2526. return RX_QUEUED;
  2527. }
  2528. }
  2529. return RX_CONTINUE;
  2530. }
  2531. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2532. {
  2533. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2534. int active = 0;
  2535. struct sta_info *sta;
  2536. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2537. rcu_read_lock();
  2538. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2539. if (sta->sdata == sdata &&
  2540. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2541. jiffies)) {
  2542. active++;
  2543. break;
  2544. }
  2545. }
  2546. rcu_read_unlock();
  2547. return active;
  2548. }
  2549. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2550. {
  2551. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2552. struct sta_info *sta, *tmp;
  2553. LIST_HEAD(tmp_list);
  2554. DECLARE_MAC_BUF(mac);
  2555. unsigned long flags;
  2556. spin_lock_irqsave(&local->sta_lock, flags);
  2557. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2558. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2559. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2560. dev->name, print_mac(mac, sta->addr));
  2561. sta_info_unlink(&sta);
  2562. if (sta)
  2563. list_add(&sta->list, &tmp_list);
  2564. }
  2565. spin_unlock_irqrestore(&local->sta_lock, flags);
  2566. synchronize_rcu();
  2567. rtnl_lock();
  2568. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2569. sta_info_destroy(sta);
  2570. rtnl_unlock();
  2571. }
  2572. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2573. struct ieee80211_if_sta *ifsta)
  2574. {
  2575. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2576. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2577. if (ieee80211_sta_active_ibss(dev))
  2578. return;
  2579. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2580. "IBSS networks with same SSID (merge)\n", dev->name);
  2581. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2582. }
  2583. #ifdef CONFIG_MAC80211_MESH
  2584. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2585. struct ieee80211_if_sta *ifsta)
  2586. {
  2587. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2588. bool free_plinks;
  2589. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2590. mesh_path_expire(dev);
  2591. free_plinks = mesh_plink_availables(sdata);
  2592. if (free_plinks != sdata->u.sta.accepting_plinks)
  2593. ieee80211_if_config_beacon(dev);
  2594. mod_timer(&ifsta->timer, jiffies +
  2595. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2596. }
  2597. void ieee80211_start_mesh(struct net_device *dev)
  2598. {
  2599. struct ieee80211_if_sta *ifsta;
  2600. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2601. ifsta = &sdata->u.sta;
  2602. ifsta->state = IEEE80211_MESH_UP;
  2603. ieee80211_sta_timer((unsigned long)sdata);
  2604. }
  2605. #endif
  2606. void ieee80211_sta_timer(unsigned long data)
  2607. {
  2608. struct ieee80211_sub_if_data *sdata =
  2609. (struct ieee80211_sub_if_data *) data;
  2610. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2611. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2612. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2613. queue_work(local->hw.workqueue, &ifsta->work);
  2614. }
  2615. void ieee80211_sta_work(struct work_struct *work)
  2616. {
  2617. struct ieee80211_sub_if_data *sdata =
  2618. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2619. struct net_device *dev = sdata->dev;
  2620. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2621. struct ieee80211_if_sta *ifsta;
  2622. struct sk_buff *skb;
  2623. if (!netif_running(dev))
  2624. return;
  2625. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2626. return;
  2627. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2628. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2629. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT) {
  2630. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2631. "(type=%d)\n", dev->name, sdata->vif.type);
  2632. return;
  2633. }
  2634. ifsta = &sdata->u.sta;
  2635. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2636. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2637. #ifdef CONFIG_MAC80211_MESH
  2638. if (ifsta->preq_queue_len &&
  2639. time_after(jiffies,
  2640. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2641. mesh_path_start_discovery(dev);
  2642. #endif
  2643. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2644. ifsta->state != IEEE80211_ASSOCIATE &&
  2645. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2646. if (ifsta->scan_ssid_len)
  2647. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2648. else
  2649. ieee80211_sta_start_scan(dev, NULL, 0);
  2650. return;
  2651. }
  2652. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2653. if (ieee80211_sta_config_auth(dev, ifsta))
  2654. return;
  2655. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2656. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2657. return;
  2658. switch (ifsta->state) {
  2659. case IEEE80211_DISABLED:
  2660. break;
  2661. case IEEE80211_AUTHENTICATE:
  2662. ieee80211_authenticate(dev, ifsta);
  2663. break;
  2664. case IEEE80211_ASSOCIATE:
  2665. ieee80211_associate(dev, ifsta);
  2666. break;
  2667. case IEEE80211_ASSOCIATED:
  2668. ieee80211_associated(dev, ifsta);
  2669. break;
  2670. case IEEE80211_IBSS_SEARCH:
  2671. ieee80211_sta_find_ibss(dev, ifsta);
  2672. break;
  2673. case IEEE80211_IBSS_JOINED:
  2674. ieee80211_sta_merge_ibss(dev, ifsta);
  2675. break;
  2676. #ifdef CONFIG_MAC80211_MESH
  2677. case IEEE80211_MESH_UP:
  2678. ieee80211_mesh_housekeeping(dev, ifsta);
  2679. break;
  2680. #endif
  2681. default:
  2682. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2683. ifsta->state);
  2684. break;
  2685. }
  2686. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2687. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2688. "mixed-cell disabled - disassociate\n", dev->name);
  2689. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2690. ieee80211_set_disassoc(dev, ifsta, 0);
  2691. }
  2692. }
  2693. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2694. struct ieee80211_if_sta *ifsta)
  2695. {
  2696. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2697. if (local->ops->reset_tsf) {
  2698. /* Reset own TSF to allow time synchronization work. */
  2699. local->ops->reset_tsf(local_to_hw(local));
  2700. }
  2701. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2702. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2703. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2704. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2705. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2706. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2707. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2708. else
  2709. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2710. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2711. ifsta->auth_alg);
  2712. ifsta->auth_transaction = -1;
  2713. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2714. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2715. netif_carrier_off(dev);
  2716. }
  2717. void ieee80211_sta_req_auth(struct net_device *dev,
  2718. struct ieee80211_if_sta *ifsta)
  2719. {
  2720. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2721. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2722. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2723. return;
  2724. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2725. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2726. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2727. IEEE80211_STA_AUTO_SSID_SEL))) {
  2728. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2729. queue_work(local->hw.workqueue, &ifsta->work);
  2730. }
  2731. }
  2732. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2733. const char *ssid, int ssid_len)
  2734. {
  2735. int tmp, hidden_ssid;
  2736. if (ssid_len == ifsta->ssid_len &&
  2737. !memcmp(ifsta->ssid, ssid, ssid_len))
  2738. return 1;
  2739. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2740. return 0;
  2741. hidden_ssid = 1;
  2742. tmp = ssid_len;
  2743. while (tmp--) {
  2744. if (ssid[tmp] != '\0') {
  2745. hidden_ssid = 0;
  2746. break;
  2747. }
  2748. }
  2749. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2750. return 1;
  2751. if (ssid_len == 1 && ssid[0] == ' ')
  2752. return 1;
  2753. return 0;
  2754. }
  2755. static int ieee80211_sta_config_auth(struct net_device *dev,
  2756. struct ieee80211_if_sta *ifsta)
  2757. {
  2758. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2759. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2760. struct ieee80211_sta_bss *bss, *selected = NULL;
  2761. int top_rssi = 0, freq;
  2762. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2763. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2764. ifsta->state = IEEE80211_AUTHENTICATE;
  2765. ieee80211_sta_reset_auth(dev, ifsta);
  2766. return 0;
  2767. }
  2768. spin_lock_bh(&local->sta_bss_lock);
  2769. freq = local->oper_channel->center_freq;
  2770. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2771. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2772. continue;
  2773. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2774. !!sdata->default_key)
  2775. continue;
  2776. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2777. bss->freq != freq)
  2778. continue;
  2779. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2780. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2781. continue;
  2782. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2783. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2784. continue;
  2785. if (!selected || top_rssi < bss->rssi) {
  2786. selected = bss;
  2787. top_rssi = bss->rssi;
  2788. }
  2789. }
  2790. if (selected)
  2791. atomic_inc(&selected->users);
  2792. spin_unlock_bh(&local->sta_bss_lock);
  2793. if (selected) {
  2794. ieee80211_set_freq(local, selected->freq);
  2795. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2796. ieee80211_sta_set_ssid(dev, selected->ssid,
  2797. selected->ssid_len);
  2798. ieee80211_sta_set_bssid(dev, selected->bssid);
  2799. ieee80211_rx_bss_put(dev, selected);
  2800. ifsta->state = IEEE80211_AUTHENTICATE;
  2801. ieee80211_sta_reset_auth(dev, ifsta);
  2802. return 0;
  2803. } else {
  2804. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2805. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2806. ieee80211_sta_start_scan(dev, NULL, 0);
  2807. else
  2808. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2809. ifsta->ssid_len);
  2810. ifsta->state = IEEE80211_AUTHENTICATE;
  2811. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2812. } else
  2813. ifsta->state = IEEE80211_DISABLED;
  2814. }
  2815. return -1;
  2816. }
  2817. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2818. struct ieee80211_if_sta *ifsta)
  2819. {
  2820. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2821. struct ieee80211_sta_bss *bss;
  2822. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2823. struct ieee80211_supported_band *sband;
  2824. u8 bssid[ETH_ALEN], *pos;
  2825. int i;
  2826. DECLARE_MAC_BUF(mac);
  2827. #if 0
  2828. /* Easier testing, use fixed BSSID. */
  2829. memset(bssid, 0xfe, ETH_ALEN);
  2830. #else
  2831. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2832. * own MAC address to make sure that devices that do not have proper
  2833. * random number generator get different BSSID. */
  2834. get_random_bytes(bssid, ETH_ALEN);
  2835. for (i = 0; i < ETH_ALEN; i++)
  2836. bssid[i] ^= dev->dev_addr[i];
  2837. bssid[0] &= ~0x01;
  2838. bssid[0] |= 0x02;
  2839. #endif
  2840. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2841. dev->name, print_mac(mac, bssid));
  2842. bss = ieee80211_rx_bss_add(dev, bssid,
  2843. local->hw.conf.channel->center_freq,
  2844. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2845. if (!bss)
  2846. return -ENOMEM;
  2847. bss->band = local->hw.conf.channel->band;
  2848. sband = local->hw.wiphy->bands[bss->band];
  2849. if (local->hw.conf.beacon_int == 0)
  2850. local->hw.conf.beacon_int = 10000;
  2851. bss->beacon_int = local->hw.conf.beacon_int;
  2852. bss->last_update = jiffies;
  2853. bss->capability = WLAN_CAPABILITY_IBSS;
  2854. if (sdata->default_key) {
  2855. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2856. } else
  2857. sdata->drop_unencrypted = 0;
  2858. bss->supp_rates_len = sband->n_bitrates;
  2859. pos = bss->supp_rates;
  2860. for (i = 0; i < sband->n_bitrates; i++) {
  2861. int rate = sband->bitrates[i].bitrate;
  2862. *pos++ = (u8) (rate / 5);
  2863. }
  2864. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2865. }
  2866. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2867. struct ieee80211_if_sta *ifsta)
  2868. {
  2869. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2870. struct ieee80211_sta_bss *bss;
  2871. int found = 0;
  2872. u8 bssid[ETH_ALEN];
  2873. int active_ibss;
  2874. DECLARE_MAC_BUF(mac);
  2875. DECLARE_MAC_BUF(mac2);
  2876. if (ifsta->ssid_len == 0)
  2877. return -EINVAL;
  2878. active_ibss = ieee80211_sta_active_ibss(dev);
  2879. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2880. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2881. dev->name, active_ibss);
  2882. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2883. spin_lock_bh(&local->sta_bss_lock);
  2884. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2885. if (ifsta->ssid_len != bss->ssid_len ||
  2886. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2887. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2888. continue;
  2889. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2890. printk(KERN_DEBUG " bssid=%s found\n",
  2891. print_mac(mac, bss->bssid));
  2892. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2893. memcpy(bssid, bss->bssid, ETH_ALEN);
  2894. found = 1;
  2895. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2896. break;
  2897. }
  2898. spin_unlock_bh(&local->sta_bss_lock);
  2899. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2900. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2901. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2902. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2903. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2904. (bss = ieee80211_rx_bss_get(dev, bssid,
  2905. local->hw.conf.channel->center_freq,
  2906. ifsta->ssid, ifsta->ssid_len))) {
  2907. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2908. " based on configured SSID\n",
  2909. dev->name, print_mac(mac, bssid));
  2910. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2911. }
  2912. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2913. printk(KERN_DEBUG " did not try to join ibss\n");
  2914. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2915. /* Selected IBSS not found in current scan results - try to scan */
  2916. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2917. !ieee80211_sta_active_ibss(dev)) {
  2918. mod_timer(&ifsta->timer, jiffies +
  2919. IEEE80211_IBSS_MERGE_INTERVAL);
  2920. } else if (time_after(jiffies, local->last_scan_completed +
  2921. IEEE80211_SCAN_INTERVAL)) {
  2922. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  2923. "join\n", dev->name);
  2924. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  2925. ifsta->ssid_len);
  2926. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  2927. int interval = IEEE80211_SCAN_INTERVAL;
  2928. if (time_after(jiffies, ifsta->ibss_join_req +
  2929. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  2930. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  2931. (!(local->oper_channel->flags &
  2932. IEEE80211_CHAN_NO_IBSS)))
  2933. return ieee80211_sta_create_ibss(dev, ifsta);
  2934. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  2935. printk(KERN_DEBUG "%s: IBSS not allowed on"
  2936. " %d MHz\n", dev->name,
  2937. local->hw.conf.channel->center_freq);
  2938. }
  2939. /* No IBSS found - decrease scan interval and continue
  2940. * scanning. */
  2941. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  2942. }
  2943. ifsta->state = IEEE80211_IBSS_SEARCH;
  2944. mod_timer(&ifsta->timer, jiffies + interval);
  2945. return 0;
  2946. }
  2947. return 0;
  2948. }
  2949. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  2950. {
  2951. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2952. struct ieee80211_if_sta *ifsta;
  2953. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2954. if (len > IEEE80211_MAX_SSID_LEN)
  2955. return -EINVAL;
  2956. /* TODO: This should always be done for IBSS, even if IEEE80211_QOS is
  2957. * not defined. */
  2958. if (local->ops->conf_tx) {
  2959. struct ieee80211_tx_queue_params qparam;
  2960. int i;
  2961. memset(&qparam, 0, sizeof(qparam));
  2962. qparam.aifs = 2;
  2963. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  2964. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  2965. qparam.cw_min = 31;
  2966. else
  2967. qparam.cw_min = 15;
  2968. qparam.cw_max = 1023;
  2969. qparam.txop = 0;
  2970. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  2971. local->ops->conf_tx(local_to_hw(local),
  2972. i + IEEE80211_TX_QUEUE_DATA0,
  2973. &qparam);
  2974. /* IBSS uses different parameters for Beacon sending */
  2975. qparam.cw_min++;
  2976. qparam.cw_min *= 2;
  2977. qparam.cw_min--;
  2978. local->ops->conf_tx(local_to_hw(local),
  2979. IEEE80211_TX_QUEUE_BEACON, &qparam);
  2980. }
  2981. ifsta = &sdata->u.sta;
  2982. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  2983. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  2984. memcpy(ifsta->ssid, ssid, len);
  2985. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  2986. ifsta->ssid_len = len;
  2987. if (len)
  2988. ifsta->flags |= IEEE80211_STA_SSID_SET;
  2989. else
  2990. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  2991. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2992. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  2993. ifsta->ibss_join_req = jiffies;
  2994. ifsta->state = IEEE80211_IBSS_SEARCH;
  2995. return ieee80211_sta_find_ibss(dev, ifsta);
  2996. }
  2997. return 0;
  2998. }
  2999. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3000. {
  3001. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3002. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3003. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3004. *len = ifsta->ssid_len;
  3005. return 0;
  3006. }
  3007. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3008. {
  3009. struct ieee80211_sub_if_data *sdata;
  3010. struct ieee80211_if_sta *ifsta;
  3011. int res;
  3012. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3013. ifsta = &sdata->u.sta;
  3014. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3015. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3016. res = ieee80211_if_config(dev);
  3017. if (res) {
  3018. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3019. "the low-level driver\n", dev->name);
  3020. return res;
  3021. }
  3022. }
  3023. if (is_valid_ether_addr(bssid))
  3024. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3025. else
  3026. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3027. return 0;
  3028. }
  3029. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3030. struct ieee80211_sub_if_data *sdata,
  3031. int powersave)
  3032. {
  3033. struct sk_buff *skb;
  3034. struct ieee80211_hdr *nullfunc;
  3035. u16 fc;
  3036. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3037. if (!skb) {
  3038. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3039. "frame\n", sdata->dev->name);
  3040. return;
  3041. }
  3042. skb_reserve(skb, local->hw.extra_tx_headroom);
  3043. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3044. memset(nullfunc, 0, 24);
  3045. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3046. IEEE80211_FCTL_TODS;
  3047. if (powersave)
  3048. fc |= IEEE80211_FCTL_PM;
  3049. nullfunc->frame_control = cpu_to_le16(fc);
  3050. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3051. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3052. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3053. ieee80211_sta_tx(sdata->dev, skb, 0);
  3054. }
  3055. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3056. {
  3057. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3058. ieee80211_vif_is_mesh(&sdata->vif))
  3059. ieee80211_sta_timer((unsigned long)sdata);
  3060. }
  3061. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3062. {
  3063. struct ieee80211_local *local = hw_to_local(hw);
  3064. struct net_device *dev = local->scan_dev;
  3065. struct ieee80211_sub_if_data *sdata;
  3066. union iwreq_data wrqu;
  3067. local->last_scan_completed = jiffies;
  3068. memset(&wrqu, 0, sizeof(wrqu));
  3069. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3070. if (local->sta_hw_scanning) {
  3071. local->sta_hw_scanning = 0;
  3072. /* Restart STA timer for HW scan case */
  3073. rcu_read_lock();
  3074. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3075. ieee80211_restart_sta_timer(sdata);
  3076. rcu_read_unlock();
  3077. goto done;
  3078. }
  3079. local->sta_sw_scanning = 0;
  3080. if (ieee80211_hw_config(local))
  3081. printk(KERN_DEBUG "%s: failed to restore operational "
  3082. "channel after scan\n", dev->name);
  3083. netif_tx_lock_bh(local->mdev);
  3084. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3085. local->ops->configure_filter(local_to_hw(local),
  3086. FIF_BCN_PRBRESP_PROMISC,
  3087. &local->filter_flags,
  3088. local->mdev->mc_count,
  3089. local->mdev->mc_list);
  3090. netif_tx_unlock_bh(local->mdev);
  3091. rcu_read_lock();
  3092. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3093. /* No need to wake the master device. */
  3094. if (sdata->dev == local->mdev)
  3095. continue;
  3096. /* Tell AP we're back */
  3097. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3098. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3099. ieee80211_send_nullfunc(local, sdata, 0);
  3100. ieee80211_restart_sta_timer(sdata);
  3101. netif_wake_queue(sdata->dev);
  3102. }
  3103. rcu_read_unlock();
  3104. done:
  3105. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3106. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3107. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3108. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3109. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  3110. !ieee80211_sta_active_ibss(dev)))
  3111. ieee80211_sta_find_ibss(dev, ifsta);
  3112. }
  3113. }
  3114. EXPORT_SYMBOL(ieee80211_scan_completed);
  3115. void ieee80211_sta_scan_work(struct work_struct *work)
  3116. {
  3117. struct ieee80211_local *local =
  3118. container_of(work, struct ieee80211_local, scan_work.work);
  3119. struct net_device *dev = local->scan_dev;
  3120. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3121. struct ieee80211_supported_band *sband;
  3122. struct ieee80211_channel *chan;
  3123. int skip;
  3124. unsigned long next_delay = 0;
  3125. if (!local->sta_sw_scanning)
  3126. return;
  3127. switch (local->scan_state) {
  3128. case SCAN_SET_CHANNEL:
  3129. /*
  3130. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3131. * after we successfully scanned the last channel of the last
  3132. * band (and the last band is supported by the hw)
  3133. */
  3134. if (local->scan_band < IEEE80211_NUM_BANDS)
  3135. sband = local->hw.wiphy->bands[local->scan_band];
  3136. else
  3137. sband = NULL;
  3138. /*
  3139. * If we are at an unsupported band and have more bands
  3140. * left to scan, advance to the next supported one.
  3141. */
  3142. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3143. local->scan_band++;
  3144. sband = local->hw.wiphy->bands[local->scan_band];
  3145. local->scan_channel_idx = 0;
  3146. }
  3147. /* if no more bands/channels left, complete scan */
  3148. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3149. ieee80211_scan_completed(local_to_hw(local));
  3150. return;
  3151. }
  3152. skip = 0;
  3153. chan = &sband->channels[local->scan_channel_idx];
  3154. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3155. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3156. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3157. skip = 1;
  3158. if (!skip) {
  3159. local->scan_channel = chan;
  3160. if (ieee80211_hw_config(local)) {
  3161. printk(KERN_DEBUG "%s: failed to set freq to "
  3162. "%d MHz for scan\n", dev->name,
  3163. chan->center_freq);
  3164. skip = 1;
  3165. }
  3166. }
  3167. /* advance state machine to next channel/band */
  3168. local->scan_channel_idx++;
  3169. if (local->scan_channel_idx >= sband->n_channels) {
  3170. /*
  3171. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3172. * we'll catch that case above and complete the scan
  3173. * if that is the case.
  3174. */
  3175. local->scan_band++;
  3176. local->scan_channel_idx = 0;
  3177. }
  3178. if (skip)
  3179. break;
  3180. next_delay = IEEE80211_PROBE_DELAY +
  3181. usecs_to_jiffies(local->hw.channel_change_time);
  3182. local->scan_state = SCAN_SEND_PROBE;
  3183. break;
  3184. case SCAN_SEND_PROBE:
  3185. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3186. local->scan_state = SCAN_SET_CHANNEL;
  3187. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3188. break;
  3189. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3190. local->scan_ssid_len);
  3191. next_delay = IEEE80211_CHANNEL_TIME;
  3192. break;
  3193. }
  3194. if (local->sta_sw_scanning)
  3195. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3196. next_delay);
  3197. }
  3198. static int ieee80211_sta_start_scan(struct net_device *dev,
  3199. u8 *ssid, size_t ssid_len)
  3200. {
  3201. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3202. struct ieee80211_sub_if_data *sdata;
  3203. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3204. return -EINVAL;
  3205. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3206. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3207. * BSSID: MACAddress
  3208. * SSID
  3209. * ScanType: ACTIVE, PASSIVE
  3210. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3211. * a Probe frame during active scanning
  3212. * ChannelList
  3213. * MinChannelTime (>= ProbeDelay), in TU
  3214. * MaxChannelTime: (>= MinChannelTime), in TU
  3215. */
  3216. /* MLME-SCAN.confirm
  3217. * BSSDescriptionSet
  3218. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3219. */
  3220. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3221. if (local->scan_dev == dev)
  3222. return 0;
  3223. return -EBUSY;
  3224. }
  3225. if (local->ops->hw_scan) {
  3226. int rc = local->ops->hw_scan(local_to_hw(local),
  3227. ssid, ssid_len);
  3228. if (!rc) {
  3229. local->sta_hw_scanning = 1;
  3230. local->scan_dev = dev;
  3231. }
  3232. return rc;
  3233. }
  3234. local->sta_sw_scanning = 1;
  3235. rcu_read_lock();
  3236. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3237. /* Don't stop the master interface, otherwise we can't transmit
  3238. * probes! */
  3239. if (sdata->dev == local->mdev)
  3240. continue;
  3241. netif_stop_queue(sdata->dev);
  3242. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3243. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3244. ieee80211_send_nullfunc(local, sdata, 1);
  3245. }
  3246. rcu_read_unlock();
  3247. if (ssid) {
  3248. local->scan_ssid_len = ssid_len;
  3249. memcpy(local->scan_ssid, ssid, ssid_len);
  3250. } else
  3251. local->scan_ssid_len = 0;
  3252. local->scan_state = SCAN_SET_CHANNEL;
  3253. local->scan_channel_idx = 0;
  3254. local->scan_band = IEEE80211_BAND_2GHZ;
  3255. local->scan_dev = dev;
  3256. netif_tx_lock_bh(local->mdev);
  3257. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3258. local->ops->configure_filter(local_to_hw(local),
  3259. FIF_BCN_PRBRESP_PROMISC,
  3260. &local->filter_flags,
  3261. local->mdev->mc_count,
  3262. local->mdev->mc_list);
  3263. netif_tx_unlock_bh(local->mdev);
  3264. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3265. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3266. IEEE80211_CHANNEL_TIME);
  3267. return 0;
  3268. }
  3269. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3270. {
  3271. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3272. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3273. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3274. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3275. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3276. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3277. if (local->scan_dev == dev)
  3278. return 0;
  3279. return -EBUSY;
  3280. }
  3281. ifsta->scan_ssid_len = ssid_len;
  3282. if (ssid_len)
  3283. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3284. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3285. queue_work(local->hw.workqueue, &ifsta->work);
  3286. return 0;
  3287. }
  3288. static char *
  3289. ieee80211_sta_scan_result(struct net_device *dev,
  3290. struct ieee80211_sta_bss *bss,
  3291. char *current_ev, char *end_buf)
  3292. {
  3293. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3294. struct iw_event iwe;
  3295. if (time_after(jiffies,
  3296. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3297. return current_ev;
  3298. memset(&iwe, 0, sizeof(iwe));
  3299. iwe.cmd = SIOCGIWAP;
  3300. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3301. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3302. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3303. IW_EV_ADDR_LEN);
  3304. memset(&iwe, 0, sizeof(iwe));
  3305. iwe.cmd = SIOCGIWESSID;
  3306. if (bss_mesh_cfg(bss)) {
  3307. iwe.u.data.length = bss_mesh_id_len(bss);
  3308. iwe.u.data.flags = 1;
  3309. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3310. bss_mesh_id(bss));
  3311. } else {
  3312. iwe.u.data.length = bss->ssid_len;
  3313. iwe.u.data.flags = 1;
  3314. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3315. bss->ssid);
  3316. }
  3317. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3318. || bss_mesh_cfg(bss)) {
  3319. memset(&iwe, 0, sizeof(iwe));
  3320. iwe.cmd = SIOCGIWMODE;
  3321. if (bss_mesh_cfg(bss))
  3322. iwe.u.mode = IW_MODE_MESH;
  3323. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3324. iwe.u.mode = IW_MODE_MASTER;
  3325. else
  3326. iwe.u.mode = IW_MODE_ADHOC;
  3327. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3328. IW_EV_UINT_LEN);
  3329. }
  3330. memset(&iwe, 0, sizeof(iwe));
  3331. iwe.cmd = SIOCGIWFREQ;
  3332. iwe.u.freq.m = bss->freq;
  3333. iwe.u.freq.e = 6;
  3334. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3335. IW_EV_FREQ_LEN);
  3336. memset(&iwe, 0, sizeof(iwe));
  3337. iwe.cmd = SIOCGIWFREQ;
  3338. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3339. iwe.u.freq.e = 0;
  3340. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3341. IW_EV_FREQ_LEN);
  3342. memset(&iwe, 0, sizeof(iwe));
  3343. iwe.cmd = IWEVQUAL;
  3344. iwe.u.qual.qual = bss->signal;
  3345. iwe.u.qual.level = bss->rssi;
  3346. iwe.u.qual.noise = bss->noise;
  3347. iwe.u.qual.updated = local->wstats_flags;
  3348. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3349. IW_EV_QUAL_LEN);
  3350. memset(&iwe, 0, sizeof(iwe));
  3351. iwe.cmd = SIOCGIWENCODE;
  3352. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3353. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3354. else
  3355. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3356. iwe.u.data.length = 0;
  3357. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3358. if (bss && bss->wpa_ie) {
  3359. memset(&iwe, 0, sizeof(iwe));
  3360. iwe.cmd = IWEVGENIE;
  3361. iwe.u.data.length = bss->wpa_ie_len;
  3362. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3363. bss->wpa_ie);
  3364. }
  3365. if (bss && bss->rsn_ie) {
  3366. memset(&iwe, 0, sizeof(iwe));
  3367. iwe.cmd = IWEVGENIE;
  3368. iwe.u.data.length = bss->rsn_ie_len;
  3369. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3370. bss->rsn_ie);
  3371. }
  3372. if (bss && bss->supp_rates_len > 0) {
  3373. /* display all supported rates in readable format */
  3374. char *p = current_ev + IW_EV_LCP_LEN;
  3375. int i;
  3376. memset(&iwe, 0, sizeof(iwe));
  3377. iwe.cmd = SIOCGIWRATE;
  3378. /* Those two flags are ignored... */
  3379. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3380. for (i = 0; i < bss->supp_rates_len; i++) {
  3381. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3382. 0x7f) * 500000);
  3383. p = iwe_stream_add_value(current_ev, p,
  3384. end_buf, &iwe, IW_EV_PARAM_LEN);
  3385. }
  3386. current_ev = p;
  3387. }
  3388. if (bss) {
  3389. char *buf;
  3390. buf = kmalloc(30, GFP_ATOMIC);
  3391. if (buf) {
  3392. memset(&iwe, 0, sizeof(iwe));
  3393. iwe.cmd = IWEVCUSTOM;
  3394. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3395. iwe.u.data.length = strlen(buf);
  3396. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3397. &iwe, buf);
  3398. kfree(buf);
  3399. }
  3400. }
  3401. if (bss_mesh_cfg(bss)) {
  3402. char *buf;
  3403. u8 *cfg = bss_mesh_cfg(bss);
  3404. buf = kmalloc(50, GFP_ATOMIC);
  3405. if (buf) {
  3406. memset(&iwe, 0, sizeof(iwe));
  3407. iwe.cmd = IWEVCUSTOM;
  3408. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3409. iwe.u.data.length = strlen(buf);
  3410. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3411. &iwe, buf);
  3412. sprintf(buf, "Path Selection Protocol ID: "
  3413. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3414. cfg[4]);
  3415. iwe.u.data.length = strlen(buf);
  3416. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3417. &iwe, buf);
  3418. sprintf(buf, "Path Selection Metric ID: "
  3419. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3420. cfg[8]);
  3421. iwe.u.data.length = strlen(buf);
  3422. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3423. &iwe, buf);
  3424. sprintf(buf, "Congestion Control Mode ID: "
  3425. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3426. cfg[11], cfg[12]);
  3427. iwe.u.data.length = strlen(buf);
  3428. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3429. &iwe, buf);
  3430. sprintf(buf, "Channel Precedence: "
  3431. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3432. cfg[15], cfg[16]);
  3433. iwe.u.data.length = strlen(buf);
  3434. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3435. &iwe, buf);
  3436. kfree(buf);
  3437. }
  3438. }
  3439. return current_ev;
  3440. }
  3441. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3442. {
  3443. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3444. char *current_ev = buf;
  3445. char *end_buf = buf + len;
  3446. struct ieee80211_sta_bss *bss;
  3447. spin_lock_bh(&local->sta_bss_lock);
  3448. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3449. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3450. spin_unlock_bh(&local->sta_bss_lock);
  3451. return -E2BIG;
  3452. }
  3453. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3454. end_buf);
  3455. }
  3456. spin_unlock_bh(&local->sta_bss_lock);
  3457. return current_ev - buf;
  3458. }
  3459. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3460. {
  3461. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3462. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3463. kfree(ifsta->extra_ie);
  3464. if (len == 0) {
  3465. ifsta->extra_ie = NULL;
  3466. ifsta->extra_ie_len = 0;
  3467. return 0;
  3468. }
  3469. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3470. if (!ifsta->extra_ie) {
  3471. ifsta->extra_ie_len = 0;
  3472. return -ENOMEM;
  3473. }
  3474. memcpy(ifsta->extra_ie, ie, len);
  3475. ifsta->extra_ie_len = len;
  3476. return 0;
  3477. }
  3478. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3479. struct sk_buff *skb, u8 *bssid,
  3480. u8 *addr)
  3481. {
  3482. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3483. struct sta_info *sta;
  3484. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3485. DECLARE_MAC_BUF(mac);
  3486. /* TODO: Could consider removing the least recently used entry and
  3487. * allow new one to be added. */
  3488. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3489. if (net_ratelimit()) {
  3490. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3491. "entry %s\n", dev->name, print_mac(mac, addr));
  3492. }
  3493. return NULL;
  3494. }
  3495. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3496. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3497. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3498. if (!sta)
  3499. return NULL;
  3500. sta->flags |= WLAN_STA_AUTHORIZED;
  3501. sta->supp_rates[local->hw.conf.channel->band] =
  3502. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3503. rate_control_rate_init(sta, local);
  3504. if (sta_info_insert(sta)) {
  3505. sta_info_destroy(sta);
  3506. return NULL;
  3507. }
  3508. return sta;
  3509. }
  3510. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3511. {
  3512. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3513. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3514. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3515. dev->name, reason);
  3516. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3517. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3518. return -EINVAL;
  3519. ieee80211_send_deauth(dev, ifsta, reason);
  3520. ieee80211_set_disassoc(dev, ifsta, 1);
  3521. return 0;
  3522. }
  3523. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3524. {
  3525. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3526. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3527. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3528. dev->name, reason);
  3529. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3530. return -EINVAL;
  3531. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3532. return -1;
  3533. ieee80211_send_disassoc(dev, ifsta, reason);
  3534. ieee80211_set_disassoc(dev, ifsta, 0);
  3535. return 0;
  3536. }