x86.c 155 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <linux/hash.h>
  45. #include <trace/events/kvm.h>
  46. #define CREATE_TRACE_POINTS
  47. #include "trace.h"
  48. #include <asm/debugreg.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <asm/mtrr.h>
  52. #include <asm/mce.h>
  53. #include <asm/i387.h>
  54. #include <asm/xcr.h>
  55. #include <asm/pvclock.h>
  56. #include <asm/div64.h>
  57. #define MAX_IO_MSRS 256
  58. #define CR0_RESERVED_BITS \
  59. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  60. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  61. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  62. #define CR4_RESERVED_BITS \
  63. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  64. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  65. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  66. | X86_CR4_OSXSAVE \
  67. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  68. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  69. #define KVM_MAX_MCE_BANKS 32
  70. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  71. /* EFER defaults:
  72. * - enable syscall per default because its emulated by KVM
  73. * - enable LME and LMA per default on 64 bit KVM
  74. */
  75. #ifdef CONFIG_X86_64
  76. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  77. #else
  78. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  79. #endif
  80. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  81. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  82. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  83. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  84. struct kvm_cpuid_entry2 __user *entries);
  85. struct kvm_x86_ops *kvm_x86_ops;
  86. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  87. int ignore_msrs = 0;
  88. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  89. #define KVM_NR_SHARED_MSRS 16
  90. struct kvm_shared_msrs_global {
  91. int nr;
  92. u32 msrs[KVM_NR_SHARED_MSRS];
  93. };
  94. struct kvm_shared_msrs {
  95. struct user_return_notifier urn;
  96. bool registered;
  97. struct kvm_shared_msr_values {
  98. u64 host;
  99. u64 curr;
  100. } values[KVM_NR_SHARED_MSRS];
  101. };
  102. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  103. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  104. struct kvm_stats_debugfs_item debugfs_entries[] = {
  105. { "pf_fixed", VCPU_STAT(pf_fixed) },
  106. { "pf_guest", VCPU_STAT(pf_guest) },
  107. { "tlb_flush", VCPU_STAT(tlb_flush) },
  108. { "invlpg", VCPU_STAT(invlpg) },
  109. { "exits", VCPU_STAT(exits) },
  110. { "io_exits", VCPU_STAT(io_exits) },
  111. { "mmio_exits", VCPU_STAT(mmio_exits) },
  112. { "signal_exits", VCPU_STAT(signal_exits) },
  113. { "irq_window", VCPU_STAT(irq_window_exits) },
  114. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  115. { "halt_exits", VCPU_STAT(halt_exits) },
  116. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  117. { "hypercalls", VCPU_STAT(hypercalls) },
  118. { "request_irq", VCPU_STAT(request_irq_exits) },
  119. { "irq_exits", VCPU_STAT(irq_exits) },
  120. { "host_state_reload", VCPU_STAT(host_state_reload) },
  121. { "efer_reload", VCPU_STAT(efer_reload) },
  122. { "fpu_reload", VCPU_STAT(fpu_reload) },
  123. { "insn_emulation", VCPU_STAT(insn_emulation) },
  124. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  125. { "irq_injections", VCPU_STAT(irq_injections) },
  126. { "nmi_injections", VCPU_STAT(nmi_injections) },
  127. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  128. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  129. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  130. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  131. { "mmu_flooded", VM_STAT(mmu_flooded) },
  132. { "mmu_recycled", VM_STAT(mmu_recycled) },
  133. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  134. { "mmu_unsync", VM_STAT(mmu_unsync) },
  135. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  136. { "largepages", VM_STAT(lpages) },
  137. { NULL }
  138. };
  139. u64 __read_mostly host_xcr0;
  140. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  141. {
  142. int i;
  143. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  144. vcpu->arch.apf.gfns[i] = ~0;
  145. }
  146. static void kvm_on_user_return(struct user_return_notifier *urn)
  147. {
  148. unsigned slot;
  149. struct kvm_shared_msrs *locals
  150. = container_of(urn, struct kvm_shared_msrs, urn);
  151. struct kvm_shared_msr_values *values;
  152. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  153. values = &locals->values[slot];
  154. if (values->host != values->curr) {
  155. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  156. values->curr = values->host;
  157. }
  158. }
  159. locals->registered = false;
  160. user_return_notifier_unregister(urn);
  161. }
  162. static void shared_msr_update(unsigned slot, u32 msr)
  163. {
  164. struct kvm_shared_msrs *smsr;
  165. u64 value;
  166. smsr = &__get_cpu_var(shared_msrs);
  167. /* only read, and nobody should modify it at this time,
  168. * so don't need lock */
  169. if (slot >= shared_msrs_global.nr) {
  170. printk(KERN_ERR "kvm: invalid MSR slot!");
  171. return;
  172. }
  173. rdmsrl_safe(msr, &value);
  174. smsr->values[slot].host = value;
  175. smsr->values[slot].curr = value;
  176. }
  177. void kvm_define_shared_msr(unsigned slot, u32 msr)
  178. {
  179. if (slot >= shared_msrs_global.nr)
  180. shared_msrs_global.nr = slot + 1;
  181. shared_msrs_global.msrs[slot] = msr;
  182. /* we need ensured the shared_msr_global have been updated */
  183. smp_wmb();
  184. }
  185. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  186. static void kvm_shared_msr_cpu_online(void)
  187. {
  188. unsigned i;
  189. for (i = 0; i < shared_msrs_global.nr; ++i)
  190. shared_msr_update(i, shared_msrs_global.msrs[i]);
  191. }
  192. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  193. {
  194. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  195. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  196. return;
  197. smsr->values[slot].curr = value;
  198. wrmsrl(shared_msrs_global.msrs[slot], value);
  199. if (!smsr->registered) {
  200. smsr->urn.on_user_return = kvm_on_user_return;
  201. user_return_notifier_register(&smsr->urn);
  202. smsr->registered = true;
  203. }
  204. }
  205. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  206. static void drop_user_return_notifiers(void *ignore)
  207. {
  208. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  209. if (smsr->registered)
  210. kvm_on_user_return(&smsr->urn);
  211. }
  212. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  213. {
  214. if (irqchip_in_kernel(vcpu->kvm))
  215. return vcpu->arch.apic_base;
  216. else
  217. return vcpu->arch.apic_base;
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  220. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  221. {
  222. /* TODO: reserve bits check */
  223. if (irqchip_in_kernel(vcpu->kvm))
  224. kvm_lapic_set_base(vcpu, data);
  225. else
  226. vcpu->arch.apic_base = data;
  227. }
  228. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  229. #define EXCPT_BENIGN 0
  230. #define EXCPT_CONTRIBUTORY 1
  231. #define EXCPT_PF 2
  232. static int exception_class(int vector)
  233. {
  234. switch (vector) {
  235. case PF_VECTOR:
  236. return EXCPT_PF;
  237. case DE_VECTOR:
  238. case TS_VECTOR:
  239. case NP_VECTOR:
  240. case SS_VECTOR:
  241. case GP_VECTOR:
  242. return EXCPT_CONTRIBUTORY;
  243. default:
  244. break;
  245. }
  246. return EXCPT_BENIGN;
  247. }
  248. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  249. unsigned nr, bool has_error, u32 error_code,
  250. bool reinject)
  251. {
  252. u32 prev_nr;
  253. int class1, class2;
  254. kvm_make_request(KVM_REQ_EVENT, vcpu);
  255. if (!vcpu->arch.exception.pending) {
  256. queue:
  257. vcpu->arch.exception.pending = true;
  258. vcpu->arch.exception.has_error_code = has_error;
  259. vcpu->arch.exception.nr = nr;
  260. vcpu->arch.exception.error_code = error_code;
  261. vcpu->arch.exception.reinject = reinject;
  262. return;
  263. }
  264. /* to check exception */
  265. prev_nr = vcpu->arch.exception.nr;
  266. if (prev_nr == DF_VECTOR) {
  267. /* triple fault -> shutdown */
  268. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  269. return;
  270. }
  271. class1 = exception_class(prev_nr);
  272. class2 = exception_class(nr);
  273. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  274. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  275. /* generate double fault per SDM Table 5-5 */
  276. vcpu->arch.exception.pending = true;
  277. vcpu->arch.exception.has_error_code = true;
  278. vcpu->arch.exception.nr = DF_VECTOR;
  279. vcpu->arch.exception.error_code = 0;
  280. } else
  281. /* replace previous exception with a new one in a hope
  282. that instruction re-execution will regenerate lost
  283. exception */
  284. goto queue;
  285. }
  286. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  287. {
  288. kvm_multiple_exception(vcpu, nr, false, 0, false);
  289. }
  290. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  291. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  292. {
  293. kvm_multiple_exception(vcpu, nr, false, 0, true);
  294. }
  295. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  296. void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
  297. {
  298. unsigned error_code = vcpu->arch.fault.error_code;
  299. ++vcpu->stat.pf_guest;
  300. vcpu->arch.cr2 = vcpu->arch.fault.address;
  301. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  302. }
  303. void kvm_propagate_fault(struct kvm_vcpu *vcpu)
  304. {
  305. if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
  306. vcpu->arch.nested_mmu.inject_page_fault(vcpu);
  307. else
  308. vcpu->arch.mmu.inject_page_fault(vcpu);
  309. vcpu->arch.fault.nested = false;
  310. }
  311. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  312. {
  313. kvm_make_request(KVM_REQ_EVENT, vcpu);
  314. vcpu->arch.nmi_pending = 1;
  315. }
  316. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  317. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  318. {
  319. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  320. }
  321. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  322. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  323. {
  324. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  325. }
  326. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  327. /*
  328. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  329. * a #GP and return false.
  330. */
  331. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  332. {
  333. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  334. return true;
  335. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  336. return false;
  337. }
  338. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  339. /*
  340. * This function will be used to read from the physical memory of the currently
  341. * running guest. The difference to kvm_read_guest_page is that this function
  342. * can read from guest physical or from the guest's guest physical memory.
  343. */
  344. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  345. gfn_t ngfn, void *data, int offset, int len,
  346. u32 access)
  347. {
  348. gfn_t real_gfn;
  349. gpa_t ngpa;
  350. ngpa = gfn_to_gpa(ngfn);
  351. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  352. if (real_gfn == UNMAPPED_GVA)
  353. return -EFAULT;
  354. real_gfn = gpa_to_gfn(real_gfn);
  355. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  356. }
  357. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  358. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  359. void *data, int offset, int len, u32 access)
  360. {
  361. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  362. data, offset, len, access);
  363. }
  364. /*
  365. * Load the pae pdptrs. Return true is they are all valid.
  366. */
  367. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  368. {
  369. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  370. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  371. int i;
  372. int ret;
  373. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  374. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  375. offset * sizeof(u64), sizeof(pdpte),
  376. PFERR_USER_MASK|PFERR_WRITE_MASK);
  377. if (ret < 0) {
  378. ret = 0;
  379. goto out;
  380. }
  381. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  382. if (is_present_gpte(pdpte[i]) &&
  383. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  384. ret = 0;
  385. goto out;
  386. }
  387. }
  388. ret = 1;
  389. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  390. __set_bit(VCPU_EXREG_PDPTR,
  391. (unsigned long *)&vcpu->arch.regs_avail);
  392. __set_bit(VCPU_EXREG_PDPTR,
  393. (unsigned long *)&vcpu->arch.regs_dirty);
  394. out:
  395. return ret;
  396. }
  397. EXPORT_SYMBOL_GPL(load_pdptrs);
  398. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  399. {
  400. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  401. bool changed = true;
  402. int offset;
  403. gfn_t gfn;
  404. int r;
  405. if (is_long_mode(vcpu) || !is_pae(vcpu))
  406. return false;
  407. if (!test_bit(VCPU_EXREG_PDPTR,
  408. (unsigned long *)&vcpu->arch.regs_avail))
  409. return true;
  410. gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
  411. offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
  412. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  413. PFERR_USER_MASK | PFERR_WRITE_MASK);
  414. if (r < 0)
  415. goto out;
  416. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  417. out:
  418. return changed;
  419. }
  420. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  421. {
  422. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  423. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  424. X86_CR0_CD | X86_CR0_NW;
  425. cr0 |= X86_CR0_ET;
  426. #ifdef CONFIG_X86_64
  427. if (cr0 & 0xffffffff00000000UL)
  428. return 1;
  429. #endif
  430. cr0 &= ~CR0_RESERVED_BITS;
  431. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  432. return 1;
  433. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  434. return 1;
  435. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  436. #ifdef CONFIG_X86_64
  437. if ((vcpu->arch.efer & EFER_LME)) {
  438. int cs_db, cs_l;
  439. if (!is_pae(vcpu))
  440. return 1;
  441. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  442. if (cs_l)
  443. return 1;
  444. } else
  445. #endif
  446. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  447. vcpu->arch.cr3))
  448. return 1;
  449. }
  450. kvm_x86_ops->set_cr0(vcpu, cr0);
  451. if ((cr0 ^ old_cr0) & X86_CR0_PG)
  452. kvm_clear_async_pf_completion_queue(vcpu);
  453. if ((cr0 ^ old_cr0) & update_bits)
  454. kvm_mmu_reset_context(vcpu);
  455. return 0;
  456. }
  457. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  458. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  459. {
  460. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  461. }
  462. EXPORT_SYMBOL_GPL(kvm_lmsw);
  463. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  464. {
  465. u64 xcr0;
  466. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  467. if (index != XCR_XFEATURE_ENABLED_MASK)
  468. return 1;
  469. xcr0 = xcr;
  470. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  471. return 1;
  472. if (!(xcr0 & XSTATE_FP))
  473. return 1;
  474. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  475. return 1;
  476. if (xcr0 & ~host_xcr0)
  477. return 1;
  478. vcpu->arch.xcr0 = xcr0;
  479. vcpu->guest_xcr0_loaded = 0;
  480. return 0;
  481. }
  482. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  483. {
  484. if (__kvm_set_xcr(vcpu, index, xcr)) {
  485. kvm_inject_gp(vcpu, 0);
  486. return 1;
  487. }
  488. return 0;
  489. }
  490. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  491. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  492. {
  493. struct kvm_cpuid_entry2 *best;
  494. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  495. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  496. }
  497. static void update_cpuid(struct kvm_vcpu *vcpu)
  498. {
  499. struct kvm_cpuid_entry2 *best;
  500. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  501. if (!best)
  502. return;
  503. /* Update OSXSAVE bit */
  504. if (cpu_has_xsave && best->function == 0x1) {
  505. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  506. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  507. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  508. }
  509. }
  510. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  511. {
  512. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  513. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  514. if (cr4 & CR4_RESERVED_BITS)
  515. return 1;
  516. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  517. return 1;
  518. if (is_long_mode(vcpu)) {
  519. if (!(cr4 & X86_CR4_PAE))
  520. return 1;
  521. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  522. && ((cr4 ^ old_cr4) & pdptr_bits)
  523. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
  524. return 1;
  525. if (cr4 & X86_CR4_VMXE)
  526. return 1;
  527. kvm_x86_ops->set_cr4(vcpu, cr4);
  528. if ((cr4 ^ old_cr4) & pdptr_bits)
  529. kvm_mmu_reset_context(vcpu);
  530. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  531. update_cpuid(vcpu);
  532. return 0;
  533. }
  534. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  535. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  536. {
  537. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  538. kvm_mmu_sync_roots(vcpu);
  539. kvm_mmu_flush_tlb(vcpu);
  540. return 0;
  541. }
  542. if (is_long_mode(vcpu)) {
  543. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  544. return 1;
  545. } else {
  546. if (is_pae(vcpu)) {
  547. if (cr3 & CR3_PAE_RESERVED_BITS)
  548. return 1;
  549. if (is_paging(vcpu) &&
  550. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  551. return 1;
  552. }
  553. /*
  554. * We don't check reserved bits in nonpae mode, because
  555. * this isn't enforced, and VMware depends on this.
  556. */
  557. }
  558. /*
  559. * Does the new cr3 value map to physical memory? (Note, we
  560. * catch an invalid cr3 even in real-mode, because it would
  561. * cause trouble later on when we turn on paging anyway.)
  562. *
  563. * A real CPU would silently accept an invalid cr3 and would
  564. * attempt to use it - with largely undefined (and often hard
  565. * to debug) behavior on the guest side.
  566. */
  567. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  568. return 1;
  569. vcpu->arch.cr3 = cr3;
  570. vcpu->arch.mmu.new_cr3(vcpu);
  571. return 0;
  572. }
  573. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  574. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  575. {
  576. if (cr8 & CR8_RESERVED_BITS)
  577. return 1;
  578. if (irqchip_in_kernel(vcpu->kvm))
  579. kvm_lapic_set_tpr(vcpu, cr8);
  580. else
  581. vcpu->arch.cr8 = cr8;
  582. return 0;
  583. }
  584. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  585. {
  586. if (__kvm_set_cr8(vcpu, cr8))
  587. kvm_inject_gp(vcpu, 0);
  588. }
  589. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  590. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  591. {
  592. if (irqchip_in_kernel(vcpu->kvm))
  593. return kvm_lapic_get_cr8(vcpu);
  594. else
  595. return vcpu->arch.cr8;
  596. }
  597. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  598. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  599. {
  600. switch (dr) {
  601. case 0 ... 3:
  602. vcpu->arch.db[dr] = val;
  603. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  604. vcpu->arch.eff_db[dr] = val;
  605. break;
  606. case 4:
  607. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  608. return 1; /* #UD */
  609. /* fall through */
  610. case 6:
  611. if (val & 0xffffffff00000000ULL)
  612. return -1; /* #GP */
  613. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  614. break;
  615. case 5:
  616. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  617. return 1; /* #UD */
  618. /* fall through */
  619. default: /* 7 */
  620. if (val & 0xffffffff00000000ULL)
  621. return -1; /* #GP */
  622. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  623. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  624. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  625. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  626. }
  627. break;
  628. }
  629. return 0;
  630. }
  631. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  632. {
  633. int res;
  634. res = __kvm_set_dr(vcpu, dr, val);
  635. if (res > 0)
  636. kvm_queue_exception(vcpu, UD_VECTOR);
  637. else if (res < 0)
  638. kvm_inject_gp(vcpu, 0);
  639. return res;
  640. }
  641. EXPORT_SYMBOL_GPL(kvm_set_dr);
  642. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  643. {
  644. switch (dr) {
  645. case 0 ... 3:
  646. *val = vcpu->arch.db[dr];
  647. break;
  648. case 4:
  649. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  650. return 1;
  651. /* fall through */
  652. case 6:
  653. *val = vcpu->arch.dr6;
  654. break;
  655. case 5:
  656. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  657. return 1;
  658. /* fall through */
  659. default: /* 7 */
  660. *val = vcpu->arch.dr7;
  661. break;
  662. }
  663. return 0;
  664. }
  665. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  666. {
  667. if (_kvm_get_dr(vcpu, dr, val)) {
  668. kvm_queue_exception(vcpu, UD_VECTOR);
  669. return 1;
  670. }
  671. return 0;
  672. }
  673. EXPORT_SYMBOL_GPL(kvm_get_dr);
  674. /*
  675. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  676. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  677. *
  678. * This list is modified at module load time to reflect the
  679. * capabilities of the host cpu. This capabilities test skips MSRs that are
  680. * kvm-specific. Those are put in the beginning of the list.
  681. */
  682. #define KVM_SAVE_MSRS_BEGIN 8
  683. static u32 msrs_to_save[] = {
  684. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  685. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  686. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  687. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
  688. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  689. MSR_STAR,
  690. #ifdef CONFIG_X86_64
  691. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  692. #endif
  693. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  694. };
  695. static unsigned num_msrs_to_save;
  696. static u32 emulated_msrs[] = {
  697. MSR_IA32_MISC_ENABLE,
  698. MSR_IA32_MCG_STATUS,
  699. MSR_IA32_MCG_CTL,
  700. };
  701. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  702. {
  703. u64 old_efer = vcpu->arch.efer;
  704. if (efer & efer_reserved_bits)
  705. return 1;
  706. if (is_paging(vcpu)
  707. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  708. return 1;
  709. if (efer & EFER_FFXSR) {
  710. struct kvm_cpuid_entry2 *feat;
  711. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  712. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  713. return 1;
  714. }
  715. if (efer & EFER_SVME) {
  716. struct kvm_cpuid_entry2 *feat;
  717. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  718. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  719. return 1;
  720. }
  721. efer &= ~EFER_LMA;
  722. efer |= vcpu->arch.efer & EFER_LMA;
  723. kvm_x86_ops->set_efer(vcpu, efer);
  724. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  725. /* Update reserved bits */
  726. if ((efer ^ old_efer) & EFER_NX)
  727. kvm_mmu_reset_context(vcpu);
  728. return 0;
  729. }
  730. void kvm_enable_efer_bits(u64 mask)
  731. {
  732. efer_reserved_bits &= ~mask;
  733. }
  734. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  735. /*
  736. * Writes msr value into into the appropriate "register".
  737. * Returns 0 on success, non-0 otherwise.
  738. * Assumes vcpu_load() was already called.
  739. */
  740. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  741. {
  742. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  743. }
  744. /*
  745. * Adapt set_msr() to msr_io()'s calling convention
  746. */
  747. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  748. {
  749. return kvm_set_msr(vcpu, index, *data);
  750. }
  751. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  752. {
  753. int version;
  754. int r;
  755. struct pvclock_wall_clock wc;
  756. struct timespec boot;
  757. if (!wall_clock)
  758. return;
  759. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  760. if (r)
  761. return;
  762. if (version & 1)
  763. ++version; /* first time write, random junk */
  764. ++version;
  765. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  766. /*
  767. * The guest calculates current wall clock time by adding
  768. * system time (updated by kvm_guest_time_update below) to the
  769. * wall clock specified here. guest system time equals host
  770. * system time for us, thus we must fill in host boot time here.
  771. */
  772. getboottime(&boot);
  773. wc.sec = boot.tv_sec;
  774. wc.nsec = boot.tv_nsec;
  775. wc.version = version;
  776. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  777. version++;
  778. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  779. }
  780. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  781. {
  782. uint32_t quotient, remainder;
  783. /* Don't try to replace with do_div(), this one calculates
  784. * "(dividend << 32) / divisor" */
  785. __asm__ ( "divl %4"
  786. : "=a" (quotient), "=d" (remainder)
  787. : "0" (0), "1" (dividend), "r" (divisor) );
  788. return quotient;
  789. }
  790. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  791. s8 *pshift, u32 *pmultiplier)
  792. {
  793. uint64_t scaled64;
  794. int32_t shift = 0;
  795. uint64_t tps64;
  796. uint32_t tps32;
  797. tps64 = base_khz * 1000LL;
  798. scaled64 = scaled_khz * 1000LL;
  799. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  800. tps64 >>= 1;
  801. shift--;
  802. }
  803. tps32 = (uint32_t)tps64;
  804. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  805. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  806. scaled64 >>= 1;
  807. else
  808. tps32 <<= 1;
  809. shift++;
  810. }
  811. *pshift = shift;
  812. *pmultiplier = div_frac(scaled64, tps32);
  813. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  814. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  815. }
  816. static inline u64 get_kernel_ns(void)
  817. {
  818. struct timespec ts;
  819. WARN_ON(preemptible());
  820. ktime_get_ts(&ts);
  821. monotonic_to_bootbased(&ts);
  822. return timespec_to_ns(&ts);
  823. }
  824. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  825. unsigned long max_tsc_khz;
  826. static inline int kvm_tsc_changes_freq(void)
  827. {
  828. int cpu = get_cpu();
  829. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  830. cpufreq_quick_get(cpu) != 0;
  831. put_cpu();
  832. return ret;
  833. }
  834. static inline u64 nsec_to_cycles(u64 nsec)
  835. {
  836. u64 ret;
  837. WARN_ON(preemptible());
  838. if (kvm_tsc_changes_freq())
  839. printk_once(KERN_WARNING
  840. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  841. ret = nsec * __get_cpu_var(cpu_tsc_khz);
  842. do_div(ret, USEC_PER_SEC);
  843. return ret;
  844. }
  845. static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
  846. {
  847. /* Compute a scale to convert nanoseconds in TSC cycles */
  848. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  849. &kvm->arch.virtual_tsc_shift,
  850. &kvm->arch.virtual_tsc_mult);
  851. kvm->arch.virtual_tsc_khz = this_tsc_khz;
  852. }
  853. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  854. {
  855. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  856. vcpu->kvm->arch.virtual_tsc_mult,
  857. vcpu->kvm->arch.virtual_tsc_shift);
  858. tsc += vcpu->arch.last_tsc_write;
  859. return tsc;
  860. }
  861. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  862. {
  863. struct kvm *kvm = vcpu->kvm;
  864. u64 offset, ns, elapsed;
  865. unsigned long flags;
  866. s64 sdiff;
  867. spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  868. offset = data - native_read_tsc();
  869. ns = get_kernel_ns();
  870. elapsed = ns - kvm->arch.last_tsc_nsec;
  871. sdiff = data - kvm->arch.last_tsc_write;
  872. if (sdiff < 0)
  873. sdiff = -sdiff;
  874. /*
  875. * Special case: close write to TSC within 5 seconds of
  876. * another CPU is interpreted as an attempt to synchronize
  877. * The 5 seconds is to accomodate host load / swapping as
  878. * well as any reset of TSC during the boot process.
  879. *
  880. * In that case, for a reliable TSC, we can match TSC offsets,
  881. * or make a best guest using elapsed value.
  882. */
  883. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  884. elapsed < 5ULL * NSEC_PER_SEC) {
  885. if (!check_tsc_unstable()) {
  886. offset = kvm->arch.last_tsc_offset;
  887. pr_debug("kvm: matched tsc offset for %llu\n", data);
  888. } else {
  889. u64 delta = nsec_to_cycles(elapsed);
  890. offset += delta;
  891. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  892. }
  893. ns = kvm->arch.last_tsc_nsec;
  894. }
  895. kvm->arch.last_tsc_nsec = ns;
  896. kvm->arch.last_tsc_write = data;
  897. kvm->arch.last_tsc_offset = offset;
  898. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  899. spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  900. /* Reset of TSC must disable overshoot protection below */
  901. vcpu->arch.hv_clock.tsc_timestamp = 0;
  902. vcpu->arch.last_tsc_write = data;
  903. vcpu->arch.last_tsc_nsec = ns;
  904. }
  905. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  906. static int kvm_guest_time_update(struct kvm_vcpu *v)
  907. {
  908. unsigned long flags;
  909. struct kvm_vcpu_arch *vcpu = &v->arch;
  910. void *shared_kaddr;
  911. unsigned long this_tsc_khz;
  912. s64 kernel_ns, max_kernel_ns;
  913. u64 tsc_timestamp;
  914. /* Keep irq disabled to prevent changes to the clock */
  915. local_irq_save(flags);
  916. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  917. kernel_ns = get_kernel_ns();
  918. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  919. if (unlikely(this_tsc_khz == 0)) {
  920. local_irq_restore(flags);
  921. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  922. return 1;
  923. }
  924. /*
  925. * We may have to catch up the TSC to match elapsed wall clock
  926. * time for two reasons, even if kvmclock is used.
  927. * 1) CPU could have been running below the maximum TSC rate
  928. * 2) Broken TSC compensation resets the base at each VCPU
  929. * entry to avoid unknown leaps of TSC even when running
  930. * again on the same CPU. This may cause apparent elapsed
  931. * time to disappear, and the guest to stand still or run
  932. * very slowly.
  933. */
  934. if (vcpu->tsc_catchup) {
  935. u64 tsc = compute_guest_tsc(v, kernel_ns);
  936. if (tsc > tsc_timestamp) {
  937. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  938. tsc_timestamp = tsc;
  939. }
  940. }
  941. local_irq_restore(flags);
  942. if (!vcpu->time_page)
  943. return 0;
  944. /*
  945. * Time as measured by the TSC may go backwards when resetting the base
  946. * tsc_timestamp. The reason for this is that the TSC resolution is
  947. * higher than the resolution of the other clock scales. Thus, many
  948. * possible measurments of the TSC correspond to one measurement of any
  949. * other clock, and so a spread of values is possible. This is not a
  950. * problem for the computation of the nanosecond clock; with TSC rates
  951. * around 1GHZ, there can only be a few cycles which correspond to one
  952. * nanosecond value, and any path through this code will inevitably
  953. * take longer than that. However, with the kernel_ns value itself,
  954. * the precision may be much lower, down to HZ granularity. If the
  955. * first sampling of TSC against kernel_ns ends in the low part of the
  956. * range, and the second in the high end of the range, we can get:
  957. *
  958. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  959. *
  960. * As the sampling errors potentially range in the thousands of cycles,
  961. * it is possible such a time value has already been observed by the
  962. * guest. To protect against this, we must compute the system time as
  963. * observed by the guest and ensure the new system time is greater.
  964. */
  965. max_kernel_ns = 0;
  966. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  967. max_kernel_ns = vcpu->last_guest_tsc -
  968. vcpu->hv_clock.tsc_timestamp;
  969. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  970. vcpu->hv_clock.tsc_to_system_mul,
  971. vcpu->hv_clock.tsc_shift);
  972. max_kernel_ns += vcpu->last_kernel_ns;
  973. }
  974. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  975. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  976. &vcpu->hv_clock.tsc_shift,
  977. &vcpu->hv_clock.tsc_to_system_mul);
  978. vcpu->hw_tsc_khz = this_tsc_khz;
  979. }
  980. if (max_kernel_ns > kernel_ns)
  981. kernel_ns = max_kernel_ns;
  982. /* With all the info we got, fill in the values */
  983. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  984. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  985. vcpu->last_kernel_ns = kernel_ns;
  986. vcpu->last_guest_tsc = tsc_timestamp;
  987. vcpu->hv_clock.flags = 0;
  988. /*
  989. * The interface expects us to write an even number signaling that the
  990. * update is finished. Since the guest won't see the intermediate
  991. * state, we just increase by 2 at the end.
  992. */
  993. vcpu->hv_clock.version += 2;
  994. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  995. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  996. sizeof(vcpu->hv_clock));
  997. kunmap_atomic(shared_kaddr, KM_USER0);
  998. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  999. return 0;
  1000. }
  1001. static bool msr_mtrr_valid(unsigned msr)
  1002. {
  1003. switch (msr) {
  1004. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1005. case MSR_MTRRfix64K_00000:
  1006. case MSR_MTRRfix16K_80000:
  1007. case MSR_MTRRfix16K_A0000:
  1008. case MSR_MTRRfix4K_C0000:
  1009. case MSR_MTRRfix4K_C8000:
  1010. case MSR_MTRRfix4K_D0000:
  1011. case MSR_MTRRfix4K_D8000:
  1012. case MSR_MTRRfix4K_E0000:
  1013. case MSR_MTRRfix4K_E8000:
  1014. case MSR_MTRRfix4K_F0000:
  1015. case MSR_MTRRfix4K_F8000:
  1016. case MSR_MTRRdefType:
  1017. case MSR_IA32_CR_PAT:
  1018. return true;
  1019. case 0x2f8:
  1020. return true;
  1021. }
  1022. return false;
  1023. }
  1024. static bool valid_pat_type(unsigned t)
  1025. {
  1026. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1027. }
  1028. static bool valid_mtrr_type(unsigned t)
  1029. {
  1030. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1031. }
  1032. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1033. {
  1034. int i;
  1035. if (!msr_mtrr_valid(msr))
  1036. return false;
  1037. if (msr == MSR_IA32_CR_PAT) {
  1038. for (i = 0; i < 8; i++)
  1039. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1040. return false;
  1041. return true;
  1042. } else if (msr == MSR_MTRRdefType) {
  1043. if (data & ~0xcff)
  1044. return false;
  1045. return valid_mtrr_type(data & 0xff);
  1046. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1047. for (i = 0; i < 8 ; i++)
  1048. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1049. return false;
  1050. return true;
  1051. }
  1052. /* variable MTRRs */
  1053. return valid_mtrr_type(data & 0xff);
  1054. }
  1055. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1056. {
  1057. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1058. if (!mtrr_valid(vcpu, msr, data))
  1059. return 1;
  1060. if (msr == MSR_MTRRdefType) {
  1061. vcpu->arch.mtrr_state.def_type = data;
  1062. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1063. } else if (msr == MSR_MTRRfix64K_00000)
  1064. p[0] = data;
  1065. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1066. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1067. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1068. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1069. else if (msr == MSR_IA32_CR_PAT)
  1070. vcpu->arch.pat = data;
  1071. else { /* Variable MTRRs */
  1072. int idx, is_mtrr_mask;
  1073. u64 *pt;
  1074. idx = (msr - 0x200) / 2;
  1075. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1076. if (!is_mtrr_mask)
  1077. pt =
  1078. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1079. else
  1080. pt =
  1081. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1082. *pt = data;
  1083. }
  1084. kvm_mmu_reset_context(vcpu);
  1085. return 0;
  1086. }
  1087. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1088. {
  1089. u64 mcg_cap = vcpu->arch.mcg_cap;
  1090. unsigned bank_num = mcg_cap & 0xff;
  1091. switch (msr) {
  1092. case MSR_IA32_MCG_STATUS:
  1093. vcpu->arch.mcg_status = data;
  1094. break;
  1095. case MSR_IA32_MCG_CTL:
  1096. if (!(mcg_cap & MCG_CTL_P))
  1097. return 1;
  1098. if (data != 0 && data != ~(u64)0)
  1099. return -1;
  1100. vcpu->arch.mcg_ctl = data;
  1101. break;
  1102. default:
  1103. if (msr >= MSR_IA32_MC0_CTL &&
  1104. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1105. u32 offset = msr - MSR_IA32_MC0_CTL;
  1106. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1107. * some Linux kernels though clear bit 10 in bank 4 to
  1108. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1109. * this to avoid an uncatched #GP in the guest
  1110. */
  1111. if ((offset & 0x3) == 0 &&
  1112. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1113. return -1;
  1114. vcpu->arch.mce_banks[offset] = data;
  1115. break;
  1116. }
  1117. return 1;
  1118. }
  1119. return 0;
  1120. }
  1121. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1122. {
  1123. struct kvm *kvm = vcpu->kvm;
  1124. int lm = is_long_mode(vcpu);
  1125. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1126. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1127. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1128. : kvm->arch.xen_hvm_config.blob_size_32;
  1129. u32 page_num = data & ~PAGE_MASK;
  1130. u64 page_addr = data & PAGE_MASK;
  1131. u8 *page;
  1132. int r;
  1133. r = -E2BIG;
  1134. if (page_num >= blob_size)
  1135. goto out;
  1136. r = -ENOMEM;
  1137. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1138. if (!page)
  1139. goto out;
  1140. r = -EFAULT;
  1141. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1142. goto out_free;
  1143. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1144. goto out_free;
  1145. r = 0;
  1146. out_free:
  1147. kfree(page);
  1148. out:
  1149. return r;
  1150. }
  1151. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1152. {
  1153. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1154. }
  1155. static bool kvm_hv_msr_partition_wide(u32 msr)
  1156. {
  1157. bool r = false;
  1158. switch (msr) {
  1159. case HV_X64_MSR_GUEST_OS_ID:
  1160. case HV_X64_MSR_HYPERCALL:
  1161. r = true;
  1162. break;
  1163. }
  1164. return r;
  1165. }
  1166. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1167. {
  1168. struct kvm *kvm = vcpu->kvm;
  1169. switch (msr) {
  1170. case HV_X64_MSR_GUEST_OS_ID:
  1171. kvm->arch.hv_guest_os_id = data;
  1172. /* setting guest os id to zero disables hypercall page */
  1173. if (!kvm->arch.hv_guest_os_id)
  1174. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1175. break;
  1176. case HV_X64_MSR_HYPERCALL: {
  1177. u64 gfn;
  1178. unsigned long addr;
  1179. u8 instructions[4];
  1180. /* if guest os id is not set hypercall should remain disabled */
  1181. if (!kvm->arch.hv_guest_os_id)
  1182. break;
  1183. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1184. kvm->arch.hv_hypercall = data;
  1185. break;
  1186. }
  1187. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1188. addr = gfn_to_hva(kvm, gfn);
  1189. if (kvm_is_error_hva(addr))
  1190. return 1;
  1191. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1192. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1193. if (copy_to_user((void __user *)addr, instructions, 4))
  1194. return 1;
  1195. kvm->arch.hv_hypercall = data;
  1196. break;
  1197. }
  1198. default:
  1199. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1200. "data 0x%llx\n", msr, data);
  1201. return 1;
  1202. }
  1203. return 0;
  1204. }
  1205. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1206. {
  1207. switch (msr) {
  1208. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1209. unsigned long addr;
  1210. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1211. vcpu->arch.hv_vapic = data;
  1212. break;
  1213. }
  1214. addr = gfn_to_hva(vcpu->kvm, data >>
  1215. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1216. if (kvm_is_error_hva(addr))
  1217. return 1;
  1218. if (clear_user((void __user *)addr, PAGE_SIZE))
  1219. return 1;
  1220. vcpu->arch.hv_vapic = data;
  1221. break;
  1222. }
  1223. case HV_X64_MSR_EOI:
  1224. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1225. case HV_X64_MSR_ICR:
  1226. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1227. case HV_X64_MSR_TPR:
  1228. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1229. default:
  1230. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1231. "data 0x%llx\n", msr, data);
  1232. return 1;
  1233. }
  1234. return 0;
  1235. }
  1236. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1237. {
  1238. gpa_t gpa = data & ~0x3f;
  1239. /* Bits 2:5 are resrved, Should be zero */
  1240. if (data & 0x3c)
  1241. return 1;
  1242. vcpu->arch.apf.msr_val = data;
  1243. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1244. kvm_clear_async_pf_completion_queue(vcpu);
  1245. kvm_async_pf_hash_reset(vcpu);
  1246. return 0;
  1247. }
  1248. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1249. return 1;
  1250. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1251. kvm_async_pf_wakeup_all(vcpu);
  1252. return 0;
  1253. }
  1254. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1255. {
  1256. switch (msr) {
  1257. case MSR_EFER:
  1258. return set_efer(vcpu, data);
  1259. case MSR_K7_HWCR:
  1260. data &= ~(u64)0x40; /* ignore flush filter disable */
  1261. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1262. if (data != 0) {
  1263. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1264. data);
  1265. return 1;
  1266. }
  1267. break;
  1268. case MSR_FAM10H_MMIO_CONF_BASE:
  1269. if (data != 0) {
  1270. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1271. "0x%llx\n", data);
  1272. return 1;
  1273. }
  1274. break;
  1275. case MSR_AMD64_NB_CFG:
  1276. break;
  1277. case MSR_IA32_DEBUGCTLMSR:
  1278. if (!data) {
  1279. /* We support the non-activated case already */
  1280. break;
  1281. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1282. /* Values other than LBR and BTF are vendor-specific,
  1283. thus reserved and should throw a #GP */
  1284. return 1;
  1285. }
  1286. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1287. __func__, data);
  1288. break;
  1289. case MSR_IA32_UCODE_REV:
  1290. case MSR_IA32_UCODE_WRITE:
  1291. case MSR_VM_HSAVE_PA:
  1292. case MSR_AMD64_PATCH_LOADER:
  1293. break;
  1294. case 0x200 ... 0x2ff:
  1295. return set_msr_mtrr(vcpu, msr, data);
  1296. case MSR_IA32_APICBASE:
  1297. kvm_set_apic_base(vcpu, data);
  1298. break;
  1299. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1300. return kvm_x2apic_msr_write(vcpu, msr, data);
  1301. case MSR_IA32_MISC_ENABLE:
  1302. vcpu->arch.ia32_misc_enable_msr = data;
  1303. break;
  1304. case MSR_KVM_WALL_CLOCK_NEW:
  1305. case MSR_KVM_WALL_CLOCK:
  1306. vcpu->kvm->arch.wall_clock = data;
  1307. kvm_write_wall_clock(vcpu->kvm, data);
  1308. break;
  1309. case MSR_KVM_SYSTEM_TIME_NEW:
  1310. case MSR_KVM_SYSTEM_TIME: {
  1311. if (vcpu->arch.time_page) {
  1312. kvm_release_page_dirty(vcpu->arch.time_page);
  1313. vcpu->arch.time_page = NULL;
  1314. }
  1315. vcpu->arch.time = data;
  1316. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1317. /* we verify if the enable bit is set... */
  1318. if (!(data & 1))
  1319. break;
  1320. /* ...but clean it before doing the actual write */
  1321. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1322. vcpu->arch.time_page =
  1323. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1324. if (is_error_page(vcpu->arch.time_page)) {
  1325. kvm_release_page_clean(vcpu->arch.time_page);
  1326. vcpu->arch.time_page = NULL;
  1327. }
  1328. break;
  1329. }
  1330. case MSR_KVM_ASYNC_PF_EN:
  1331. if (kvm_pv_enable_async_pf(vcpu, data))
  1332. return 1;
  1333. break;
  1334. case MSR_IA32_MCG_CTL:
  1335. case MSR_IA32_MCG_STATUS:
  1336. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1337. return set_msr_mce(vcpu, msr, data);
  1338. /* Performance counters are not protected by a CPUID bit,
  1339. * so we should check all of them in the generic path for the sake of
  1340. * cross vendor migration.
  1341. * Writing a zero into the event select MSRs disables them,
  1342. * which we perfectly emulate ;-). Any other value should be at least
  1343. * reported, some guests depend on them.
  1344. */
  1345. case MSR_P6_EVNTSEL0:
  1346. case MSR_P6_EVNTSEL1:
  1347. case MSR_K7_EVNTSEL0:
  1348. case MSR_K7_EVNTSEL1:
  1349. case MSR_K7_EVNTSEL2:
  1350. case MSR_K7_EVNTSEL3:
  1351. if (data != 0)
  1352. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1353. "0x%x data 0x%llx\n", msr, data);
  1354. break;
  1355. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1356. * so we ignore writes to make it happy.
  1357. */
  1358. case MSR_P6_PERFCTR0:
  1359. case MSR_P6_PERFCTR1:
  1360. case MSR_K7_PERFCTR0:
  1361. case MSR_K7_PERFCTR1:
  1362. case MSR_K7_PERFCTR2:
  1363. case MSR_K7_PERFCTR3:
  1364. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1365. "0x%x data 0x%llx\n", msr, data);
  1366. break;
  1367. case MSR_K7_CLK_CTL:
  1368. /*
  1369. * Ignore all writes to this no longer documented MSR.
  1370. * Writes are only relevant for old K7 processors,
  1371. * all pre-dating SVM, but a recommended workaround from
  1372. * AMD for these chips. It is possible to speicify the
  1373. * affected processor models on the command line, hence
  1374. * the need to ignore the workaround.
  1375. */
  1376. break;
  1377. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1378. if (kvm_hv_msr_partition_wide(msr)) {
  1379. int r;
  1380. mutex_lock(&vcpu->kvm->lock);
  1381. r = set_msr_hyperv_pw(vcpu, msr, data);
  1382. mutex_unlock(&vcpu->kvm->lock);
  1383. return r;
  1384. } else
  1385. return set_msr_hyperv(vcpu, msr, data);
  1386. break;
  1387. default:
  1388. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1389. return xen_hvm_config(vcpu, data);
  1390. if (!ignore_msrs) {
  1391. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1392. msr, data);
  1393. return 1;
  1394. } else {
  1395. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1396. msr, data);
  1397. break;
  1398. }
  1399. }
  1400. return 0;
  1401. }
  1402. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1403. /*
  1404. * Reads an msr value (of 'msr_index') into 'pdata'.
  1405. * Returns 0 on success, non-0 otherwise.
  1406. * Assumes vcpu_load() was already called.
  1407. */
  1408. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1409. {
  1410. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1411. }
  1412. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1413. {
  1414. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1415. if (!msr_mtrr_valid(msr))
  1416. return 1;
  1417. if (msr == MSR_MTRRdefType)
  1418. *pdata = vcpu->arch.mtrr_state.def_type +
  1419. (vcpu->arch.mtrr_state.enabled << 10);
  1420. else if (msr == MSR_MTRRfix64K_00000)
  1421. *pdata = p[0];
  1422. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1423. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1424. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1425. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1426. else if (msr == MSR_IA32_CR_PAT)
  1427. *pdata = vcpu->arch.pat;
  1428. else { /* Variable MTRRs */
  1429. int idx, is_mtrr_mask;
  1430. u64 *pt;
  1431. idx = (msr - 0x200) / 2;
  1432. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1433. if (!is_mtrr_mask)
  1434. pt =
  1435. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1436. else
  1437. pt =
  1438. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1439. *pdata = *pt;
  1440. }
  1441. return 0;
  1442. }
  1443. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1444. {
  1445. u64 data;
  1446. u64 mcg_cap = vcpu->arch.mcg_cap;
  1447. unsigned bank_num = mcg_cap & 0xff;
  1448. switch (msr) {
  1449. case MSR_IA32_P5_MC_ADDR:
  1450. case MSR_IA32_P5_MC_TYPE:
  1451. data = 0;
  1452. break;
  1453. case MSR_IA32_MCG_CAP:
  1454. data = vcpu->arch.mcg_cap;
  1455. break;
  1456. case MSR_IA32_MCG_CTL:
  1457. if (!(mcg_cap & MCG_CTL_P))
  1458. return 1;
  1459. data = vcpu->arch.mcg_ctl;
  1460. break;
  1461. case MSR_IA32_MCG_STATUS:
  1462. data = vcpu->arch.mcg_status;
  1463. break;
  1464. default:
  1465. if (msr >= MSR_IA32_MC0_CTL &&
  1466. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1467. u32 offset = msr - MSR_IA32_MC0_CTL;
  1468. data = vcpu->arch.mce_banks[offset];
  1469. break;
  1470. }
  1471. return 1;
  1472. }
  1473. *pdata = data;
  1474. return 0;
  1475. }
  1476. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1477. {
  1478. u64 data = 0;
  1479. struct kvm *kvm = vcpu->kvm;
  1480. switch (msr) {
  1481. case HV_X64_MSR_GUEST_OS_ID:
  1482. data = kvm->arch.hv_guest_os_id;
  1483. break;
  1484. case HV_X64_MSR_HYPERCALL:
  1485. data = kvm->arch.hv_hypercall;
  1486. break;
  1487. default:
  1488. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1489. return 1;
  1490. }
  1491. *pdata = data;
  1492. return 0;
  1493. }
  1494. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1495. {
  1496. u64 data = 0;
  1497. switch (msr) {
  1498. case HV_X64_MSR_VP_INDEX: {
  1499. int r;
  1500. struct kvm_vcpu *v;
  1501. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1502. if (v == vcpu)
  1503. data = r;
  1504. break;
  1505. }
  1506. case HV_X64_MSR_EOI:
  1507. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1508. case HV_X64_MSR_ICR:
  1509. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1510. case HV_X64_MSR_TPR:
  1511. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1512. default:
  1513. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1514. return 1;
  1515. }
  1516. *pdata = data;
  1517. return 0;
  1518. }
  1519. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1520. {
  1521. u64 data;
  1522. switch (msr) {
  1523. case MSR_IA32_PLATFORM_ID:
  1524. case MSR_IA32_UCODE_REV:
  1525. case MSR_IA32_EBL_CR_POWERON:
  1526. case MSR_IA32_DEBUGCTLMSR:
  1527. case MSR_IA32_LASTBRANCHFROMIP:
  1528. case MSR_IA32_LASTBRANCHTOIP:
  1529. case MSR_IA32_LASTINTFROMIP:
  1530. case MSR_IA32_LASTINTTOIP:
  1531. case MSR_K8_SYSCFG:
  1532. case MSR_K7_HWCR:
  1533. case MSR_VM_HSAVE_PA:
  1534. case MSR_P6_PERFCTR0:
  1535. case MSR_P6_PERFCTR1:
  1536. case MSR_P6_EVNTSEL0:
  1537. case MSR_P6_EVNTSEL1:
  1538. case MSR_K7_EVNTSEL0:
  1539. case MSR_K7_PERFCTR0:
  1540. case MSR_K8_INT_PENDING_MSG:
  1541. case MSR_AMD64_NB_CFG:
  1542. case MSR_FAM10H_MMIO_CONF_BASE:
  1543. data = 0;
  1544. break;
  1545. case MSR_MTRRcap:
  1546. data = 0x500 | KVM_NR_VAR_MTRR;
  1547. break;
  1548. case 0x200 ... 0x2ff:
  1549. return get_msr_mtrr(vcpu, msr, pdata);
  1550. case 0xcd: /* fsb frequency */
  1551. data = 3;
  1552. break;
  1553. /*
  1554. * MSR_EBC_FREQUENCY_ID
  1555. * Conservative value valid for even the basic CPU models.
  1556. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1557. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1558. * and 266MHz for model 3, or 4. Set Core Clock
  1559. * Frequency to System Bus Frequency Ratio to 1 (bits
  1560. * 31:24) even though these are only valid for CPU
  1561. * models > 2, however guests may end up dividing or
  1562. * multiplying by zero otherwise.
  1563. */
  1564. case MSR_EBC_FREQUENCY_ID:
  1565. data = 1 << 24;
  1566. break;
  1567. case MSR_IA32_APICBASE:
  1568. data = kvm_get_apic_base(vcpu);
  1569. break;
  1570. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1571. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1572. break;
  1573. case MSR_IA32_MISC_ENABLE:
  1574. data = vcpu->arch.ia32_misc_enable_msr;
  1575. break;
  1576. case MSR_IA32_PERF_STATUS:
  1577. /* TSC increment by tick */
  1578. data = 1000ULL;
  1579. /* CPU multiplier */
  1580. data |= (((uint64_t)4ULL) << 40);
  1581. break;
  1582. case MSR_EFER:
  1583. data = vcpu->arch.efer;
  1584. break;
  1585. case MSR_KVM_WALL_CLOCK:
  1586. case MSR_KVM_WALL_CLOCK_NEW:
  1587. data = vcpu->kvm->arch.wall_clock;
  1588. break;
  1589. case MSR_KVM_SYSTEM_TIME:
  1590. case MSR_KVM_SYSTEM_TIME_NEW:
  1591. data = vcpu->arch.time;
  1592. break;
  1593. case MSR_KVM_ASYNC_PF_EN:
  1594. data = vcpu->arch.apf.msr_val;
  1595. break;
  1596. case MSR_IA32_P5_MC_ADDR:
  1597. case MSR_IA32_P5_MC_TYPE:
  1598. case MSR_IA32_MCG_CAP:
  1599. case MSR_IA32_MCG_CTL:
  1600. case MSR_IA32_MCG_STATUS:
  1601. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1602. return get_msr_mce(vcpu, msr, pdata);
  1603. case MSR_K7_CLK_CTL:
  1604. /*
  1605. * Provide expected ramp-up count for K7. All other
  1606. * are set to zero, indicating minimum divisors for
  1607. * every field.
  1608. *
  1609. * This prevents guest kernels on AMD host with CPU
  1610. * type 6, model 8 and higher from exploding due to
  1611. * the rdmsr failing.
  1612. */
  1613. data = 0x20000000;
  1614. break;
  1615. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1616. if (kvm_hv_msr_partition_wide(msr)) {
  1617. int r;
  1618. mutex_lock(&vcpu->kvm->lock);
  1619. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1620. mutex_unlock(&vcpu->kvm->lock);
  1621. return r;
  1622. } else
  1623. return get_msr_hyperv(vcpu, msr, pdata);
  1624. break;
  1625. default:
  1626. if (!ignore_msrs) {
  1627. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1628. return 1;
  1629. } else {
  1630. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1631. data = 0;
  1632. }
  1633. break;
  1634. }
  1635. *pdata = data;
  1636. return 0;
  1637. }
  1638. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1639. /*
  1640. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1641. *
  1642. * @return number of msrs set successfully.
  1643. */
  1644. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1645. struct kvm_msr_entry *entries,
  1646. int (*do_msr)(struct kvm_vcpu *vcpu,
  1647. unsigned index, u64 *data))
  1648. {
  1649. int i, idx;
  1650. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1651. for (i = 0; i < msrs->nmsrs; ++i)
  1652. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1653. break;
  1654. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1655. return i;
  1656. }
  1657. /*
  1658. * Read or write a bunch of msrs. Parameters are user addresses.
  1659. *
  1660. * @return number of msrs set successfully.
  1661. */
  1662. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1663. int (*do_msr)(struct kvm_vcpu *vcpu,
  1664. unsigned index, u64 *data),
  1665. int writeback)
  1666. {
  1667. struct kvm_msrs msrs;
  1668. struct kvm_msr_entry *entries;
  1669. int r, n;
  1670. unsigned size;
  1671. r = -EFAULT;
  1672. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1673. goto out;
  1674. r = -E2BIG;
  1675. if (msrs.nmsrs >= MAX_IO_MSRS)
  1676. goto out;
  1677. r = -ENOMEM;
  1678. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1679. entries = kmalloc(size, GFP_KERNEL);
  1680. if (!entries)
  1681. goto out;
  1682. r = -EFAULT;
  1683. if (copy_from_user(entries, user_msrs->entries, size))
  1684. goto out_free;
  1685. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1686. if (r < 0)
  1687. goto out_free;
  1688. r = -EFAULT;
  1689. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1690. goto out_free;
  1691. r = n;
  1692. out_free:
  1693. kfree(entries);
  1694. out:
  1695. return r;
  1696. }
  1697. int kvm_dev_ioctl_check_extension(long ext)
  1698. {
  1699. int r;
  1700. switch (ext) {
  1701. case KVM_CAP_IRQCHIP:
  1702. case KVM_CAP_HLT:
  1703. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1704. case KVM_CAP_SET_TSS_ADDR:
  1705. case KVM_CAP_EXT_CPUID:
  1706. case KVM_CAP_CLOCKSOURCE:
  1707. case KVM_CAP_PIT:
  1708. case KVM_CAP_NOP_IO_DELAY:
  1709. case KVM_CAP_MP_STATE:
  1710. case KVM_CAP_SYNC_MMU:
  1711. case KVM_CAP_REINJECT_CONTROL:
  1712. case KVM_CAP_IRQ_INJECT_STATUS:
  1713. case KVM_CAP_ASSIGN_DEV_IRQ:
  1714. case KVM_CAP_IRQFD:
  1715. case KVM_CAP_IOEVENTFD:
  1716. case KVM_CAP_PIT2:
  1717. case KVM_CAP_PIT_STATE2:
  1718. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1719. case KVM_CAP_XEN_HVM:
  1720. case KVM_CAP_ADJUST_CLOCK:
  1721. case KVM_CAP_VCPU_EVENTS:
  1722. case KVM_CAP_HYPERV:
  1723. case KVM_CAP_HYPERV_VAPIC:
  1724. case KVM_CAP_HYPERV_SPIN:
  1725. case KVM_CAP_PCI_SEGMENT:
  1726. case KVM_CAP_DEBUGREGS:
  1727. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1728. case KVM_CAP_XSAVE:
  1729. case KVM_CAP_ASYNC_PF:
  1730. r = 1;
  1731. break;
  1732. case KVM_CAP_COALESCED_MMIO:
  1733. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1734. break;
  1735. case KVM_CAP_VAPIC:
  1736. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1737. break;
  1738. case KVM_CAP_NR_VCPUS:
  1739. r = KVM_MAX_VCPUS;
  1740. break;
  1741. case KVM_CAP_NR_MEMSLOTS:
  1742. r = KVM_MEMORY_SLOTS;
  1743. break;
  1744. case KVM_CAP_PV_MMU: /* obsolete */
  1745. r = 0;
  1746. break;
  1747. case KVM_CAP_IOMMU:
  1748. r = iommu_found();
  1749. break;
  1750. case KVM_CAP_MCE:
  1751. r = KVM_MAX_MCE_BANKS;
  1752. break;
  1753. case KVM_CAP_XCRS:
  1754. r = cpu_has_xsave;
  1755. break;
  1756. default:
  1757. r = 0;
  1758. break;
  1759. }
  1760. return r;
  1761. }
  1762. long kvm_arch_dev_ioctl(struct file *filp,
  1763. unsigned int ioctl, unsigned long arg)
  1764. {
  1765. void __user *argp = (void __user *)arg;
  1766. long r;
  1767. switch (ioctl) {
  1768. case KVM_GET_MSR_INDEX_LIST: {
  1769. struct kvm_msr_list __user *user_msr_list = argp;
  1770. struct kvm_msr_list msr_list;
  1771. unsigned n;
  1772. r = -EFAULT;
  1773. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1774. goto out;
  1775. n = msr_list.nmsrs;
  1776. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1777. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1778. goto out;
  1779. r = -E2BIG;
  1780. if (n < msr_list.nmsrs)
  1781. goto out;
  1782. r = -EFAULT;
  1783. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1784. num_msrs_to_save * sizeof(u32)))
  1785. goto out;
  1786. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1787. &emulated_msrs,
  1788. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1789. goto out;
  1790. r = 0;
  1791. break;
  1792. }
  1793. case KVM_GET_SUPPORTED_CPUID: {
  1794. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1795. struct kvm_cpuid2 cpuid;
  1796. r = -EFAULT;
  1797. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1798. goto out;
  1799. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1800. cpuid_arg->entries);
  1801. if (r)
  1802. goto out;
  1803. r = -EFAULT;
  1804. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1805. goto out;
  1806. r = 0;
  1807. break;
  1808. }
  1809. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1810. u64 mce_cap;
  1811. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1812. r = -EFAULT;
  1813. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1814. goto out;
  1815. r = 0;
  1816. break;
  1817. }
  1818. default:
  1819. r = -EINVAL;
  1820. }
  1821. out:
  1822. return r;
  1823. }
  1824. static void wbinvd_ipi(void *garbage)
  1825. {
  1826. wbinvd();
  1827. }
  1828. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1829. {
  1830. return vcpu->kvm->arch.iommu_domain &&
  1831. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1832. }
  1833. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1834. {
  1835. /* Address WBINVD may be executed by guest */
  1836. if (need_emulate_wbinvd(vcpu)) {
  1837. if (kvm_x86_ops->has_wbinvd_exit())
  1838. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1839. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1840. smp_call_function_single(vcpu->cpu,
  1841. wbinvd_ipi, NULL, 1);
  1842. }
  1843. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1844. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1845. /* Make sure TSC doesn't go backwards */
  1846. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1847. native_read_tsc() - vcpu->arch.last_host_tsc;
  1848. if (tsc_delta < 0)
  1849. mark_tsc_unstable("KVM discovered backwards TSC");
  1850. if (check_tsc_unstable()) {
  1851. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1852. vcpu->arch.tsc_catchup = 1;
  1853. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1854. }
  1855. if (vcpu->cpu != cpu)
  1856. kvm_migrate_timers(vcpu);
  1857. vcpu->cpu = cpu;
  1858. }
  1859. }
  1860. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1861. {
  1862. kvm_x86_ops->vcpu_put(vcpu);
  1863. kvm_put_guest_fpu(vcpu);
  1864. vcpu->arch.last_host_tsc = native_read_tsc();
  1865. }
  1866. static int is_efer_nx(void)
  1867. {
  1868. unsigned long long efer = 0;
  1869. rdmsrl_safe(MSR_EFER, &efer);
  1870. return efer & EFER_NX;
  1871. }
  1872. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1873. {
  1874. int i;
  1875. struct kvm_cpuid_entry2 *e, *entry;
  1876. entry = NULL;
  1877. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1878. e = &vcpu->arch.cpuid_entries[i];
  1879. if (e->function == 0x80000001) {
  1880. entry = e;
  1881. break;
  1882. }
  1883. }
  1884. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1885. entry->edx &= ~(1 << 20);
  1886. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1887. }
  1888. }
  1889. /* when an old userspace process fills a new kernel module */
  1890. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1891. struct kvm_cpuid *cpuid,
  1892. struct kvm_cpuid_entry __user *entries)
  1893. {
  1894. int r, i;
  1895. struct kvm_cpuid_entry *cpuid_entries;
  1896. r = -E2BIG;
  1897. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1898. goto out;
  1899. r = -ENOMEM;
  1900. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1901. if (!cpuid_entries)
  1902. goto out;
  1903. r = -EFAULT;
  1904. if (copy_from_user(cpuid_entries, entries,
  1905. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1906. goto out_free;
  1907. for (i = 0; i < cpuid->nent; i++) {
  1908. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1909. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1910. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1911. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1912. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1913. vcpu->arch.cpuid_entries[i].index = 0;
  1914. vcpu->arch.cpuid_entries[i].flags = 0;
  1915. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1916. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1917. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1918. }
  1919. vcpu->arch.cpuid_nent = cpuid->nent;
  1920. cpuid_fix_nx_cap(vcpu);
  1921. r = 0;
  1922. kvm_apic_set_version(vcpu);
  1923. kvm_x86_ops->cpuid_update(vcpu);
  1924. update_cpuid(vcpu);
  1925. out_free:
  1926. vfree(cpuid_entries);
  1927. out:
  1928. return r;
  1929. }
  1930. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1931. struct kvm_cpuid2 *cpuid,
  1932. struct kvm_cpuid_entry2 __user *entries)
  1933. {
  1934. int r;
  1935. r = -E2BIG;
  1936. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1937. goto out;
  1938. r = -EFAULT;
  1939. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1940. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1941. goto out;
  1942. vcpu->arch.cpuid_nent = cpuid->nent;
  1943. kvm_apic_set_version(vcpu);
  1944. kvm_x86_ops->cpuid_update(vcpu);
  1945. update_cpuid(vcpu);
  1946. return 0;
  1947. out:
  1948. return r;
  1949. }
  1950. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1951. struct kvm_cpuid2 *cpuid,
  1952. struct kvm_cpuid_entry2 __user *entries)
  1953. {
  1954. int r;
  1955. r = -E2BIG;
  1956. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1957. goto out;
  1958. r = -EFAULT;
  1959. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1960. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1961. goto out;
  1962. return 0;
  1963. out:
  1964. cpuid->nent = vcpu->arch.cpuid_nent;
  1965. return r;
  1966. }
  1967. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1968. u32 index)
  1969. {
  1970. entry->function = function;
  1971. entry->index = index;
  1972. cpuid_count(entry->function, entry->index,
  1973. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1974. entry->flags = 0;
  1975. }
  1976. #define F(x) bit(X86_FEATURE_##x)
  1977. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1978. u32 index, int *nent, int maxnent)
  1979. {
  1980. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1981. #ifdef CONFIG_X86_64
  1982. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1983. ? F(GBPAGES) : 0;
  1984. unsigned f_lm = F(LM);
  1985. #else
  1986. unsigned f_gbpages = 0;
  1987. unsigned f_lm = 0;
  1988. #endif
  1989. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1990. /* cpuid 1.edx */
  1991. const u32 kvm_supported_word0_x86_features =
  1992. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1993. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1994. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1995. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1996. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1997. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1998. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1999. 0 /* HTT, TM, Reserved, PBE */;
  2000. /* cpuid 0x80000001.edx */
  2001. const u32 kvm_supported_word1_x86_features =
  2002. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2003. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2004. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  2005. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2006. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  2007. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  2008. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  2009. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  2010. /* cpuid 1.ecx */
  2011. const u32 kvm_supported_word4_x86_features =
  2012. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  2013. 0 /* DS-CPL, VMX, SMX, EST */ |
  2014. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  2015. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  2016. 0 /* Reserved, DCA */ | F(XMM4_1) |
  2017. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  2018. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  2019. F(F16C);
  2020. /* cpuid 0x80000001.ecx */
  2021. const u32 kvm_supported_word6_x86_features =
  2022. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  2023. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  2024. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  2025. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  2026. /* all calls to cpuid_count() should be made on the same cpu */
  2027. get_cpu();
  2028. do_cpuid_1_ent(entry, function, index);
  2029. ++*nent;
  2030. switch (function) {
  2031. case 0:
  2032. entry->eax = min(entry->eax, (u32)0xd);
  2033. break;
  2034. case 1:
  2035. entry->edx &= kvm_supported_word0_x86_features;
  2036. entry->ecx &= kvm_supported_word4_x86_features;
  2037. /* we support x2apic emulation even if host does not support
  2038. * it since we emulate x2apic in software */
  2039. entry->ecx |= F(X2APIC);
  2040. break;
  2041. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2042. * may return different values. This forces us to get_cpu() before
  2043. * issuing the first command, and also to emulate this annoying behavior
  2044. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2045. case 2: {
  2046. int t, times = entry->eax & 0xff;
  2047. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2048. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2049. for (t = 1; t < times && *nent < maxnent; ++t) {
  2050. do_cpuid_1_ent(&entry[t], function, 0);
  2051. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2052. ++*nent;
  2053. }
  2054. break;
  2055. }
  2056. /* function 4 and 0xb have additional index. */
  2057. case 4: {
  2058. int i, cache_type;
  2059. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2060. /* read more entries until cache_type is zero */
  2061. for (i = 1; *nent < maxnent; ++i) {
  2062. cache_type = entry[i - 1].eax & 0x1f;
  2063. if (!cache_type)
  2064. break;
  2065. do_cpuid_1_ent(&entry[i], function, i);
  2066. entry[i].flags |=
  2067. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2068. ++*nent;
  2069. }
  2070. break;
  2071. }
  2072. case 0xb: {
  2073. int i, level_type;
  2074. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2075. /* read more entries until level_type is zero */
  2076. for (i = 1; *nent < maxnent; ++i) {
  2077. level_type = entry[i - 1].ecx & 0xff00;
  2078. if (!level_type)
  2079. break;
  2080. do_cpuid_1_ent(&entry[i], function, i);
  2081. entry[i].flags |=
  2082. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2083. ++*nent;
  2084. }
  2085. break;
  2086. }
  2087. case 0xd: {
  2088. int i;
  2089. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2090. for (i = 1; *nent < maxnent; ++i) {
  2091. if (entry[i - 1].eax == 0 && i != 2)
  2092. break;
  2093. do_cpuid_1_ent(&entry[i], function, i);
  2094. entry[i].flags |=
  2095. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2096. ++*nent;
  2097. }
  2098. break;
  2099. }
  2100. case KVM_CPUID_SIGNATURE: {
  2101. char signature[12] = "KVMKVMKVM\0\0";
  2102. u32 *sigptr = (u32 *)signature;
  2103. entry->eax = 0;
  2104. entry->ebx = sigptr[0];
  2105. entry->ecx = sigptr[1];
  2106. entry->edx = sigptr[2];
  2107. break;
  2108. }
  2109. case KVM_CPUID_FEATURES:
  2110. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2111. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2112. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2113. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2114. entry->ebx = 0;
  2115. entry->ecx = 0;
  2116. entry->edx = 0;
  2117. break;
  2118. case 0x80000000:
  2119. entry->eax = min(entry->eax, 0x8000001a);
  2120. break;
  2121. case 0x80000001:
  2122. entry->edx &= kvm_supported_word1_x86_features;
  2123. entry->ecx &= kvm_supported_word6_x86_features;
  2124. break;
  2125. }
  2126. kvm_x86_ops->set_supported_cpuid(function, entry);
  2127. put_cpu();
  2128. }
  2129. #undef F
  2130. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2131. struct kvm_cpuid_entry2 __user *entries)
  2132. {
  2133. struct kvm_cpuid_entry2 *cpuid_entries;
  2134. int limit, nent = 0, r = -E2BIG;
  2135. u32 func;
  2136. if (cpuid->nent < 1)
  2137. goto out;
  2138. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2139. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2140. r = -ENOMEM;
  2141. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2142. if (!cpuid_entries)
  2143. goto out;
  2144. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2145. limit = cpuid_entries[0].eax;
  2146. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2147. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2148. &nent, cpuid->nent);
  2149. r = -E2BIG;
  2150. if (nent >= cpuid->nent)
  2151. goto out_free;
  2152. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2153. limit = cpuid_entries[nent - 1].eax;
  2154. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2155. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2156. &nent, cpuid->nent);
  2157. r = -E2BIG;
  2158. if (nent >= cpuid->nent)
  2159. goto out_free;
  2160. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2161. cpuid->nent);
  2162. r = -E2BIG;
  2163. if (nent >= cpuid->nent)
  2164. goto out_free;
  2165. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2166. cpuid->nent);
  2167. r = -E2BIG;
  2168. if (nent >= cpuid->nent)
  2169. goto out_free;
  2170. r = -EFAULT;
  2171. if (copy_to_user(entries, cpuid_entries,
  2172. nent * sizeof(struct kvm_cpuid_entry2)))
  2173. goto out_free;
  2174. cpuid->nent = nent;
  2175. r = 0;
  2176. out_free:
  2177. vfree(cpuid_entries);
  2178. out:
  2179. return r;
  2180. }
  2181. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2182. struct kvm_lapic_state *s)
  2183. {
  2184. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2185. return 0;
  2186. }
  2187. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2188. struct kvm_lapic_state *s)
  2189. {
  2190. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2191. kvm_apic_post_state_restore(vcpu);
  2192. update_cr8_intercept(vcpu);
  2193. return 0;
  2194. }
  2195. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2196. struct kvm_interrupt *irq)
  2197. {
  2198. if (irq->irq < 0 || irq->irq >= 256)
  2199. return -EINVAL;
  2200. if (irqchip_in_kernel(vcpu->kvm))
  2201. return -ENXIO;
  2202. kvm_queue_interrupt(vcpu, irq->irq, false);
  2203. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2204. return 0;
  2205. }
  2206. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2207. {
  2208. kvm_inject_nmi(vcpu);
  2209. return 0;
  2210. }
  2211. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2212. struct kvm_tpr_access_ctl *tac)
  2213. {
  2214. if (tac->flags)
  2215. return -EINVAL;
  2216. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2217. return 0;
  2218. }
  2219. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2220. u64 mcg_cap)
  2221. {
  2222. int r;
  2223. unsigned bank_num = mcg_cap & 0xff, bank;
  2224. r = -EINVAL;
  2225. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2226. goto out;
  2227. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2228. goto out;
  2229. r = 0;
  2230. vcpu->arch.mcg_cap = mcg_cap;
  2231. /* Init IA32_MCG_CTL to all 1s */
  2232. if (mcg_cap & MCG_CTL_P)
  2233. vcpu->arch.mcg_ctl = ~(u64)0;
  2234. /* Init IA32_MCi_CTL to all 1s */
  2235. for (bank = 0; bank < bank_num; bank++)
  2236. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2237. out:
  2238. return r;
  2239. }
  2240. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2241. struct kvm_x86_mce *mce)
  2242. {
  2243. u64 mcg_cap = vcpu->arch.mcg_cap;
  2244. unsigned bank_num = mcg_cap & 0xff;
  2245. u64 *banks = vcpu->arch.mce_banks;
  2246. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2247. return -EINVAL;
  2248. /*
  2249. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2250. * reporting is disabled
  2251. */
  2252. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2253. vcpu->arch.mcg_ctl != ~(u64)0)
  2254. return 0;
  2255. banks += 4 * mce->bank;
  2256. /*
  2257. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2258. * reporting is disabled for the bank
  2259. */
  2260. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2261. return 0;
  2262. if (mce->status & MCI_STATUS_UC) {
  2263. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2264. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2265. printk(KERN_DEBUG "kvm: set_mce: "
  2266. "injects mce exception while "
  2267. "previous one is in progress!\n");
  2268. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2269. return 0;
  2270. }
  2271. if (banks[1] & MCI_STATUS_VAL)
  2272. mce->status |= MCI_STATUS_OVER;
  2273. banks[2] = mce->addr;
  2274. banks[3] = mce->misc;
  2275. vcpu->arch.mcg_status = mce->mcg_status;
  2276. banks[1] = mce->status;
  2277. kvm_queue_exception(vcpu, MC_VECTOR);
  2278. } else if (!(banks[1] & MCI_STATUS_VAL)
  2279. || !(banks[1] & MCI_STATUS_UC)) {
  2280. if (banks[1] & MCI_STATUS_VAL)
  2281. mce->status |= MCI_STATUS_OVER;
  2282. banks[2] = mce->addr;
  2283. banks[3] = mce->misc;
  2284. banks[1] = mce->status;
  2285. } else
  2286. banks[1] |= MCI_STATUS_OVER;
  2287. return 0;
  2288. }
  2289. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2290. struct kvm_vcpu_events *events)
  2291. {
  2292. events->exception.injected =
  2293. vcpu->arch.exception.pending &&
  2294. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2295. events->exception.nr = vcpu->arch.exception.nr;
  2296. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2297. events->exception.pad = 0;
  2298. events->exception.error_code = vcpu->arch.exception.error_code;
  2299. events->interrupt.injected =
  2300. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2301. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2302. events->interrupt.soft = 0;
  2303. events->interrupt.shadow =
  2304. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2305. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2306. events->nmi.injected = vcpu->arch.nmi_injected;
  2307. events->nmi.pending = vcpu->arch.nmi_pending;
  2308. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2309. events->nmi.pad = 0;
  2310. events->sipi_vector = vcpu->arch.sipi_vector;
  2311. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2312. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2313. | KVM_VCPUEVENT_VALID_SHADOW);
  2314. memset(&events->reserved, 0, sizeof(events->reserved));
  2315. }
  2316. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2317. struct kvm_vcpu_events *events)
  2318. {
  2319. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2320. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2321. | KVM_VCPUEVENT_VALID_SHADOW))
  2322. return -EINVAL;
  2323. vcpu->arch.exception.pending = events->exception.injected;
  2324. vcpu->arch.exception.nr = events->exception.nr;
  2325. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2326. vcpu->arch.exception.error_code = events->exception.error_code;
  2327. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2328. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2329. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2330. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2331. kvm_pic_clear_isr_ack(vcpu->kvm);
  2332. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2333. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2334. events->interrupt.shadow);
  2335. vcpu->arch.nmi_injected = events->nmi.injected;
  2336. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2337. vcpu->arch.nmi_pending = events->nmi.pending;
  2338. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2339. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2340. vcpu->arch.sipi_vector = events->sipi_vector;
  2341. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2342. return 0;
  2343. }
  2344. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2345. struct kvm_debugregs *dbgregs)
  2346. {
  2347. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2348. dbgregs->dr6 = vcpu->arch.dr6;
  2349. dbgregs->dr7 = vcpu->arch.dr7;
  2350. dbgregs->flags = 0;
  2351. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2352. }
  2353. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2354. struct kvm_debugregs *dbgregs)
  2355. {
  2356. if (dbgregs->flags)
  2357. return -EINVAL;
  2358. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2359. vcpu->arch.dr6 = dbgregs->dr6;
  2360. vcpu->arch.dr7 = dbgregs->dr7;
  2361. return 0;
  2362. }
  2363. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2364. struct kvm_xsave *guest_xsave)
  2365. {
  2366. if (cpu_has_xsave)
  2367. memcpy(guest_xsave->region,
  2368. &vcpu->arch.guest_fpu.state->xsave,
  2369. xstate_size);
  2370. else {
  2371. memcpy(guest_xsave->region,
  2372. &vcpu->arch.guest_fpu.state->fxsave,
  2373. sizeof(struct i387_fxsave_struct));
  2374. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2375. XSTATE_FPSSE;
  2376. }
  2377. }
  2378. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2379. struct kvm_xsave *guest_xsave)
  2380. {
  2381. u64 xstate_bv =
  2382. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2383. if (cpu_has_xsave)
  2384. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2385. guest_xsave->region, xstate_size);
  2386. else {
  2387. if (xstate_bv & ~XSTATE_FPSSE)
  2388. return -EINVAL;
  2389. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2390. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2391. }
  2392. return 0;
  2393. }
  2394. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2395. struct kvm_xcrs *guest_xcrs)
  2396. {
  2397. if (!cpu_has_xsave) {
  2398. guest_xcrs->nr_xcrs = 0;
  2399. return;
  2400. }
  2401. guest_xcrs->nr_xcrs = 1;
  2402. guest_xcrs->flags = 0;
  2403. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2404. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2405. }
  2406. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2407. struct kvm_xcrs *guest_xcrs)
  2408. {
  2409. int i, r = 0;
  2410. if (!cpu_has_xsave)
  2411. return -EINVAL;
  2412. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2413. return -EINVAL;
  2414. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2415. /* Only support XCR0 currently */
  2416. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2417. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2418. guest_xcrs->xcrs[0].value);
  2419. break;
  2420. }
  2421. if (r)
  2422. r = -EINVAL;
  2423. return r;
  2424. }
  2425. long kvm_arch_vcpu_ioctl(struct file *filp,
  2426. unsigned int ioctl, unsigned long arg)
  2427. {
  2428. struct kvm_vcpu *vcpu = filp->private_data;
  2429. void __user *argp = (void __user *)arg;
  2430. int r;
  2431. union {
  2432. struct kvm_lapic_state *lapic;
  2433. struct kvm_xsave *xsave;
  2434. struct kvm_xcrs *xcrs;
  2435. void *buffer;
  2436. } u;
  2437. u.buffer = NULL;
  2438. switch (ioctl) {
  2439. case KVM_GET_LAPIC: {
  2440. r = -EINVAL;
  2441. if (!vcpu->arch.apic)
  2442. goto out;
  2443. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2444. r = -ENOMEM;
  2445. if (!u.lapic)
  2446. goto out;
  2447. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2448. if (r)
  2449. goto out;
  2450. r = -EFAULT;
  2451. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2452. goto out;
  2453. r = 0;
  2454. break;
  2455. }
  2456. case KVM_SET_LAPIC: {
  2457. r = -EINVAL;
  2458. if (!vcpu->arch.apic)
  2459. goto out;
  2460. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2461. r = -ENOMEM;
  2462. if (!u.lapic)
  2463. goto out;
  2464. r = -EFAULT;
  2465. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2466. goto out;
  2467. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2468. if (r)
  2469. goto out;
  2470. r = 0;
  2471. break;
  2472. }
  2473. case KVM_INTERRUPT: {
  2474. struct kvm_interrupt irq;
  2475. r = -EFAULT;
  2476. if (copy_from_user(&irq, argp, sizeof irq))
  2477. goto out;
  2478. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2479. if (r)
  2480. goto out;
  2481. r = 0;
  2482. break;
  2483. }
  2484. case KVM_NMI: {
  2485. r = kvm_vcpu_ioctl_nmi(vcpu);
  2486. if (r)
  2487. goto out;
  2488. r = 0;
  2489. break;
  2490. }
  2491. case KVM_SET_CPUID: {
  2492. struct kvm_cpuid __user *cpuid_arg = argp;
  2493. struct kvm_cpuid cpuid;
  2494. r = -EFAULT;
  2495. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2496. goto out;
  2497. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2498. if (r)
  2499. goto out;
  2500. break;
  2501. }
  2502. case KVM_SET_CPUID2: {
  2503. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2504. struct kvm_cpuid2 cpuid;
  2505. r = -EFAULT;
  2506. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2507. goto out;
  2508. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2509. cpuid_arg->entries);
  2510. if (r)
  2511. goto out;
  2512. break;
  2513. }
  2514. case KVM_GET_CPUID2: {
  2515. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2516. struct kvm_cpuid2 cpuid;
  2517. r = -EFAULT;
  2518. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2519. goto out;
  2520. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2521. cpuid_arg->entries);
  2522. if (r)
  2523. goto out;
  2524. r = -EFAULT;
  2525. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2526. goto out;
  2527. r = 0;
  2528. break;
  2529. }
  2530. case KVM_GET_MSRS:
  2531. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2532. break;
  2533. case KVM_SET_MSRS:
  2534. r = msr_io(vcpu, argp, do_set_msr, 0);
  2535. break;
  2536. case KVM_TPR_ACCESS_REPORTING: {
  2537. struct kvm_tpr_access_ctl tac;
  2538. r = -EFAULT;
  2539. if (copy_from_user(&tac, argp, sizeof tac))
  2540. goto out;
  2541. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2542. if (r)
  2543. goto out;
  2544. r = -EFAULT;
  2545. if (copy_to_user(argp, &tac, sizeof tac))
  2546. goto out;
  2547. r = 0;
  2548. break;
  2549. };
  2550. case KVM_SET_VAPIC_ADDR: {
  2551. struct kvm_vapic_addr va;
  2552. r = -EINVAL;
  2553. if (!irqchip_in_kernel(vcpu->kvm))
  2554. goto out;
  2555. r = -EFAULT;
  2556. if (copy_from_user(&va, argp, sizeof va))
  2557. goto out;
  2558. r = 0;
  2559. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2560. break;
  2561. }
  2562. case KVM_X86_SETUP_MCE: {
  2563. u64 mcg_cap;
  2564. r = -EFAULT;
  2565. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2566. goto out;
  2567. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2568. break;
  2569. }
  2570. case KVM_X86_SET_MCE: {
  2571. struct kvm_x86_mce mce;
  2572. r = -EFAULT;
  2573. if (copy_from_user(&mce, argp, sizeof mce))
  2574. goto out;
  2575. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2576. break;
  2577. }
  2578. case KVM_GET_VCPU_EVENTS: {
  2579. struct kvm_vcpu_events events;
  2580. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2581. r = -EFAULT;
  2582. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2583. break;
  2584. r = 0;
  2585. break;
  2586. }
  2587. case KVM_SET_VCPU_EVENTS: {
  2588. struct kvm_vcpu_events events;
  2589. r = -EFAULT;
  2590. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2591. break;
  2592. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2593. break;
  2594. }
  2595. case KVM_GET_DEBUGREGS: {
  2596. struct kvm_debugregs dbgregs;
  2597. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2598. r = -EFAULT;
  2599. if (copy_to_user(argp, &dbgregs,
  2600. sizeof(struct kvm_debugregs)))
  2601. break;
  2602. r = 0;
  2603. break;
  2604. }
  2605. case KVM_SET_DEBUGREGS: {
  2606. struct kvm_debugregs dbgregs;
  2607. r = -EFAULT;
  2608. if (copy_from_user(&dbgregs, argp,
  2609. sizeof(struct kvm_debugregs)))
  2610. break;
  2611. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2612. break;
  2613. }
  2614. case KVM_GET_XSAVE: {
  2615. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2616. r = -ENOMEM;
  2617. if (!u.xsave)
  2618. break;
  2619. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2620. r = -EFAULT;
  2621. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2622. break;
  2623. r = 0;
  2624. break;
  2625. }
  2626. case KVM_SET_XSAVE: {
  2627. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2628. r = -ENOMEM;
  2629. if (!u.xsave)
  2630. break;
  2631. r = -EFAULT;
  2632. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2633. break;
  2634. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2635. break;
  2636. }
  2637. case KVM_GET_XCRS: {
  2638. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2639. r = -ENOMEM;
  2640. if (!u.xcrs)
  2641. break;
  2642. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2643. r = -EFAULT;
  2644. if (copy_to_user(argp, u.xcrs,
  2645. sizeof(struct kvm_xcrs)))
  2646. break;
  2647. r = 0;
  2648. break;
  2649. }
  2650. case KVM_SET_XCRS: {
  2651. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2652. r = -ENOMEM;
  2653. if (!u.xcrs)
  2654. break;
  2655. r = -EFAULT;
  2656. if (copy_from_user(u.xcrs, argp,
  2657. sizeof(struct kvm_xcrs)))
  2658. break;
  2659. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2660. break;
  2661. }
  2662. default:
  2663. r = -EINVAL;
  2664. }
  2665. out:
  2666. kfree(u.buffer);
  2667. return r;
  2668. }
  2669. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2670. {
  2671. int ret;
  2672. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2673. return -1;
  2674. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2675. return ret;
  2676. }
  2677. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2678. u64 ident_addr)
  2679. {
  2680. kvm->arch.ept_identity_map_addr = ident_addr;
  2681. return 0;
  2682. }
  2683. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2684. u32 kvm_nr_mmu_pages)
  2685. {
  2686. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2687. return -EINVAL;
  2688. mutex_lock(&kvm->slots_lock);
  2689. spin_lock(&kvm->mmu_lock);
  2690. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2691. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2692. spin_unlock(&kvm->mmu_lock);
  2693. mutex_unlock(&kvm->slots_lock);
  2694. return 0;
  2695. }
  2696. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2697. {
  2698. return kvm->arch.n_max_mmu_pages;
  2699. }
  2700. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2701. {
  2702. int r;
  2703. r = 0;
  2704. switch (chip->chip_id) {
  2705. case KVM_IRQCHIP_PIC_MASTER:
  2706. memcpy(&chip->chip.pic,
  2707. &pic_irqchip(kvm)->pics[0],
  2708. sizeof(struct kvm_pic_state));
  2709. break;
  2710. case KVM_IRQCHIP_PIC_SLAVE:
  2711. memcpy(&chip->chip.pic,
  2712. &pic_irqchip(kvm)->pics[1],
  2713. sizeof(struct kvm_pic_state));
  2714. break;
  2715. case KVM_IRQCHIP_IOAPIC:
  2716. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2717. break;
  2718. default:
  2719. r = -EINVAL;
  2720. break;
  2721. }
  2722. return r;
  2723. }
  2724. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2725. {
  2726. int r;
  2727. r = 0;
  2728. switch (chip->chip_id) {
  2729. case KVM_IRQCHIP_PIC_MASTER:
  2730. spin_lock(&pic_irqchip(kvm)->lock);
  2731. memcpy(&pic_irqchip(kvm)->pics[0],
  2732. &chip->chip.pic,
  2733. sizeof(struct kvm_pic_state));
  2734. spin_unlock(&pic_irqchip(kvm)->lock);
  2735. break;
  2736. case KVM_IRQCHIP_PIC_SLAVE:
  2737. spin_lock(&pic_irqchip(kvm)->lock);
  2738. memcpy(&pic_irqchip(kvm)->pics[1],
  2739. &chip->chip.pic,
  2740. sizeof(struct kvm_pic_state));
  2741. spin_unlock(&pic_irqchip(kvm)->lock);
  2742. break;
  2743. case KVM_IRQCHIP_IOAPIC:
  2744. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2745. break;
  2746. default:
  2747. r = -EINVAL;
  2748. break;
  2749. }
  2750. kvm_pic_update_irq(pic_irqchip(kvm));
  2751. return r;
  2752. }
  2753. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2754. {
  2755. int r = 0;
  2756. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2757. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2758. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2759. return r;
  2760. }
  2761. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2762. {
  2763. int r = 0;
  2764. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2765. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2766. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2767. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2768. return r;
  2769. }
  2770. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2771. {
  2772. int r = 0;
  2773. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2774. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2775. sizeof(ps->channels));
  2776. ps->flags = kvm->arch.vpit->pit_state.flags;
  2777. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2778. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2779. return r;
  2780. }
  2781. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2782. {
  2783. int r = 0, start = 0;
  2784. u32 prev_legacy, cur_legacy;
  2785. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2786. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2787. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2788. if (!prev_legacy && cur_legacy)
  2789. start = 1;
  2790. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2791. sizeof(kvm->arch.vpit->pit_state.channels));
  2792. kvm->arch.vpit->pit_state.flags = ps->flags;
  2793. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2794. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2795. return r;
  2796. }
  2797. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2798. struct kvm_reinject_control *control)
  2799. {
  2800. if (!kvm->arch.vpit)
  2801. return -ENXIO;
  2802. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2803. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2804. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2805. return 0;
  2806. }
  2807. /*
  2808. * Get (and clear) the dirty memory log for a memory slot.
  2809. */
  2810. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2811. struct kvm_dirty_log *log)
  2812. {
  2813. int r, i;
  2814. struct kvm_memory_slot *memslot;
  2815. unsigned long n;
  2816. unsigned long is_dirty = 0;
  2817. mutex_lock(&kvm->slots_lock);
  2818. r = -EINVAL;
  2819. if (log->slot >= KVM_MEMORY_SLOTS)
  2820. goto out;
  2821. memslot = &kvm->memslots->memslots[log->slot];
  2822. r = -ENOENT;
  2823. if (!memslot->dirty_bitmap)
  2824. goto out;
  2825. n = kvm_dirty_bitmap_bytes(memslot);
  2826. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2827. is_dirty = memslot->dirty_bitmap[i];
  2828. /* If nothing is dirty, don't bother messing with page tables. */
  2829. if (is_dirty) {
  2830. struct kvm_memslots *slots, *old_slots;
  2831. unsigned long *dirty_bitmap;
  2832. dirty_bitmap = memslot->dirty_bitmap_head;
  2833. if (memslot->dirty_bitmap == dirty_bitmap)
  2834. dirty_bitmap += n / sizeof(long);
  2835. memset(dirty_bitmap, 0, n);
  2836. r = -ENOMEM;
  2837. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2838. if (!slots)
  2839. goto out;
  2840. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2841. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2842. slots->generation++;
  2843. old_slots = kvm->memslots;
  2844. rcu_assign_pointer(kvm->memslots, slots);
  2845. synchronize_srcu_expedited(&kvm->srcu);
  2846. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2847. kfree(old_slots);
  2848. spin_lock(&kvm->mmu_lock);
  2849. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2850. spin_unlock(&kvm->mmu_lock);
  2851. r = -EFAULT;
  2852. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2853. goto out;
  2854. } else {
  2855. r = -EFAULT;
  2856. if (clear_user(log->dirty_bitmap, n))
  2857. goto out;
  2858. }
  2859. r = 0;
  2860. out:
  2861. mutex_unlock(&kvm->slots_lock);
  2862. return r;
  2863. }
  2864. long kvm_arch_vm_ioctl(struct file *filp,
  2865. unsigned int ioctl, unsigned long arg)
  2866. {
  2867. struct kvm *kvm = filp->private_data;
  2868. void __user *argp = (void __user *)arg;
  2869. int r = -ENOTTY;
  2870. /*
  2871. * This union makes it completely explicit to gcc-3.x
  2872. * that these two variables' stack usage should be
  2873. * combined, not added together.
  2874. */
  2875. union {
  2876. struct kvm_pit_state ps;
  2877. struct kvm_pit_state2 ps2;
  2878. struct kvm_pit_config pit_config;
  2879. } u;
  2880. switch (ioctl) {
  2881. case KVM_SET_TSS_ADDR:
  2882. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2883. if (r < 0)
  2884. goto out;
  2885. break;
  2886. case KVM_SET_IDENTITY_MAP_ADDR: {
  2887. u64 ident_addr;
  2888. r = -EFAULT;
  2889. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2890. goto out;
  2891. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2892. if (r < 0)
  2893. goto out;
  2894. break;
  2895. }
  2896. case KVM_SET_NR_MMU_PAGES:
  2897. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2898. if (r)
  2899. goto out;
  2900. break;
  2901. case KVM_GET_NR_MMU_PAGES:
  2902. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2903. break;
  2904. case KVM_CREATE_IRQCHIP: {
  2905. struct kvm_pic *vpic;
  2906. mutex_lock(&kvm->lock);
  2907. r = -EEXIST;
  2908. if (kvm->arch.vpic)
  2909. goto create_irqchip_unlock;
  2910. r = -ENOMEM;
  2911. vpic = kvm_create_pic(kvm);
  2912. if (vpic) {
  2913. r = kvm_ioapic_init(kvm);
  2914. if (r) {
  2915. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2916. &vpic->dev);
  2917. kfree(vpic);
  2918. goto create_irqchip_unlock;
  2919. }
  2920. } else
  2921. goto create_irqchip_unlock;
  2922. smp_wmb();
  2923. kvm->arch.vpic = vpic;
  2924. smp_wmb();
  2925. r = kvm_setup_default_irq_routing(kvm);
  2926. if (r) {
  2927. mutex_lock(&kvm->irq_lock);
  2928. kvm_ioapic_destroy(kvm);
  2929. kvm_destroy_pic(kvm);
  2930. mutex_unlock(&kvm->irq_lock);
  2931. }
  2932. create_irqchip_unlock:
  2933. mutex_unlock(&kvm->lock);
  2934. break;
  2935. }
  2936. case KVM_CREATE_PIT:
  2937. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2938. goto create_pit;
  2939. case KVM_CREATE_PIT2:
  2940. r = -EFAULT;
  2941. if (copy_from_user(&u.pit_config, argp,
  2942. sizeof(struct kvm_pit_config)))
  2943. goto out;
  2944. create_pit:
  2945. mutex_lock(&kvm->slots_lock);
  2946. r = -EEXIST;
  2947. if (kvm->arch.vpit)
  2948. goto create_pit_unlock;
  2949. r = -ENOMEM;
  2950. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2951. if (kvm->arch.vpit)
  2952. r = 0;
  2953. create_pit_unlock:
  2954. mutex_unlock(&kvm->slots_lock);
  2955. break;
  2956. case KVM_IRQ_LINE_STATUS:
  2957. case KVM_IRQ_LINE: {
  2958. struct kvm_irq_level irq_event;
  2959. r = -EFAULT;
  2960. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2961. goto out;
  2962. r = -ENXIO;
  2963. if (irqchip_in_kernel(kvm)) {
  2964. __s32 status;
  2965. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2966. irq_event.irq, irq_event.level);
  2967. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2968. r = -EFAULT;
  2969. irq_event.status = status;
  2970. if (copy_to_user(argp, &irq_event,
  2971. sizeof irq_event))
  2972. goto out;
  2973. }
  2974. r = 0;
  2975. }
  2976. break;
  2977. }
  2978. case KVM_GET_IRQCHIP: {
  2979. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2980. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2981. r = -ENOMEM;
  2982. if (!chip)
  2983. goto out;
  2984. r = -EFAULT;
  2985. if (copy_from_user(chip, argp, sizeof *chip))
  2986. goto get_irqchip_out;
  2987. r = -ENXIO;
  2988. if (!irqchip_in_kernel(kvm))
  2989. goto get_irqchip_out;
  2990. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2991. if (r)
  2992. goto get_irqchip_out;
  2993. r = -EFAULT;
  2994. if (copy_to_user(argp, chip, sizeof *chip))
  2995. goto get_irqchip_out;
  2996. r = 0;
  2997. get_irqchip_out:
  2998. kfree(chip);
  2999. if (r)
  3000. goto out;
  3001. break;
  3002. }
  3003. case KVM_SET_IRQCHIP: {
  3004. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3005. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3006. r = -ENOMEM;
  3007. if (!chip)
  3008. goto out;
  3009. r = -EFAULT;
  3010. if (copy_from_user(chip, argp, sizeof *chip))
  3011. goto set_irqchip_out;
  3012. r = -ENXIO;
  3013. if (!irqchip_in_kernel(kvm))
  3014. goto set_irqchip_out;
  3015. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3016. if (r)
  3017. goto set_irqchip_out;
  3018. r = 0;
  3019. set_irqchip_out:
  3020. kfree(chip);
  3021. if (r)
  3022. goto out;
  3023. break;
  3024. }
  3025. case KVM_GET_PIT: {
  3026. r = -EFAULT;
  3027. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3028. goto out;
  3029. r = -ENXIO;
  3030. if (!kvm->arch.vpit)
  3031. goto out;
  3032. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3033. if (r)
  3034. goto out;
  3035. r = -EFAULT;
  3036. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3037. goto out;
  3038. r = 0;
  3039. break;
  3040. }
  3041. case KVM_SET_PIT: {
  3042. r = -EFAULT;
  3043. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3044. goto out;
  3045. r = -ENXIO;
  3046. if (!kvm->arch.vpit)
  3047. goto out;
  3048. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3049. if (r)
  3050. goto out;
  3051. r = 0;
  3052. break;
  3053. }
  3054. case KVM_GET_PIT2: {
  3055. r = -ENXIO;
  3056. if (!kvm->arch.vpit)
  3057. goto out;
  3058. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3059. if (r)
  3060. goto out;
  3061. r = -EFAULT;
  3062. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3063. goto out;
  3064. r = 0;
  3065. break;
  3066. }
  3067. case KVM_SET_PIT2: {
  3068. r = -EFAULT;
  3069. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3070. goto out;
  3071. r = -ENXIO;
  3072. if (!kvm->arch.vpit)
  3073. goto out;
  3074. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3075. if (r)
  3076. goto out;
  3077. r = 0;
  3078. break;
  3079. }
  3080. case KVM_REINJECT_CONTROL: {
  3081. struct kvm_reinject_control control;
  3082. r = -EFAULT;
  3083. if (copy_from_user(&control, argp, sizeof(control)))
  3084. goto out;
  3085. r = kvm_vm_ioctl_reinject(kvm, &control);
  3086. if (r)
  3087. goto out;
  3088. r = 0;
  3089. break;
  3090. }
  3091. case KVM_XEN_HVM_CONFIG: {
  3092. r = -EFAULT;
  3093. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3094. sizeof(struct kvm_xen_hvm_config)))
  3095. goto out;
  3096. r = -EINVAL;
  3097. if (kvm->arch.xen_hvm_config.flags)
  3098. goto out;
  3099. r = 0;
  3100. break;
  3101. }
  3102. case KVM_SET_CLOCK: {
  3103. struct kvm_clock_data user_ns;
  3104. u64 now_ns;
  3105. s64 delta;
  3106. r = -EFAULT;
  3107. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3108. goto out;
  3109. r = -EINVAL;
  3110. if (user_ns.flags)
  3111. goto out;
  3112. r = 0;
  3113. local_irq_disable();
  3114. now_ns = get_kernel_ns();
  3115. delta = user_ns.clock - now_ns;
  3116. local_irq_enable();
  3117. kvm->arch.kvmclock_offset = delta;
  3118. break;
  3119. }
  3120. case KVM_GET_CLOCK: {
  3121. struct kvm_clock_data user_ns;
  3122. u64 now_ns;
  3123. local_irq_disable();
  3124. now_ns = get_kernel_ns();
  3125. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3126. local_irq_enable();
  3127. user_ns.flags = 0;
  3128. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3129. r = -EFAULT;
  3130. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3131. goto out;
  3132. r = 0;
  3133. break;
  3134. }
  3135. default:
  3136. ;
  3137. }
  3138. out:
  3139. return r;
  3140. }
  3141. static void kvm_init_msr_list(void)
  3142. {
  3143. u32 dummy[2];
  3144. unsigned i, j;
  3145. /* skip the first msrs in the list. KVM-specific */
  3146. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3147. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3148. continue;
  3149. if (j < i)
  3150. msrs_to_save[j] = msrs_to_save[i];
  3151. j++;
  3152. }
  3153. num_msrs_to_save = j;
  3154. }
  3155. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3156. const void *v)
  3157. {
  3158. if (vcpu->arch.apic &&
  3159. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  3160. return 0;
  3161. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3162. }
  3163. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3164. {
  3165. if (vcpu->arch.apic &&
  3166. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  3167. return 0;
  3168. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3169. }
  3170. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3171. struct kvm_segment *var, int seg)
  3172. {
  3173. kvm_x86_ops->set_segment(vcpu, var, seg);
  3174. }
  3175. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3176. struct kvm_segment *var, int seg)
  3177. {
  3178. kvm_x86_ops->get_segment(vcpu, var, seg);
  3179. }
  3180. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3181. {
  3182. return gpa;
  3183. }
  3184. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3185. {
  3186. gpa_t t_gpa;
  3187. u32 error;
  3188. BUG_ON(!mmu_is_nested(vcpu));
  3189. /* NPT walks are always user-walks */
  3190. access |= PFERR_USER_MASK;
  3191. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
  3192. if (t_gpa == UNMAPPED_GVA)
  3193. vcpu->arch.fault.nested = true;
  3194. return t_gpa;
  3195. }
  3196. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3197. {
  3198. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3199. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3200. }
  3201. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3202. {
  3203. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3204. access |= PFERR_FETCH_MASK;
  3205. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3206. }
  3207. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3208. {
  3209. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3210. access |= PFERR_WRITE_MASK;
  3211. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3212. }
  3213. /* uses this to access any guest's mapped memory without checking CPL */
  3214. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3215. {
  3216. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
  3217. }
  3218. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3219. struct kvm_vcpu *vcpu, u32 access,
  3220. u32 *error)
  3221. {
  3222. void *data = val;
  3223. int r = X86EMUL_CONTINUE;
  3224. while (bytes) {
  3225. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3226. error);
  3227. unsigned offset = addr & (PAGE_SIZE-1);
  3228. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3229. int ret;
  3230. if (gpa == UNMAPPED_GVA) {
  3231. r = X86EMUL_PROPAGATE_FAULT;
  3232. goto out;
  3233. }
  3234. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3235. if (ret < 0) {
  3236. r = X86EMUL_IO_NEEDED;
  3237. goto out;
  3238. }
  3239. bytes -= toread;
  3240. data += toread;
  3241. addr += toread;
  3242. }
  3243. out:
  3244. return r;
  3245. }
  3246. /* used for instruction fetching */
  3247. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3248. struct kvm_vcpu *vcpu, u32 *error)
  3249. {
  3250. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3251. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3252. access | PFERR_FETCH_MASK, error);
  3253. }
  3254. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3255. struct kvm_vcpu *vcpu, u32 *error)
  3256. {
  3257. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3258. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3259. error);
  3260. }
  3261. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3262. struct kvm_vcpu *vcpu, u32 *error)
  3263. {
  3264. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  3265. }
  3266. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3267. unsigned int bytes,
  3268. struct kvm_vcpu *vcpu,
  3269. u32 *error)
  3270. {
  3271. void *data = val;
  3272. int r = X86EMUL_CONTINUE;
  3273. while (bytes) {
  3274. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3275. PFERR_WRITE_MASK,
  3276. error);
  3277. unsigned offset = addr & (PAGE_SIZE-1);
  3278. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3279. int ret;
  3280. if (gpa == UNMAPPED_GVA) {
  3281. r = X86EMUL_PROPAGATE_FAULT;
  3282. goto out;
  3283. }
  3284. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3285. if (ret < 0) {
  3286. r = X86EMUL_IO_NEEDED;
  3287. goto out;
  3288. }
  3289. bytes -= towrite;
  3290. data += towrite;
  3291. addr += towrite;
  3292. }
  3293. out:
  3294. return r;
  3295. }
  3296. static int emulator_read_emulated(unsigned long addr,
  3297. void *val,
  3298. unsigned int bytes,
  3299. unsigned int *error_code,
  3300. struct kvm_vcpu *vcpu)
  3301. {
  3302. gpa_t gpa;
  3303. if (vcpu->mmio_read_completed) {
  3304. memcpy(val, vcpu->mmio_data, bytes);
  3305. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3306. vcpu->mmio_phys_addr, *(u64 *)val);
  3307. vcpu->mmio_read_completed = 0;
  3308. return X86EMUL_CONTINUE;
  3309. }
  3310. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3311. if (gpa == UNMAPPED_GVA)
  3312. return X86EMUL_PROPAGATE_FAULT;
  3313. /* For APIC access vmexit */
  3314. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3315. goto mmio;
  3316. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3317. == X86EMUL_CONTINUE)
  3318. return X86EMUL_CONTINUE;
  3319. mmio:
  3320. /*
  3321. * Is this MMIO handled locally?
  3322. */
  3323. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3324. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3325. return X86EMUL_CONTINUE;
  3326. }
  3327. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3328. vcpu->mmio_needed = 1;
  3329. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3330. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3331. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3332. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3333. return X86EMUL_IO_NEEDED;
  3334. }
  3335. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3336. const void *val, int bytes)
  3337. {
  3338. int ret;
  3339. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3340. if (ret < 0)
  3341. return 0;
  3342. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3343. return 1;
  3344. }
  3345. static int emulator_write_emulated_onepage(unsigned long addr,
  3346. const void *val,
  3347. unsigned int bytes,
  3348. unsigned int *error_code,
  3349. struct kvm_vcpu *vcpu)
  3350. {
  3351. gpa_t gpa;
  3352. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3353. if (gpa == UNMAPPED_GVA)
  3354. return X86EMUL_PROPAGATE_FAULT;
  3355. /* For APIC access vmexit */
  3356. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3357. goto mmio;
  3358. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3359. return X86EMUL_CONTINUE;
  3360. mmio:
  3361. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3362. /*
  3363. * Is this MMIO handled locally?
  3364. */
  3365. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3366. return X86EMUL_CONTINUE;
  3367. vcpu->mmio_needed = 1;
  3368. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3369. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3370. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3371. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3372. memcpy(vcpu->run->mmio.data, val, bytes);
  3373. return X86EMUL_CONTINUE;
  3374. }
  3375. int emulator_write_emulated(unsigned long addr,
  3376. const void *val,
  3377. unsigned int bytes,
  3378. unsigned int *error_code,
  3379. struct kvm_vcpu *vcpu)
  3380. {
  3381. /* Crossing a page boundary? */
  3382. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3383. int rc, now;
  3384. now = -addr & ~PAGE_MASK;
  3385. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3386. vcpu);
  3387. if (rc != X86EMUL_CONTINUE)
  3388. return rc;
  3389. addr += now;
  3390. val += now;
  3391. bytes -= now;
  3392. }
  3393. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3394. vcpu);
  3395. }
  3396. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3397. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3398. #ifdef CONFIG_X86_64
  3399. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3400. #else
  3401. # define CMPXCHG64(ptr, old, new) \
  3402. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3403. #endif
  3404. static int emulator_cmpxchg_emulated(unsigned long addr,
  3405. const void *old,
  3406. const void *new,
  3407. unsigned int bytes,
  3408. unsigned int *error_code,
  3409. struct kvm_vcpu *vcpu)
  3410. {
  3411. gpa_t gpa;
  3412. struct page *page;
  3413. char *kaddr;
  3414. bool exchanged;
  3415. /* guests cmpxchg8b have to be emulated atomically */
  3416. if (bytes > 8 || (bytes & (bytes - 1)))
  3417. goto emul_write;
  3418. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3419. if (gpa == UNMAPPED_GVA ||
  3420. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3421. goto emul_write;
  3422. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3423. goto emul_write;
  3424. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3425. if (is_error_page(page)) {
  3426. kvm_release_page_clean(page);
  3427. goto emul_write;
  3428. }
  3429. kaddr = kmap_atomic(page, KM_USER0);
  3430. kaddr += offset_in_page(gpa);
  3431. switch (bytes) {
  3432. case 1:
  3433. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3434. break;
  3435. case 2:
  3436. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3437. break;
  3438. case 4:
  3439. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3440. break;
  3441. case 8:
  3442. exchanged = CMPXCHG64(kaddr, old, new);
  3443. break;
  3444. default:
  3445. BUG();
  3446. }
  3447. kunmap_atomic(kaddr, KM_USER0);
  3448. kvm_release_page_dirty(page);
  3449. if (!exchanged)
  3450. return X86EMUL_CMPXCHG_FAILED;
  3451. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3452. return X86EMUL_CONTINUE;
  3453. emul_write:
  3454. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3455. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3456. }
  3457. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3458. {
  3459. /* TODO: String I/O for in kernel device */
  3460. int r;
  3461. if (vcpu->arch.pio.in)
  3462. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3463. vcpu->arch.pio.size, pd);
  3464. else
  3465. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3466. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3467. pd);
  3468. return r;
  3469. }
  3470. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3471. unsigned int count, struct kvm_vcpu *vcpu)
  3472. {
  3473. if (vcpu->arch.pio.count)
  3474. goto data_avail;
  3475. trace_kvm_pio(0, port, size, 1);
  3476. vcpu->arch.pio.port = port;
  3477. vcpu->arch.pio.in = 1;
  3478. vcpu->arch.pio.count = count;
  3479. vcpu->arch.pio.size = size;
  3480. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3481. data_avail:
  3482. memcpy(val, vcpu->arch.pio_data, size * count);
  3483. vcpu->arch.pio.count = 0;
  3484. return 1;
  3485. }
  3486. vcpu->run->exit_reason = KVM_EXIT_IO;
  3487. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3488. vcpu->run->io.size = size;
  3489. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3490. vcpu->run->io.count = count;
  3491. vcpu->run->io.port = port;
  3492. return 0;
  3493. }
  3494. static int emulator_pio_out_emulated(int size, unsigned short port,
  3495. const void *val, unsigned int count,
  3496. struct kvm_vcpu *vcpu)
  3497. {
  3498. trace_kvm_pio(1, port, size, 1);
  3499. vcpu->arch.pio.port = port;
  3500. vcpu->arch.pio.in = 0;
  3501. vcpu->arch.pio.count = count;
  3502. vcpu->arch.pio.size = size;
  3503. memcpy(vcpu->arch.pio_data, val, size * count);
  3504. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3505. vcpu->arch.pio.count = 0;
  3506. return 1;
  3507. }
  3508. vcpu->run->exit_reason = KVM_EXIT_IO;
  3509. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3510. vcpu->run->io.size = size;
  3511. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3512. vcpu->run->io.count = count;
  3513. vcpu->run->io.port = port;
  3514. return 0;
  3515. }
  3516. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3517. {
  3518. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3519. }
  3520. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3521. {
  3522. kvm_mmu_invlpg(vcpu, address);
  3523. return X86EMUL_CONTINUE;
  3524. }
  3525. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3526. {
  3527. if (!need_emulate_wbinvd(vcpu))
  3528. return X86EMUL_CONTINUE;
  3529. if (kvm_x86_ops->has_wbinvd_exit()) {
  3530. int cpu = get_cpu();
  3531. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3532. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3533. wbinvd_ipi, NULL, 1);
  3534. put_cpu();
  3535. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3536. } else
  3537. wbinvd();
  3538. return X86EMUL_CONTINUE;
  3539. }
  3540. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3541. int emulate_clts(struct kvm_vcpu *vcpu)
  3542. {
  3543. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3544. kvm_x86_ops->fpu_activate(vcpu);
  3545. return X86EMUL_CONTINUE;
  3546. }
  3547. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3548. {
  3549. return _kvm_get_dr(vcpu, dr, dest);
  3550. }
  3551. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3552. {
  3553. return __kvm_set_dr(vcpu, dr, value);
  3554. }
  3555. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3556. {
  3557. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3558. }
  3559. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3560. {
  3561. unsigned long value;
  3562. switch (cr) {
  3563. case 0:
  3564. value = kvm_read_cr0(vcpu);
  3565. break;
  3566. case 2:
  3567. value = vcpu->arch.cr2;
  3568. break;
  3569. case 3:
  3570. value = vcpu->arch.cr3;
  3571. break;
  3572. case 4:
  3573. value = kvm_read_cr4(vcpu);
  3574. break;
  3575. case 8:
  3576. value = kvm_get_cr8(vcpu);
  3577. break;
  3578. default:
  3579. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3580. return 0;
  3581. }
  3582. return value;
  3583. }
  3584. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3585. {
  3586. int res = 0;
  3587. switch (cr) {
  3588. case 0:
  3589. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3590. break;
  3591. case 2:
  3592. vcpu->arch.cr2 = val;
  3593. break;
  3594. case 3:
  3595. res = kvm_set_cr3(vcpu, val);
  3596. break;
  3597. case 4:
  3598. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3599. break;
  3600. case 8:
  3601. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3602. break;
  3603. default:
  3604. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3605. res = -1;
  3606. }
  3607. return res;
  3608. }
  3609. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3610. {
  3611. return kvm_x86_ops->get_cpl(vcpu);
  3612. }
  3613. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3614. {
  3615. kvm_x86_ops->get_gdt(vcpu, dt);
  3616. }
  3617. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3618. {
  3619. kvm_x86_ops->get_idt(vcpu, dt);
  3620. }
  3621. static unsigned long emulator_get_cached_segment_base(int seg,
  3622. struct kvm_vcpu *vcpu)
  3623. {
  3624. return get_segment_base(vcpu, seg);
  3625. }
  3626. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3627. struct kvm_vcpu *vcpu)
  3628. {
  3629. struct kvm_segment var;
  3630. kvm_get_segment(vcpu, &var, seg);
  3631. if (var.unusable)
  3632. return false;
  3633. if (var.g)
  3634. var.limit >>= 12;
  3635. set_desc_limit(desc, var.limit);
  3636. set_desc_base(desc, (unsigned long)var.base);
  3637. desc->type = var.type;
  3638. desc->s = var.s;
  3639. desc->dpl = var.dpl;
  3640. desc->p = var.present;
  3641. desc->avl = var.avl;
  3642. desc->l = var.l;
  3643. desc->d = var.db;
  3644. desc->g = var.g;
  3645. return true;
  3646. }
  3647. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3648. struct kvm_vcpu *vcpu)
  3649. {
  3650. struct kvm_segment var;
  3651. /* needed to preserve selector */
  3652. kvm_get_segment(vcpu, &var, seg);
  3653. var.base = get_desc_base(desc);
  3654. var.limit = get_desc_limit(desc);
  3655. if (desc->g)
  3656. var.limit = (var.limit << 12) | 0xfff;
  3657. var.type = desc->type;
  3658. var.present = desc->p;
  3659. var.dpl = desc->dpl;
  3660. var.db = desc->d;
  3661. var.s = desc->s;
  3662. var.l = desc->l;
  3663. var.g = desc->g;
  3664. var.avl = desc->avl;
  3665. var.present = desc->p;
  3666. var.unusable = !var.present;
  3667. var.padding = 0;
  3668. kvm_set_segment(vcpu, &var, seg);
  3669. return;
  3670. }
  3671. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3672. {
  3673. struct kvm_segment kvm_seg;
  3674. kvm_get_segment(vcpu, &kvm_seg, seg);
  3675. return kvm_seg.selector;
  3676. }
  3677. static void emulator_set_segment_selector(u16 sel, int seg,
  3678. struct kvm_vcpu *vcpu)
  3679. {
  3680. struct kvm_segment kvm_seg;
  3681. kvm_get_segment(vcpu, &kvm_seg, seg);
  3682. kvm_seg.selector = sel;
  3683. kvm_set_segment(vcpu, &kvm_seg, seg);
  3684. }
  3685. static struct x86_emulate_ops emulate_ops = {
  3686. .read_std = kvm_read_guest_virt_system,
  3687. .write_std = kvm_write_guest_virt_system,
  3688. .fetch = kvm_fetch_guest_virt,
  3689. .read_emulated = emulator_read_emulated,
  3690. .write_emulated = emulator_write_emulated,
  3691. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3692. .pio_in_emulated = emulator_pio_in_emulated,
  3693. .pio_out_emulated = emulator_pio_out_emulated,
  3694. .get_cached_descriptor = emulator_get_cached_descriptor,
  3695. .set_cached_descriptor = emulator_set_cached_descriptor,
  3696. .get_segment_selector = emulator_get_segment_selector,
  3697. .set_segment_selector = emulator_set_segment_selector,
  3698. .get_cached_segment_base = emulator_get_cached_segment_base,
  3699. .get_gdt = emulator_get_gdt,
  3700. .get_idt = emulator_get_idt,
  3701. .get_cr = emulator_get_cr,
  3702. .set_cr = emulator_set_cr,
  3703. .cpl = emulator_get_cpl,
  3704. .get_dr = emulator_get_dr,
  3705. .set_dr = emulator_set_dr,
  3706. .set_msr = kvm_set_msr,
  3707. .get_msr = kvm_get_msr,
  3708. };
  3709. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3710. {
  3711. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3712. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3713. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3714. vcpu->arch.regs_dirty = ~0;
  3715. }
  3716. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3717. {
  3718. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3719. /*
  3720. * an sti; sti; sequence only disable interrupts for the first
  3721. * instruction. So, if the last instruction, be it emulated or
  3722. * not, left the system with the INT_STI flag enabled, it
  3723. * means that the last instruction is an sti. We should not
  3724. * leave the flag on in this case. The same goes for mov ss
  3725. */
  3726. if (!(int_shadow & mask))
  3727. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3728. }
  3729. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3730. {
  3731. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3732. if (ctxt->exception == PF_VECTOR)
  3733. kvm_propagate_fault(vcpu);
  3734. else if (ctxt->error_code_valid)
  3735. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3736. else
  3737. kvm_queue_exception(vcpu, ctxt->exception);
  3738. }
  3739. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3740. {
  3741. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3742. int cs_db, cs_l;
  3743. cache_all_regs(vcpu);
  3744. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3745. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3746. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3747. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3748. vcpu->arch.emulate_ctxt.mode =
  3749. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3750. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3751. ? X86EMUL_MODE_VM86 : cs_l
  3752. ? X86EMUL_MODE_PROT64 : cs_db
  3753. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3754. memset(c, 0, sizeof(struct decode_cache));
  3755. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3756. }
  3757. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
  3758. {
  3759. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3760. int ret;
  3761. init_emulate_ctxt(vcpu);
  3762. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  3763. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  3764. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
  3765. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
  3766. if (ret != X86EMUL_CONTINUE)
  3767. return EMULATE_FAIL;
  3768. vcpu->arch.emulate_ctxt.eip = c->eip;
  3769. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3770. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3771. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3772. if (irq == NMI_VECTOR)
  3773. vcpu->arch.nmi_pending = false;
  3774. else
  3775. vcpu->arch.interrupt.pending = false;
  3776. return EMULATE_DONE;
  3777. }
  3778. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3779. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3780. {
  3781. ++vcpu->stat.insn_emulation_fail;
  3782. trace_kvm_emulate_insn_failed(vcpu);
  3783. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3784. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3785. vcpu->run->internal.ndata = 0;
  3786. kvm_queue_exception(vcpu, UD_VECTOR);
  3787. return EMULATE_FAIL;
  3788. }
  3789. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3790. {
  3791. gpa_t gpa;
  3792. if (tdp_enabled)
  3793. return false;
  3794. /*
  3795. * if emulation was due to access to shadowed page table
  3796. * and it failed try to unshadow page and re-entetr the
  3797. * guest to let CPU execute the instruction.
  3798. */
  3799. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3800. return true;
  3801. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3802. if (gpa == UNMAPPED_GVA)
  3803. return true; /* let cpu generate fault */
  3804. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3805. return true;
  3806. return false;
  3807. }
  3808. int emulate_instruction(struct kvm_vcpu *vcpu,
  3809. unsigned long cr2,
  3810. u16 error_code,
  3811. int emulation_type)
  3812. {
  3813. int r;
  3814. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3815. kvm_clear_exception_queue(vcpu);
  3816. vcpu->arch.mmio_fault_cr2 = cr2;
  3817. /*
  3818. * TODO: fix emulate.c to use guest_read/write_register
  3819. * instead of direct ->regs accesses, can save hundred cycles
  3820. * on Intel for instructions that don't read/change RSP, for
  3821. * for example.
  3822. */
  3823. cache_all_regs(vcpu);
  3824. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3825. init_emulate_ctxt(vcpu);
  3826. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3827. vcpu->arch.emulate_ctxt.exception = -1;
  3828. vcpu->arch.emulate_ctxt.perm_ok = false;
  3829. r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
  3830. if (r == X86EMUL_PROPAGATE_FAULT)
  3831. goto done;
  3832. trace_kvm_emulate_insn_start(vcpu);
  3833. /* Only allow emulation of specific instructions on #UD
  3834. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3835. if (emulation_type & EMULTYPE_TRAP_UD) {
  3836. if (!c->twobyte)
  3837. return EMULATE_FAIL;
  3838. switch (c->b) {
  3839. case 0x01: /* VMMCALL */
  3840. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3841. return EMULATE_FAIL;
  3842. break;
  3843. case 0x34: /* sysenter */
  3844. case 0x35: /* sysexit */
  3845. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3846. return EMULATE_FAIL;
  3847. break;
  3848. case 0x05: /* syscall */
  3849. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3850. return EMULATE_FAIL;
  3851. break;
  3852. default:
  3853. return EMULATE_FAIL;
  3854. }
  3855. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3856. return EMULATE_FAIL;
  3857. }
  3858. ++vcpu->stat.insn_emulation;
  3859. if (r) {
  3860. if (reexecute_instruction(vcpu, cr2))
  3861. return EMULATE_DONE;
  3862. if (emulation_type & EMULTYPE_SKIP)
  3863. return EMULATE_FAIL;
  3864. return handle_emulation_failure(vcpu);
  3865. }
  3866. }
  3867. if (emulation_type & EMULTYPE_SKIP) {
  3868. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3869. return EMULATE_DONE;
  3870. }
  3871. /* this is needed for vmware backdor interface to work since it
  3872. changes registers values during IO operation */
  3873. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3874. restart:
  3875. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3876. if (r == EMULATION_FAILED) {
  3877. if (reexecute_instruction(vcpu, cr2))
  3878. return EMULATE_DONE;
  3879. return handle_emulation_failure(vcpu);
  3880. }
  3881. done:
  3882. if (vcpu->arch.emulate_ctxt.exception >= 0) {
  3883. inject_emulated_exception(vcpu);
  3884. r = EMULATE_DONE;
  3885. } else if (vcpu->arch.pio.count) {
  3886. if (!vcpu->arch.pio.in)
  3887. vcpu->arch.pio.count = 0;
  3888. r = EMULATE_DO_MMIO;
  3889. } else if (vcpu->mmio_needed) {
  3890. if (vcpu->mmio_is_write)
  3891. vcpu->mmio_needed = 0;
  3892. r = EMULATE_DO_MMIO;
  3893. } else if (r == EMULATION_RESTART)
  3894. goto restart;
  3895. else
  3896. r = EMULATE_DONE;
  3897. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3898. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3899. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3900. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3901. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3902. return r;
  3903. }
  3904. EXPORT_SYMBOL_GPL(emulate_instruction);
  3905. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3906. {
  3907. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3908. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3909. /* do not return to emulator after return from userspace */
  3910. vcpu->arch.pio.count = 0;
  3911. return ret;
  3912. }
  3913. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3914. static void tsc_bad(void *info)
  3915. {
  3916. __get_cpu_var(cpu_tsc_khz) = 0;
  3917. }
  3918. static void tsc_khz_changed(void *data)
  3919. {
  3920. struct cpufreq_freqs *freq = data;
  3921. unsigned long khz = 0;
  3922. if (data)
  3923. khz = freq->new;
  3924. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3925. khz = cpufreq_quick_get(raw_smp_processor_id());
  3926. if (!khz)
  3927. khz = tsc_khz;
  3928. __get_cpu_var(cpu_tsc_khz) = khz;
  3929. }
  3930. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3931. void *data)
  3932. {
  3933. struct cpufreq_freqs *freq = data;
  3934. struct kvm *kvm;
  3935. struct kvm_vcpu *vcpu;
  3936. int i, send_ipi = 0;
  3937. /*
  3938. * We allow guests to temporarily run on slowing clocks,
  3939. * provided we notify them after, or to run on accelerating
  3940. * clocks, provided we notify them before. Thus time never
  3941. * goes backwards.
  3942. *
  3943. * However, we have a problem. We can't atomically update
  3944. * the frequency of a given CPU from this function; it is
  3945. * merely a notifier, which can be called from any CPU.
  3946. * Changing the TSC frequency at arbitrary points in time
  3947. * requires a recomputation of local variables related to
  3948. * the TSC for each VCPU. We must flag these local variables
  3949. * to be updated and be sure the update takes place with the
  3950. * new frequency before any guests proceed.
  3951. *
  3952. * Unfortunately, the combination of hotplug CPU and frequency
  3953. * change creates an intractable locking scenario; the order
  3954. * of when these callouts happen is undefined with respect to
  3955. * CPU hotplug, and they can race with each other. As such,
  3956. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3957. * undefined; you can actually have a CPU frequency change take
  3958. * place in between the computation of X and the setting of the
  3959. * variable. To protect against this problem, all updates of
  3960. * the per_cpu tsc_khz variable are done in an interrupt
  3961. * protected IPI, and all callers wishing to update the value
  3962. * must wait for a synchronous IPI to complete (which is trivial
  3963. * if the caller is on the CPU already). This establishes the
  3964. * necessary total order on variable updates.
  3965. *
  3966. * Note that because a guest time update may take place
  3967. * anytime after the setting of the VCPU's request bit, the
  3968. * correct TSC value must be set before the request. However,
  3969. * to ensure the update actually makes it to any guest which
  3970. * starts running in hardware virtualization between the set
  3971. * and the acquisition of the spinlock, we must also ping the
  3972. * CPU after setting the request bit.
  3973. *
  3974. */
  3975. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3976. return 0;
  3977. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3978. return 0;
  3979. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3980. spin_lock(&kvm_lock);
  3981. list_for_each_entry(kvm, &vm_list, vm_list) {
  3982. kvm_for_each_vcpu(i, vcpu, kvm) {
  3983. if (vcpu->cpu != freq->cpu)
  3984. continue;
  3985. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  3986. if (vcpu->cpu != smp_processor_id())
  3987. send_ipi = 1;
  3988. }
  3989. }
  3990. spin_unlock(&kvm_lock);
  3991. if (freq->old < freq->new && send_ipi) {
  3992. /*
  3993. * We upscale the frequency. Must make the guest
  3994. * doesn't see old kvmclock values while running with
  3995. * the new frequency, otherwise we risk the guest sees
  3996. * time go backwards.
  3997. *
  3998. * In case we update the frequency for another cpu
  3999. * (which might be in guest context) send an interrupt
  4000. * to kick the cpu out of guest context. Next time
  4001. * guest context is entered kvmclock will be updated,
  4002. * so the guest will not see stale values.
  4003. */
  4004. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4005. }
  4006. return 0;
  4007. }
  4008. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4009. .notifier_call = kvmclock_cpufreq_notifier
  4010. };
  4011. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4012. unsigned long action, void *hcpu)
  4013. {
  4014. unsigned int cpu = (unsigned long)hcpu;
  4015. switch (action) {
  4016. case CPU_ONLINE:
  4017. case CPU_DOWN_FAILED:
  4018. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4019. break;
  4020. case CPU_DOWN_PREPARE:
  4021. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4022. break;
  4023. }
  4024. return NOTIFY_OK;
  4025. }
  4026. static struct notifier_block kvmclock_cpu_notifier_block = {
  4027. .notifier_call = kvmclock_cpu_notifier,
  4028. .priority = -INT_MAX
  4029. };
  4030. static void kvm_timer_init(void)
  4031. {
  4032. int cpu;
  4033. max_tsc_khz = tsc_khz;
  4034. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4035. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4036. #ifdef CONFIG_CPU_FREQ
  4037. struct cpufreq_policy policy;
  4038. memset(&policy, 0, sizeof(policy));
  4039. cpu = get_cpu();
  4040. cpufreq_get_policy(&policy, cpu);
  4041. if (policy.cpuinfo.max_freq)
  4042. max_tsc_khz = policy.cpuinfo.max_freq;
  4043. put_cpu();
  4044. #endif
  4045. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4046. CPUFREQ_TRANSITION_NOTIFIER);
  4047. }
  4048. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4049. for_each_online_cpu(cpu)
  4050. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4051. }
  4052. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4053. static int kvm_is_in_guest(void)
  4054. {
  4055. return percpu_read(current_vcpu) != NULL;
  4056. }
  4057. static int kvm_is_user_mode(void)
  4058. {
  4059. int user_mode = 3;
  4060. if (percpu_read(current_vcpu))
  4061. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4062. return user_mode != 0;
  4063. }
  4064. static unsigned long kvm_get_guest_ip(void)
  4065. {
  4066. unsigned long ip = 0;
  4067. if (percpu_read(current_vcpu))
  4068. ip = kvm_rip_read(percpu_read(current_vcpu));
  4069. return ip;
  4070. }
  4071. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4072. .is_in_guest = kvm_is_in_guest,
  4073. .is_user_mode = kvm_is_user_mode,
  4074. .get_guest_ip = kvm_get_guest_ip,
  4075. };
  4076. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4077. {
  4078. percpu_write(current_vcpu, vcpu);
  4079. }
  4080. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4081. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4082. {
  4083. percpu_write(current_vcpu, NULL);
  4084. }
  4085. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4086. int kvm_arch_init(void *opaque)
  4087. {
  4088. int r;
  4089. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4090. if (kvm_x86_ops) {
  4091. printk(KERN_ERR "kvm: already loaded the other module\n");
  4092. r = -EEXIST;
  4093. goto out;
  4094. }
  4095. if (!ops->cpu_has_kvm_support()) {
  4096. printk(KERN_ERR "kvm: no hardware support\n");
  4097. r = -EOPNOTSUPP;
  4098. goto out;
  4099. }
  4100. if (ops->disabled_by_bios()) {
  4101. printk(KERN_ERR "kvm: disabled by bios\n");
  4102. r = -EOPNOTSUPP;
  4103. goto out;
  4104. }
  4105. r = kvm_mmu_module_init();
  4106. if (r)
  4107. goto out;
  4108. kvm_init_msr_list();
  4109. kvm_x86_ops = ops;
  4110. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4111. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4112. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4113. kvm_timer_init();
  4114. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4115. if (cpu_has_xsave)
  4116. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4117. return 0;
  4118. out:
  4119. return r;
  4120. }
  4121. void kvm_arch_exit(void)
  4122. {
  4123. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4124. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4125. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4126. CPUFREQ_TRANSITION_NOTIFIER);
  4127. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4128. kvm_x86_ops = NULL;
  4129. kvm_mmu_module_exit();
  4130. }
  4131. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4132. {
  4133. ++vcpu->stat.halt_exits;
  4134. if (irqchip_in_kernel(vcpu->kvm)) {
  4135. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4136. return 1;
  4137. } else {
  4138. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4139. return 0;
  4140. }
  4141. }
  4142. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4143. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4144. unsigned long a1)
  4145. {
  4146. if (is_long_mode(vcpu))
  4147. return a0;
  4148. else
  4149. return a0 | ((gpa_t)a1 << 32);
  4150. }
  4151. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4152. {
  4153. u64 param, ingpa, outgpa, ret;
  4154. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4155. bool fast, longmode;
  4156. int cs_db, cs_l;
  4157. /*
  4158. * hypercall generates UD from non zero cpl and real mode
  4159. * per HYPER-V spec
  4160. */
  4161. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4162. kvm_queue_exception(vcpu, UD_VECTOR);
  4163. return 0;
  4164. }
  4165. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4166. longmode = is_long_mode(vcpu) && cs_l == 1;
  4167. if (!longmode) {
  4168. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4169. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4170. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4171. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4172. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4173. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4174. }
  4175. #ifdef CONFIG_X86_64
  4176. else {
  4177. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4178. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4179. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4180. }
  4181. #endif
  4182. code = param & 0xffff;
  4183. fast = (param >> 16) & 0x1;
  4184. rep_cnt = (param >> 32) & 0xfff;
  4185. rep_idx = (param >> 48) & 0xfff;
  4186. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4187. switch (code) {
  4188. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4189. kvm_vcpu_on_spin(vcpu);
  4190. break;
  4191. default:
  4192. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4193. break;
  4194. }
  4195. ret = res | (((u64)rep_done & 0xfff) << 32);
  4196. if (longmode) {
  4197. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4198. } else {
  4199. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4200. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4201. }
  4202. return 1;
  4203. }
  4204. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4205. {
  4206. unsigned long nr, a0, a1, a2, a3, ret;
  4207. int r = 1;
  4208. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4209. return kvm_hv_hypercall(vcpu);
  4210. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4211. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4212. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4213. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4214. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4215. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4216. if (!is_long_mode(vcpu)) {
  4217. nr &= 0xFFFFFFFF;
  4218. a0 &= 0xFFFFFFFF;
  4219. a1 &= 0xFFFFFFFF;
  4220. a2 &= 0xFFFFFFFF;
  4221. a3 &= 0xFFFFFFFF;
  4222. }
  4223. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4224. ret = -KVM_EPERM;
  4225. goto out;
  4226. }
  4227. switch (nr) {
  4228. case KVM_HC_VAPIC_POLL_IRQ:
  4229. ret = 0;
  4230. break;
  4231. case KVM_HC_MMU_OP:
  4232. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4233. break;
  4234. default:
  4235. ret = -KVM_ENOSYS;
  4236. break;
  4237. }
  4238. out:
  4239. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4240. ++vcpu->stat.hypercalls;
  4241. return r;
  4242. }
  4243. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4244. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4245. {
  4246. char instruction[3];
  4247. unsigned long rip = kvm_rip_read(vcpu);
  4248. /*
  4249. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4250. * to ensure that the updated hypercall appears atomically across all
  4251. * VCPUs.
  4252. */
  4253. kvm_mmu_zap_all(vcpu->kvm);
  4254. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4255. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4256. }
  4257. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4258. {
  4259. struct desc_ptr dt = { limit, base };
  4260. kvm_x86_ops->set_gdt(vcpu, &dt);
  4261. }
  4262. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4263. {
  4264. struct desc_ptr dt = { limit, base };
  4265. kvm_x86_ops->set_idt(vcpu, &dt);
  4266. }
  4267. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4268. {
  4269. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4270. int j, nent = vcpu->arch.cpuid_nent;
  4271. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4272. /* when no next entry is found, the current entry[i] is reselected */
  4273. for (j = i + 1; ; j = (j + 1) % nent) {
  4274. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4275. if (ej->function == e->function) {
  4276. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4277. return j;
  4278. }
  4279. }
  4280. return 0; /* silence gcc, even though control never reaches here */
  4281. }
  4282. /* find an entry with matching function, matching index (if needed), and that
  4283. * should be read next (if it's stateful) */
  4284. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4285. u32 function, u32 index)
  4286. {
  4287. if (e->function != function)
  4288. return 0;
  4289. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4290. return 0;
  4291. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4292. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4293. return 0;
  4294. return 1;
  4295. }
  4296. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4297. u32 function, u32 index)
  4298. {
  4299. int i;
  4300. struct kvm_cpuid_entry2 *best = NULL;
  4301. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4302. struct kvm_cpuid_entry2 *e;
  4303. e = &vcpu->arch.cpuid_entries[i];
  4304. if (is_matching_cpuid_entry(e, function, index)) {
  4305. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4306. move_to_next_stateful_cpuid_entry(vcpu, i);
  4307. best = e;
  4308. break;
  4309. }
  4310. /*
  4311. * Both basic or both extended?
  4312. */
  4313. if (((e->function ^ function) & 0x80000000) == 0)
  4314. if (!best || e->function > best->function)
  4315. best = e;
  4316. }
  4317. return best;
  4318. }
  4319. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4320. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4321. {
  4322. struct kvm_cpuid_entry2 *best;
  4323. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4324. if (!best || best->eax < 0x80000008)
  4325. goto not_found;
  4326. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4327. if (best)
  4328. return best->eax & 0xff;
  4329. not_found:
  4330. return 36;
  4331. }
  4332. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4333. {
  4334. u32 function, index;
  4335. struct kvm_cpuid_entry2 *best;
  4336. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4337. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4338. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4339. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4340. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4341. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4342. best = kvm_find_cpuid_entry(vcpu, function, index);
  4343. if (best) {
  4344. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4345. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4346. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4347. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4348. }
  4349. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4350. trace_kvm_cpuid(function,
  4351. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4352. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4353. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4354. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4355. }
  4356. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4357. /*
  4358. * Check if userspace requested an interrupt window, and that the
  4359. * interrupt window is open.
  4360. *
  4361. * No need to exit to userspace if we already have an interrupt queued.
  4362. */
  4363. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4364. {
  4365. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4366. vcpu->run->request_interrupt_window &&
  4367. kvm_arch_interrupt_allowed(vcpu));
  4368. }
  4369. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4370. {
  4371. struct kvm_run *kvm_run = vcpu->run;
  4372. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4373. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4374. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4375. if (irqchip_in_kernel(vcpu->kvm))
  4376. kvm_run->ready_for_interrupt_injection = 1;
  4377. else
  4378. kvm_run->ready_for_interrupt_injection =
  4379. kvm_arch_interrupt_allowed(vcpu) &&
  4380. !kvm_cpu_has_interrupt(vcpu) &&
  4381. !kvm_event_needs_reinjection(vcpu);
  4382. }
  4383. static void vapic_enter(struct kvm_vcpu *vcpu)
  4384. {
  4385. struct kvm_lapic *apic = vcpu->arch.apic;
  4386. struct page *page;
  4387. if (!apic || !apic->vapic_addr)
  4388. return;
  4389. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4390. vcpu->arch.apic->vapic_page = page;
  4391. }
  4392. static void vapic_exit(struct kvm_vcpu *vcpu)
  4393. {
  4394. struct kvm_lapic *apic = vcpu->arch.apic;
  4395. int idx;
  4396. if (!apic || !apic->vapic_addr)
  4397. return;
  4398. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4399. kvm_release_page_dirty(apic->vapic_page);
  4400. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4401. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4402. }
  4403. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4404. {
  4405. int max_irr, tpr;
  4406. if (!kvm_x86_ops->update_cr8_intercept)
  4407. return;
  4408. if (!vcpu->arch.apic)
  4409. return;
  4410. if (!vcpu->arch.apic->vapic_addr)
  4411. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4412. else
  4413. max_irr = -1;
  4414. if (max_irr != -1)
  4415. max_irr >>= 4;
  4416. tpr = kvm_lapic_get_cr8(vcpu);
  4417. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4418. }
  4419. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4420. {
  4421. /* try to reinject previous events if any */
  4422. if (vcpu->arch.exception.pending) {
  4423. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4424. vcpu->arch.exception.has_error_code,
  4425. vcpu->arch.exception.error_code);
  4426. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4427. vcpu->arch.exception.has_error_code,
  4428. vcpu->arch.exception.error_code,
  4429. vcpu->arch.exception.reinject);
  4430. return;
  4431. }
  4432. if (vcpu->arch.nmi_injected) {
  4433. kvm_x86_ops->set_nmi(vcpu);
  4434. return;
  4435. }
  4436. if (vcpu->arch.interrupt.pending) {
  4437. kvm_x86_ops->set_irq(vcpu);
  4438. return;
  4439. }
  4440. /* try to inject new event if pending */
  4441. if (vcpu->arch.nmi_pending) {
  4442. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4443. vcpu->arch.nmi_pending = false;
  4444. vcpu->arch.nmi_injected = true;
  4445. kvm_x86_ops->set_nmi(vcpu);
  4446. }
  4447. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4448. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4449. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4450. false);
  4451. kvm_x86_ops->set_irq(vcpu);
  4452. }
  4453. }
  4454. }
  4455. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4456. {
  4457. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4458. !vcpu->guest_xcr0_loaded) {
  4459. /* kvm_set_xcr() also depends on this */
  4460. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4461. vcpu->guest_xcr0_loaded = 1;
  4462. }
  4463. }
  4464. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4465. {
  4466. if (vcpu->guest_xcr0_loaded) {
  4467. if (vcpu->arch.xcr0 != host_xcr0)
  4468. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4469. vcpu->guest_xcr0_loaded = 0;
  4470. }
  4471. }
  4472. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4473. {
  4474. int r;
  4475. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4476. vcpu->run->request_interrupt_window;
  4477. if (vcpu->requests) {
  4478. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4479. kvm_mmu_unload(vcpu);
  4480. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4481. __kvm_migrate_timers(vcpu);
  4482. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4483. r = kvm_guest_time_update(vcpu);
  4484. if (unlikely(r))
  4485. goto out;
  4486. }
  4487. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4488. kvm_mmu_sync_roots(vcpu);
  4489. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4490. kvm_x86_ops->tlb_flush(vcpu);
  4491. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4492. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4493. r = 0;
  4494. goto out;
  4495. }
  4496. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4497. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4498. r = 0;
  4499. goto out;
  4500. }
  4501. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4502. vcpu->fpu_active = 0;
  4503. kvm_x86_ops->fpu_deactivate(vcpu);
  4504. }
  4505. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4506. /* Page is swapped out. Do synthetic halt */
  4507. vcpu->arch.apf.halted = true;
  4508. r = 1;
  4509. goto out;
  4510. }
  4511. }
  4512. r = kvm_mmu_reload(vcpu);
  4513. if (unlikely(r))
  4514. goto out;
  4515. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4516. inject_pending_event(vcpu);
  4517. /* enable NMI/IRQ window open exits if needed */
  4518. if (vcpu->arch.nmi_pending)
  4519. kvm_x86_ops->enable_nmi_window(vcpu);
  4520. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4521. kvm_x86_ops->enable_irq_window(vcpu);
  4522. if (kvm_lapic_enabled(vcpu)) {
  4523. update_cr8_intercept(vcpu);
  4524. kvm_lapic_sync_to_vapic(vcpu);
  4525. }
  4526. }
  4527. preempt_disable();
  4528. kvm_x86_ops->prepare_guest_switch(vcpu);
  4529. if (vcpu->fpu_active)
  4530. kvm_load_guest_fpu(vcpu);
  4531. kvm_load_guest_xcr0(vcpu);
  4532. atomic_set(&vcpu->guest_mode, 1);
  4533. smp_wmb();
  4534. local_irq_disable();
  4535. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4536. || need_resched() || signal_pending(current)) {
  4537. atomic_set(&vcpu->guest_mode, 0);
  4538. smp_wmb();
  4539. local_irq_enable();
  4540. preempt_enable();
  4541. kvm_x86_ops->cancel_injection(vcpu);
  4542. r = 1;
  4543. goto out;
  4544. }
  4545. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4546. kvm_guest_enter();
  4547. if (unlikely(vcpu->arch.switch_db_regs)) {
  4548. set_debugreg(0, 7);
  4549. set_debugreg(vcpu->arch.eff_db[0], 0);
  4550. set_debugreg(vcpu->arch.eff_db[1], 1);
  4551. set_debugreg(vcpu->arch.eff_db[2], 2);
  4552. set_debugreg(vcpu->arch.eff_db[3], 3);
  4553. }
  4554. trace_kvm_entry(vcpu->vcpu_id);
  4555. kvm_x86_ops->run(vcpu);
  4556. /*
  4557. * If the guest has used debug registers, at least dr7
  4558. * will be disabled while returning to the host.
  4559. * If we don't have active breakpoints in the host, we don't
  4560. * care about the messed up debug address registers. But if
  4561. * we have some of them active, restore the old state.
  4562. */
  4563. if (hw_breakpoint_active())
  4564. hw_breakpoint_restore();
  4565. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4566. atomic_set(&vcpu->guest_mode, 0);
  4567. smp_wmb();
  4568. local_irq_enable();
  4569. ++vcpu->stat.exits;
  4570. /*
  4571. * We must have an instruction between local_irq_enable() and
  4572. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4573. * the interrupt shadow. The stat.exits increment will do nicely.
  4574. * But we need to prevent reordering, hence this barrier():
  4575. */
  4576. barrier();
  4577. kvm_guest_exit();
  4578. preempt_enable();
  4579. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4580. /*
  4581. * Profile KVM exit RIPs:
  4582. */
  4583. if (unlikely(prof_on == KVM_PROFILING)) {
  4584. unsigned long rip = kvm_rip_read(vcpu);
  4585. profile_hit(KVM_PROFILING, (void *)rip);
  4586. }
  4587. kvm_lapic_sync_from_vapic(vcpu);
  4588. r = kvm_x86_ops->handle_exit(vcpu);
  4589. out:
  4590. return r;
  4591. }
  4592. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4593. {
  4594. int r;
  4595. struct kvm *kvm = vcpu->kvm;
  4596. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4597. pr_debug("vcpu %d received sipi with vector # %x\n",
  4598. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4599. kvm_lapic_reset(vcpu);
  4600. r = kvm_arch_vcpu_reset(vcpu);
  4601. if (r)
  4602. return r;
  4603. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4604. }
  4605. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4606. vapic_enter(vcpu);
  4607. r = 1;
  4608. while (r > 0) {
  4609. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  4610. !vcpu->arch.apf.halted)
  4611. r = vcpu_enter_guest(vcpu);
  4612. else {
  4613. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4614. kvm_vcpu_block(vcpu);
  4615. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4616. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4617. {
  4618. switch(vcpu->arch.mp_state) {
  4619. case KVM_MP_STATE_HALTED:
  4620. vcpu->arch.mp_state =
  4621. KVM_MP_STATE_RUNNABLE;
  4622. case KVM_MP_STATE_RUNNABLE:
  4623. vcpu->arch.apf.halted = false;
  4624. break;
  4625. case KVM_MP_STATE_SIPI_RECEIVED:
  4626. default:
  4627. r = -EINTR;
  4628. break;
  4629. }
  4630. }
  4631. }
  4632. if (r <= 0)
  4633. break;
  4634. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4635. if (kvm_cpu_has_pending_timer(vcpu))
  4636. kvm_inject_pending_timer_irqs(vcpu);
  4637. if (dm_request_for_irq_injection(vcpu)) {
  4638. r = -EINTR;
  4639. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4640. ++vcpu->stat.request_irq_exits;
  4641. }
  4642. kvm_check_async_pf_completion(vcpu);
  4643. if (signal_pending(current)) {
  4644. r = -EINTR;
  4645. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4646. ++vcpu->stat.signal_exits;
  4647. }
  4648. if (need_resched()) {
  4649. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4650. kvm_resched(vcpu);
  4651. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4652. }
  4653. }
  4654. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4655. vapic_exit(vcpu);
  4656. return r;
  4657. }
  4658. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4659. {
  4660. int r;
  4661. sigset_t sigsaved;
  4662. if (vcpu->sigset_active)
  4663. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4664. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4665. kvm_vcpu_block(vcpu);
  4666. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4667. r = -EAGAIN;
  4668. goto out;
  4669. }
  4670. /* re-sync apic's tpr */
  4671. if (!irqchip_in_kernel(vcpu->kvm))
  4672. kvm_set_cr8(vcpu, kvm_run->cr8);
  4673. if (vcpu->arch.pio.count || vcpu->mmio_needed) {
  4674. if (vcpu->mmio_needed) {
  4675. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4676. vcpu->mmio_read_completed = 1;
  4677. vcpu->mmio_needed = 0;
  4678. }
  4679. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4680. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4681. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4682. if (r != EMULATE_DONE) {
  4683. r = 0;
  4684. goto out;
  4685. }
  4686. }
  4687. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4688. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4689. kvm_run->hypercall.ret);
  4690. r = __vcpu_run(vcpu);
  4691. out:
  4692. post_kvm_run_save(vcpu);
  4693. if (vcpu->sigset_active)
  4694. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4695. return r;
  4696. }
  4697. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4698. {
  4699. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4700. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4701. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4702. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4703. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4704. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4705. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4706. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4707. #ifdef CONFIG_X86_64
  4708. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4709. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4710. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4711. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4712. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4713. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4714. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4715. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4716. #endif
  4717. regs->rip = kvm_rip_read(vcpu);
  4718. regs->rflags = kvm_get_rflags(vcpu);
  4719. return 0;
  4720. }
  4721. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4722. {
  4723. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4724. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4725. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4726. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4727. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4728. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4729. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4730. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4731. #ifdef CONFIG_X86_64
  4732. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4733. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4734. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4735. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4736. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4737. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4738. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4739. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4740. #endif
  4741. kvm_rip_write(vcpu, regs->rip);
  4742. kvm_set_rflags(vcpu, regs->rflags);
  4743. vcpu->arch.exception.pending = false;
  4744. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4745. return 0;
  4746. }
  4747. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4748. {
  4749. struct kvm_segment cs;
  4750. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4751. *db = cs.db;
  4752. *l = cs.l;
  4753. }
  4754. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4755. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4756. struct kvm_sregs *sregs)
  4757. {
  4758. struct desc_ptr dt;
  4759. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4760. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4761. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4762. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4763. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4764. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4765. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4766. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4767. kvm_x86_ops->get_idt(vcpu, &dt);
  4768. sregs->idt.limit = dt.size;
  4769. sregs->idt.base = dt.address;
  4770. kvm_x86_ops->get_gdt(vcpu, &dt);
  4771. sregs->gdt.limit = dt.size;
  4772. sregs->gdt.base = dt.address;
  4773. sregs->cr0 = kvm_read_cr0(vcpu);
  4774. sregs->cr2 = vcpu->arch.cr2;
  4775. sregs->cr3 = vcpu->arch.cr3;
  4776. sregs->cr4 = kvm_read_cr4(vcpu);
  4777. sregs->cr8 = kvm_get_cr8(vcpu);
  4778. sregs->efer = vcpu->arch.efer;
  4779. sregs->apic_base = kvm_get_apic_base(vcpu);
  4780. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4781. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4782. set_bit(vcpu->arch.interrupt.nr,
  4783. (unsigned long *)sregs->interrupt_bitmap);
  4784. return 0;
  4785. }
  4786. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4787. struct kvm_mp_state *mp_state)
  4788. {
  4789. mp_state->mp_state = vcpu->arch.mp_state;
  4790. return 0;
  4791. }
  4792. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4793. struct kvm_mp_state *mp_state)
  4794. {
  4795. vcpu->arch.mp_state = mp_state->mp_state;
  4796. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4797. return 0;
  4798. }
  4799. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4800. bool has_error_code, u32 error_code)
  4801. {
  4802. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4803. int ret;
  4804. init_emulate_ctxt(vcpu);
  4805. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4806. tss_selector, reason, has_error_code,
  4807. error_code);
  4808. if (ret)
  4809. return EMULATE_FAIL;
  4810. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4811. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4812. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4813. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4814. return EMULATE_DONE;
  4815. }
  4816. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4817. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4818. struct kvm_sregs *sregs)
  4819. {
  4820. int mmu_reset_needed = 0;
  4821. int pending_vec, max_bits;
  4822. struct desc_ptr dt;
  4823. dt.size = sregs->idt.limit;
  4824. dt.address = sregs->idt.base;
  4825. kvm_x86_ops->set_idt(vcpu, &dt);
  4826. dt.size = sregs->gdt.limit;
  4827. dt.address = sregs->gdt.base;
  4828. kvm_x86_ops->set_gdt(vcpu, &dt);
  4829. vcpu->arch.cr2 = sregs->cr2;
  4830. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4831. vcpu->arch.cr3 = sregs->cr3;
  4832. kvm_set_cr8(vcpu, sregs->cr8);
  4833. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4834. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4835. kvm_set_apic_base(vcpu, sregs->apic_base);
  4836. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4837. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4838. vcpu->arch.cr0 = sregs->cr0;
  4839. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4840. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4841. if (sregs->cr4 & X86_CR4_OSXSAVE)
  4842. update_cpuid(vcpu);
  4843. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4844. load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
  4845. mmu_reset_needed = 1;
  4846. }
  4847. if (mmu_reset_needed)
  4848. kvm_mmu_reset_context(vcpu);
  4849. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4850. pending_vec = find_first_bit(
  4851. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4852. if (pending_vec < max_bits) {
  4853. kvm_queue_interrupt(vcpu, pending_vec, false);
  4854. pr_debug("Set back pending irq %d\n", pending_vec);
  4855. if (irqchip_in_kernel(vcpu->kvm))
  4856. kvm_pic_clear_isr_ack(vcpu->kvm);
  4857. }
  4858. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4859. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4860. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4861. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4862. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4863. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4864. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4865. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4866. update_cr8_intercept(vcpu);
  4867. /* Older userspace won't unhalt the vcpu on reset. */
  4868. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4869. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4870. !is_protmode(vcpu))
  4871. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4872. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4873. return 0;
  4874. }
  4875. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4876. struct kvm_guest_debug *dbg)
  4877. {
  4878. unsigned long rflags;
  4879. int i, r;
  4880. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4881. r = -EBUSY;
  4882. if (vcpu->arch.exception.pending)
  4883. goto out;
  4884. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4885. kvm_queue_exception(vcpu, DB_VECTOR);
  4886. else
  4887. kvm_queue_exception(vcpu, BP_VECTOR);
  4888. }
  4889. /*
  4890. * Read rflags as long as potentially injected trace flags are still
  4891. * filtered out.
  4892. */
  4893. rflags = kvm_get_rflags(vcpu);
  4894. vcpu->guest_debug = dbg->control;
  4895. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4896. vcpu->guest_debug = 0;
  4897. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4898. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4899. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4900. vcpu->arch.switch_db_regs =
  4901. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4902. } else {
  4903. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4904. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4905. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4906. }
  4907. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4908. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4909. get_segment_base(vcpu, VCPU_SREG_CS);
  4910. /*
  4911. * Trigger an rflags update that will inject or remove the trace
  4912. * flags.
  4913. */
  4914. kvm_set_rflags(vcpu, rflags);
  4915. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4916. r = 0;
  4917. out:
  4918. return r;
  4919. }
  4920. /*
  4921. * Translate a guest virtual address to a guest physical address.
  4922. */
  4923. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4924. struct kvm_translation *tr)
  4925. {
  4926. unsigned long vaddr = tr->linear_address;
  4927. gpa_t gpa;
  4928. int idx;
  4929. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4930. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4931. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4932. tr->physical_address = gpa;
  4933. tr->valid = gpa != UNMAPPED_GVA;
  4934. tr->writeable = 1;
  4935. tr->usermode = 0;
  4936. return 0;
  4937. }
  4938. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4939. {
  4940. struct i387_fxsave_struct *fxsave =
  4941. &vcpu->arch.guest_fpu.state->fxsave;
  4942. memcpy(fpu->fpr, fxsave->st_space, 128);
  4943. fpu->fcw = fxsave->cwd;
  4944. fpu->fsw = fxsave->swd;
  4945. fpu->ftwx = fxsave->twd;
  4946. fpu->last_opcode = fxsave->fop;
  4947. fpu->last_ip = fxsave->rip;
  4948. fpu->last_dp = fxsave->rdp;
  4949. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4950. return 0;
  4951. }
  4952. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4953. {
  4954. struct i387_fxsave_struct *fxsave =
  4955. &vcpu->arch.guest_fpu.state->fxsave;
  4956. memcpy(fxsave->st_space, fpu->fpr, 128);
  4957. fxsave->cwd = fpu->fcw;
  4958. fxsave->swd = fpu->fsw;
  4959. fxsave->twd = fpu->ftwx;
  4960. fxsave->fop = fpu->last_opcode;
  4961. fxsave->rip = fpu->last_ip;
  4962. fxsave->rdp = fpu->last_dp;
  4963. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4964. return 0;
  4965. }
  4966. int fx_init(struct kvm_vcpu *vcpu)
  4967. {
  4968. int err;
  4969. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4970. if (err)
  4971. return err;
  4972. fpu_finit(&vcpu->arch.guest_fpu);
  4973. /*
  4974. * Ensure guest xcr0 is valid for loading
  4975. */
  4976. vcpu->arch.xcr0 = XSTATE_FP;
  4977. vcpu->arch.cr0 |= X86_CR0_ET;
  4978. return 0;
  4979. }
  4980. EXPORT_SYMBOL_GPL(fx_init);
  4981. static void fx_free(struct kvm_vcpu *vcpu)
  4982. {
  4983. fpu_free(&vcpu->arch.guest_fpu);
  4984. }
  4985. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4986. {
  4987. if (vcpu->guest_fpu_loaded)
  4988. return;
  4989. /*
  4990. * Restore all possible states in the guest,
  4991. * and assume host would use all available bits.
  4992. * Guest xcr0 would be loaded later.
  4993. */
  4994. kvm_put_guest_xcr0(vcpu);
  4995. vcpu->guest_fpu_loaded = 1;
  4996. unlazy_fpu(current);
  4997. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4998. trace_kvm_fpu(1);
  4999. }
  5000. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5001. {
  5002. kvm_put_guest_xcr0(vcpu);
  5003. if (!vcpu->guest_fpu_loaded)
  5004. return;
  5005. vcpu->guest_fpu_loaded = 0;
  5006. fpu_save_init(&vcpu->arch.guest_fpu);
  5007. ++vcpu->stat.fpu_reload;
  5008. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5009. trace_kvm_fpu(0);
  5010. }
  5011. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5012. {
  5013. if (vcpu->arch.time_page) {
  5014. kvm_release_page_dirty(vcpu->arch.time_page);
  5015. vcpu->arch.time_page = NULL;
  5016. }
  5017. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5018. fx_free(vcpu);
  5019. kvm_x86_ops->vcpu_free(vcpu);
  5020. }
  5021. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5022. unsigned int id)
  5023. {
  5024. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5025. printk_once(KERN_WARNING
  5026. "kvm: SMP vm created on host with unstable TSC; "
  5027. "guest TSC will not be reliable\n");
  5028. return kvm_x86_ops->vcpu_create(kvm, id);
  5029. }
  5030. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5031. {
  5032. int r;
  5033. vcpu->arch.mtrr_state.have_fixed = 1;
  5034. vcpu_load(vcpu);
  5035. r = kvm_arch_vcpu_reset(vcpu);
  5036. if (r == 0)
  5037. r = kvm_mmu_setup(vcpu);
  5038. vcpu_put(vcpu);
  5039. if (r < 0)
  5040. goto free_vcpu;
  5041. return 0;
  5042. free_vcpu:
  5043. kvm_x86_ops->vcpu_free(vcpu);
  5044. return r;
  5045. }
  5046. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5047. {
  5048. vcpu->arch.apf.msr_val = 0;
  5049. vcpu_load(vcpu);
  5050. kvm_mmu_unload(vcpu);
  5051. vcpu_put(vcpu);
  5052. fx_free(vcpu);
  5053. kvm_x86_ops->vcpu_free(vcpu);
  5054. }
  5055. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5056. {
  5057. vcpu->arch.nmi_pending = false;
  5058. vcpu->arch.nmi_injected = false;
  5059. vcpu->arch.switch_db_regs = 0;
  5060. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5061. vcpu->arch.dr6 = DR6_FIXED_1;
  5062. vcpu->arch.dr7 = DR7_FIXED_1;
  5063. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5064. vcpu->arch.apf.msr_val = 0;
  5065. kvm_clear_async_pf_completion_queue(vcpu);
  5066. kvm_async_pf_hash_reset(vcpu);
  5067. vcpu->arch.apf.halted = false;
  5068. return kvm_x86_ops->vcpu_reset(vcpu);
  5069. }
  5070. int kvm_arch_hardware_enable(void *garbage)
  5071. {
  5072. struct kvm *kvm;
  5073. struct kvm_vcpu *vcpu;
  5074. int i;
  5075. kvm_shared_msr_cpu_online();
  5076. list_for_each_entry(kvm, &vm_list, vm_list)
  5077. kvm_for_each_vcpu(i, vcpu, kvm)
  5078. if (vcpu->cpu == smp_processor_id())
  5079. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5080. return kvm_x86_ops->hardware_enable(garbage);
  5081. }
  5082. void kvm_arch_hardware_disable(void *garbage)
  5083. {
  5084. kvm_x86_ops->hardware_disable(garbage);
  5085. drop_user_return_notifiers(garbage);
  5086. }
  5087. int kvm_arch_hardware_setup(void)
  5088. {
  5089. return kvm_x86_ops->hardware_setup();
  5090. }
  5091. void kvm_arch_hardware_unsetup(void)
  5092. {
  5093. kvm_x86_ops->hardware_unsetup();
  5094. }
  5095. void kvm_arch_check_processor_compat(void *rtn)
  5096. {
  5097. kvm_x86_ops->check_processor_compatibility(rtn);
  5098. }
  5099. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5100. {
  5101. struct page *page;
  5102. struct kvm *kvm;
  5103. int r;
  5104. BUG_ON(vcpu->kvm == NULL);
  5105. kvm = vcpu->kvm;
  5106. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5107. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5108. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5109. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5110. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5111. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5112. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5113. else
  5114. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5115. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5116. if (!page) {
  5117. r = -ENOMEM;
  5118. goto fail;
  5119. }
  5120. vcpu->arch.pio_data = page_address(page);
  5121. if (!kvm->arch.virtual_tsc_khz)
  5122. kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
  5123. r = kvm_mmu_create(vcpu);
  5124. if (r < 0)
  5125. goto fail_free_pio_data;
  5126. if (irqchip_in_kernel(kvm)) {
  5127. r = kvm_create_lapic(vcpu);
  5128. if (r < 0)
  5129. goto fail_mmu_destroy;
  5130. }
  5131. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5132. GFP_KERNEL);
  5133. if (!vcpu->arch.mce_banks) {
  5134. r = -ENOMEM;
  5135. goto fail_free_lapic;
  5136. }
  5137. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5138. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5139. goto fail_free_mce_banks;
  5140. kvm_async_pf_hash_reset(vcpu);
  5141. return 0;
  5142. fail_free_mce_banks:
  5143. kfree(vcpu->arch.mce_banks);
  5144. fail_free_lapic:
  5145. kvm_free_lapic(vcpu);
  5146. fail_mmu_destroy:
  5147. kvm_mmu_destroy(vcpu);
  5148. fail_free_pio_data:
  5149. free_page((unsigned long)vcpu->arch.pio_data);
  5150. fail:
  5151. return r;
  5152. }
  5153. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5154. {
  5155. int idx;
  5156. kfree(vcpu->arch.mce_banks);
  5157. kvm_free_lapic(vcpu);
  5158. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5159. kvm_mmu_destroy(vcpu);
  5160. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5161. free_page((unsigned long)vcpu->arch.pio_data);
  5162. }
  5163. int kvm_arch_init_vm(struct kvm *kvm)
  5164. {
  5165. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5166. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5167. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5168. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5169. spin_lock_init(&kvm->arch.tsc_write_lock);
  5170. return 0;
  5171. }
  5172. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5173. {
  5174. vcpu_load(vcpu);
  5175. kvm_mmu_unload(vcpu);
  5176. vcpu_put(vcpu);
  5177. }
  5178. static void kvm_free_vcpus(struct kvm *kvm)
  5179. {
  5180. unsigned int i;
  5181. struct kvm_vcpu *vcpu;
  5182. /*
  5183. * Unpin any mmu pages first.
  5184. */
  5185. kvm_for_each_vcpu(i, vcpu, kvm) {
  5186. kvm_clear_async_pf_completion_queue(vcpu);
  5187. kvm_unload_vcpu_mmu(vcpu);
  5188. }
  5189. kvm_for_each_vcpu(i, vcpu, kvm)
  5190. kvm_arch_vcpu_free(vcpu);
  5191. mutex_lock(&kvm->lock);
  5192. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5193. kvm->vcpus[i] = NULL;
  5194. atomic_set(&kvm->online_vcpus, 0);
  5195. mutex_unlock(&kvm->lock);
  5196. }
  5197. void kvm_arch_sync_events(struct kvm *kvm)
  5198. {
  5199. kvm_free_all_assigned_devices(kvm);
  5200. kvm_free_pit(kvm);
  5201. }
  5202. void kvm_arch_destroy_vm(struct kvm *kvm)
  5203. {
  5204. kvm_iommu_unmap_guest(kvm);
  5205. kfree(kvm->arch.vpic);
  5206. kfree(kvm->arch.vioapic);
  5207. kvm_free_vcpus(kvm);
  5208. if (kvm->arch.apic_access_page)
  5209. put_page(kvm->arch.apic_access_page);
  5210. if (kvm->arch.ept_identity_pagetable)
  5211. put_page(kvm->arch.ept_identity_pagetable);
  5212. }
  5213. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5214. struct kvm_memory_slot *memslot,
  5215. struct kvm_memory_slot old,
  5216. struct kvm_userspace_memory_region *mem,
  5217. int user_alloc)
  5218. {
  5219. int npages = memslot->npages;
  5220. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5221. /* Prevent internal slot pages from being moved by fork()/COW. */
  5222. if (memslot->id >= KVM_MEMORY_SLOTS)
  5223. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5224. /*To keep backward compatibility with older userspace,
  5225. *x86 needs to hanlde !user_alloc case.
  5226. */
  5227. if (!user_alloc) {
  5228. if (npages && !old.rmap) {
  5229. unsigned long userspace_addr;
  5230. down_write(&current->mm->mmap_sem);
  5231. userspace_addr = do_mmap(NULL, 0,
  5232. npages * PAGE_SIZE,
  5233. PROT_READ | PROT_WRITE,
  5234. map_flags,
  5235. 0);
  5236. up_write(&current->mm->mmap_sem);
  5237. if (IS_ERR((void *)userspace_addr))
  5238. return PTR_ERR((void *)userspace_addr);
  5239. memslot->userspace_addr = userspace_addr;
  5240. }
  5241. }
  5242. return 0;
  5243. }
  5244. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5245. struct kvm_userspace_memory_region *mem,
  5246. struct kvm_memory_slot old,
  5247. int user_alloc)
  5248. {
  5249. int npages = mem->memory_size >> PAGE_SHIFT;
  5250. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5251. int ret;
  5252. down_write(&current->mm->mmap_sem);
  5253. ret = do_munmap(current->mm, old.userspace_addr,
  5254. old.npages * PAGE_SIZE);
  5255. up_write(&current->mm->mmap_sem);
  5256. if (ret < 0)
  5257. printk(KERN_WARNING
  5258. "kvm_vm_ioctl_set_memory_region: "
  5259. "failed to munmap memory\n");
  5260. }
  5261. spin_lock(&kvm->mmu_lock);
  5262. if (!kvm->arch.n_requested_mmu_pages) {
  5263. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5264. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5265. }
  5266. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5267. spin_unlock(&kvm->mmu_lock);
  5268. }
  5269. void kvm_arch_flush_shadow(struct kvm *kvm)
  5270. {
  5271. kvm_mmu_zap_all(kvm);
  5272. kvm_reload_remote_mmus(kvm);
  5273. }
  5274. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5275. {
  5276. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5277. !vcpu->arch.apf.halted)
  5278. || !list_empty_careful(&vcpu->async_pf.done)
  5279. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5280. || vcpu->arch.nmi_pending ||
  5281. (kvm_arch_interrupt_allowed(vcpu) &&
  5282. kvm_cpu_has_interrupt(vcpu));
  5283. }
  5284. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5285. {
  5286. int me;
  5287. int cpu = vcpu->cpu;
  5288. if (waitqueue_active(&vcpu->wq)) {
  5289. wake_up_interruptible(&vcpu->wq);
  5290. ++vcpu->stat.halt_wakeup;
  5291. }
  5292. me = get_cpu();
  5293. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5294. if (atomic_xchg(&vcpu->guest_mode, 0))
  5295. smp_send_reschedule(cpu);
  5296. put_cpu();
  5297. }
  5298. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5299. {
  5300. return kvm_x86_ops->interrupt_allowed(vcpu);
  5301. }
  5302. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5303. {
  5304. unsigned long current_rip = kvm_rip_read(vcpu) +
  5305. get_segment_base(vcpu, VCPU_SREG_CS);
  5306. return current_rip == linear_rip;
  5307. }
  5308. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5309. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5310. {
  5311. unsigned long rflags;
  5312. rflags = kvm_x86_ops->get_rflags(vcpu);
  5313. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5314. rflags &= ~X86_EFLAGS_TF;
  5315. return rflags;
  5316. }
  5317. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5318. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5319. {
  5320. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5321. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5322. rflags |= X86_EFLAGS_TF;
  5323. kvm_x86_ops->set_rflags(vcpu, rflags);
  5324. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5325. }
  5326. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5327. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5328. {
  5329. int r;
  5330. if (!vcpu->arch.mmu.direct_map || is_error_page(work->page))
  5331. return;
  5332. r = kvm_mmu_reload(vcpu);
  5333. if (unlikely(r))
  5334. return;
  5335. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  5336. }
  5337. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  5338. {
  5339. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  5340. }
  5341. static inline u32 kvm_async_pf_next_probe(u32 key)
  5342. {
  5343. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  5344. }
  5345. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5346. {
  5347. u32 key = kvm_async_pf_hash_fn(gfn);
  5348. while (vcpu->arch.apf.gfns[key] != ~0)
  5349. key = kvm_async_pf_next_probe(key);
  5350. vcpu->arch.apf.gfns[key] = gfn;
  5351. }
  5352. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  5353. {
  5354. int i;
  5355. u32 key = kvm_async_pf_hash_fn(gfn);
  5356. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  5357. (vcpu->arch.apf.gfns[key] != gfn &&
  5358. vcpu->arch.apf.gfns[key] != ~0); i++)
  5359. key = kvm_async_pf_next_probe(key);
  5360. return key;
  5361. }
  5362. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5363. {
  5364. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  5365. }
  5366. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5367. {
  5368. u32 i, j, k;
  5369. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  5370. while (true) {
  5371. vcpu->arch.apf.gfns[i] = ~0;
  5372. do {
  5373. j = kvm_async_pf_next_probe(j);
  5374. if (vcpu->arch.apf.gfns[j] == ~0)
  5375. return;
  5376. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  5377. /*
  5378. * k lies cyclically in ]i,j]
  5379. * | i.k.j |
  5380. * |....j i.k.| or |.k..j i...|
  5381. */
  5382. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  5383. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  5384. i = j;
  5385. }
  5386. }
  5387. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  5388. {
  5389. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  5390. sizeof(val));
  5391. }
  5392. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  5393. struct kvm_async_pf *work)
  5394. {
  5395. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  5396. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  5397. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  5398. (vcpu->arch.apf.send_user_only &&
  5399. kvm_x86_ops->get_cpl(vcpu) == 0))
  5400. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  5401. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  5402. vcpu->arch.fault.error_code = 0;
  5403. vcpu->arch.fault.address = work->arch.token;
  5404. kvm_inject_page_fault(vcpu);
  5405. }
  5406. }
  5407. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  5408. struct kvm_async_pf *work)
  5409. {
  5410. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  5411. if (is_error_page(work->page))
  5412. work->arch.token = ~0; /* broadcast wakeup */
  5413. else
  5414. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  5415. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  5416. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  5417. vcpu->arch.fault.error_code = 0;
  5418. vcpu->arch.fault.address = work->arch.token;
  5419. kvm_inject_page_fault(vcpu);
  5420. }
  5421. vcpu->arch.apf.halted = false;
  5422. }
  5423. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  5424. {
  5425. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  5426. return true;
  5427. else
  5428. return !kvm_event_needs_reinjection(vcpu) &&
  5429. kvm_x86_ops->interrupt_allowed(vcpu);
  5430. }
  5431. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5432. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5433. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5434. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5435. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5436. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5437. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5438. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5439. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5440. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5441. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5442. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);