i915_debugfs.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/slab.h>
  31. #include <linux/export.h>
  32. #include "drmP.h"
  33. #include "drm.h"
  34. #include "intel_drv.h"
  35. #include "intel_ringbuffer.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #define DRM_I915_RING_DEBUG 1
  39. #if defined(CONFIG_DEBUG_FS)
  40. enum {
  41. ACTIVE_LIST,
  42. FLUSHING_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. static const char *yesno(int v)
  47. {
  48. return v ? "yes" : "no";
  49. }
  50. static int i915_capabilities(struct seq_file *m, void *data)
  51. {
  52. struct drm_info_node *node = (struct drm_info_node *) m->private;
  53. struct drm_device *dev = node->minor->dev;
  54. const struct intel_device_info *info = INTEL_INFO(dev);
  55. seq_printf(m, "gen: %d\n", info->gen);
  56. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  57. #define B(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  58. B(is_mobile);
  59. B(is_i85x);
  60. B(is_i915g);
  61. B(is_i945gm);
  62. B(is_g33);
  63. B(need_gfx_hws);
  64. B(is_g4x);
  65. B(is_pineview);
  66. B(is_broadwater);
  67. B(is_crestline);
  68. B(has_fbc);
  69. B(has_pipe_cxsr);
  70. B(has_hotplug);
  71. B(cursor_needs_physical);
  72. B(has_overlay);
  73. B(overlay_needs_physical);
  74. B(supports_tv);
  75. B(has_bsd_ring);
  76. B(has_blt_ring);
  77. B(has_llc);
  78. #undef B
  79. return 0;
  80. }
  81. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  82. {
  83. if (obj->user_pin_count > 0)
  84. return "P";
  85. else if (obj->pin_count > 0)
  86. return "p";
  87. else
  88. return " ";
  89. }
  90. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  91. {
  92. switch (obj->tiling_mode) {
  93. default:
  94. case I915_TILING_NONE: return " ";
  95. case I915_TILING_X: return "X";
  96. case I915_TILING_Y: return "Y";
  97. }
  98. }
  99. static const char *cache_level_str(int type)
  100. {
  101. switch (type) {
  102. case I915_CACHE_NONE: return " uncached";
  103. case I915_CACHE_LLC: return " snooped (LLC)";
  104. case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
  105. default: return "";
  106. }
  107. }
  108. static void
  109. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  110. {
  111. seq_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d%s%s%s",
  112. &obj->base,
  113. get_pin_flag(obj),
  114. get_tiling_flag(obj),
  115. obj->base.size / 1024,
  116. obj->base.read_domains,
  117. obj->base.write_domain,
  118. obj->last_rendering_seqno,
  119. obj->last_fenced_seqno,
  120. cache_level_str(obj->cache_level),
  121. obj->dirty ? " dirty" : "",
  122. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  123. if (obj->base.name)
  124. seq_printf(m, " (name: %d)", obj->base.name);
  125. if (obj->fence_reg != I915_FENCE_REG_NONE)
  126. seq_printf(m, " (fence: %d)", obj->fence_reg);
  127. if (obj->gtt_space != NULL)
  128. seq_printf(m, " (gtt offset: %08x, size: %08x)",
  129. obj->gtt_offset, (unsigned int)obj->gtt_space->size);
  130. if (obj->pin_mappable || obj->fault_mappable) {
  131. char s[3], *t = s;
  132. if (obj->pin_mappable)
  133. *t++ = 'p';
  134. if (obj->fault_mappable)
  135. *t++ = 'f';
  136. *t = '\0';
  137. seq_printf(m, " (%s mappable)", s);
  138. }
  139. if (obj->ring != NULL)
  140. seq_printf(m, " (%s)", obj->ring->name);
  141. }
  142. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  143. {
  144. struct drm_info_node *node = (struct drm_info_node *) m->private;
  145. uintptr_t list = (uintptr_t) node->info_ent->data;
  146. struct list_head *head;
  147. struct drm_device *dev = node->minor->dev;
  148. drm_i915_private_t *dev_priv = dev->dev_private;
  149. struct drm_i915_gem_object *obj;
  150. size_t total_obj_size, total_gtt_size;
  151. int count, ret;
  152. ret = mutex_lock_interruptible(&dev->struct_mutex);
  153. if (ret)
  154. return ret;
  155. switch (list) {
  156. case ACTIVE_LIST:
  157. seq_printf(m, "Active:\n");
  158. head = &dev_priv->mm.active_list;
  159. break;
  160. case INACTIVE_LIST:
  161. seq_printf(m, "Inactive:\n");
  162. head = &dev_priv->mm.inactive_list;
  163. break;
  164. case FLUSHING_LIST:
  165. seq_printf(m, "Flushing:\n");
  166. head = &dev_priv->mm.flushing_list;
  167. break;
  168. default:
  169. mutex_unlock(&dev->struct_mutex);
  170. return -EINVAL;
  171. }
  172. total_obj_size = total_gtt_size = count = 0;
  173. list_for_each_entry(obj, head, mm_list) {
  174. seq_printf(m, " ");
  175. describe_obj(m, obj);
  176. seq_printf(m, "\n");
  177. total_obj_size += obj->base.size;
  178. total_gtt_size += obj->gtt_space->size;
  179. count++;
  180. }
  181. mutex_unlock(&dev->struct_mutex);
  182. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  183. count, total_obj_size, total_gtt_size);
  184. return 0;
  185. }
  186. #define count_objects(list, member) do { \
  187. list_for_each_entry(obj, list, member) { \
  188. size += obj->gtt_space->size; \
  189. ++count; \
  190. if (obj->map_and_fenceable) { \
  191. mappable_size += obj->gtt_space->size; \
  192. ++mappable_count; \
  193. } \
  194. } \
  195. } while (0)
  196. static int i915_gem_object_info(struct seq_file *m, void* data)
  197. {
  198. struct drm_info_node *node = (struct drm_info_node *) m->private;
  199. struct drm_device *dev = node->minor->dev;
  200. struct drm_i915_private *dev_priv = dev->dev_private;
  201. u32 count, mappable_count;
  202. size_t size, mappable_size;
  203. struct drm_i915_gem_object *obj;
  204. int ret;
  205. ret = mutex_lock_interruptible(&dev->struct_mutex);
  206. if (ret)
  207. return ret;
  208. seq_printf(m, "%u objects, %zu bytes\n",
  209. dev_priv->mm.object_count,
  210. dev_priv->mm.object_memory);
  211. size = count = mappable_size = mappable_count = 0;
  212. count_objects(&dev_priv->mm.gtt_list, gtt_list);
  213. seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
  214. count, mappable_count, size, mappable_size);
  215. size = count = mappable_size = mappable_count = 0;
  216. count_objects(&dev_priv->mm.active_list, mm_list);
  217. count_objects(&dev_priv->mm.flushing_list, mm_list);
  218. seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
  219. count, mappable_count, size, mappable_size);
  220. size = count = mappable_size = mappable_count = 0;
  221. count_objects(&dev_priv->mm.inactive_list, mm_list);
  222. seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
  223. count, mappable_count, size, mappable_size);
  224. size = count = mappable_size = mappable_count = 0;
  225. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  226. if (obj->fault_mappable) {
  227. size += obj->gtt_space->size;
  228. ++count;
  229. }
  230. if (obj->pin_mappable) {
  231. mappable_size += obj->gtt_space->size;
  232. ++mappable_count;
  233. }
  234. }
  235. seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
  236. mappable_count, mappable_size);
  237. seq_printf(m, "%u fault mappable objects, %zu bytes\n",
  238. count, size);
  239. seq_printf(m, "%zu [%zu] gtt total\n",
  240. dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
  241. mutex_unlock(&dev->struct_mutex);
  242. return 0;
  243. }
  244. static int i915_gem_gtt_info(struct seq_file *m, void* data)
  245. {
  246. struct drm_info_node *node = (struct drm_info_node *) m->private;
  247. struct drm_device *dev = node->minor->dev;
  248. uintptr_t list = (uintptr_t) node->info_ent->data;
  249. struct drm_i915_private *dev_priv = dev->dev_private;
  250. struct drm_i915_gem_object *obj;
  251. size_t total_obj_size, total_gtt_size;
  252. int count, ret;
  253. ret = mutex_lock_interruptible(&dev->struct_mutex);
  254. if (ret)
  255. return ret;
  256. total_obj_size = total_gtt_size = count = 0;
  257. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  258. if (list == PINNED_LIST && obj->pin_count == 0)
  259. continue;
  260. seq_printf(m, " ");
  261. describe_obj(m, obj);
  262. seq_printf(m, "\n");
  263. total_obj_size += obj->base.size;
  264. total_gtt_size += obj->gtt_space->size;
  265. count++;
  266. }
  267. mutex_unlock(&dev->struct_mutex);
  268. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  269. count, total_obj_size, total_gtt_size);
  270. return 0;
  271. }
  272. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  273. {
  274. struct drm_info_node *node = (struct drm_info_node *) m->private;
  275. struct drm_device *dev = node->minor->dev;
  276. unsigned long flags;
  277. struct intel_crtc *crtc;
  278. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  279. const char pipe = pipe_name(crtc->pipe);
  280. const char plane = plane_name(crtc->plane);
  281. struct intel_unpin_work *work;
  282. spin_lock_irqsave(&dev->event_lock, flags);
  283. work = crtc->unpin_work;
  284. if (work == NULL) {
  285. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  286. pipe, plane);
  287. } else {
  288. if (!work->pending) {
  289. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  290. pipe, plane);
  291. } else {
  292. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  293. pipe, plane);
  294. }
  295. if (work->enable_stall_check)
  296. seq_printf(m, "Stall check enabled, ");
  297. else
  298. seq_printf(m, "Stall check waiting for page flip ioctl, ");
  299. seq_printf(m, "%d prepares\n", work->pending);
  300. if (work->old_fb_obj) {
  301. struct drm_i915_gem_object *obj = work->old_fb_obj;
  302. if (obj)
  303. seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
  304. }
  305. if (work->pending_flip_obj) {
  306. struct drm_i915_gem_object *obj = work->pending_flip_obj;
  307. if (obj)
  308. seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
  309. }
  310. }
  311. spin_unlock_irqrestore(&dev->event_lock, flags);
  312. }
  313. return 0;
  314. }
  315. static int i915_gem_request_info(struct seq_file *m, void *data)
  316. {
  317. struct drm_info_node *node = (struct drm_info_node *) m->private;
  318. struct drm_device *dev = node->minor->dev;
  319. drm_i915_private_t *dev_priv = dev->dev_private;
  320. struct drm_i915_gem_request *gem_request;
  321. int ret, count;
  322. ret = mutex_lock_interruptible(&dev->struct_mutex);
  323. if (ret)
  324. return ret;
  325. count = 0;
  326. if (!list_empty(&dev_priv->ring[RCS].request_list)) {
  327. seq_printf(m, "Render requests:\n");
  328. list_for_each_entry(gem_request,
  329. &dev_priv->ring[RCS].request_list,
  330. list) {
  331. seq_printf(m, " %d @ %d\n",
  332. gem_request->seqno,
  333. (int) (jiffies - gem_request->emitted_jiffies));
  334. }
  335. count++;
  336. }
  337. if (!list_empty(&dev_priv->ring[VCS].request_list)) {
  338. seq_printf(m, "BSD requests:\n");
  339. list_for_each_entry(gem_request,
  340. &dev_priv->ring[VCS].request_list,
  341. list) {
  342. seq_printf(m, " %d @ %d\n",
  343. gem_request->seqno,
  344. (int) (jiffies - gem_request->emitted_jiffies));
  345. }
  346. count++;
  347. }
  348. if (!list_empty(&dev_priv->ring[BCS].request_list)) {
  349. seq_printf(m, "BLT requests:\n");
  350. list_for_each_entry(gem_request,
  351. &dev_priv->ring[BCS].request_list,
  352. list) {
  353. seq_printf(m, " %d @ %d\n",
  354. gem_request->seqno,
  355. (int) (jiffies - gem_request->emitted_jiffies));
  356. }
  357. count++;
  358. }
  359. mutex_unlock(&dev->struct_mutex);
  360. if (count == 0)
  361. seq_printf(m, "No requests\n");
  362. return 0;
  363. }
  364. static void i915_ring_seqno_info(struct seq_file *m,
  365. struct intel_ring_buffer *ring)
  366. {
  367. if (ring->get_seqno) {
  368. seq_printf(m, "Current sequence (%s): %d\n",
  369. ring->name, ring->get_seqno(ring));
  370. }
  371. }
  372. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  373. {
  374. struct drm_info_node *node = (struct drm_info_node *) m->private;
  375. struct drm_device *dev = node->minor->dev;
  376. drm_i915_private_t *dev_priv = dev->dev_private;
  377. int ret, i;
  378. ret = mutex_lock_interruptible(&dev->struct_mutex);
  379. if (ret)
  380. return ret;
  381. for (i = 0; i < I915_NUM_RINGS; i++)
  382. i915_ring_seqno_info(m, &dev_priv->ring[i]);
  383. mutex_unlock(&dev->struct_mutex);
  384. return 0;
  385. }
  386. static int i915_interrupt_info(struct seq_file *m, void *data)
  387. {
  388. struct drm_info_node *node = (struct drm_info_node *) m->private;
  389. struct drm_device *dev = node->minor->dev;
  390. drm_i915_private_t *dev_priv = dev->dev_private;
  391. int ret, i, pipe;
  392. ret = mutex_lock_interruptible(&dev->struct_mutex);
  393. if (ret)
  394. return ret;
  395. if (IS_VALLEYVIEW(dev)) {
  396. seq_printf(m, "Display IER:\t%08x\n",
  397. I915_READ(VLV_IER));
  398. seq_printf(m, "Display IIR:\t%08x\n",
  399. I915_READ(VLV_IIR));
  400. seq_printf(m, "Display IIR_RW:\t%08x\n",
  401. I915_READ(VLV_IIR_RW));
  402. seq_printf(m, "Display IMR:\t%08x\n",
  403. I915_READ(VLV_IMR));
  404. for_each_pipe(pipe)
  405. seq_printf(m, "Pipe %c stat:\t%08x\n",
  406. pipe_name(pipe),
  407. I915_READ(PIPESTAT(pipe)));
  408. seq_printf(m, "Master IER:\t%08x\n",
  409. I915_READ(VLV_MASTER_IER));
  410. seq_printf(m, "Render IER:\t%08x\n",
  411. I915_READ(GTIER));
  412. seq_printf(m, "Render IIR:\t%08x\n",
  413. I915_READ(GTIIR));
  414. seq_printf(m, "Render IMR:\t%08x\n",
  415. I915_READ(GTIMR));
  416. seq_printf(m, "PM IER:\t\t%08x\n",
  417. I915_READ(GEN6_PMIER));
  418. seq_printf(m, "PM IIR:\t\t%08x\n",
  419. I915_READ(GEN6_PMIIR));
  420. seq_printf(m, "PM IMR:\t\t%08x\n",
  421. I915_READ(GEN6_PMIMR));
  422. seq_printf(m, "Port hotplug:\t%08x\n",
  423. I915_READ(PORT_HOTPLUG_EN));
  424. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  425. I915_READ(VLV_DPFLIPSTAT));
  426. seq_printf(m, "DPINVGTT:\t%08x\n",
  427. I915_READ(DPINVGTT));
  428. } else if (!HAS_PCH_SPLIT(dev)) {
  429. seq_printf(m, "Interrupt enable: %08x\n",
  430. I915_READ(IER));
  431. seq_printf(m, "Interrupt identity: %08x\n",
  432. I915_READ(IIR));
  433. seq_printf(m, "Interrupt mask: %08x\n",
  434. I915_READ(IMR));
  435. for_each_pipe(pipe)
  436. seq_printf(m, "Pipe %c stat: %08x\n",
  437. pipe_name(pipe),
  438. I915_READ(PIPESTAT(pipe)));
  439. } else {
  440. seq_printf(m, "North Display Interrupt enable: %08x\n",
  441. I915_READ(DEIER));
  442. seq_printf(m, "North Display Interrupt identity: %08x\n",
  443. I915_READ(DEIIR));
  444. seq_printf(m, "North Display Interrupt mask: %08x\n",
  445. I915_READ(DEIMR));
  446. seq_printf(m, "South Display Interrupt enable: %08x\n",
  447. I915_READ(SDEIER));
  448. seq_printf(m, "South Display Interrupt identity: %08x\n",
  449. I915_READ(SDEIIR));
  450. seq_printf(m, "South Display Interrupt mask: %08x\n",
  451. I915_READ(SDEIMR));
  452. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  453. I915_READ(GTIER));
  454. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  455. I915_READ(GTIIR));
  456. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  457. I915_READ(GTIMR));
  458. }
  459. seq_printf(m, "Interrupts received: %d\n",
  460. atomic_read(&dev_priv->irq_received));
  461. for (i = 0; i < I915_NUM_RINGS; i++) {
  462. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  463. seq_printf(m, "Graphics Interrupt mask (%s): %08x\n",
  464. dev_priv->ring[i].name,
  465. I915_READ_IMR(&dev_priv->ring[i]));
  466. }
  467. i915_ring_seqno_info(m, &dev_priv->ring[i]);
  468. }
  469. mutex_unlock(&dev->struct_mutex);
  470. return 0;
  471. }
  472. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  473. {
  474. struct drm_info_node *node = (struct drm_info_node *) m->private;
  475. struct drm_device *dev = node->minor->dev;
  476. drm_i915_private_t *dev_priv = dev->dev_private;
  477. int i, ret;
  478. ret = mutex_lock_interruptible(&dev->struct_mutex);
  479. if (ret)
  480. return ret;
  481. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  482. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  483. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  484. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  485. seq_printf(m, "Fenced object[%2d] = ", i);
  486. if (obj == NULL)
  487. seq_printf(m, "unused");
  488. else
  489. describe_obj(m, obj);
  490. seq_printf(m, "\n");
  491. }
  492. mutex_unlock(&dev->struct_mutex);
  493. return 0;
  494. }
  495. static int i915_hws_info(struct seq_file *m, void *data)
  496. {
  497. struct drm_info_node *node = (struct drm_info_node *) m->private;
  498. struct drm_device *dev = node->minor->dev;
  499. drm_i915_private_t *dev_priv = dev->dev_private;
  500. struct intel_ring_buffer *ring;
  501. const volatile u32 __iomem *hws;
  502. int i;
  503. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  504. hws = (volatile u32 __iomem *)ring->status_page.page_addr;
  505. if (hws == NULL)
  506. return 0;
  507. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  508. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  509. i * 4,
  510. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  511. }
  512. return 0;
  513. }
  514. static const char *ring_str(int ring)
  515. {
  516. switch (ring) {
  517. case RCS: return "render";
  518. case VCS: return "bsd";
  519. case BCS: return "blt";
  520. default: return "";
  521. }
  522. }
  523. static const char *pin_flag(int pinned)
  524. {
  525. if (pinned > 0)
  526. return " P";
  527. else if (pinned < 0)
  528. return " p";
  529. else
  530. return "";
  531. }
  532. static const char *tiling_flag(int tiling)
  533. {
  534. switch (tiling) {
  535. default:
  536. case I915_TILING_NONE: return "";
  537. case I915_TILING_X: return " X";
  538. case I915_TILING_Y: return " Y";
  539. }
  540. }
  541. static const char *dirty_flag(int dirty)
  542. {
  543. return dirty ? " dirty" : "";
  544. }
  545. static const char *purgeable_flag(int purgeable)
  546. {
  547. return purgeable ? " purgeable" : "";
  548. }
  549. static void print_error_buffers(struct seq_file *m,
  550. const char *name,
  551. struct drm_i915_error_buffer *err,
  552. int count)
  553. {
  554. seq_printf(m, "%s [%d]:\n", name, count);
  555. while (count--) {
  556. seq_printf(m, " %08x %8u %04x %04x %08x%s%s%s%s%s%s%s",
  557. err->gtt_offset,
  558. err->size,
  559. err->read_domains,
  560. err->write_domain,
  561. err->seqno,
  562. pin_flag(err->pinned),
  563. tiling_flag(err->tiling),
  564. dirty_flag(err->dirty),
  565. purgeable_flag(err->purgeable),
  566. err->ring != -1 ? " " : "",
  567. ring_str(err->ring),
  568. cache_level_str(err->cache_level));
  569. if (err->name)
  570. seq_printf(m, " (name: %d)", err->name);
  571. if (err->fence_reg != I915_FENCE_REG_NONE)
  572. seq_printf(m, " (fence: %d)", err->fence_reg);
  573. seq_printf(m, "\n");
  574. err++;
  575. }
  576. }
  577. static void i915_ring_error_state(struct seq_file *m,
  578. struct drm_device *dev,
  579. struct drm_i915_error_state *error,
  580. unsigned ring)
  581. {
  582. BUG_ON(ring >= I915_NUM_RINGS); /* shut up confused gcc */
  583. seq_printf(m, "%s command stream:\n", ring_str(ring));
  584. seq_printf(m, " HEAD: 0x%08x\n", error->head[ring]);
  585. seq_printf(m, " TAIL: 0x%08x\n", error->tail[ring]);
  586. seq_printf(m, " ACTHD: 0x%08x\n", error->acthd[ring]);
  587. seq_printf(m, " IPEIR: 0x%08x\n", error->ipeir[ring]);
  588. seq_printf(m, " IPEHR: 0x%08x\n", error->ipehr[ring]);
  589. seq_printf(m, " INSTDONE: 0x%08x\n", error->instdone[ring]);
  590. if (ring == RCS && INTEL_INFO(dev)->gen >= 4) {
  591. seq_printf(m, " INSTDONE1: 0x%08x\n", error->instdone1);
  592. seq_printf(m, " BBADDR: 0x%08llx\n", error->bbaddr);
  593. }
  594. if (INTEL_INFO(dev)->gen >= 4)
  595. seq_printf(m, " INSTPS: 0x%08x\n", error->instps[ring]);
  596. seq_printf(m, " INSTPM: 0x%08x\n", error->instpm[ring]);
  597. seq_printf(m, " FADDR: 0x%08x\n", error->faddr[ring]);
  598. if (INTEL_INFO(dev)->gen >= 6) {
  599. seq_printf(m, " FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
  600. seq_printf(m, " SYNC_0: 0x%08x\n",
  601. error->semaphore_mboxes[ring][0]);
  602. seq_printf(m, " SYNC_1: 0x%08x\n",
  603. error->semaphore_mboxes[ring][1]);
  604. }
  605. seq_printf(m, " seqno: 0x%08x\n", error->seqno[ring]);
  606. seq_printf(m, " waiting: %s\n", yesno(error->waiting[ring]));
  607. seq_printf(m, " ring->head: 0x%08x\n", error->cpu_ring_head[ring]);
  608. seq_printf(m, " ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]);
  609. }
  610. static int i915_error_state(struct seq_file *m, void *unused)
  611. {
  612. struct drm_info_node *node = (struct drm_info_node *) m->private;
  613. struct drm_device *dev = node->minor->dev;
  614. drm_i915_private_t *dev_priv = dev->dev_private;
  615. struct drm_i915_error_state *error;
  616. unsigned long flags;
  617. int i, j, page, offset, elt;
  618. spin_lock_irqsave(&dev_priv->error_lock, flags);
  619. if (!dev_priv->first_error) {
  620. seq_printf(m, "no error state collected\n");
  621. goto out;
  622. }
  623. error = dev_priv->first_error;
  624. seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
  625. error->time.tv_usec);
  626. seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
  627. seq_printf(m, "EIR: 0x%08x\n", error->eir);
  628. seq_printf(m, "IER: 0x%08x\n", error->ier);
  629. seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
  630. for (i = 0; i < dev_priv->num_fence_regs; i++)
  631. seq_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]);
  632. if (INTEL_INFO(dev)->gen >= 6) {
  633. seq_printf(m, "ERROR: 0x%08x\n", error->error);
  634. seq_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
  635. }
  636. i915_ring_error_state(m, dev, error, RCS);
  637. if (HAS_BLT(dev))
  638. i915_ring_error_state(m, dev, error, BCS);
  639. if (HAS_BSD(dev))
  640. i915_ring_error_state(m, dev, error, VCS);
  641. if (error->active_bo)
  642. print_error_buffers(m, "Active",
  643. error->active_bo,
  644. error->active_bo_count);
  645. if (error->pinned_bo)
  646. print_error_buffers(m, "Pinned",
  647. error->pinned_bo,
  648. error->pinned_bo_count);
  649. for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
  650. struct drm_i915_error_object *obj;
  651. if ((obj = error->ring[i].batchbuffer)) {
  652. seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
  653. dev_priv->ring[i].name,
  654. obj->gtt_offset);
  655. offset = 0;
  656. for (page = 0; page < obj->page_count; page++) {
  657. for (elt = 0; elt < PAGE_SIZE/4; elt++) {
  658. seq_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]);
  659. offset += 4;
  660. }
  661. }
  662. }
  663. if (error->ring[i].num_requests) {
  664. seq_printf(m, "%s --- %d requests\n",
  665. dev_priv->ring[i].name,
  666. error->ring[i].num_requests);
  667. for (j = 0; j < error->ring[i].num_requests; j++) {
  668. seq_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n",
  669. error->ring[i].requests[j].seqno,
  670. error->ring[i].requests[j].jiffies,
  671. error->ring[i].requests[j].tail);
  672. }
  673. }
  674. if ((obj = error->ring[i].ringbuffer)) {
  675. seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
  676. dev_priv->ring[i].name,
  677. obj->gtt_offset);
  678. offset = 0;
  679. for (page = 0; page < obj->page_count; page++) {
  680. for (elt = 0; elt < PAGE_SIZE/4; elt++) {
  681. seq_printf(m, "%08x : %08x\n",
  682. offset,
  683. obj->pages[page][elt]);
  684. offset += 4;
  685. }
  686. }
  687. }
  688. }
  689. if (error->overlay)
  690. intel_overlay_print_error_state(m, error->overlay);
  691. if (error->display)
  692. intel_display_print_error_state(m, dev, error->display);
  693. out:
  694. spin_unlock_irqrestore(&dev_priv->error_lock, flags);
  695. return 0;
  696. }
  697. static int i915_rstdby_delays(struct seq_file *m, void *unused)
  698. {
  699. struct drm_info_node *node = (struct drm_info_node *) m->private;
  700. struct drm_device *dev = node->minor->dev;
  701. drm_i915_private_t *dev_priv = dev->dev_private;
  702. u16 crstanddelay;
  703. int ret;
  704. ret = mutex_lock_interruptible(&dev->struct_mutex);
  705. if (ret)
  706. return ret;
  707. crstanddelay = I915_READ16(CRSTANDVID);
  708. mutex_unlock(&dev->struct_mutex);
  709. seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
  710. return 0;
  711. }
  712. static int i915_cur_delayinfo(struct seq_file *m, void *unused)
  713. {
  714. struct drm_info_node *node = (struct drm_info_node *) m->private;
  715. struct drm_device *dev = node->minor->dev;
  716. drm_i915_private_t *dev_priv = dev->dev_private;
  717. int ret;
  718. if (IS_GEN5(dev)) {
  719. u16 rgvswctl = I915_READ16(MEMSWCTL);
  720. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  721. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  722. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  723. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  724. MEMSTAT_VID_SHIFT);
  725. seq_printf(m, "Current P-state: %d\n",
  726. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  727. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  728. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  729. u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  730. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  731. u32 rpstat;
  732. u32 rpupei, rpcurup, rpprevup;
  733. u32 rpdownei, rpcurdown, rpprevdown;
  734. int max_freq;
  735. /* RPSTAT1 is in the GT power well */
  736. ret = mutex_lock_interruptible(&dev->struct_mutex);
  737. if (ret)
  738. return ret;
  739. gen6_gt_force_wake_get(dev_priv);
  740. rpstat = I915_READ(GEN6_RPSTAT1);
  741. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  742. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  743. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  744. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  745. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  746. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  747. gen6_gt_force_wake_put(dev_priv);
  748. mutex_unlock(&dev->struct_mutex);
  749. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  750. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  751. seq_printf(m, "Render p-state ratio: %d\n",
  752. (gt_perf_status & 0xff00) >> 8);
  753. seq_printf(m, "Render p-state VID: %d\n",
  754. gt_perf_status & 0xff);
  755. seq_printf(m, "Render p-state limit: %d\n",
  756. rp_state_limits & 0xff);
  757. seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
  758. GEN6_CAGF_SHIFT) * 50);
  759. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  760. GEN6_CURICONT_MASK);
  761. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  762. GEN6_CURBSYTAVG_MASK);
  763. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  764. GEN6_CURBSYTAVG_MASK);
  765. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  766. GEN6_CURIAVG_MASK);
  767. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  768. GEN6_CURBSYTAVG_MASK);
  769. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  770. GEN6_CURBSYTAVG_MASK);
  771. max_freq = (rp_state_cap & 0xff0000) >> 16;
  772. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  773. max_freq * 50);
  774. max_freq = (rp_state_cap & 0xff00) >> 8;
  775. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  776. max_freq * 50);
  777. max_freq = rp_state_cap & 0xff;
  778. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  779. max_freq * 50);
  780. } else {
  781. seq_printf(m, "no P-state info available\n");
  782. }
  783. return 0;
  784. }
  785. static int i915_delayfreq_table(struct seq_file *m, void *unused)
  786. {
  787. struct drm_info_node *node = (struct drm_info_node *) m->private;
  788. struct drm_device *dev = node->minor->dev;
  789. drm_i915_private_t *dev_priv = dev->dev_private;
  790. u32 delayfreq;
  791. int ret, i;
  792. ret = mutex_lock_interruptible(&dev->struct_mutex);
  793. if (ret)
  794. return ret;
  795. for (i = 0; i < 16; i++) {
  796. delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
  797. seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
  798. (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
  799. }
  800. mutex_unlock(&dev->struct_mutex);
  801. return 0;
  802. }
  803. static inline int MAP_TO_MV(int map)
  804. {
  805. return 1250 - (map * 25);
  806. }
  807. static int i915_inttoext_table(struct seq_file *m, void *unused)
  808. {
  809. struct drm_info_node *node = (struct drm_info_node *) m->private;
  810. struct drm_device *dev = node->minor->dev;
  811. drm_i915_private_t *dev_priv = dev->dev_private;
  812. u32 inttoext;
  813. int ret, i;
  814. ret = mutex_lock_interruptible(&dev->struct_mutex);
  815. if (ret)
  816. return ret;
  817. for (i = 1; i <= 32; i++) {
  818. inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
  819. seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
  820. }
  821. mutex_unlock(&dev->struct_mutex);
  822. return 0;
  823. }
  824. static int ironlake_drpc_info(struct seq_file *m)
  825. {
  826. struct drm_info_node *node = (struct drm_info_node *) m->private;
  827. struct drm_device *dev = node->minor->dev;
  828. drm_i915_private_t *dev_priv = dev->dev_private;
  829. u32 rgvmodectl, rstdbyctl;
  830. u16 crstandvid;
  831. int ret;
  832. ret = mutex_lock_interruptible(&dev->struct_mutex);
  833. if (ret)
  834. return ret;
  835. rgvmodectl = I915_READ(MEMMODECTL);
  836. rstdbyctl = I915_READ(RSTDBYCTL);
  837. crstandvid = I915_READ16(CRSTANDVID);
  838. mutex_unlock(&dev->struct_mutex);
  839. seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
  840. "yes" : "no");
  841. seq_printf(m, "Boost freq: %d\n",
  842. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  843. MEMMODE_BOOST_FREQ_SHIFT);
  844. seq_printf(m, "HW control enabled: %s\n",
  845. rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
  846. seq_printf(m, "SW control enabled: %s\n",
  847. rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
  848. seq_printf(m, "Gated voltage change: %s\n",
  849. rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
  850. seq_printf(m, "Starting frequency: P%d\n",
  851. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  852. seq_printf(m, "Max P-state: P%d\n",
  853. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  854. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  855. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  856. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  857. seq_printf(m, "Render standby enabled: %s\n",
  858. (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
  859. seq_printf(m, "Current RS state: ");
  860. switch (rstdbyctl & RSX_STATUS_MASK) {
  861. case RSX_STATUS_ON:
  862. seq_printf(m, "on\n");
  863. break;
  864. case RSX_STATUS_RC1:
  865. seq_printf(m, "RC1\n");
  866. break;
  867. case RSX_STATUS_RC1E:
  868. seq_printf(m, "RC1E\n");
  869. break;
  870. case RSX_STATUS_RS1:
  871. seq_printf(m, "RS1\n");
  872. break;
  873. case RSX_STATUS_RS2:
  874. seq_printf(m, "RS2 (RC6)\n");
  875. break;
  876. case RSX_STATUS_RS3:
  877. seq_printf(m, "RC3 (RC6+)\n");
  878. break;
  879. default:
  880. seq_printf(m, "unknown\n");
  881. break;
  882. }
  883. return 0;
  884. }
  885. static int gen6_drpc_info(struct seq_file *m)
  886. {
  887. struct drm_info_node *node = (struct drm_info_node *) m->private;
  888. struct drm_device *dev = node->minor->dev;
  889. struct drm_i915_private *dev_priv = dev->dev_private;
  890. u32 rpmodectl1, gt_core_status, rcctl1;
  891. unsigned forcewake_count;
  892. int count=0, ret;
  893. ret = mutex_lock_interruptible(&dev->struct_mutex);
  894. if (ret)
  895. return ret;
  896. spin_lock_irq(&dev_priv->gt_lock);
  897. forcewake_count = dev_priv->forcewake_count;
  898. spin_unlock_irq(&dev_priv->gt_lock);
  899. if (forcewake_count) {
  900. seq_printf(m, "RC information inaccurate because somebody "
  901. "holds a forcewake reference \n");
  902. } else {
  903. /* NB: we cannot use forcewake, else we read the wrong values */
  904. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  905. udelay(10);
  906. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  907. }
  908. gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
  909. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);
  910. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  911. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  912. mutex_unlock(&dev->struct_mutex);
  913. seq_printf(m, "Video Turbo Mode: %s\n",
  914. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  915. seq_printf(m, "HW control enabled: %s\n",
  916. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  917. seq_printf(m, "SW control enabled: %s\n",
  918. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  919. GEN6_RP_MEDIA_SW_MODE));
  920. seq_printf(m, "RC1e Enabled: %s\n",
  921. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  922. seq_printf(m, "RC6 Enabled: %s\n",
  923. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  924. seq_printf(m, "Deep RC6 Enabled: %s\n",
  925. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  926. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  927. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  928. seq_printf(m, "Current RC state: ");
  929. switch (gt_core_status & GEN6_RCn_MASK) {
  930. case GEN6_RC0:
  931. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  932. seq_printf(m, "Core Power Down\n");
  933. else
  934. seq_printf(m, "on\n");
  935. break;
  936. case GEN6_RC3:
  937. seq_printf(m, "RC3\n");
  938. break;
  939. case GEN6_RC6:
  940. seq_printf(m, "RC6\n");
  941. break;
  942. case GEN6_RC7:
  943. seq_printf(m, "RC7\n");
  944. break;
  945. default:
  946. seq_printf(m, "Unknown\n");
  947. break;
  948. }
  949. seq_printf(m, "Core Power Down: %s\n",
  950. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  951. /* Not exactly sure what this is */
  952. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  953. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  954. seq_printf(m, "RC6 residency since boot: %u\n",
  955. I915_READ(GEN6_GT_GFX_RC6));
  956. seq_printf(m, "RC6+ residency since boot: %u\n",
  957. I915_READ(GEN6_GT_GFX_RC6p));
  958. seq_printf(m, "RC6++ residency since boot: %u\n",
  959. I915_READ(GEN6_GT_GFX_RC6pp));
  960. return 0;
  961. }
  962. static int i915_drpc_info(struct seq_file *m, void *unused)
  963. {
  964. struct drm_info_node *node = (struct drm_info_node *) m->private;
  965. struct drm_device *dev = node->minor->dev;
  966. if (IS_GEN6(dev) || IS_GEN7(dev))
  967. return gen6_drpc_info(m);
  968. else
  969. return ironlake_drpc_info(m);
  970. }
  971. static int i915_fbc_status(struct seq_file *m, void *unused)
  972. {
  973. struct drm_info_node *node = (struct drm_info_node *) m->private;
  974. struct drm_device *dev = node->minor->dev;
  975. drm_i915_private_t *dev_priv = dev->dev_private;
  976. if (!I915_HAS_FBC(dev)) {
  977. seq_printf(m, "FBC unsupported on this chipset\n");
  978. return 0;
  979. }
  980. if (intel_fbc_enabled(dev)) {
  981. seq_printf(m, "FBC enabled\n");
  982. } else {
  983. seq_printf(m, "FBC disabled: ");
  984. switch (dev_priv->no_fbc_reason) {
  985. case FBC_NO_OUTPUT:
  986. seq_printf(m, "no outputs");
  987. break;
  988. case FBC_STOLEN_TOO_SMALL:
  989. seq_printf(m, "not enough stolen memory");
  990. break;
  991. case FBC_UNSUPPORTED_MODE:
  992. seq_printf(m, "mode not supported");
  993. break;
  994. case FBC_MODE_TOO_LARGE:
  995. seq_printf(m, "mode too large");
  996. break;
  997. case FBC_BAD_PLANE:
  998. seq_printf(m, "FBC unsupported on plane");
  999. break;
  1000. case FBC_NOT_TILED:
  1001. seq_printf(m, "scanout buffer not tiled");
  1002. break;
  1003. case FBC_MULTIPLE_PIPES:
  1004. seq_printf(m, "multiple pipes are enabled");
  1005. break;
  1006. case FBC_MODULE_PARAM:
  1007. seq_printf(m, "disabled per module param (default off)");
  1008. break;
  1009. default:
  1010. seq_printf(m, "unknown reason");
  1011. }
  1012. seq_printf(m, "\n");
  1013. }
  1014. return 0;
  1015. }
  1016. static int i915_sr_status(struct seq_file *m, void *unused)
  1017. {
  1018. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1019. struct drm_device *dev = node->minor->dev;
  1020. drm_i915_private_t *dev_priv = dev->dev_private;
  1021. bool sr_enabled = false;
  1022. if (HAS_PCH_SPLIT(dev))
  1023. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1024. else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
  1025. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1026. else if (IS_I915GM(dev))
  1027. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1028. else if (IS_PINEVIEW(dev))
  1029. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1030. seq_printf(m, "self-refresh: %s\n",
  1031. sr_enabled ? "enabled" : "disabled");
  1032. return 0;
  1033. }
  1034. static int i915_emon_status(struct seq_file *m, void *unused)
  1035. {
  1036. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1037. struct drm_device *dev = node->minor->dev;
  1038. drm_i915_private_t *dev_priv = dev->dev_private;
  1039. unsigned long temp, chipset, gfx;
  1040. int ret;
  1041. if (!IS_GEN5(dev))
  1042. return -ENODEV;
  1043. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1044. if (ret)
  1045. return ret;
  1046. temp = i915_mch_val(dev_priv);
  1047. chipset = i915_chipset_val(dev_priv);
  1048. gfx = i915_gfx_val(dev_priv);
  1049. mutex_unlock(&dev->struct_mutex);
  1050. seq_printf(m, "GMCH temp: %ld\n", temp);
  1051. seq_printf(m, "Chipset power: %ld\n", chipset);
  1052. seq_printf(m, "GFX power: %ld\n", gfx);
  1053. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1054. return 0;
  1055. }
  1056. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1057. {
  1058. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1059. struct drm_device *dev = node->minor->dev;
  1060. drm_i915_private_t *dev_priv = dev->dev_private;
  1061. int ret;
  1062. int gpu_freq, ia_freq;
  1063. if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
  1064. seq_printf(m, "unsupported on this chipset\n");
  1065. return 0;
  1066. }
  1067. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1068. if (ret)
  1069. return ret;
  1070. seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");
  1071. for (gpu_freq = dev_priv->min_delay; gpu_freq <= dev_priv->max_delay;
  1072. gpu_freq++) {
  1073. I915_WRITE(GEN6_PCODE_DATA, gpu_freq);
  1074. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  1075. GEN6_PCODE_READ_MIN_FREQ_TABLE);
  1076. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  1077. GEN6_PCODE_READY) == 0, 10)) {
  1078. DRM_ERROR("pcode read of freq table timed out\n");
  1079. continue;
  1080. }
  1081. ia_freq = I915_READ(GEN6_PCODE_DATA);
  1082. seq_printf(m, "%d\t\t%d\n", gpu_freq * 50, ia_freq * 100);
  1083. }
  1084. mutex_unlock(&dev->struct_mutex);
  1085. return 0;
  1086. }
  1087. static int i915_gfxec(struct seq_file *m, void *unused)
  1088. {
  1089. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1090. struct drm_device *dev = node->minor->dev;
  1091. drm_i915_private_t *dev_priv = dev->dev_private;
  1092. int ret;
  1093. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1094. if (ret)
  1095. return ret;
  1096. seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
  1097. mutex_unlock(&dev->struct_mutex);
  1098. return 0;
  1099. }
  1100. static int i915_opregion(struct seq_file *m, void *unused)
  1101. {
  1102. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1103. struct drm_device *dev = node->minor->dev;
  1104. drm_i915_private_t *dev_priv = dev->dev_private;
  1105. struct intel_opregion *opregion = &dev_priv->opregion;
  1106. void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
  1107. int ret;
  1108. if (data == NULL)
  1109. return -ENOMEM;
  1110. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1111. if (ret)
  1112. goto out;
  1113. if (opregion->header) {
  1114. memcpy_fromio(data, opregion->header, OPREGION_SIZE);
  1115. seq_write(m, data, OPREGION_SIZE);
  1116. }
  1117. mutex_unlock(&dev->struct_mutex);
  1118. out:
  1119. kfree(data);
  1120. return 0;
  1121. }
  1122. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1123. {
  1124. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1125. struct drm_device *dev = node->minor->dev;
  1126. drm_i915_private_t *dev_priv = dev->dev_private;
  1127. struct intel_fbdev *ifbdev;
  1128. struct intel_framebuffer *fb;
  1129. int ret;
  1130. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1131. if (ret)
  1132. return ret;
  1133. ifbdev = dev_priv->fbdev;
  1134. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1135. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
  1136. fb->base.width,
  1137. fb->base.height,
  1138. fb->base.depth,
  1139. fb->base.bits_per_pixel);
  1140. describe_obj(m, fb->obj);
  1141. seq_printf(m, "\n");
  1142. list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
  1143. if (&fb->base == ifbdev->helper.fb)
  1144. continue;
  1145. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
  1146. fb->base.width,
  1147. fb->base.height,
  1148. fb->base.depth,
  1149. fb->base.bits_per_pixel);
  1150. describe_obj(m, fb->obj);
  1151. seq_printf(m, "\n");
  1152. }
  1153. mutex_unlock(&dev->mode_config.mutex);
  1154. return 0;
  1155. }
  1156. static int i915_context_status(struct seq_file *m, void *unused)
  1157. {
  1158. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1159. struct drm_device *dev = node->minor->dev;
  1160. drm_i915_private_t *dev_priv = dev->dev_private;
  1161. int ret;
  1162. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1163. if (ret)
  1164. return ret;
  1165. if (dev_priv->pwrctx) {
  1166. seq_printf(m, "power context ");
  1167. describe_obj(m, dev_priv->pwrctx);
  1168. seq_printf(m, "\n");
  1169. }
  1170. if (dev_priv->renderctx) {
  1171. seq_printf(m, "render context ");
  1172. describe_obj(m, dev_priv->renderctx);
  1173. seq_printf(m, "\n");
  1174. }
  1175. mutex_unlock(&dev->mode_config.mutex);
  1176. return 0;
  1177. }
  1178. static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
  1179. {
  1180. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1181. struct drm_device *dev = node->minor->dev;
  1182. struct drm_i915_private *dev_priv = dev->dev_private;
  1183. unsigned forcewake_count;
  1184. spin_lock_irq(&dev_priv->gt_lock);
  1185. forcewake_count = dev_priv->forcewake_count;
  1186. spin_unlock_irq(&dev_priv->gt_lock);
  1187. seq_printf(m, "forcewake count = %u\n", forcewake_count);
  1188. return 0;
  1189. }
  1190. static const char *swizzle_string(unsigned swizzle)
  1191. {
  1192. switch(swizzle) {
  1193. case I915_BIT_6_SWIZZLE_NONE:
  1194. return "none";
  1195. case I915_BIT_6_SWIZZLE_9:
  1196. return "bit9";
  1197. case I915_BIT_6_SWIZZLE_9_10:
  1198. return "bit9/bit10";
  1199. case I915_BIT_6_SWIZZLE_9_11:
  1200. return "bit9/bit11";
  1201. case I915_BIT_6_SWIZZLE_9_10_11:
  1202. return "bit9/bit10/bit11";
  1203. case I915_BIT_6_SWIZZLE_9_17:
  1204. return "bit9/bit17";
  1205. case I915_BIT_6_SWIZZLE_9_10_17:
  1206. return "bit9/bit10/bit17";
  1207. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1208. return "unkown";
  1209. }
  1210. return "bug";
  1211. }
  1212. static int i915_swizzle_info(struct seq_file *m, void *data)
  1213. {
  1214. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1215. struct drm_device *dev = node->minor->dev;
  1216. struct drm_i915_private *dev_priv = dev->dev_private;
  1217. mutex_lock(&dev->struct_mutex);
  1218. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1219. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1220. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1221. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1222. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1223. seq_printf(m, "DDC = 0x%08x\n",
  1224. I915_READ(DCC));
  1225. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1226. I915_READ16(C0DRB3));
  1227. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1228. I915_READ16(C1DRB3));
  1229. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1230. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1231. I915_READ(MAD_DIMM_C0));
  1232. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1233. I915_READ(MAD_DIMM_C1));
  1234. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1235. I915_READ(MAD_DIMM_C2));
  1236. seq_printf(m, "TILECTL = 0x%08x\n",
  1237. I915_READ(TILECTL));
  1238. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1239. I915_READ(ARB_MODE));
  1240. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1241. I915_READ(DISP_ARB_CTL));
  1242. }
  1243. mutex_unlock(&dev->struct_mutex);
  1244. return 0;
  1245. }
  1246. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1247. {
  1248. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1249. struct drm_device *dev = node->minor->dev;
  1250. struct drm_i915_private *dev_priv = dev->dev_private;
  1251. struct intel_ring_buffer *ring;
  1252. int i, ret;
  1253. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1254. if (ret)
  1255. return ret;
  1256. if (INTEL_INFO(dev)->gen == 6)
  1257. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1258. for (i = 0; i < I915_NUM_RINGS; i++) {
  1259. ring = &dev_priv->ring[i];
  1260. seq_printf(m, "%s\n", ring->name);
  1261. if (INTEL_INFO(dev)->gen == 7)
  1262. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1263. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1264. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1265. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1266. }
  1267. if (dev_priv->mm.aliasing_ppgtt) {
  1268. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1269. seq_printf(m, "aliasing PPGTT:\n");
  1270. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
  1271. }
  1272. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1273. mutex_unlock(&dev->struct_mutex);
  1274. return 0;
  1275. }
  1276. static int i915_dpio_info(struct seq_file *m, void *data)
  1277. {
  1278. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1279. struct drm_device *dev = node->minor->dev;
  1280. struct drm_i915_private *dev_priv = dev->dev_private;
  1281. int ret;
  1282. if (!IS_VALLEYVIEW(dev)) {
  1283. seq_printf(m, "unsupported\n");
  1284. return 0;
  1285. }
  1286. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1287. if (ret)
  1288. return ret;
  1289. seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
  1290. seq_printf(m, "DPIO_DIV_A: 0x%08x\n",
  1291. intel_dpio_read(dev_priv, _DPIO_DIV_A));
  1292. seq_printf(m, "DPIO_DIV_B: 0x%08x\n",
  1293. intel_dpio_read(dev_priv, _DPIO_DIV_B));
  1294. seq_printf(m, "DPIO_REFSFR_A: 0x%08x\n",
  1295. intel_dpio_read(dev_priv, _DPIO_REFSFR_A));
  1296. seq_printf(m, "DPIO_REFSFR_B: 0x%08x\n",
  1297. intel_dpio_read(dev_priv, _DPIO_REFSFR_B));
  1298. seq_printf(m, "DPIO_CORE_CLK_A: 0x%08x\n",
  1299. intel_dpio_read(dev_priv, _DPIO_CORE_CLK_A));
  1300. seq_printf(m, "DPIO_CORE_CLK_B: 0x%08x\n",
  1301. intel_dpio_read(dev_priv, _DPIO_CORE_CLK_B));
  1302. seq_printf(m, "DPIO_LFP_COEFF_A: 0x%08x\n",
  1303. intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_A));
  1304. seq_printf(m, "DPIO_LFP_COEFF_B: 0x%08x\n",
  1305. intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_B));
  1306. seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
  1307. intel_dpio_read(dev_priv, DPIO_FASTCLK_DISABLE));
  1308. mutex_unlock(&dev->mode_config.mutex);
  1309. return 0;
  1310. }
  1311. static ssize_t
  1312. i915_wedged_read(struct file *filp,
  1313. char __user *ubuf,
  1314. size_t max,
  1315. loff_t *ppos)
  1316. {
  1317. struct drm_device *dev = filp->private_data;
  1318. drm_i915_private_t *dev_priv = dev->dev_private;
  1319. char buf[80];
  1320. int len;
  1321. len = snprintf(buf, sizeof(buf),
  1322. "wedged : %d\n",
  1323. atomic_read(&dev_priv->mm.wedged));
  1324. if (len > sizeof(buf))
  1325. len = sizeof(buf);
  1326. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1327. }
  1328. static ssize_t
  1329. i915_wedged_write(struct file *filp,
  1330. const char __user *ubuf,
  1331. size_t cnt,
  1332. loff_t *ppos)
  1333. {
  1334. struct drm_device *dev = filp->private_data;
  1335. char buf[20];
  1336. int val = 1;
  1337. if (cnt > 0) {
  1338. if (cnt > sizeof(buf) - 1)
  1339. return -EINVAL;
  1340. if (copy_from_user(buf, ubuf, cnt))
  1341. return -EFAULT;
  1342. buf[cnt] = 0;
  1343. val = simple_strtoul(buf, NULL, 0);
  1344. }
  1345. DRM_INFO("Manually setting wedged to %d\n", val);
  1346. i915_handle_error(dev, val);
  1347. return cnt;
  1348. }
  1349. static const struct file_operations i915_wedged_fops = {
  1350. .owner = THIS_MODULE,
  1351. .open = simple_open,
  1352. .read = i915_wedged_read,
  1353. .write = i915_wedged_write,
  1354. .llseek = default_llseek,
  1355. };
  1356. static ssize_t
  1357. i915_ring_stop_read(struct file *filp,
  1358. char __user *ubuf,
  1359. size_t max,
  1360. loff_t *ppos)
  1361. {
  1362. struct drm_device *dev = filp->private_data;
  1363. drm_i915_private_t *dev_priv = dev->dev_private;
  1364. char buf[20];
  1365. int len;
  1366. len = snprintf(buf, sizeof(buf),
  1367. "0x%08x\n", dev_priv->stop_rings);
  1368. if (len > sizeof(buf))
  1369. len = sizeof(buf);
  1370. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1371. }
  1372. static ssize_t
  1373. i915_ring_stop_write(struct file *filp,
  1374. const char __user *ubuf,
  1375. size_t cnt,
  1376. loff_t *ppos)
  1377. {
  1378. struct drm_device *dev = filp->private_data;
  1379. struct drm_i915_private *dev_priv = dev->dev_private;
  1380. char buf[20];
  1381. int val = 0;
  1382. if (cnt > 0) {
  1383. if (cnt > sizeof(buf) - 1)
  1384. return -EINVAL;
  1385. if (copy_from_user(buf, ubuf, cnt))
  1386. return -EFAULT;
  1387. buf[cnt] = 0;
  1388. val = simple_strtoul(buf, NULL, 0);
  1389. }
  1390. DRM_DEBUG_DRIVER("Stopping rings 0x%08x\n", val);
  1391. mutex_lock(&dev->struct_mutex);
  1392. dev_priv->stop_rings = val;
  1393. mutex_unlock(&dev->struct_mutex);
  1394. return cnt;
  1395. }
  1396. static const struct file_operations i915_ring_stop_fops = {
  1397. .owner = THIS_MODULE,
  1398. .open = simple_open,
  1399. .read = i915_ring_stop_read,
  1400. .write = i915_ring_stop_write,
  1401. .llseek = default_llseek,
  1402. };
  1403. static ssize_t
  1404. i915_max_freq_read(struct file *filp,
  1405. char __user *ubuf,
  1406. size_t max,
  1407. loff_t *ppos)
  1408. {
  1409. struct drm_device *dev = filp->private_data;
  1410. drm_i915_private_t *dev_priv = dev->dev_private;
  1411. char buf[80];
  1412. int len;
  1413. len = snprintf(buf, sizeof(buf),
  1414. "max freq: %d\n", dev_priv->max_delay * 50);
  1415. if (len > sizeof(buf))
  1416. len = sizeof(buf);
  1417. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1418. }
  1419. static ssize_t
  1420. i915_max_freq_write(struct file *filp,
  1421. const char __user *ubuf,
  1422. size_t cnt,
  1423. loff_t *ppos)
  1424. {
  1425. struct drm_device *dev = filp->private_data;
  1426. struct drm_i915_private *dev_priv = dev->dev_private;
  1427. char buf[20];
  1428. int val = 1;
  1429. if (cnt > 0) {
  1430. if (cnt > sizeof(buf) - 1)
  1431. return -EINVAL;
  1432. if (copy_from_user(buf, ubuf, cnt))
  1433. return -EFAULT;
  1434. buf[cnt] = 0;
  1435. val = simple_strtoul(buf, NULL, 0);
  1436. }
  1437. DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);
  1438. /*
  1439. * Turbo will still be enabled, but won't go above the set value.
  1440. */
  1441. dev_priv->max_delay = val / 50;
  1442. gen6_set_rps(dev, val / 50);
  1443. return cnt;
  1444. }
  1445. static const struct file_operations i915_max_freq_fops = {
  1446. .owner = THIS_MODULE,
  1447. .open = simple_open,
  1448. .read = i915_max_freq_read,
  1449. .write = i915_max_freq_write,
  1450. .llseek = default_llseek,
  1451. };
  1452. static ssize_t
  1453. i915_cache_sharing_read(struct file *filp,
  1454. char __user *ubuf,
  1455. size_t max,
  1456. loff_t *ppos)
  1457. {
  1458. struct drm_device *dev = filp->private_data;
  1459. drm_i915_private_t *dev_priv = dev->dev_private;
  1460. char buf[80];
  1461. u32 snpcr;
  1462. int len;
  1463. mutex_lock(&dev_priv->dev->struct_mutex);
  1464. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  1465. mutex_unlock(&dev_priv->dev->struct_mutex);
  1466. len = snprintf(buf, sizeof(buf),
  1467. "%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
  1468. GEN6_MBC_SNPCR_SHIFT);
  1469. if (len > sizeof(buf))
  1470. len = sizeof(buf);
  1471. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1472. }
  1473. static ssize_t
  1474. i915_cache_sharing_write(struct file *filp,
  1475. const char __user *ubuf,
  1476. size_t cnt,
  1477. loff_t *ppos)
  1478. {
  1479. struct drm_device *dev = filp->private_data;
  1480. struct drm_i915_private *dev_priv = dev->dev_private;
  1481. char buf[20];
  1482. u32 snpcr;
  1483. int val = 1;
  1484. if (cnt > 0) {
  1485. if (cnt > sizeof(buf) - 1)
  1486. return -EINVAL;
  1487. if (copy_from_user(buf, ubuf, cnt))
  1488. return -EFAULT;
  1489. buf[cnt] = 0;
  1490. val = simple_strtoul(buf, NULL, 0);
  1491. }
  1492. if (val < 0 || val > 3)
  1493. return -EINVAL;
  1494. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);
  1495. /* Update the cache sharing policy here as well */
  1496. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  1497. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  1498. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  1499. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  1500. return cnt;
  1501. }
  1502. static const struct file_operations i915_cache_sharing_fops = {
  1503. .owner = THIS_MODULE,
  1504. .open = simple_open,
  1505. .read = i915_cache_sharing_read,
  1506. .write = i915_cache_sharing_write,
  1507. .llseek = default_llseek,
  1508. };
  1509. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  1510. * allocated we need to hook into the minor for release. */
  1511. static int
  1512. drm_add_fake_info_node(struct drm_minor *minor,
  1513. struct dentry *ent,
  1514. const void *key)
  1515. {
  1516. struct drm_info_node *node;
  1517. node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
  1518. if (node == NULL) {
  1519. debugfs_remove(ent);
  1520. return -ENOMEM;
  1521. }
  1522. node->minor = minor;
  1523. node->dent = ent;
  1524. node->info_ent = (void *) key;
  1525. mutex_lock(&minor->debugfs_lock);
  1526. list_add(&node->list, &minor->debugfs_list);
  1527. mutex_unlock(&minor->debugfs_lock);
  1528. return 0;
  1529. }
  1530. static int i915_forcewake_open(struct inode *inode, struct file *file)
  1531. {
  1532. struct drm_device *dev = inode->i_private;
  1533. struct drm_i915_private *dev_priv = dev->dev_private;
  1534. int ret;
  1535. if (INTEL_INFO(dev)->gen < 6)
  1536. return 0;
  1537. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1538. if (ret)
  1539. return ret;
  1540. gen6_gt_force_wake_get(dev_priv);
  1541. mutex_unlock(&dev->struct_mutex);
  1542. return 0;
  1543. }
  1544. static int i915_forcewake_release(struct inode *inode, struct file *file)
  1545. {
  1546. struct drm_device *dev = inode->i_private;
  1547. struct drm_i915_private *dev_priv = dev->dev_private;
  1548. if (INTEL_INFO(dev)->gen < 6)
  1549. return 0;
  1550. /*
  1551. * It's bad that we can potentially hang userspace if struct_mutex gets
  1552. * forever stuck. However, if we cannot acquire this lock it means that
  1553. * almost certainly the driver has hung, is not unload-able. Therefore
  1554. * hanging here is probably a minor inconvenience not to be seen my
  1555. * almost every user.
  1556. */
  1557. mutex_lock(&dev->struct_mutex);
  1558. gen6_gt_force_wake_put(dev_priv);
  1559. mutex_unlock(&dev->struct_mutex);
  1560. return 0;
  1561. }
  1562. static const struct file_operations i915_forcewake_fops = {
  1563. .owner = THIS_MODULE,
  1564. .open = i915_forcewake_open,
  1565. .release = i915_forcewake_release,
  1566. };
  1567. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  1568. {
  1569. struct drm_device *dev = minor->dev;
  1570. struct dentry *ent;
  1571. ent = debugfs_create_file("i915_forcewake_user",
  1572. S_IRUSR,
  1573. root, dev,
  1574. &i915_forcewake_fops);
  1575. if (IS_ERR(ent))
  1576. return PTR_ERR(ent);
  1577. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  1578. }
  1579. static int i915_debugfs_create(struct dentry *root,
  1580. struct drm_minor *minor,
  1581. const char *name,
  1582. const struct file_operations *fops)
  1583. {
  1584. struct drm_device *dev = minor->dev;
  1585. struct dentry *ent;
  1586. ent = debugfs_create_file(name,
  1587. S_IRUGO | S_IWUSR,
  1588. root, dev,
  1589. fops);
  1590. if (IS_ERR(ent))
  1591. return PTR_ERR(ent);
  1592. return drm_add_fake_info_node(minor, ent, fops);
  1593. }
  1594. static struct drm_info_list i915_debugfs_list[] = {
  1595. {"i915_capabilities", i915_capabilities, 0},
  1596. {"i915_gem_objects", i915_gem_object_info, 0},
  1597. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  1598. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  1599. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  1600. {"i915_gem_flushing", i915_gem_object_list_info, 0, (void *) FLUSHING_LIST},
  1601. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  1602. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  1603. {"i915_gem_request", i915_gem_request_info, 0},
  1604. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  1605. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  1606. {"i915_gem_interrupt", i915_interrupt_info, 0},
  1607. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  1608. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  1609. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  1610. {"i915_error_state", i915_error_state, 0},
  1611. {"i915_rstdby_delays", i915_rstdby_delays, 0},
  1612. {"i915_cur_delayinfo", i915_cur_delayinfo, 0},
  1613. {"i915_delayfreq_table", i915_delayfreq_table, 0},
  1614. {"i915_inttoext_table", i915_inttoext_table, 0},
  1615. {"i915_drpc_info", i915_drpc_info, 0},
  1616. {"i915_emon_status", i915_emon_status, 0},
  1617. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  1618. {"i915_gfxec", i915_gfxec, 0},
  1619. {"i915_fbc_status", i915_fbc_status, 0},
  1620. {"i915_sr_status", i915_sr_status, 0},
  1621. {"i915_opregion", i915_opregion, 0},
  1622. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  1623. {"i915_context_status", i915_context_status, 0},
  1624. {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
  1625. {"i915_swizzle_info", i915_swizzle_info, 0},
  1626. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  1627. {"i915_dpio", i915_dpio_info, 0},
  1628. };
  1629. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  1630. int i915_debugfs_init(struct drm_minor *minor)
  1631. {
  1632. int ret;
  1633. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1634. "i915_wedged",
  1635. &i915_wedged_fops);
  1636. if (ret)
  1637. return ret;
  1638. ret = i915_forcewake_create(minor->debugfs_root, minor);
  1639. if (ret)
  1640. return ret;
  1641. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1642. "i915_max_freq",
  1643. &i915_max_freq_fops);
  1644. if (ret)
  1645. return ret;
  1646. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1647. "i915_cache_sharing",
  1648. &i915_cache_sharing_fops);
  1649. if (ret)
  1650. return ret;
  1651. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1652. "i915_ring_stop",
  1653. &i915_ring_stop_fops);
  1654. if (ret)
  1655. return ret;
  1656. return drm_debugfs_create_files(i915_debugfs_list,
  1657. I915_DEBUGFS_ENTRIES,
  1658. minor->debugfs_root, minor);
  1659. }
  1660. void i915_debugfs_cleanup(struct drm_minor *minor)
  1661. {
  1662. drm_debugfs_remove_files(i915_debugfs_list,
  1663. I915_DEBUGFS_ENTRIES, minor);
  1664. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  1665. 1, minor);
  1666. drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
  1667. 1, minor);
  1668. drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
  1669. 1, minor);
  1670. drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
  1671. 1, minor);
  1672. drm_debugfs_remove_files((struct drm_info_list *) &i915_ring_stop_fops,
  1673. 1, minor);
  1674. }
  1675. #endif /* CONFIG_DEBUG_FS */