kvm_mips.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/fs.h>
  16. #include <linux/bootmem.h>
  17. #include <asm/page.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/mmu_context.h>
  20. #include <linux/kvm_host.h>
  21. #include "kvm_mips_int.h"
  22. #include "kvm_mips_comm.h"
  23. #define CREATE_TRACE_POINTS
  24. #include "trace.h"
  25. #ifndef VECTORSPACING
  26. #define VECTORSPACING 0x100 /* for EI/VI mode */
  27. #endif
  28. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  29. struct kvm_stats_debugfs_item debugfs_entries[] = {
  30. { "wait", VCPU_STAT(wait_exits) },
  31. { "cache", VCPU_STAT(cache_exits) },
  32. { "signal", VCPU_STAT(signal_exits) },
  33. { "interrupt", VCPU_STAT(int_exits) },
  34. { "cop_unsuable", VCPU_STAT(cop_unusable_exits) },
  35. { "tlbmod", VCPU_STAT(tlbmod_exits) },
  36. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits) },
  37. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits) },
  38. { "addrerr_st", VCPU_STAT(addrerr_st_exits) },
  39. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits) },
  40. { "syscall", VCPU_STAT(syscall_exits) },
  41. { "resvd_inst", VCPU_STAT(resvd_inst_exits) },
  42. { "break_inst", VCPU_STAT(break_inst_exits) },
  43. { "flush_dcache", VCPU_STAT(flush_dcache_exits) },
  44. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  45. {NULL}
  46. };
  47. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  48. {
  49. int i;
  50. for_each_possible_cpu(i) {
  51. vcpu->arch.guest_kernel_asid[i] = 0;
  52. vcpu->arch.guest_user_asid[i] = 0;
  53. }
  54. return 0;
  55. }
  56. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  57. {
  58. return gfn;
  59. }
  60. /* XXXKYMA: We are simulatoring a processor that has the WII bit set in Config7, so we
  61. * are "runnable" if interrupts are pending
  62. */
  63. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  64. {
  65. return !!(vcpu->arch.pending_exceptions);
  66. }
  67. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  68. {
  69. return 1;
  70. }
  71. int kvm_arch_hardware_enable(void *garbage)
  72. {
  73. return 0;
  74. }
  75. void kvm_arch_hardware_disable(void *garbage)
  76. {
  77. }
  78. int kvm_arch_hardware_setup(void)
  79. {
  80. return 0;
  81. }
  82. void kvm_arch_hardware_unsetup(void)
  83. {
  84. }
  85. void kvm_arch_check_processor_compat(void *rtn)
  86. {
  87. int *r = (int *)rtn;
  88. *r = 0;
  89. return;
  90. }
  91. static void kvm_mips_init_tlbs(struct kvm *kvm)
  92. {
  93. unsigned long wired;
  94. /* Add a wired entry to the TLB, it is used to map the commpage to the Guest kernel */
  95. wired = read_c0_wired();
  96. write_c0_wired(wired + 1);
  97. mtc0_tlbw_hazard();
  98. kvm->arch.commpage_tlb = wired;
  99. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  100. kvm->arch.commpage_tlb);
  101. }
  102. static void kvm_mips_init_vm_percpu(void *arg)
  103. {
  104. struct kvm *kvm = (struct kvm *)arg;
  105. kvm_mips_init_tlbs(kvm);
  106. kvm_mips_callbacks->vm_init(kvm);
  107. }
  108. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  109. {
  110. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  111. kvm_info("%s: 1st KVM instance, setup host TLB parameters\n",
  112. __func__);
  113. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  114. }
  115. return 0;
  116. }
  117. void kvm_mips_free_vcpus(struct kvm *kvm)
  118. {
  119. unsigned int i;
  120. struct kvm_vcpu *vcpu;
  121. /* Put the pages we reserved for the guest pmap */
  122. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  123. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  124. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  125. }
  126. if (kvm->arch.guest_pmap)
  127. kfree(kvm->arch.guest_pmap);
  128. kvm_for_each_vcpu(i, vcpu, kvm) {
  129. kvm_arch_vcpu_free(vcpu);
  130. }
  131. mutex_lock(&kvm->lock);
  132. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  133. kvm->vcpus[i] = NULL;
  134. atomic_set(&kvm->online_vcpus, 0);
  135. mutex_unlock(&kvm->lock);
  136. }
  137. void kvm_arch_sync_events(struct kvm *kvm)
  138. {
  139. }
  140. static void kvm_mips_uninit_tlbs(void *arg)
  141. {
  142. /* Restore wired count */
  143. write_c0_wired(0);
  144. mtc0_tlbw_hazard();
  145. /* Clear out all the TLBs */
  146. kvm_local_flush_tlb_all();
  147. }
  148. void kvm_arch_destroy_vm(struct kvm *kvm)
  149. {
  150. kvm_mips_free_vcpus(kvm);
  151. /* If this is the last instance, restore wired count */
  152. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  153. kvm_info("%s: last KVM instance, restoring TLB parameters\n",
  154. __func__);
  155. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  156. }
  157. }
  158. long
  159. kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  160. {
  161. return -ENOIOCTLCMD;
  162. }
  163. void kvm_arch_free_memslot(struct kvm_memory_slot *free,
  164. struct kvm_memory_slot *dont)
  165. {
  166. }
  167. int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
  168. {
  169. return 0;
  170. }
  171. void kvm_arch_memslots_updated(struct kvm *kvm)
  172. {
  173. }
  174. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  175. struct kvm_memory_slot *memslot,
  176. struct kvm_userspace_memory_region *mem,
  177. enum kvm_mr_change change)
  178. {
  179. return 0;
  180. }
  181. void kvm_arch_commit_memory_region(struct kvm *kvm,
  182. struct kvm_userspace_memory_region *mem,
  183. const struct kvm_memory_slot *old,
  184. enum kvm_mr_change change)
  185. {
  186. unsigned long npages = 0;
  187. int i, err = 0;
  188. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  189. __func__, kvm, mem->slot, mem->guest_phys_addr,
  190. mem->memory_size, mem->userspace_addr);
  191. /* Setup Guest PMAP table */
  192. if (!kvm->arch.guest_pmap) {
  193. if (mem->slot == 0)
  194. npages = mem->memory_size >> PAGE_SHIFT;
  195. if (npages) {
  196. kvm->arch.guest_pmap_npages = npages;
  197. kvm->arch.guest_pmap =
  198. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  199. if (!kvm->arch.guest_pmap) {
  200. kvm_err("Failed to allocate guest PMAP");
  201. err = -ENOMEM;
  202. goto out;
  203. }
  204. kvm_info
  205. ("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  206. npages, kvm->arch.guest_pmap);
  207. /* Now setup the page table */
  208. for (i = 0; i < npages; i++) {
  209. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  210. }
  211. }
  212. }
  213. out:
  214. return;
  215. }
  216. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  217. {
  218. }
  219. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  220. struct kvm_memory_slot *slot)
  221. {
  222. }
  223. void kvm_arch_flush_shadow(struct kvm *kvm)
  224. {
  225. }
  226. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  227. {
  228. extern char mips32_exception[], mips32_exceptionEnd[];
  229. extern char mips32_GuestException[], mips32_GuestExceptionEnd[];
  230. int err, size, offset;
  231. void *gebase;
  232. int i;
  233. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  234. if (!vcpu) {
  235. err = -ENOMEM;
  236. goto out;
  237. }
  238. err = kvm_vcpu_init(vcpu, kvm, id);
  239. if (err)
  240. goto out_free_cpu;
  241. kvm_info("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  242. /* Allocate space for host mode exception handlers that handle
  243. * guest mode exits
  244. */
  245. if (cpu_has_veic || cpu_has_vint) {
  246. size = 0x200 + VECTORSPACING * 64;
  247. } else {
  248. size = 0x200;
  249. }
  250. /* Save Linux EBASE */
  251. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  252. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  253. if (!gebase) {
  254. err = -ENOMEM;
  255. goto out_free_cpu;
  256. }
  257. kvm_info("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  258. ALIGN(size, PAGE_SIZE), gebase);
  259. /* Save new ebase */
  260. vcpu->arch.guest_ebase = gebase;
  261. /* Copy L1 Guest Exception handler to correct offset */
  262. /* TLB Refill, EXL = 0 */
  263. memcpy(gebase, mips32_exception,
  264. mips32_exceptionEnd - mips32_exception);
  265. /* General Exception Entry point */
  266. memcpy(gebase + 0x180, mips32_exception,
  267. mips32_exceptionEnd - mips32_exception);
  268. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  269. for (i = 0; i < 8; i++) {
  270. kvm_debug("L1 Vectored handler @ %p\n",
  271. gebase + 0x200 + (i * VECTORSPACING));
  272. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  273. mips32_exceptionEnd - mips32_exception);
  274. }
  275. /* General handler, relocate to unmapped space for sanity's sake */
  276. offset = 0x2000;
  277. kvm_info("Installing KVM Exception handlers @ %p, %#x bytes\n",
  278. gebase + offset,
  279. mips32_GuestExceptionEnd - mips32_GuestException);
  280. memcpy(gebase + offset, mips32_GuestException,
  281. mips32_GuestExceptionEnd - mips32_GuestException);
  282. /* Invalidate the icache for these ranges */
  283. mips32_SyncICache((unsigned long) gebase, ALIGN(size, PAGE_SIZE));
  284. /* Allocate comm page for guest kernel, a TLB will be reserved for mapping GVA @ 0xFFFF8000 to this page */
  285. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  286. if (!vcpu->arch.kseg0_commpage) {
  287. err = -ENOMEM;
  288. goto out_free_gebase;
  289. }
  290. kvm_info("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  291. kvm_mips_commpage_init(vcpu);
  292. /* Init */
  293. vcpu->arch.last_sched_cpu = -1;
  294. /* Start off the timer */
  295. kvm_mips_emulate_count(vcpu);
  296. return vcpu;
  297. out_free_gebase:
  298. kfree(gebase);
  299. out_free_cpu:
  300. kfree(vcpu);
  301. out:
  302. return ERR_PTR(err);
  303. }
  304. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  305. {
  306. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  307. kvm_vcpu_uninit(vcpu);
  308. kvm_mips_dump_stats(vcpu);
  309. if (vcpu->arch.guest_ebase)
  310. kfree(vcpu->arch.guest_ebase);
  311. if (vcpu->arch.kseg0_commpage)
  312. kfree(vcpu->arch.kseg0_commpage);
  313. }
  314. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  315. {
  316. kvm_arch_vcpu_free(vcpu);
  317. }
  318. int
  319. kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  320. struct kvm_guest_debug *dbg)
  321. {
  322. return -ENOIOCTLCMD;
  323. }
  324. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  325. {
  326. int r = 0;
  327. sigset_t sigsaved;
  328. if (vcpu->sigset_active)
  329. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  330. if (vcpu->mmio_needed) {
  331. if (!vcpu->mmio_is_write)
  332. kvm_mips_complete_mmio_load(vcpu, run);
  333. vcpu->mmio_needed = 0;
  334. }
  335. /* Check if we have any exceptions/interrupts pending */
  336. kvm_mips_deliver_interrupts(vcpu,
  337. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  338. local_irq_disable();
  339. kvm_guest_enter();
  340. r = __kvm_mips_vcpu_run(run, vcpu);
  341. kvm_guest_exit();
  342. local_irq_enable();
  343. if (vcpu->sigset_active)
  344. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  345. return r;
  346. }
  347. int
  348. kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_mips_interrupt *irq)
  349. {
  350. int intr = (int)irq->irq;
  351. struct kvm_vcpu *dvcpu = NULL;
  352. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  353. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  354. (int)intr);
  355. if (irq->cpu == -1)
  356. dvcpu = vcpu;
  357. else
  358. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  359. if (intr == 2 || intr == 3 || intr == 4) {
  360. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  361. } else if (intr == -2 || intr == -3 || intr == -4) {
  362. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  363. } else {
  364. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  365. irq->cpu, irq->irq);
  366. return -EINVAL;
  367. }
  368. dvcpu->arch.wait = 0;
  369. if (waitqueue_active(&dvcpu->wq)) {
  370. wake_up_interruptible(&dvcpu->wq);
  371. }
  372. return 0;
  373. }
  374. int
  375. kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  376. struct kvm_mp_state *mp_state)
  377. {
  378. return -ENOIOCTLCMD;
  379. }
  380. int
  381. kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  382. struct kvm_mp_state *mp_state)
  383. {
  384. return -ENOIOCTLCMD;
  385. }
  386. #define MIPS_CP0_32(_R, _S) \
  387. (KVM_REG_MIPS | KVM_REG_SIZE_U32 | 0x10000 | (8 * (_R) + (_S)))
  388. #define MIPS_CP0_64(_R, _S) \
  389. (KVM_REG_MIPS | KVM_REG_SIZE_U64 | 0x10000 | (8 * (_R) + (_S)))
  390. #define KVM_REG_MIPS_CP0_INDEX MIPS_CP0_32(0, 0)
  391. #define KVM_REG_MIPS_CP0_ENTRYLO0 MIPS_CP0_64(2, 0)
  392. #define KVM_REG_MIPS_CP0_ENTRYLO1 MIPS_CP0_64(3, 0)
  393. #define KVM_REG_MIPS_CP0_CONTEXT MIPS_CP0_64(4, 0)
  394. #define KVM_REG_MIPS_CP0_USERLOCAL MIPS_CP0_64(4, 2)
  395. #define KVM_REG_MIPS_CP0_PAGEMASK MIPS_CP0_32(5, 0)
  396. #define KVM_REG_MIPS_CP0_PAGEGRAIN MIPS_CP0_32(5, 1)
  397. #define KVM_REG_MIPS_CP0_WIRED MIPS_CP0_32(6, 0)
  398. #define KVM_REG_MIPS_CP0_HWRENA MIPS_CP0_32(7, 0)
  399. #define KVM_REG_MIPS_CP0_BADVADDR MIPS_CP0_64(8, 0)
  400. #define KVM_REG_MIPS_CP0_COUNT MIPS_CP0_32(9, 0)
  401. #define KVM_REG_MIPS_CP0_ENTRYHI MIPS_CP0_64(10, 0)
  402. #define KVM_REG_MIPS_CP0_COMPARE MIPS_CP0_32(11, 0)
  403. #define KVM_REG_MIPS_CP0_STATUS MIPS_CP0_32(12, 0)
  404. #define KVM_REG_MIPS_CP0_CAUSE MIPS_CP0_32(13, 0)
  405. #define KVM_REG_MIPS_CP0_EBASE MIPS_CP0_64(15, 1)
  406. #define KVM_REG_MIPS_CP0_CONFIG MIPS_CP0_32(16, 0)
  407. #define KVM_REG_MIPS_CP0_CONFIG1 MIPS_CP0_32(16, 1)
  408. #define KVM_REG_MIPS_CP0_CONFIG2 MIPS_CP0_32(16, 2)
  409. #define KVM_REG_MIPS_CP0_CONFIG3 MIPS_CP0_32(16, 3)
  410. #define KVM_REG_MIPS_CP0_CONFIG7 MIPS_CP0_32(16, 7)
  411. #define KVM_REG_MIPS_CP0_XCONTEXT MIPS_CP0_64(20, 0)
  412. #define KVM_REG_MIPS_CP0_ERROREPC MIPS_CP0_64(30, 0)
  413. static u64 kvm_mips_get_one_regs[] = {
  414. KVM_REG_MIPS_R0,
  415. KVM_REG_MIPS_R1,
  416. KVM_REG_MIPS_R2,
  417. KVM_REG_MIPS_R3,
  418. KVM_REG_MIPS_R4,
  419. KVM_REG_MIPS_R5,
  420. KVM_REG_MIPS_R6,
  421. KVM_REG_MIPS_R7,
  422. KVM_REG_MIPS_R8,
  423. KVM_REG_MIPS_R9,
  424. KVM_REG_MIPS_R10,
  425. KVM_REG_MIPS_R11,
  426. KVM_REG_MIPS_R12,
  427. KVM_REG_MIPS_R13,
  428. KVM_REG_MIPS_R14,
  429. KVM_REG_MIPS_R15,
  430. KVM_REG_MIPS_R16,
  431. KVM_REG_MIPS_R17,
  432. KVM_REG_MIPS_R18,
  433. KVM_REG_MIPS_R19,
  434. KVM_REG_MIPS_R20,
  435. KVM_REG_MIPS_R21,
  436. KVM_REG_MIPS_R22,
  437. KVM_REG_MIPS_R23,
  438. KVM_REG_MIPS_R24,
  439. KVM_REG_MIPS_R25,
  440. KVM_REG_MIPS_R26,
  441. KVM_REG_MIPS_R27,
  442. KVM_REG_MIPS_R28,
  443. KVM_REG_MIPS_R29,
  444. KVM_REG_MIPS_R30,
  445. KVM_REG_MIPS_R31,
  446. KVM_REG_MIPS_HI,
  447. KVM_REG_MIPS_LO,
  448. KVM_REG_MIPS_PC,
  449. KVM_REG_MIPS_CP0_INDEX,
  450. KVM_REG_MIPS_CP0_CONTEXT,
  451. KVM_REG_MIPS_CP0_PAGEMASK,
  452. KVM_REG_MIPS_CP0_WIRED,
  453. KVM_REG_MIPS_CP0_BADVADDR,
  454. KVM_REG_MIPS_CP0_ENTRYHI,
  455. KVM_REG_MIPS_CP0_STATUS,
  456. KVM_REG_MIPS_CP0_CAUSE,
  457. /* EPC set via kvm_regs, et al. */
  458. KVM_REG_MIPS_CP0_CONFIG,
  459. KVM_REG_MIPS_CP0_CONFIG1,
  460. KVM_REG_MIPS_CP0_CONFIG2,
  461. KVM_REG_MIPS_CP0_CONFIG3,
  462. KVM_REG_MIPS_CP0_CONFIG7,
  463. KVM_REG_MIPS_CP0_ERROREPC
  464. };
  465. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  466. const struct kvm_one_reg *reg)
  467. {
  468. struct mips_coproc *cop0 = vcpu->arch.cop0;
  469. s64 v;
  470. switch (reg->id) {
  471. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  472. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  473. break;
  474. case KVM_REG_MIPS_HI:
  475. v = (long)vcpu->arch.hi;
  476. break;
  477. case KVM_REG_MIPS_LO:
  478. v = (long)vcpu->arch.lo;
  479. break;
  480. case KVM_REG_MIPS_PC:
  481. v = (long)vcpu->arch.pc;
  482. break;
  483. case KVM_REG_MIPS_CP0_INDEX:
  484. v = (long)kvm_read_c0_guest_index(cop0);
  485. break;
  486. case KVM_REG_MIPS_CP0_CONTEXT:
  487. v = (long)kvm_read_c0_guest_context(cop0);
  488. break;
  489. case KVM_REG_MIPS_CP0_PAGEMASK:
  490. v = (long)kvm_read_c0_guest_pagemask(cop0);
  491. break;
  492. case KVM_REG_MIPS_CP0_WIRED:
  493. v = (long)kvm_read_c0_guest_wired(cop0);
  494. break;
  495. case KVM_REG_MIPS_CP0_BADVADDR:
  496. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  497. break;
  498. case KVM_REG_MIPS_CP0_ENTRYHI:
  499. v = (long)kvm_read_c0_guest_entryhi(cop0);
  500. break;
  501. case KVM_REG_MIPS_CP0_STATUS:
  502. v = (long)kvm_read_c0_guest_status(cop0);
  503. break;
  504. case KVM_REG_MIPS_CP0_CAUSE:
  505. v = (long)kvm_read_c0_guest_cause(cop0);
  506. break;
  507. case KVM_REG_MIPS_CP0_ERROREPC:
  508. v = (long)kvm_read_c0_guest_errorepc(cop0);
  509. break;
  510. case KVM_REG_MIPS_CP0_CONFIG:
  511. v = (long)kvm_read_c0_guest_config(cop0);
  512. break;
  513. case KVM_REG_MIPS_CP0_CONFIG1:
  514. v = (long)kvm_read_c0_guest_config1(cop0);
  515. break;
  516. case KVM_REG_MIPS_CP0_CONFIG2:
  517. v = (long)kvm_read_c0_guest_config2(cop0);
  518. break;
  519. case KVM_REG_MIPS_CP0_CONFIG3:
  520. v = (long)kvm_read_c0_guest_config3(cop0);
  521. break;
  522. case KVM_REG_MIPS_CP0_CONFIG7:
  523. v = (long)kvm_read_c0_guest_config7(cop0);
  524. break;
  525. default:
  526. return -EINVAL;
  527. }
  528. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  529. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  530. return put_user(v, uaddr64);
  531. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  532. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  533. u32 v32 = (u32)v;
  534. return put_user(v32, uaddr32);
  535. } else {
  536. return -EINVAL;
  537. }
  538. }
  539. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  540. const struct kvm_one_reg *reg)
  541. {
  542. struct mips_coproc *cop0 = vcpu->arch.cop0;
  543. u64 v;
  544. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  545. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  546. if (get_user(v, uaddr64) != 0)
  547. return -EFAULT;
  548. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  549. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  550. s32 v32;
  551. if (get_user(v32, uaddr32) != 0)
  552. return -EFAULT;
  553. v = (s64)v32;
  554. } else {
  555. return -EINVAL;
  556. }
  557. switch (reg->id) {
  558. case KVM_REG_MIPS_R0:
  559. /* Silently ignore requests to set $0 */
  560. break;
  561. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  562. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  563. break;
  564. case KVM_REG_MIPS_HI:
  565. vcpu->arch.hi = v;
  566. break;
  567. case KVM_REG_MIPS_LO:
  568. vcpu->arch.lo = v;
  569. break;
  570. case KVM_REG_MIPS_PC:
  571. vcpu->arch.pc = v;
  572. break;
  573. case KVM_REG_MIPS_CP0_INDEX:
  574. kvm_write_c0_guest_index(cop0, v);
  575. break;
  576. case KVM_REG_MIPS_CP0_CONTEXT:
  577. kvm_write_c0_guest_context(cop0, v);
  578. break;
  579. case KVM_REG_MIPS_CP0_PAGEMASK:
  580. kvm_write_c0_guest_pagemask(cop0, v);
  581. break;
  582. case KVM_REG_MIPS_CP0_WIRED:
  583. kvm_write_c0_guest_wired(cop0, v);
  584. break;
  585. case KVM_REG_MIPS_CP0_BADVADDR:
  586. kvm_write_c0_guest_badvaddr(cop0, v);
  587. break;
  588. case KVM_REG_MIPS_CP0_ENTRYHI:
  589. kvm_write_c0_guest_entryhi(cop0, v);
  590. break;
  591. case KVM_REG_MIPS_CP0_STATUS:
  592. kvm_write_c0_guest_status(cop0, v);
  593. break;
  594. case KVM_REG_MIPS_CP0_CAUSE:
  595. kvm_write_c0_guest_cause(cop0, v);
  596. break;
  597. case KVM_REG_MIPS_CP0_ERROREPC:
  598. kvm_write_c0_guest_errorepc(cop0, v);
  599. break;
  600. default:
  601. return -EINVAL;
  602. }
  603. return 0;
  604. }
  605. long
  606. kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  607. {
  608. struct kvm_vcpu *vcpu = filp->private_data;
  609. void __user *argp = (void __user *)arg;
  610. long r;
  611. switch (ioctl) {
  612. case KVM_SET_ONE_REG:
  613. case KVM_GET_ONE_REG: {
  614. struct kvm_one_reg reg;
  615. if (copy_from_user(&reg, argp, sizeof(reg)))
  616. return -EFAULT;
  617. if (ioctl == KVM_SET_ONE_REG)
  618. return kvm_mips_set_reg(vcpu, &reg);
  619. else
  620. return kvm_mips_get_reg(vcpu, &reg);
  621. }
  622. case KVM_GET_REG_LIST: {
  623. struct kvm_reg_list __user *user_list = argp;
  624. u64 __user *reg_dest;
  625. struct kvm_reg_list reg_list;
  626. unsigned n;
  627. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  628. return -EFAULT;
  629. n = reg_list.n;
  630. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  631. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  632. return -EFAULT;
  633. if (n < reg_list.n)
  634. return -E2BIG;
  635. reg_dest = user_list->reg;
  636. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  637. sizeof(kvm_mips_get_one_regs)))
  638. return -EFAULT;
  639. return 0;
  640. }
  641. case KVM_NMI:
  642. /* Treat the NMI as a CPU reset */
  643. r = kvm_mips_reset_vcpu(vcpu);
  644. break;
  645. case KVM_INTERRUPT:
  646. {
  647. struct kvm_mips_interrupt irq;
  648. r = -EFAULT;
  649. if (copy_from_user(&irq, argp, sizeof(irq)))
  650. goto out;
  651. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  652. irq.irq);
  653. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  654. break;
  655. }
  656. default:
  657. r = -ENOIOCTLCMD;
  658. }
  659. out:
  660. return r;
  661. }
  662. /*
  663. * Get (and clear) the dirty memory log for a memory slot.
  664. */
  665. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  666. {
  667. struct kvm_memory_slot *memslot;
  668. unsigned long ga, ga_end;
  669. int is_dirty = 0;
  670. int r;
  671. unsigned long n;
  672. mutex_lock(&kvm->slots_lock);
  673. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  674. if (r)
  675. goto out;
  676. /* If nothing is dirty, don't bother messing with page tables. */
  677. if (is_dirty) {
  678. memslot = &kvm->memslots->memslots[log->slot];
  679. ga = memslot->base_gfn << PAGE_SHIFT;
  680. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  681. printk("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  682. ga_end);
  683. n = kvm_dirty_bitmap_bytes(memslot);
  684. memset(memslot->dirty_bitmap, 0, n);
  685. }
  686. r = 0;
  687. out:
  688. mutex_unlock(&kvm->slots_lock);
  689. return r;
  690. }
  691. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  692. {
  693. long r;
  694. switch (ioctl) {
  695. default:
  696. r = -ENOIOCTLCMD;
  697. }
  698. return r;
  699. }
  700. int kvm_arch_init(void *opaque)
  701. {
  702. int ret;
  703. if (kvm_mips_callbacks) {
  704. kvm_err("kvm: module already exists\n");
  705. return -EEXIST;
  706. }
  707. ret = kvm_mips_emulation_init(&kvm_mips_callbacks);
  708. return ret;
  709. }
  710. void kvm_arch_exit(void)
  711. {
  712. kvm_mips_callbacks = NULL;
  713. }
  714. int
  715. kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  716. {
  717. return -ENOIOCTLCMD;
  718. }
  719. int
  720. kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  721. {
  722. return -ENOIOCTLCMD;
  723. }
  724. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  725. {
  726. return 0;
  727. }
  728. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  729. {
  730. return -ENOIOCTLCMD;
  731. }
  732. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  733. {
  734. return -ENOIOCTLCMD;
  735. }
  736. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  737. {
  738. return VM_FAULT_SIGBUS;
  739. }
  740. int kvm_dev_ioctl_check_extension(long ext)
  741. {
  742. int r;
  743. switch (ext) {
  744. case KVM_CAP_ONE_REG:
  745. r = 1;
  746. break;
  747. case KVM_CAP_COALESCED_MMIO:
  748. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  749. break;
  750. default:
  751. r = 0;
  752. break;
  753. }
  754. return r;
  755. }
  756. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  757. {
  758. return kvm_mips_pending_timer(vcpu);
  759. }
  760. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  761. {
  762. int i;
  763. struct mips_coproc *cop0;
  764. if (!vcpu)
  765. return -1;
  766. printk("VCPU Register Dump:\n");
  767. printk("\tpc = 0x%08lx\n", vcpu->arch.pc);;
  768. printk("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  769. for (i = 0; i < 32; i += 4) {
  770. printk("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  771. vcpu->arch.gprs[i],
  772. vcpu->arch.gprs[i + 1],
  773. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  774. }
  775. printk("\thi: 0x%08lx\n", vcpu->arch.hi);
  776. printk("\tlo: 0x%08lx\n", vcpu->arch.lo);
  777. cop0 = vcpu->arch.cop0;
  778. printk("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  779. kvm_read_c0_guest_status(cop0), kvm_read_c0_guest_cause(cop0));
  780. printk("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  781. return 0;
  782. }
  783. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  784. {
  785. int i;
  786. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  787. vcpu->arch.gprs[i] = regs->gpr[i];
  788. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  789. vcpu->arch.hi = regs->hi;
  790. vcpu->arch.lo = regs->lo;
  791. vcpu->arch.pc = regs->pc;
  792. return 0;
  793. }
  794. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  795. {
  796. int i;
  797. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  798. regs->gpr[i] = vcpu->arch.gprs[i];
  799. regs->hi = vcpu->arch.hi;
  800. regs->lo = vcpu->arch.lo;
  801. regs->pc = vcpu->arch.pc;
  802. return 0;
  803. }
  804. void kvm_mips_comparecount_func(unsigned long data)
  805. {
  806. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  807. kvm_mips_callbacks->queue_timer_int(vcpu);
  808. vcpu->arch.wait = 0;
  809. if (waitqueue_active(&vcpu->wq)) {
  810. wake_up_interruptible(&vcpu->wq);
  811. }
  812. }
  813. /*
  814. * low level hrtimer wake routine.
  815. */
  816. enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  817. {
  818. struct kvm_vcpu *vcpu;
  819. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  820. kvm_mips_comparecount_func((unsigned long) vcpu);
  821. hrtimer_forward_now(&vcpu->arch.comparecount_timer,
  822. ktime_set(0, MS_TO_NS(10)));
  823. return HRTIMER_RESTART;
  824. }
  825. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  826. {
  827. kvm_mips_callbacks->vcpu_init(vcpu);
  828. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  829. HRTIMER_MODE_REL);
  830. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  831. kvm_mips_init_shadow_tlb(vcpu);
  832. return 0;
  833. }
  834. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  835. {
  836. return;
  837. }
  838. int
  839. kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)
  840. {
  841. return 0;
  842. }
  843. /* Initial guest state */
  844. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  845. {
  846. return kvm_mips_callbacks->vcpu_setup(vcpu);
  847. }
  848. static
  849. void kvm_mips_set_c0_status(void)
  850. {
  851. uint32_t status = read_c0_status();
  852. if (cpu_has_fpu)
  853. status |= (ST0_CU1);
  854. if (cpu_has_dsp)
  855. status |= (ST0_MX);
  856. write_c0_status(status);
  857. ehb();
  858. }
  859. /*
  860. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  861. */
  862. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  863. {
  864. uint32_t cause = vcpu->arch.host_cp0_cause;
  865. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  866. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  867. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  868. enum emulation_result er = EMULATE_DONE;
  869. int ret = RESUME_GUEST;
  870. /* Set a default exit reason */
  871. run->exit_reason = KVM_EXIT_UNKNOWN;
  872. run->ready_for_interrupt_injection = 1;
  873. /* Set the appropriate status bits based on host CPU features, before we hit the scheduler */
  874. kvm_mips_set_c0_status();
  875. local_irq_enable();
  876. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  877. cause, opc, run, vcpu);
  878. /* Do a privilege check, if in UM most of these exit conditions end up
  879. * causing an exception to be delivered to the Guest Kernel
  880. */
  881. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  882. if (er == EMULATE_PRIV_FAIL) {
  883. goto skip_emul;
  884. } else if (er == EMULATE_FAIL) {
  885. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  886. ret = RESUME_HOST;
  887. goto skip_emul;
  888. }
  889. switch (exccode) {
  890. case T_INT:
  891. kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
  892. ++vcpu->stat.int_exits;
  893. trace_kvm_exit(vcpu, INT_EXITS);
  894. if (need_resched()) {
  895. cond_resched();
  896. }
  897. ret = RESUME_GUEST;
  898. break;
  899. case T_COP_UNUSABLE:
  900. kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
  901. ++vcpu->stat.cop_unusable_exits;
  902. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  903. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  904. /* XXXKYMA: Might need to return to user space */
  905. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) {
  906. ret = RESUME_HOST;
  907. }
  908. break;
  909. case T_TLB_MOD:
  910. ++vcpu->stat.tlbmod_exits;
  911. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  912. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  913. break;
  914. case T_TLB_ST_MISS:
  915. kvm_debug
  916. ("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  917. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  918. badvaddr);
  919. ++vcpu->stat.tlbmiss_st_exits;
  920. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  921. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  922. break;
  923. case T_TLB_LD_MISS:
  924. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  925. cause, opc, badvaddr);
  926. ++vcpu->stat.tlbmiss_ld_exits;
  927. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  928. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  929. break;
  930. case T_ADDR_ERR_ST:
  931. ++vcpu->stat.addrerr_st_exits;
  932. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  933. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  934. break;
  935. case T_ADDR_ERR_LD:
  936. ++vcpu->stat.addrerr_ld_exits;
  937. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  938. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  939. break;
  940. case T_SYSCALL:
  941. ++vcpu->stat.syscall_exits;
  942. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  943. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  944. break;
  945. case T_RES_INST:
  946. ++vcpu->stat.resvd_inst_exits;
  947. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  948. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  949. break;
  950. case T_BREAK:
  951. ++vcpu->stat.break_inst_exits;
  952. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  953. ret = kvm_mips_callbacks->handle_break(vcpu);
  954. break;
  955. default:
  956. kvm_err
  957. ("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  958. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  959. kvm_read_c0_guest_status(vcpu->arch.cop0));
  960. kvm_arch_vcpu_dump_regs(vcpu);
  961. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  962. ret = RESUME_HOST;
  963. break;
  964. }
  965. skip_emul:
  966. local_irq_disable();
  967. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  968. kvm_mips_deliver_interrupts(vcpu, cause);
  969. if (!(ret & RESUME_HOST)) {
  970. /* Only check for signals if not already exiting to userspace */
  971. if (signal_pending(current)) {
  972. run->exit_reason = KVM_EXIT_INTR;
  973. ret = (-EINTR << 2) | RESUME_HOST;
  974. ++vcpu->stat.signal_exits;
  975. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  976. }
  977. }
  978. return ret;
  979. }
  980. int __init kvm_mips_init(void)
  981. {
  982. int ret;
  983. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  984. if (ret)
  985. return ret;
  986. /* On MIPS, kernel modules are executed from "mapped space", which requires TLBs.
  987. * The TLB handling code is statically linked with the rest of the kernel (kvm_tlb.c)
  988. * to avoid the possibility of double faulting. The issue is that the TLB code
  989. * references routines that are part of the the KVM module,
  990. * which are only available once the module is loaded.
  991. */
  992. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  993. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  994. kvm_mips_is_error_pfn = is_error_pfn;
  995. pr_info("KVM/MIPS Initialized\n");
  996. return 0;
  997. }
  998. void __exit kvm_mips_exit(void)
  999. {
  1000. kvm_exit();
  1001. kvm_mips_gfn_to_pfn = NULL;
  1002. kvm_mips_release_pfn_clean = NULL;
  1003. kvm_mips_is_error_pfn = NULL;
  1004. pr_info("KVM/MIPS unloaded\n");
  1005. }
  1006. module_init(kvm_mips_init);
  1007. module_exit(kvm_mips_exit);
  1008. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);