rt61pci.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt61pci
  19. Abstract: rt61pci device specific routines.
  20. Supported chipsets: RT2561, RT2561s, RT2661.
  21. */
  22. #include <linux/crc-itu-t.h>
  23. #include <linux/delay.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/pci.h>
  29. #include <linux/eeprom_93cx6.h>
  30. #include "rt2x00.h"
  31. #include "rt2x00pci.h"
  32. #include "rt61pci.h"
  33. /*
  34. * Register access.
  35. * BBP and RF register require indirect register access,
  36. * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  37. * These indirect registers work with busy bits,
  38. * and we will try maximal REGISTER_BUSY_COUNT times to access
  39. * the register while taking a REGISTER_BUSY_DELAY us delay
  40. * between each attampt. When the busy bit is still set at that time,
  41. * the access attempt is considered to have failed,
  42. * and we will print an error.
  43. */
  44. static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  45. {
  46. u32 reg;
  47. unsigned int i;
  48. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  49. rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
  50. if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
  51. break;
  52. udelay(REGISTER_BUSY_DELAY);
  53. }
  54. return reg;
  55. }
  56. static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  57. const unsigned int word, const u8 value)
  58. {
  59. u32 reg;
  60. /*
  61. * Wait until the BBP becomes ready.
  62. */
  63. reg = rt61pci_bbp_check(rt2x00dev);
  64. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  65. ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
  66. return;
  67. }
  68. /*
  69. * Write the data into the BBP.
  70. */
  71. reg = 0;
  72. rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  73. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  74. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  75. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  76. rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  77. }
  78. static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  79. const unsigned int word, u8 *value)
  80. {
  81. u32 reg;
  82. /*
  83. * Wait until the BBP becomes ready.
  84. */
  85. reg = rt61pci_bbp_check(rt2x00dev);
  86. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  87. ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
  88. return;
  89. }
  90. /*
  91. * Write the request into the BBP.
  92. */
  93. reg = 0;
  94. rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  95. rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  96. rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
  97. rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  98. /*
  99. * Wait until the BBP becomes ready.
  100. */
  101. reg = rt61pci_bbp_check(rt2x00dev);
  102. if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
  103. ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
  104. *value = 0xff;
  105. return;
  106. }
  107. *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
  108. }
  109. static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
  110. const unsigned int word, const u32 value)
  111. {
  112. u32 reg;
  113. unsigned int i;
  114. if (!word)
  115. return;
  116. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  117. rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
  118. if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
  119. goto rf_write;
  120. udelay(REGISTER_BUSY_DELAY);
  121. }
  122. ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
  123. return;
  124. rf_write:
  125. reg = 0;
  126. rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
  127. rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
  128. rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
  129. rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
  130. rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
  131. rt2x00_rf_write(rt2x00dev, word, value);
  132. }
  133. #ifdef CONFIG_RT61PCI_LEDS
  134. /*
  135. * This function is only called from rt61pci_led_brightness()
  136. * make gcc happy by placing this function inside the
  137. * same ifdef statement as the caller.
  138. */
  139. static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
  140. const u8 command, const u8 token,
  141. const u8 arg0, const u8 arg1)
  142. {
  143. u32 reg;
  144. rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
  145. if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
  146. ERROR(rt2x00dev, "mcu request error. "
  147. "Request 0x%02x failed for token 0x%02x.\n",
  148. command, token);
  149. return;
  150. }
  151. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
  152. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
  153. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
  154. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
  155. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
  156. rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
  157. rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
  158. rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
  159. rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
  160. }
  161. #endif /* CONFIG_RT61PCI_LEDS */
  162. static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  163. {
  164. struct rt2x00_dev *rt2x00dev = eeprom->data;
  165. u32 reg;
  166. rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
  167. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  168. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  169. eeprom->reg_data_clock =
  170. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  171. eeprom->reg_chip_select =
  172. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  173. }
  174. static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  175. {
  176. struct rt2x00_dev *rt2x00dev = eeprom->data;
  177. u32 reg = 0;
  178. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  179. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  180. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  181. !!eeprom->reg_data_clock);
  182. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  183. !!eeprom->reg_chip_select);
  184. rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
  185. }
  186. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  187. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  188. static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
  189. const unsigned int word, u32 *data)
  190. {
  191. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  192. }
  193. static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
  194. const unsigned int word, u32 data)
  195. {
  196. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  197. }
  198. static const struct rt2x00debug rt61pci_rt2x00debug = {
  199. .owner = THIS_MODULE,
  200. .csr = {
  201. .read = rt61pci_read_csr,
  202. .write = rt61pci_write_csr,
  203. .word_size = sizeof(u32),
  204. .word_count = CSR_REG_SIZE / sizeof(u32),
  205. },
  206. .eeprom = {
  207. .read = rt2x00_eeprom_read,
  208. .write = rt2x00_eeprom_write,
  209. .word_size = sizeof(u16),
  210. .word_count = EEPROM_SIZE / sizeof(u16),
  211. },
  212. .bbp = {
  213. .read = rt61pci_bbp_read,
  214. .write = rt61pci_bbp_write,
  215. .word_size = sizeof(u8),
  216. .word_count = BBP_SIZE / sizeof(u8),
  217. },
  218. .rf = {
  219. .read = rt2x00_rf_read,
  220. .write = rt61pci_rf_write,
  221. .word_size = sizeof(u32),
  222. .word_count = RF_SIZE / sizeof(u32),
  223. },
  224. };
  225. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  226. #ifdef CONFIG_RT61PCI_RFKILL
  227. static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  228. {
  229. u32 reg;
  230. rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
  231. return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
  232. }
  233. #else
  234. #define rt61pci_rfkill_poll NULL
  235. #endif /* CONFIG_RT61PCI_RFKILL */
  236. #ifdef CONFIG_RT61PCI_LEDS
  237. static void rt61pci_brightness_set(struct led_classdev *led_cdev,
  238. enum led_brightness brightness)
  239. {
  240. struct rt2x00_led *led =
  241. container_of(led_cdev, struct rt2x00_led, led_dev);
  242. unsigned int enabled = brightness != LED_OFF;
  243. unsigned int a_mode =
  244. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
  245. unsigned int bg_mode =
  246. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  247. if (led->type == LED_TYPE_RADIO) {
  248. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  249. MCU_LEDCS_RADIO_STATUS, enabled);
  250. rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
  251. (led->rt2x00dev->led_mcu_reg & 0xff),
  252. ((led->rt2x00dev->led_mcu_reg >> 8)));
  253. } else if (led->type == LED_TYPE_ASSOC) {
  254. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  255. MCU_LEDCS_LINK_BG_STATUS, bg_mode);
  256. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  257. MCU_LEDCS_LINK_A_STATUS, a_mode);
  258. rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
  259. (led->rt2x00dev->led_mcu_reg & 0xff),
  260. ((led->rt2x00dev->led_mcu_reg >> 8)));
  261. } else if (led->type == LED_TYPE_QUALITY) {
  262. /*
  263. * The brightness is divided into 6 levels (0 - 5),
  264. * this means we need to convert the brightness
  265. * argument into the matching level within that range.
  266. */
  267. rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
  268. brightness / (LED_FULL / 6), 0);
  269. }
  270. }
  271. static int rt61pci_blink_set(struct led_classdev *led_cdev,
  272. unsigned long *delay_on,
  273. unsigned long *delay_off)
  274. {
  275. struct rt2x00_led *led =
  276. container_of(led_cdev, struct rt2x00_led, led_dev);
  277. u32 reg;
  278. rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
  279. rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
  280. rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
  281. rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
  282. return 0;
  283. }
  284. #endif /* CONFIG_RT61PCI_LEDS */
  285. /*
  286. * Configuration handlers.
  287. */
  288. static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
  289. const unsigned int filter_flags)
  290. {
  291. u32 reg;
  292. /*
  293. * Start configuration steps.
  294. * Note that the version error will always be dropped
  295. * and broadcast frames will always be accepted since
  296. * there is no filter for it at this time.
  297. */
  298. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  299. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
  300. !(filter_flags & FIF_FCSFAIL));
  301. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
  302. !(filter_flags & FIF_PLCPFAIL));
  303. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
  304. !(filter_flags & FIF_CONTROL));
  305. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
  306. !(filter_flags & FIF_PROMISC_IN_BSS));
  307. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
  308. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  309. !rt2x00dev->intf_ap_count);
  310. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
  311. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
  312. !(filter_flags & FIF_ALLMULTI));
  313. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
  314. rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
  315. !(filter_flags & FIF_CONTROL));
  316. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  317. }
  318. static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
  319. struct rt2x00_intf *intf,
  320. struct rt2x00intf_conf *conf,
  321. const unsigned int flags)
  322. {
  323. unsigned int beacon_base;
  324. u32 reg;
  325. if (flags & CONFIG_UPDATE_TYPE) {
  326. /*
  327. * Clear current synchronisation setup.
  328. * For the Beacon base registers we only need to clear
  329. * the first byte since that byte contains the VALID and OWNER
  330. * bits which (when set to 0) will invalidate the entire beacon.
  331. */
  332. beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
  333. rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
  334. /*
  335. * Enable synchronisation.
  336. */
  337. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  338. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
  339. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
  340. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
  341. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  342. }
  343. if (flags & CONFIG_UPDATE_MAC) {
  344. reg = le32_to_cpu(conf->mac[1]);
  345. rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
  346. conf->mac[1] = cpu_to_le32(reg);
  347. rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
  348. conf->mac, sizeof(conf->mac));
  349. }
  350. if (flags & CONFIG_UPDATE_BSSID) {
  351. reg = le32_to_cpu(conf->bssid[1]);
  352. rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
  353. conf->bssid[1] = cpu_to_le32(reg);
  354. rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
  355. conf->bssid, sizeof(conf->bssid));
  356. }
  357. }
  358. static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
  359. struct rt2x00lib_erp *erp)
  360. {
  361. u32 reg;
  362. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  363. rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
  364. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  365. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  366. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
  367. !!erp->short_preamble);
  368. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  369. }
  370. static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  371. const int basic_rate_mask)
  372. {
  373. rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
  374. }
  375. static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
  376. struct rf_channel *rf, const int txpower)
  377. {
  378. u8 r3;
  379. u8 r94;
  380. u8 smart;
  381. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  382. rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
  383. smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  384. rt2x00_rf(&rt2x00dev->chip, RF2527));
  385. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  386. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
  387. rt61pci_bbp_write(rt2x00dev, 3, r3);
  388. r94 = 6;
  389. if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
  390. r94 += txpower - MAX_TXPOWER;
  391. else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
  392. r94 += txpower;
  393. rt61pci_bbp_write(rt2x00dev, 94, r94);
  394. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  395. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  396. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  397. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  398. udelay(200);
  399. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  400. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  401. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
  402. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  403. udelay(200);
  404. rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
  405. rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
  406. rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  407. rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
  408. msleep(1);
  409. }
  410. static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  411. const int txpower)
  412. {
  413. struct rf_channel rf;
  414. rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
  415. rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
  416. rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
  417. rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
  418. rt61pci_config_channel(rt2x00dev, &rf, txpower);
  419. }
  420. static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
  421. struct antenna_setup *ant)
  422. {
  423. u8 r3;
  424. u8 r4;
  425. u8 r77;
  426. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  427. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  428. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  429. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
  430. rt2x00_rf(&rt2x00dev->chip, RF5325));
  431. /*
  432. * Configure the RX antenna.
  433. */
  434. switch (ant->rx) {
  435. case ANTENNA_HW_DIVERSITY:
  436. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  437. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  438. (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
  439. break;
  440. case ANTENNA_A:
  441. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  442. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  443. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
  444. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  445. else
  446. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  447. break;
  448. case ANTENNA_B:
  449. default:
  450. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  451. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
  452. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
  453. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  454. else
  455. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  456. break;
  457. }
  458. rt61pci_bbp_write(rt2x00dev, 77, r77);
  459. rt61pci_bbp_write(rt2x00dev, 3, r3);
  460. rt61pci_bbp_write(rt2x00dev, 4, r4);
  461. }
  462. static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
  463. struct antenna_setup *ant)
  464. {
  465. u8 r3;
  466. u8 r4;
  467. u8 r77;
  468. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  469. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  470. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  471. rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
  472. rt2x00_rf(&rt2x00dev->chip, RF2529));
  473. rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
  474. !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
  475. /*
  476. * Configure the RX antenna.
  477. */
  478. switch (ant->rx) {
  479. case ANTENNA_HW_DIVERSITY:
  480. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
  481. break;
  482. case ANTENNA_A:
  483. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  484. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  485. break;
  486. case ANTENNA_B:
  487. default:
  488. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  489. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  490. break;
  491. }
  492. rt61pci_bbp_write(rt2x00dev, 77, r77);
  493. rt61pci_bbp_write(rt2x00dev, 3, r3);
  494. rt61pci_bbp_write(rt2x00dev, 4, r4);
  495. }
  496. static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
  497. const int p1, const int p2)
  498. {
  499. u32 reg;
  500. rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
  501. rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
  502. rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
  503. rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
  504. rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
  505. rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
  506. }
  507. static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
  508. struct antenna_setup *ant)
  509. {
  510. u8 r3;
  511. u8 r4;
  512. u8 r77;
  513. rt61pci_bbp_read(rt2x00dev, 3, &r3);
  514. rt61pci_bbp_read(rt2x00dev, 4, &r4);
  515. rt61pci_bbp_read(rt2x00dev, 77, &r77);
  516. /*
  517. * Configure the RX antenna.
  518. */
  519. switch (ant->rx) {
  520. case ANTENNA_A:
  521. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  522. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
  523. rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
  524. break;
  525. case ANTENNA_HW_DIVERSITY:
  526. /*
  527. * FIXME: Antenna selection for the rf 2529 is very confusing
  528. * in the legacy driver. Just default to antenna B until the
  529. * legacy code can be properly translated into rt2x00 code.
  530. */
  531. case ANTENNA_B:
  532. default:
  533. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
  534. rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
  535. rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
  536. break;
  537. }
  538. rt61pci_bbp_write(rt2x00dev, 77, r77);
  539. rt61pci_bbp_write(rt2x00dev, 3, r3);
  540. rt61pci_bbp_write(rt2x00dev, 4, r4);
  541. }
  542. struct antenna_sel {
  543. u8 word;
  544. /*
  545. * value[0] -> non-LNA
  546. * value[1] -> LNA
  547. */
  548. u8 value[2];
  549. };
  550. static const struct antenna_sel antenna_sel_a[] = {
  551. { 96, { 0x58, 0x78 } },
  552. { 104, { 0x38, 0x48 } },
  553. { 75, { 0xfe, 0x80 } },
  554. { 86, { 0xfe, 0x80 } },
  555. { 88, { 0xfe, 0x80 } },
  556. { 35, { 0x60, 0x60 } },
  557. { 97, { 0x58, 0x58 } },
  558. { 98, { 0x58, 0x58 } },
  559. };
  560. static const struct antenna_sel antenna_sel_bg[] = {
  561. { 96, { 0x48, 0x68 } },
  562. { 104, { 0x2c, 0x3c } },
  563. { 75, { 0xfe, 0x80 } },
  564. { 86, { 0xfe, 0x80 } },
  565. { 88, { 0xfe, 0x80 } },
  566. { 35, { 0x50, 0x50 } },
  567. { 97, { 0x48, 0x48 } },
  568. { 98, { 0x48, 0x48 } },
  569. };
  570. static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  571. struct antenna_setup *ant)
  572. {
  573. const struct antenna_sel *sel;
  574. unsigned int lna;
  575. unsigned int i;
  576. u32 reg;
  577. /*
  578. * We should never come here because rt2x00lib is supposed
  579. * to catch this and send us the correct antenna explicitely.
  580. */
  581. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  582. ant->tx == ANTENNA_SW_DIVERSITY);
  583. if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
  584. sel = antenna_sel_a;
  585. lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  586. } else {
  587. sel = antenna_sel_bg;
  588. lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  589. }
  590. for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
  591. rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
  592. rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
  593. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
  594. rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  595. rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
  596. rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
  597. rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
  598. if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  599. rt2x00_rf(&rt2x00dev->chip, RF5325))
  600. rt61pci_config_antenna_5x(rt2x00dev, ant);
  601. else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
  602. rt61pci_config_antenna_2x(rt2x00dev, ant);
  603. else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
  604. if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
  605. rt61pci_config_antenna_2x(rt2x00dev, ant);
  606. else
  607. rt61pci_config_antenna_2529(rt2x00dev, ant);
  608. }
  609. }
  610. static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
  611. struct rt2x00lib_conf *libconf)
  612. {
  613. u32 reg;
  614. rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
  615. rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
  616. rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
  617. rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
  618. rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
  619. rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
  620. rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
  621. rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
  622. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  623. rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
  624. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  625. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  626. rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
  627. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  628. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  629. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
  630. libconf->conf->beacon_int * 16);
  631. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  632. }
  633. static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
  634. struct rt2x00lib_conf *libconf,
  635. const unsigned int flags)
  636. {
  637. if (flags & CONFIG_UPDATE_PHYMODE)
  638. rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
  639. if (flags & CONFIG_UPDATE_CHANNEL)
  640. rt61pci_config_channel(rt2x00dev, &libconf->rf,
  641. libconf->conf->power_level);
  642. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  643. rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
  644. if (flags & CONFIG_UPDATE_ANTENNA)
  645. rt61pci_config_antenna(rt2x00dev, &libconf->ant);
  646. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  647. rt61pci_config_duration(rt2x00dev, libconf);
  648. }
  649. /*
  650. * Link tuning
  651. */
  652. static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
  653. struct link_qual *qual)
  654. {
  655. u32 reg;
  656. /*
  657. * Update FCS error count from register.
  658. */
  659. rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
  660. qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
  661. /*
  662. * Update False CCA count from register.
  663. */
  664. rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
  665. qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
  666. }
  667. static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  668. {
  669. rt61pci_bbp_write(rt2x00dev, 17, 0x20);
  670. rt2x00dev->link.vgc_level = 0x20;
  671. }
  672. static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  673. {
  674. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  675. u8 r17;
  676. u8 up_bound;
  677. u8 low_bound;
  678. rt61pci_bbp_read(rt2x00dev, 17, &r17);
  679. /*
  680. * Determine r17 bounds.
  681. */
  682. if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
  683. low_bound = 0x28;
  684. up_bound = 0x48;
  685. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
  686. low_bound += 0x10;
  687. up_bound += 0x10;
  688. }
  689. } else {
  690. low_bound = 0x20;
  691. up_bound = 0x40;
  692. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
  693. low_bound += 0x10;
  694. up_bound += 0x10;
  695. }
  696. }
  697. /*
  698. * If we are not associated, we should go straight to the
  699. * dynamic CCA tuning.
  700. */
  701. if (!rt2x00dev->intf_associated)
  702. goto dynamic_cca_tune;
  703. /*
  704. * Special big-R17 for very short distance
  705. */
  706. if (rssi >= -35) {
  707. if (r17 != 0x60)
  708. rt61pci_bbp_write(rt2x00dev, 17, 0x60);
  709. return;
  710. }
  711. /*
  712. * Special big-R17 for short distance
  713. */
  714. if (rssi >= -58) {
  715. if (r17 != up_bound)
  716. rt61pci_bbp_write(rt2x00dev, 17, up_bound);
  717. return;
  718. }
  719. /*
  720. * Special big-R17 for middle-short distance
  721. */
  722. if (rssi >= -66) {
  723. low_bound += 0x10;
  724. if (r17 != low_bound)
  725. rt61pci_bbp_write(rt2x00dev, 17, low_bound);
  726. return;
  727. }
  728. /*
  729. * Special mid-R17 for middle distance
  730. */
  731. if (rssi >= -74) {
  732. low_bound += 0x08;
  733. if (r17 != low_bound)
  734. rt61pci_bbp_write(rt2x00dev, 17, low_bound);
  735. return;
  736. }
  737. /*
  738. * Special case: Change up_bound based on the rssi.
  739. * Lower up_bound when rssi is weaker then -74 dBm.
  740. */
  741. up_bound -= 2 * (-74 - rssi);
  742. if (low_bound > up_bound)
  743. up_bound = low_bound;
  744. if (r17 > up_bound) {
  745. rt61pci_bbp_write(rt2x00dev, 17, up_bound);
  746. return;
  747. }
  748. dynamic_cca_tune:
  749. /*
  750. * r17 does not yet exceed upper limit, continue and base
  751. * the r17 tuning on the false CCA count.
  752. */
  753. if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
  754. if (++r17 > up_bound)
  755. r17 = up_bound;
  756. rt61pci_bbp_write(rt2x00dev, 17, r17);
  757. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
  758. if (--r17 < low_bound)
  759. r17 = low_bound;
  760. rt61pci_bbp_write(rt2x00dev, 17, r17);
  761. }
  762. }
  763. /*
  764. * Firmware functions
  765. */
  766. static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  767. {
  768. char *fw_name;
  769. switch (rt2x00dev->chip.rt) {
  770. case RT2561:
  771. fw_name = FIRMWARE_RT2561;
  772. break;
  773. case RT2561s:
  774. fw_name = FIRMWARE_RT2561s;
  775. break;
  776. case RT2661:
  777. fw_name = FIRMWARE_RT2661;
  778. break;
  779. default:
  780. fw_name = NULL;
  781. break;
  782. }
  783. return fw_name;
  784. }
  785. static u16 rt61pci_get_firmware_crc(void *data, const size_t len)
  786. {
  787. u16 crc;
  788. /*
  789. * Use the crc itu-t algorithm.
  790. * The last 2 bytes in the firmware array are the crc checksum itself,
  791. * this means that we should never pass those 2 bytes to the crc
  792. * algorithm.
  793. */
  794. crc = crc_itu_t(0, data, len - 2);
  795. crc = crc_itu_t_byte(crc, 0);
  796. crc = crc_itu_t_byte(crc, 0);
  797. return crc;
  798. }
  799. static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
  800. const size_t len)
  801. {
  802. int i;
  803. u32 reg;
  804. /*
  805. * Wait for stable hardware.
  806. */
  807. for (i = 0; i < 100; i++) {
  808. rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
  809. if (reg)
  810. break;
  811. msleep(1);
  812. }
  813. if (!reg) {
  814. ERROR(rt2x00dev, "Unstable hardware.\n");
  815. return -EBUSY;
  816. }
  817. /*
  818. * Prepare MCU and mailbox for firmware loading.
  819. */
  820. reg = 0;
  821. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
  822. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  823. rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
  824. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  825. rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
  826. /*
  827. * Write firmware to device.
  828. */
  829. reg = 0;
  830. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
  831. rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
  832. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  833. rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  834. data, len);
  835. rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
  836. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  837. rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
  838. rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
  839. for (i = 0; i < 100; i++) {
  840. rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
  841. if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
  842. break;
  843. msleep(1);
  844. }
  845. if (i == 100) {
  846. ERROR(rt2x00dev, "MCU Control register not ready.\n");
  847. return -EBUSY;
  848. }
  849. /*
  850. * Reset MAC and BBP registers.
  851. */
  852. reg = 0;
  853. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  854. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  855. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  856. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  857. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  858. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  859. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  860. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  861. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  862. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  863. return 0;
  864. }
  865. /*
  866. * Initialization functions.
  867. */
  868. static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  869. struct queue_entry *entry)
  870. {
  871. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  872. u32 word;
  873. rt2x00_desc_read(priv_rx->desc, 5, &word);
  874. rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
  875. priv_rx->data_dma);
  876. rt2x00_desc_write(priv_rx->desc, 5, word);
  877. rt2x00_desc_read(priv_rx->desc, 0, &word);
  878. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  879. rt2x00_desc_write(priv_rx->desc, 0, word);
  880. }
  881. static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  882. struct queue_entry *entry)
  883. {
  884. struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
  885. u32 word;
  886. rt2x00_desc_read(priv_tx->desc, 1, &word);
  887. rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
  888. rt2x00_desc_write(priv_tx->desc, 1, word);
  889. rt2x00_desc_read(priv_tx->desc, 5, &word);
  890. rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
  891. rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
  892. rt2x00_desc_write(priv_tx->desc, 5, word);
  893. rt2x00_desc_read(priv_tx->desc, 6, &word);
  894. rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
  895. priv_tx->data_dma);
  896. rt2x00_desc_write(priv_tx->desc, 6, word);
  897. rt2x00_desc_read(priv_tx->desc, 0, &word);
  898. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  899. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  900. rt2x00_desc_write(priv_tx->desc, 0, word);
  901. }
  902. static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
  903. {
  904. struct queue_entry_priv_pci_rx *priv_rx;
  905. struct queue_entry_priv_pci_tx *priv_tx;
  906. u32 reg;
  907. /*
  908. * Initialize registers.
  909. */
  910. rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
  911. rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
  912. rt2x00dev->tx[0].limit);
  913. rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
  914. rt2x00dev->tx[1].limit);
  915. rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
  916. rt2x00dev->tx[2].limit);
  917. rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
  918. rt2x00dev->tx[3].limit);
  919. rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
  920. rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
  921. rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
  922. rt2x00dev->tx[0].desc_size / 4);
  923. rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
  924. priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
  925. rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
  926. rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
  927. priv_tx->desc_dma);
  928. rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
  929. priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
  930. rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
  931. rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
  932. priv_tx->desc_dma);
  933. rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
  934. priv_tx = rt2x00dev->tx[2].entries[0].priv_data;
  935. rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
  936. rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
  937. priv_tx->desc_dma);
  938. rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
  939. priv_tx = rt2x00dev->tx[3].entries[0].priv_data;
  940. rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
  941. rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
  942. priv_tx->desc_dma);
  943. rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
  944. rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
  945. rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
  946. rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
  947. rt2x00dev->rx->desc_size / 4);
  948. rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
  949. rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
  950. priv_rx = rt2x00dev->rx->entries[0].priv_data;
  951. rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
  952. rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
  953. priv_rx->desc_dma);
  954. rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
  955. rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
  956. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
  957. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
  958. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
  959. rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
  960. rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
  961. rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
  962. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
  963. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
  964. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
  965. rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
  966. rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
  967. rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
  968. rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
  969. rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
  970. return 0;
  971. }
  972. static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
  973. {
  974. u32 reg;
  975. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  976. rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
  977. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
  978. rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
  979. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  980. rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
  981. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
  982. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
  983. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
  984. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
  985. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
  986. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
  987. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
  988. rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
  989. rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
  990. /*
  991. * CCK TXD BBP registers
  992. */
  993. rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
  994. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
  995. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
  996. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
  997. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
  998. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
  999. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
  1000. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
  1001. rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
  1002. rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
  1003. /*
  1004. * OFDM TXD BBP registers
  1005. */
  1006. rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
  1007. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
  1008. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
  1009. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
  1010. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
  1011. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
  1012. rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
  1013. rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
  1014. rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
  1015. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
  1016. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
  1017. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
  1018. rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
  1019. rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
  1020. rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
  1021. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
  1022. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
  1023. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
  1024. rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
  1025. rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
  1026. rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
  1027. rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
  1028. rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
  1029. rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
  1030. rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
  1031. rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
  1032. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  1033. return -EBUSY;
  1034. rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
  1035. /*
  1036. * Invalidate all Shared Keys (SEC_CSR0),
  1037. * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
  1038. */
  1039. rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
  1040. rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
  1041. rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
  1042. rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
  1043. rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
  1044. rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
  1045. rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
  1046. rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
  1047. rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
  1048. rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
  1049. rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
  1050. rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
  1051. rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
  1052. rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
  1053. rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
  1054. rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
  1055. rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
  1056. rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
  1057. /*
  1058. * Clear all beacons
  1059. * For the Beacon base registers we only need to clear
  1060. * the first byte since that byte contains the VALID and OWNER
  1061. * bits which (when set to 0) will invalidate the entire beacon.
  1062. */
  1063. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
  1064. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
  1065. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
  1066. rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
  1067. /*
  1068. * We must clear the error counters.
  1069. * These registers are cleared on read,
  1070. * so we may pass a useless variable to store the value.
  1071. */
  1072. rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
  1073. rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
  1074. rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
  1075. /*
  1076. * Reset MAC and BBP registers.
  1077. */
  1078. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1079. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
  1080. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
  1081. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1082. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1083. rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
  1084. rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
  1085. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1086. rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
  1087. rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
  1088. rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
  1089. return 0;
  1090. }
  1091. static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  1092. {
  1093. unsigned int i;
  1094. u16 eeprom;
  1095. u8 reg_id;
  1096. u8 value;
  1097. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1098. rt61pci_bbp_read(rt2x00dev, 0, &value);
  1099. if ((value != 0xff) && (value != 0x00))
  1100. goto continue_csr_init;
  1101. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  1102. udelay(REGISTER_BUSY_DELAY);
  1103. }
  1104. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  1105. return -EACCES;
  1106. continue_csr_init:
  1107. rt61pci_bbp_write(rt2x00dev, 3, 0x00);
  1108. rt61pci_bbp_write(rt2x00dev, 15, 0x30);
  1109. rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
  1110. rt61pci_bbp_write(rt2x00dev, 22, 0x38);
  1111. rt61pci_bbp_write(rt2x00dev, 23, 0x06);
  1112. rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
  1113. rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
  1114. rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
  1115. rt61pci_bbp_write(rt2x00dev, 34, 0x12);
  1116. rt61pci_bbp_write(rt2x00dev, 37, 0x07);
  1117. rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
  1118. rt61pci_bbp_write(rt2x00dev, 41, 0x60);
  1119. rt61pci_bbp_write(rt2x00dev, 53, 0x10);
  1120. rt61pci_bbp_write(rt2x00dev, 54, 0x18);
  1121. rt61pci_bbp_write(rt2x00dev, 60, 0x10);
  1122. rt61pci_bbp_write(rt2x00dev, 61, 0x04);
  1123. rt61pci_bbp_write(rt2x00dev, 62, 0x04);
  1124. rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
  1125. rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
  1126. rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
  1127. rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
  1128. rt61pci_bbp_write(rt2x00dev, 99, 0x00);
  1129. rt61pci_bbp_write(rt2x00dev, 102, 0x16);
  1130. rt61pci_bbp_write(rt2x00dev, 107, 0x04);
  1131. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  1132. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  1133. if (eeprom != 0xffff && eeprom != 0x0000) {
  1134. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  1135. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  1136. rt61pci_bbp_write(rt2x00dev, reg_id, value);
  1137. }
  1138. }
  1139. return 0;
  1140. }
  1141. /*
  1142. * Device state switch handlers.
  1143. */
  1144. static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  1145. enum dev_state state)
  1146. {
  1147. u32 reg;
  1148. rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
  1149. rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
  1150. state == STATE_RADIO_RX_OFF);
  1151. rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
  1152. }
  1153. static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  1154. enum dev_state state)
  1155. {
  1156. int mask = (state == STATE_RADIO_IRQ_OFF);
  1157. u32 reg;
  1158. /*
  1159. * When interrupts are being enabled, the interrupt registers
  1160. * should clear the register to assure a clean state.
  1161. */
  1162. if (state == STATE_RADIO_IRQ_ON) {
  1163. rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  1164. rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1165. rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
  1166. rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
  1167. }
  1168. /*
  1169. * Only toggle the interrupts bits we are going to use.
  1170. * Non-checked interrupt bits are disabled by default.
  1171. */
  1172. rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  1173. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
  1174. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
  1175. rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
  1176. rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
  1177. rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
  1178. rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
  1179. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
  1180. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
  1181. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
  1182. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
  1183. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
  1184. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
  1185. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
  1186. rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
  1187. rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
  1188. }
  1189. static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  1190. {
  1191. u32 reg;
  1192. /*
  1193. * Initialize all registers.
  1194. */
  1195. if (rt61pci_init_queues(rt2x00dev) ||
  1196. rt61pci_init_registers(rt2x00dev) ||
  1197. rt61pci_init_bbp(rt2x00dev)) {
  1198. ERROR(rt2x00dev, "Register initialization failed.\n");
  1199. return -EIO;
  1200. }
  1201. /*
  1202. * Enable interrupts.
  1203. */
  1204. rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  1205. /*
  1206. * Enable RX.
  1207. */
  1208. rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
  1209. rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
  1210. rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
  1211. return 0;
  1212. }
  1213. static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  1214. {
  1215. u32 reg;
  1216. rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
  1217. /*
  1218. * Disable synchronisation.
  1219. */
  1220. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
  1221. /*
  1222. * Cancel RX and TX.
  1223. */
  1224. rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
  1225. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
  1226. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
  1227. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
  1228. rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
  1229. rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  1230. /*
  1231. * Disable interrupts.
  1232. */
  1233. rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  1234. }
  1235. static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
  1236. {
  1237. u32 reg;
  1238. unsigned int i;
  1239. char put_to_sleep;
  1240. char current_state;
  1241. put_to_sleep = (state != STATE_AWAKE);
  1242. rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
  1243. rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
  1244. rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
  1245. rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
  1246. /*
  1247. * Device is not guaranteed to be in the requested state yet.
  1248. * We must wait until the register indicates that the
  1249. * device has entered the correct state.
  1250. */
  1251. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1252. rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
  1253. current_state =
  1254. rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
  1255. if (current_state == !put_to_sleep)
  1256. return 0;
  1257. msleep(10);
  1258. }
  1259. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  1260. "current device state %d.\n", !put_to_sleep, current_state);
  1261. return -EBUSY;
  1262. }
  1263. static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  1264. enum dev_state state)
  1265. {
  1266. int retval = 0;
  1267. switch (state) {
  1268. case STATE_RADIO_ON:
  1269. retval = rt61pci_enable_radio(rt2x00dev);
  1270. break;
  1271. case STATE_RADIO_OFF:
  1272. rt61pci_disable_radio(rt2x00dev);
  1273. break;
  1274. case STATE_RADIO_RX_ON:
  1275. case STATE_RADIO_RX_ON_LINK:
  1276. rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  1277. break;
  1278. case STATE_RADIO_RX_OFF:
  1279. case STATE_RADIO_RX_OFF_LINK:
  1280. rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  1281. break;
  1282. case STATE_DEEP_SLEEP:
  1283. case STATE_SLEEP:
  1284. case STATE_STANDBY:
  1285. case STATE_AWAKE:
  1286. retval = rt61pci_set_state(rt2x00dev, state);
  1287. break;
  1288. default:
  1289. retval = -ENOTSUPP;
  1290. break;
  1291. }
  1292. return retval;
  1293. }
  1294. /*
  1295. * TX descriptor initialization
  1296. */
  1297. static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  1298. struct sk_buff *skb,
  1299. struct txentry_desc *txdesc,
  1300. struct ieee80211_tx_control *control)
  1301. {
  1302. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  1303. __le32 *txd = skbdesc->desc;
  1304. u32 word;
  1305. /*
  1306. * Start writing the descriptor words.
  1307. */
  1308. rt2x00_desc_read(txd, 1, &word);
  1309. rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
  1310. rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
  1311. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  1312. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  1313. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
  1314. rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
  1315. rt2x00_desc_write(txd, 1, word);
  1316. rt2x00_desc_read(txd, 2, &word);
  1317. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  1318. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  1319. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  1320. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  1321. rt2x00_desc_write(txd, 2, word);
  1322. rt2x00_desc_read(txd, 5, &word);
  1323. rt2x00_set_field32(&word, TXD_W5_TX_POWER,
  1324. TXPOWER_TO_DEV(rt2x00dev->tx_power));
  1325. rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
  1326. rt2x00_desc_write(txd, 5, word);
  1327. if (skbdesc->desc_len > TXINFO_SIZE) {
  1328. rt2x00_desc_read(txd, 11, &word);
  1329. rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skbdesc->data_len);
  1330. rt2x00_desc_write(txd, 11, word);
  1331. }
  1332. rt2x00_desc_read(txd, 0, &word);
  1333. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1334. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1335. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1336. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1337. rt2x00_set_field32(&word, TXD_W0_ACK,
  1338. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1339. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1340. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1341. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1342. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1343. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1344. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1345. !!(control->flags &
  1346. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1347. rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
  1348. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  1349. rt2x00_set_field32(&word, TXD_W0_BURST,
  1350. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  1351. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1352. rt2x00_desc_write(txd, 0, word);
  1353. }
  1354. /*
  1355. * TX data initialization
  1356. */
  1357. static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1358. const enum data_queue_qid queue)
  1359. {
  1360. u32 reg;
  1361. if (queue == QID_BEACON) {
  1362. /*
  1363. * For Wi-Fi faily generated beacons between participating
  1364. * stations. Set TBTT phase adaptive adjustment step to 8us.
  1365. */
  1366. rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
  1367. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  1368. if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
  1369. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
  1370. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
  1371. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
  1372. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  1373. }
  1374. return;
  1375. }
  1376. rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
  1377. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
  1378. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
  1379. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
  1380. rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
  1381. rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
  1382. }
  1383. /*
  1384. * RX control handlers
  1385. */
  1386. static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
  1387. {
  1388. u16 eeprom;
  1389. u8 offset;
  1390. u8 lna;
  1391. lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
  1392. switch (lna) {
  1393. case 3:
  1394. offset = 90;
  1395. break;
  1396. case 2:
  1397. offset = 74;
  1398. break;
  1399. case 1:
  1400. offset = 64;
  1401. break;
  1402. default:
  1403. return 0;
  1404. }
  1405. if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
  1406. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
  1407. offset += 14;
  1408. if (lna == 3 || lna == 2)
  1409. offset += 10;
  1410. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
  1411. offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
  1412. } else {
  1413. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
  1414. offset += 14;
  1415. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
  1416. offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
  1417. }
  1418. return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
  1419. }
  1420. static void rt61pci_fill_rxdone(struct queue_entry *entry,
  1421. struct rxdone_entry_desc *rxdesc)
  1422. {
  1423. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  1424. u32 word0;
  1425. u32 word1;
  1426. rt2x00_desc_read(priv_rx->desc, 0, &word0);
  1427. rt2x00_desc_read(priv_rx->desc, 1, &word1);
  1428. rxdesc->flags = 0;
  1429. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1430. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1431. /*
  1432. * Obtain the status about this packet.
  1433. * When frame was received with an OFDM bitrate,
  1434. * the signal is the PLCP value. If it was received with
  1435. * a CCK bitrate the signal is the rate in 100kbit/s.
  1436. */
  1437. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1438. rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
  1439. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1440. rxdesc->dev_flags = 0;
  1441. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1442. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1443. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1444. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1445. }
  1446. /*
  1447. * Interrupt functions.
  1448. */
  1449. static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
  1450. {
  1451. struct data_queue *queue;
  1452. struct queue_entry *entry;
  1453. struct queue_entry *entry_done;
  1454. struct queue_entry_priv_pci_tx *priv_tx;
  1455. struct txdone_entry_desc txdesc;
  1456. u32 word;
  1457. u32 reg;
  1458. u32 old_reg;
  1459. int type;
  1460. int index;
  1461. /*
  1462. * During each loop we will compare the freshly read
  1463. * STA_CSR4 register value with the value read from
  1464. * the previous loop. If the 2 values are equal then
  1465. * we should stop processing because the chance it
  1466. * quite big that the device has been unplugged and
  1467. * we risk going into an endless loop.
  1468. */
  1469. old_reg = 0;
  1470. while (1) {
  1471. rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
  1472. if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
  1473. break;
  1474. if (old_reg == reg)
  1475. break;
  1476. old_reg = reg;
  1477. /*
  1478. * Skip this entry when it contains an invalid
  1479. * queue identication number.
  1480. */
  1481. type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
  1482. queue = rt2x00queue_get_queue(rt2x00dev, type);
  1483. if (unlikely(!queue))
  1484. continue;
  1485. /*
  1486. * Skip this entry when it contains an invalid
  1487. * index number.
  1488. */
  1489. index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
  1490. if (unlikely(index >= queue->limit))
  1491. continue;
  1492. entry = &queue->entries[index];
  1493. priv_tx = entry->priv_data;
  1494. rt2x00_desc_read(priv_tx->desc, 0, &word);
  1495. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1496. !rt2x00_get_field32(word, TXD_W0_VALID))
  1497. return;
  1498. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1499. while (entry != entry_done) {
  1500. /* Catch up.
  1501. * Just report any entries we missed as failed.
  1502. */
  1503. WARNING(rt2x00dev,
  1504. "TX status report missed for entry %d\n",
  1505. entry_done->entry_idx);
  1506. txdesc.status = TX_FAIL_OTHER;
  1507. txdesc.retry = 0;
  1508. rt2x00pci_txdone(rt2x00dev, entry_done, &txdesc);
  1509. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1510. }
  1511. /*
  1512. * Obtain the status about this packet.
  1513. */
  1514. txdesc.status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
  1515. txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
  1516. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  1517. }
  1518. }
  1519. static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
  1520. {
  1521. struct rt2x00_dev *rt2x00dev = dev_instance;
  1522. u32 reg_mcu;
  1523. u32 reg;
  1524. /*
  1525. * Get the interrupt sources & saved to local variable.
  1526. * Write register value back to clear pending interrupts.
  1527. */
  1528. rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
  1529. rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
  1530. rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  1531. rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  1532. if (!reg && !reg_mcu)
  1533. return IRQ_NONE;
  1534. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1535. return IRQ_HANDLED;
  1536. /*
  1537. * Handle interrupts, walk through all bits
  1538. * and run the tasks, the bits are checked in order of
  1539. * priority.
  1540. */
  1541. /*
  1542. * 1 - Rx ring done interrupt.
  1543. */
  1544. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
  1545. rt2x00pci_rxdone(rt2x00dev);
  1546. /*
  1547. * 2 - Tx ring done interrupt.
  1548. */
  1549. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
  1550. rt61pci_txdone(rt2x00dev);
  1551. /*
  1552. * 3 - Handle MCU command done.
  1553. */
  1554. if (reg_mcu)
  1555. rt2x00pci_register_write(rt2x00dev,
  1556. M2H_CMD_DONE_CSR, 0xffffffff);
  1557. return IRQ_HANDLED;
  1558. }
  1559. /*
  1560. * Device probe functions.
  1561. */
  1562. static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1563. {
  1564. struct eeprom_93cx6 eeprom;
  1565. u32 reg;
  1566. u16 word;
  1567. u8 *mac;
  1568. s8 value;
  1569. rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
  1570. eeprom.data = rt2x00dev;
  1571. eeprom.register_read = rt61pci_eepromregister_read;
  1572. eeprom.register_write = rt61pci_eepromregister_write;
  1573. eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
  1574. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1575. eeprom.reg_data_in = 0;
  1576. eeprom.reg_data_out = 0;
  1577. eeprom.reg_data_clock = 0;
  1578. eeprom.reg_chip_select = 0;
  1579. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1580. EEPROM_SIZE / sizeof(u16));
  1581. /*
  1582. * Start validation of the data that has been read.
  1583. */
  1584. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1585. if (!is_valid_ether_addr(mac)) {
  1586. DECLARE_MAC_BUF(macbuf);
  1587. random_ether_addr(mac);
  1588. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1589. }
  1590. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1591. if (word == 0xffff) {
  1592. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1593. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1594. ANTENNA_B);
  1595. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1596. ANTENNA_B);
  1597. rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
  1598. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1599. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1600. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
  1601. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1602. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1603. }
  1604. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1605. if (word == 0xffff) {
  1606. rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
  1607. rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
  1608. rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
  1609. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
  1610. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1611. rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
  1612. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1613. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1614. }
  1615. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
  1616. if (word == 0xffff) {
  1617. rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
  1618. LED_MODE_DEFAULT);
  1619. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
  1620. EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
  1621. }
  1622. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
  1623. if (word == 0xffff) {
  1624. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  1625. rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
  1626. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  1627. EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
  1628. }
  1629. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
  1630. if (word == 0xffff) {
  1631. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  1632. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  1633. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  1634. EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
  1635. } else {
  1636. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
  1637. if (value < -10 || value > 10)
  1638. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
  1639. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
  1640. if (value < -10 || value > 10)
  1641. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
  1642. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
  1643. }
  1644. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
  1645. if (word == 0xffff) {
  1646. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  1647. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  1648. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  1649. EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
  1650. } else {
  1651. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
  1652. if (value < -10 || value > 10)
  1653. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
  1654. value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
  1655. if (value < -10 || value > 10)
  1656. rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
  1657. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
  1658. }
  1659. return 0;
  1660. }
  1661. static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1662. {
  1663. u32 reg;
  1664. u16 value;
  1665. u16 eeprom;
  1666. u16 device;
  1667. /*
  1668. * Read EEPROM word for configuration.
  1669. */
  1670. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1671. /*
  1672. * Identify RF chipset.
  1673. * To determine the RT chip we have to read the
  1674. * PCI header of the device.
  1675. */
  1676. pci_read_config_word(rt2x00dev_pci(rt2x00dev),
  1677. PCI_CONFIG_HEADER_DEVICE, &device);
  1678. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1679. rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
  1680. rt2x00_set_chip(rt2x00dev, device, value, reg);
  1681. if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
  1682. !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
  1683. !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
  1684. !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
  1685. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1686. return -ENODEV;
  1687. }
  1688. /*
  1689. * Determine number of antenna's.
  1690. */
  1691. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
  1692. __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
  1693. /*
  1694. * Identify default antenna configuration.
  1695. */
  1696. rt2x00dev->default_ant.tx =
  1697. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1698. rt2x00dev->default_ant.rx =
  1699. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1700. /*
  1701. * Read the Frame type.
  1702. */
  1703. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
  1704. __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
  1705. /*
  1706. * Detect if this device has an hardware controlled radio.
  1707. */
  1708. #ifdef CONFIG_RT61PCI_RFKILL
  1709. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1710. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1711. #endif /* CONFIG_RT61PCI_RFKILL */
  1712. /*
  1713. * Read frequency offset and RF programming sequence.
  1714. */
  1715. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
  1716. if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
  1717. __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
  1718. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  1719. /*
  1720. * Read external LNA informations.
  1721. */
  1722. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1723. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
  1724. __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  1725. if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
  1726. __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  1727. /*
  1728. * When working with a RF2529 chip without double antenna
  1729. * the antenna settings should be gathered from the NIC
  1730. * eeprom word.
  1731. */
  1732. if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
  1733. !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
  1734. switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
  1735. case 0:
  1736. rt2x00dev->default_ant.tx = ANTENNA_B;
  1737. rt2x00dev->default_ant.rx = ANTENNA_A;
  1738. break;
  1739. case 1:
  1740. rt2x00dev->default_ant.tx = ANTENNA_B;
  1741. rt2x00dev->default_ant.rx = ANTENNA_B;
  1742. break;
  1743. case 2:
  1744. rt2x00dev->default_ant.tx = ANTENNA_A;
  1745. rt2x00dev->default_ant.rx = ANTENNA_A;
  1746. break;
  1747. case 3:
  1748. rt2x00dev->default_ant.tx = ANTENNA_A;
  1749. rt2x00dev->default_ant.rx = ANTENNA_B;
  1750. break;
  1751. }
  1752. if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
  1753. rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
  1754. if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
  1755. rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
  1756. }
  1757. /*
  1758. * Store led settings, for correct led behaviour.
  1759. * If the eeprom value is invalid,
  1760. * switch to default led mode.
  1761. */
  1762. #ifdef CONFIG_RT61PCI_LEDS
  1763. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
  1764. value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
  1765. rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
  1766. rt2x00dev->led_radio.type = LED_TYPE_RADIO;
  1767. rt2x00dev->led_radio.led_dev.brightness_set =
  1768. rt61pci_brightness_set;
  1769. rt2x00dev->led_radio.led_dev.blink_set =
  1770. rt61pci_blink_set;
  1771. rt2x00dev->led_radio.flags = LED_INITIALIZED;
  1772. rt2x00dev->led_assoc.rt2x00dev = rt2x00dev;
  1773. rt2x00dev->led_assoc.type = LED_TYPE_ASSOC;
  1774. rt2x00dev->led_assoc.led_dev.brightness_set =
  1775. rt61pci_brightness_set;
  1776. rt2x00dev->led_assoc.led_dev.blink_set =
  1777. rt61pci_blink_set;
  1778. rt2x00dev->led_assoc.flags = LED_INITIALIZED;
  1779. if (value == LED_MODE_SIGNAL_STRENGTH) {
  1780. rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
  1781. rt2x00dev->led_qual.type = LED_TYPE_QUALITY;
  1782. rt2x00dev->led_qual.led_dev.brightness_set =
  1783. rt61pci_brightness_set;
  1784. rt2x00dev->led_qual.led_dev.blink_set =
  1785. rt61pci_blink_set;
  1786. rt2x00dev->led_qual.flags = LED_INITIALIZED;
  1787. }
  1788. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
  1789. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
  1790. rt2x00_get_field16(eeprom,
  1791. EEPROM_LED_POLARITY_GPIO_0));
  1792. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
  1793. rt2x00_get_field16(eeprom,
  1794. EEPROM_LED_POLARITY_GPIO_1));
  1795. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
  1796. rt2x00_get_field16(eeprom,
  1797. EEPROM_LED_POLARITY_GPIO_2));
  1798. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
  1799. rt2x00_get_field16(eeprom,
  1800. EEPROM_LED_POLARITY_GPIO_3));
  1801. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
  1802. rt2x00_get_field16(eeprom,
  1803. EEPROM_LED_POLARITY_GPIO_4));
  1804. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
  1805. rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
  1806. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
  1807. rt2x00_get_field16(eeprom,
  1808. EEPROM_LED_POLARITY_RDY_G));
  1809. rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
  1810. rt2x00_get_field16(eeprom,
  1811. EEPROM_LED_POLARITY_RDY_A));
  1812. #endif /* CONFIG_RT61PCI_LEDS */
  1813. return 0;
  1814. }
  1815. /*
  1816. * RF value list for RF5225 & RF5325
  1817. * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
  1818. */
  1819. static const struct rf_channel rf_vals_noseq[] = {
  1820. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  1821. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  1822. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  1823. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  1824. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  1825. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  1826. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  1827. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  1828. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  1829. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  1830. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  1831. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  1832. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  1833. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  1834. /* 802.11 UNI / HyperLan 2 */
  1835. { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
  1836. { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
  1837. { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
  1838. { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
  1839. { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
  1840. { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
  1841. { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
  1842. { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
  1843. /* 802.11 HyperLan 2 */
  1844. { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
  1845. { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
  1846. { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
  1847. { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
  1848. { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
  1849. { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
  1850. { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
  1851. { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
  1852. { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
  1853. { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
  1854. /* 802.11 UNII */
  1855. { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
  1856. { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
  1857. { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
  1858. { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
  1859. { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
  1860. { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
  1861. /* MMAC(Japan)J52 ch 34,38,42,46 */
  1862. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
  1863. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
  1864. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
  1865. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
  1866. };
  1867. /*
  1868. * RF value list for RF5225 & RF5325
  1869. * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
  1870. */
  1871. static const struct rf_channel rf_vals_seq[] = {
  1872. { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
  1873. { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
  1874. { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
  1875. { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
  1876. { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
  1877. { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
  1878. { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
  1879. { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
  1880. { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
  1881. { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
  1882. { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
  1883. { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
  1884. { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
  1885. { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
  1886. /* 802.11 UNI / HyperLan 2 */
  1887. { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
  1888. { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
  1889. { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
  1890. { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
  1891. { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
  1892. { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
  1893. { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
  1894. { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
  1895. /* 802.11 HyperLan 2 */
  1896. { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
  1897. { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
  1898. { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
  1899. { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
  1900. { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
  1901. { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
  1902. { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
  1903. { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
  1904. { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
  1905. { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
  1906. /* 802.11 UNII */
  1907. { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
  1908. { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
  1909. { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
  1910. { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
  1911. { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
  1912. { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
  1913. /* MMAC(Japan)J52 ch 34,38,42,46 */
  1914. { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
  1915. { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
  1916. { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
  1917. { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
  1918. };
  1919. static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1920. {
  1921. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1922. u8 *txpower;
  1923. unsigned int i;
  1924. /*
  1925. * Initialize all hw fields.
  1926. */
  1927. rt2x00dev->hw->flags =
  1928. IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
  1929. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1930. rt2x00dev->hw->extra_tx_headroom = 0;
  1931. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1932. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1933. rt2x00dev->hw->queues = 4;
  1934. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1935. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1936. rt2x00_eeprom_addr(rt2x00dev,
  1937. EEPROM_MAC_ADDR_0));
  1938. /*
  1939. * Convert tx_power array in eeprom.
  1940. */
  1941. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
  1942. for (i = 0; i < 14; i++)
  1943. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1944. /*
  1945. * Initialize hw_mode information.
  1946. */
  1947. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1948. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1949. spec->tx_power_a = NULL;
  1950. spec->tx_power_bg = txpower;
  1951. spec->tx_power_default = DEFAULT_TXPOWER;
  1952. if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
  1953. spec->num_channels = 14;
  1954. spec->channels = rf_vals_noseq;
  1955. } else {
  1956. spec->num_channels = 14;
  1957. spec->channels = rf_vals_seq;
  1958. }
  1959. if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
  1960. rt2x00_rf(&rt2x00dev->chip, RF5325)) {
  1961. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1962. spec->num_channels = ARRAY_SIZE(rf_vals_seq);
  1963. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
  1964. for (i = 0; i < 14; i++)
  1965. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1966. spec->tx_power_a = txpower;
  1967. }
  1968. }
  1969. static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1970. {
  1971. int retval;
  1972. /*
  1973. * Allocate eeprom data.
  1974. */
  1975. retval = rt61pci_validate_eeprom(rt2x00dev);
  1976. if (retval)
  1977. return retval;
  1978. retval = rt61pci_init_eeprom(rt2x00dev);
  1979. if (retval)
  1980. return retval;
  1981. /*
  1982. * Initialize hw specifications.
  1983. */
  1984. rt61pci_probe_hw_mode(rt2x00dev);
  1985. /*
  1986. * This device requires firmware.
  1987. */
  1988. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  1989. /*
  1990. * Set the rssi offset.
  1991. */
  1992. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1993. return 0;
  1994. }
  1995. /*
  1996. * IEEE80211 stack callback functions.
  1997. */
  1998. static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
  1999. u32 short_retry, u32 long_retry)
  2000. {
  2001. struct rt2x00_dev *rt2x00dev = hw->priv;
  2002. u32 reg;
  2003. rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
  2004. rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
  2005. rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
  2006. rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
  2007. return 0;
  2008. }
  2009. static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
  2010. {
  2011. struct rt2x00_dev *rt2x00dev = hw->priv;
  2012. u64 tsf;
  2013. u32 reg;
  2014. rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
  2015. tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
  2016. rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
  2017. tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
  2018. return tsf;
  2019. }
  2020. static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
  2021. struct ieee80211_tx_control *control)
  2022. {
  2023. struct rt2x00_dev *rt2x00dev = hw->priv;
  2024. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  2025. struct skb_frame_desc *skbdesc;
  2026. unsigned int beacon_base;
  2027. u32 reg;
  2028. if (unlikely(!intf->beacon))
  2029. return -ENOBUFS;
  2030. /*
  2031. * We need to append the descriptor in front of the
  2032. * beacon frame.
  2033. */
  2034. if (skb_headroom(skb) < intf->beacon->queue->desc_size) {
  2035. if (pskb_expand_head(skb, intf->beacon->queue->desc_size,
  2036. 0, GFP_ATOMIC))
  2037. return -ENOMEM;
  2038. }
  2039. /*
  2040. * Add the descriptor in front of the skb.
  2041. */
  2042. skb_push(skb, intf->beacon->queue->desc_size);
  2043. memset(skb->data, 0, intf->beacon->queue->desc_size);
  2044. /*
  2045. * Fill in skb descriptor
  2046. */
  2047. skbdesc = get_skb_frame_desc(skb);
  2048. memset(skbdesc, 0, sizeof(*skbdesc));
  2049. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  2050. skbdesc->data = skb->data + intf->beacon->queue->desc_size;
  2051. skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
  2052. skbdesc->desc = skb->data;
  2053. skbdesc->desc_len = intf->beacon->queue->desc_size;
  2054. skbdesc->entry = intf->beacon;
  2055. /*
  2056. * Disable beaconing while we are reloading the beacon data,
  2057. * otherwise we might be sending out invalid data.
  2058. */
  2059. rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
  2060. rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
  2061. rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
  2062. rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
  2063. rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
  2064. /*
  2065. * Write entire beacon with descriptor to register,
  2066. * and kick the beacon generator.
  2067. */
  2068. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  2069. beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
  2070. rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
  2071. skb->data, skb->len);
  2072. rt61pci_kick_tx_queue(rt2x00dev, QID_BEACON);
  2073. return 0;
  2074. }
  2075. static const struct ieee80211_ops rt61pci_mac80211_ops = {
  2076. .tx = rt2x00mac_tx,
  2077. .start = rt2x00mac_start,
  2078. .stop = rt2x00mac_stop,
  2079. .add_interface = rt2x00mac_add_interface,
  2080. .remove_interface = rt2x00mac_remove_interface,
  2081. .config = rt2x00mac_config,
  2082. .config_interface = rt2x00mac_config_interface,
  2083. .configure_filter = rt2x00mac_configure_filter,
  2084. .get_stats = rt2x00mac_get_stats,
  2085. .set_retry_limit = rt61pci_set_retry_limit,
  2086. .bss_info_changed = rt2x00mac_bss_info_changed,
  2087. .conf_tx = rt2x00mac_conf_tx,
  2088. .get_tx_stats = rt2x00mac_get_tx_stats,
  2089. .get_tsf = rt61pci_get_tsf,
  2090. .beacon_update = rt61pci_beacon_update,
  2091. };
  2092. static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
  2093. .irq_handler = rt61pci_interrupt,
  2094. .probe_hw = rt61pci_probe_hw,
  2095. .get_firmware_name = rt61pci_get_firmware_name,
  2096. .get_firmware_crc = rt61pci_get_firmware_crc,
  2097. .load_firmware = rt61pci_load_firmware,
  2098. .initialize = rt2x00pci_initialize,
  2099. .uninitialize = rt2x00pci_uninitialize,
  2100. .init_rxentry = rt61pci_init_rxentry,
  2101. .init_txentry = rt61pci_init_txentry,
  2102. .set_device_state = rt61pci_set_device_state,
  2103. .rfkill_poll = rt61pci_rfkill_poll,
  2104. .link_stats = rt61pci_link_stats,
  2105. .reset_tuner = rt61pci_reset_tuner,
  2106. .link_tuner = rt61pci_link_tuner,
  2107. .write_tx_desc = rt61pci_write_tx_desc,
  2108. .write_tx_data = rt2x00pci_write_tx_data,
  2109. .kick_tx_queue = rt61pci_kick_tx_queue,
  2110. .fill_rxdone = rt61pci_fill_rxdone,
  2111. .config_filter = rt61pci_config_filter,
  2112. .config_intf = rt61pci_config_intf,
  2113. .config_erp = rt61pci_config_erp,
  2114. .config = rt61pci_config,
  2115. };
  2116. static const struct data_queue_desc rt61pci_queue_rx = {
  2117. .entry_num = RX_ENTRIES,
  2118. .data_size = DATA_FRAME_SIZE,
  2119. .desc_size = RXD_DESC_SIZE,
  2120. .priv_size = sizeof(struct queue_entry_priv_pci_rx),
  2121. };
  2122. static const struct data_queue_desc rt61pci_queue_tx = {
  2123. .entry_num = TX_ENTRIES,
  2124. .data_size = DATA_FRAME_SIZE,
  2125. .desc_size = TXD_DESC_SIZE,
  2126. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  2127. };
  2128. static const struct data_queue_desc rt61pci_queue_bcn = {
  2129. .entry_num = 4 * BEACON_ENTRIES,
  2130. .data_size = MGMT_FRAME_SIZE,
  2131. .desc_size = TXINFO_SIZE,
  2132. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  2133. };
  2134. static const struct rt2x00_ops rt61pci_ops = {
  2135. .name = KBUILD_MODNAME,
  2136. .max_sta_intf = 1,
  2137. .max_ap_intf = 4,
  2138. .eeprom_size = EEPROM_SIZE,
  2139. .rf_size = RF_SIZE,
  2140. .rx = &rt61pci_queue_rx,
  2141. .tx = &rt61pci_queue_tx,
  2142. .bcn = &rt61pci_queue_bcn,
  2143. .lib = &rt61pci_rt2x00_ops,
  2144. .hw = &rt61pci_mac80211_ops,
  2145. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  2146. .debugfs = &rt61pci_rt2x00debug,
  2147. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  2148. };
  2149. /*
  2150. * RT61pci module information.
  2151. */
  2152. static struct pci_device_id rt61pci_device_table[] = {
  2153. /* RT2561s */
  2154. { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
  2155. /* RT2561 v2 */
  2156. { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
  2157. /* RT2661 */
  2158. { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
  2159. { 0, }
  2160. };
  2161. MODULE_AUTHOR(DRV_PROJECT);
  2162. MODULE_VERSION(DRV_VERSION);
  2163. MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
  2164. MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
  2165. "PCI & PCMCIA chipset based cards");
  2166. MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
  2167. MODULE_FIRMWARE(FIRMWARE_RT2561);
  2168. MODULE_FIRMWARE(FIRMWARE_RT2561s);
  2169. MODULE_FIRMWARE(FIRMWARE_RT2661);
  2170. MODULE_LICENSE("GPL");
  2171. static struct pci_driver rt61pci_driver = {
  2172. .name = KBUILD_MODNAME,
  2173. .id_table = rt61pci_device_table,
  2174. .probe = rt2x00pci_probe,
  2175. .remove = __devexit_p(rt2x00pci_remove),
  2176. .suspend = rt2x00pci_suspend,
  2177. .resume = rt2x00pci_resume,
  2178. };
  2179. static int __init rt61pci_init(void)
  2180. {
  2181. return pci_register_driver(&rt61pci_driver);
  2182. }
  2183. static void __exit rt61pci_exit(void)
  2184. {
  2185. pci_unregister_driver(&rt61pci_driver);
  2186. }
  2187. module_init(rt61pci_init);
  2188. module_exit(rt61pci_exit);