rt2500pci.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2500pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2500pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2500pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2500pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2500pci_read_csr,
  174. .write = rt2500pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2500pci_bbp_read,
  186. .write = rt2500pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2500pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2500PCI_RFKILL
  199. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2500pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2500PCI_RFKILL */
  208. #ifdef CONFIG_RT2500PCI_LEDS
  209. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  210. enum led_brightness brightness)
  211. {
  212. struct rt2x00_led *led =
  213. container_of(led_cdev, struct rt2x00_led, led_dev);
  214. unsigned int enabled = brightness != LED_OFF;
  215. u32 reg;
  216. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  217. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  218. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  219. else if (led->type == LED_TYPE_ACTIVITY)
  220. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  221. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  222. }
  223. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  224. unsigned long *delay_on,
  225. unsigned long *delay_off)
  226. {
  227. struct rt2x00_led *led =
  228. container_of(led_cdev, struct rt2x00_led, led_dev);
  229. u32 reg;
  230. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  231. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  232. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  233. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  234. return 0;
  235. }
  236. #endif /* CONFIG_RT2500PCI_LEDS */
  237. /*
  238. * Configuration handlers.
  239. */
  240. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  241. const unsigned int filter_flags)
  242. {
  243. u32 reg;
  244. /*
  245. * Start configuration steps.
  246. * Note that the version error will always be dropped
  247. * and broadcast frames will always be accepted since
  248. * there is no filter for it at this time.
  249. */
  250. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  251. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  252. !(filter_flags & FIF_FCSFAIL));
  253. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  254. !(filter_flags & FIF_PLCPFAIL));
  255. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  256. !(filter_flags & FIF_CONTROL));
  257. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  258. !(filter_flags & FIF_PROMISC_IN_BSS));
  259. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  260. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  261. !rt2x00dev->intf_ap_count);
  262. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  263. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  264. !(filter_flags & FIF_ALLMULTI));
  265. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  266. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  267. }
  268. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  269. struct rt2x00_intf *intf,
  270. struct rt2x00intf_conf *conf,
  271. const unsigned int flags)
  272. {
  273. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
  274. unsigned int bcn_preload;
  275. u32 reg;
  276. if (flags & CONFIG_UPDATE_TYPE) {
  277. /*
  278. * Enable beacon config
  279. */
  280. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  281. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  282. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  283. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  284. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  285. /*
  286. * Enable synchronisation.
  287. */
  288. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  289. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  290. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  291. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  292. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  293. }
  294. if (flags & CONFIG_UPDATE_MAC)
  295. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  296. conf->mac, sizeof(conf->mac));
  297. if (flags & CONFIG_UPDATE_BSSID)
  298. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  299. conf->bssid, sizeof(conf->bssid));
  300. }
  301. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  302. struct rt2x00lib_erp *erp)
  303. {
  304. int preamble_mask;
  305. u32 reg;
  306. /*
  307. * When short preamble is enabled, we should set bit 0x08
  308. */
  309. preamble_mask = erp->short_preamble << 3;
  310. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  311. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  312. erp->ack_timeout);
  313. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  314. erp->ack_consume_time);
  315. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  316. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  317. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  318. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  319. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  320. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  321. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  322. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  323. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  324. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  325. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  326. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  327. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  328. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  329. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  330. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  331. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  332. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  333. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  334. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  335. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  336. }
  337. static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  338. const int basic_rate_mask)
  339. {
  340. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  341. }
  342. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  343. struct rf_channel *rf, const int txpower)
  344. {
  345. u8 r70;
  346. /*
  347. * Set TXpower.
  348. */
  349. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  350. /*
  351. * Switch on tuning bits.
  352. * For RT2523 devices we do not need to update the R1 register.
  353. */
  354. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  355. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  356. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  357. /*
  358. * For RT2525 we should first set the channel to half band higher.
  359. */
  360. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  361. static const u32 vals[] = {
  362. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  363. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  364. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  365. 0x00080d2e, 0x00080d3a
  366. };
  367. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  368. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  369. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  370. if (rf->rf4)
  371. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  372. }
  373. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  374. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  375. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  376. if (rf->rf4)
  377. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  378. /*
  379. * Channel 14 requires the Japan filter bit to be set.
  380. */
  381. r70 = 0x46;
  382. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  383. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  384. msleep(1);
  385. /*
  386. * Switch off tuning bits.
  387. * For RT2523 devices we do not need to update the R1 register.
  388. */
  389. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  390. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  391. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  392. }
  393. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  394. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  395. /*
  396. * Clear false CRC during channel switch.
  397. */
  398. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  399. }
  400. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  401. const int txpower)
  402. {
  403. u32 rf3;
  404. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  405. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  406. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  407. }
  408. static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  409. struct antenna_setup *ant)
  410. {
  411. u32 reg;
  412. u8 r14;
  413. u8 r2;
  414. /*
  415. * We should never come here because rt2x00lib is supposed
  416. * to catch this and send us the correct antenna explicitely.
  417. */
  418. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  419. ant->tx == ANTENNA_SW_DIVERSITY);
  420. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  421. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  422. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  423. /*
  424. * Configure the TX antenna.
  425. */
  426. switch (ant->tx) {
  427. case ANTENNA_A:
  428. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  429. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  430. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  431. break;
  432. case ANTENNA_B:
  433. default:
  434. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  435. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  436. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  437. break;
  438. }
  439. /*
  440. * Configure the RX antenna.
  441. */
  442. switch (ant->rx) {
  443. case ANTENNA_A:
  444. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  445. break;
  446. case ANTENNA_B:
  447. default:
  448. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  449. break;
  450. }
  451. /*
  452. * RT2525E and RT5222 need to flip TX I/Q
  453. */
  454. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  455. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  456. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  457. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  458. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  459. /*
  460. * RT2525E does not need RX I/Q Flip.
  461. */
  462. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  463. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  464. } else {
  465. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  466. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  467. }
  468. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  469. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  470. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  471. }
  472. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  473. struct rt2x00lib_conf *libconf)
  474. {
  475. u32 reg;
  476. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  477. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  478. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  479. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  480. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  481. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  482. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  483. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  484. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  485. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  486. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  487. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  488. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  489. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  490. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  491. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  492. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  493. libconf->conf->beacon_int * 16);
  494. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  495. libconf->conf->beacon_int * 16);
  496. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  497. }
  498. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  499. struct rt2x00lib_conf *libconf,
  500. const unsigned int flags)
  501. {
  502. if (flags & CONFIG_UPDATE_PHYMODE)
  503. rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
  504. if (flags & CONFIG_UPDATE_CHANNEL)
  505. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  506. libconf->conf->power_level);
  507. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  508. rt2500pci_config_txpower(rt2x00dev,
  509. libconf->conf->power_level);
  510. if (flags & CONFIG_UPDATE_ANTENNA)
  511. rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
  512. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  513. rt2500pci_config_duration(rt2x00dev, libconf);
  514. }
  515. /*
  516. * Link tuning
  517. */
  518. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  519. struct link_qual *qual)
  520. {
  521. u32 reg;
  522. /*
  523. * Update FCS error count from register.
  524. */
  525. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  526. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  527. /*
  528. * Update False CCA count from register.
  529. */
  530. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  531. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  532. }
  533. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  534. {
  535. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  536. rt2x00dev->link.vgc_level = 0x48;
  537. }
  538. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  539. {
  540. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  541. u8 r17;
  542. /*
  543. * To prevent collisions with MAC ASIC on chipsets
  544. * up to version C the link tuning should halt after 20
  545. * seconds while being associated.
  546. */
  547. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  548. rt2x00dev->intf_associated &&
  549. rt2x00dev->link.count > 20)
  550. return;
  551. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  552. /*
  553. * Chipset versions C and lower should directly continue
  554. * to the dynamic CCA tuning. Chipset version D and higher
  555. * should go straight to dynamic CCA tuning when they
  556. * are not associated.
  557. */
  558. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
  559. !rt2x00dev->intf_associated)
  560. goto dynamic_cca_tune;
  561. /*
  562. * A too low RSSI will cause too much false CCA which will
  563. * then corrupt the R17 tuning. To remidy this the tuning should
  564. * be stopped (While making sure the R17 value will not exceed limits)
  565. */
  566. if (rssi < -80 && rt2x00dev->link.count > 20) {
  567. if (r17 >= 0x41) {
  568. r17 = rt2x00dev->link.vgc_level;
  569. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  570. }
  571. return;
  572. }
  573. /*
  574. * Special big-R17 for short distance
  575. */
  576. if (rssi >= -58) {
  577. if (r17 != 0x50)
  578. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  579. return;
  580. }
  581. /*
  582. * Special mid-R17 for middle distance
  583. */
  584. if (rssi >= -74) {
  585. if (r17 != 0x41)
  586. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  587. return;
  588. }
  589. /*
  590. * Leave short or middle distance condition, restore r17
  591. * to the dynamic tuning range.
  592. */
  593. if (r17 >= 0x41) {
  594. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  595. return;
  596. }
  597. dynamic_cca_tune:
  598. /*
  599. * R17 is inside the dynamic tuning range,
  600. * start tuning the link based on the false cca counter.
  601. */
  602. if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
  603. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  604. rt2x00dev->link.vgc_level = r17;
  605. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
  606. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  607. rt2x00dev->link.vgc_level = r17;
  608. }
  609. }
  610. /*
  611. * Initialization functions.
  612. */
  613. static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  614. struct queue_entry *entry)
  615. {
  616. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  617. u32 word;
  618. rt2x00_desc_read(priv_rx->desc, 1, &word);
  619. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
  620. rt2x00_desc_write(priv_rx->desc, 1, word);
  621. rt2x00_desc_read(priv_rx->desc, 0, &word);
  622. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  623. rt2x00_desc_write(priv_rx->desc, 0, word);
  624. }
  625. static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  626. struct queue_entry *entry)
  627. {
  628. struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
  629. u32 word;
  630. rt2x00_desc_read(priv_tx->desc, 1, &word);
  631. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
  632. rt2x00_desc_write(priv_tx->desc, 1, word);
  633. rt2x00_desc_read(priv_tx->desc, 0, &word);
  634. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  635. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  636. rt2x00_desc_write(priv_tx->desc, 0, word);
  637. }
  638. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  639. {
  640. struct queue_entry_priv_pci_rx *priv_rx;
  641. struct queue_entry_priv_pci_tx *priv_tx;
  642. u32 reg;
  643. /*
  644. * Initialize registers.
  645. */
  646. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  647. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  648. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  649. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  650. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  651. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  652. priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
  653. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  654. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  655. priv_tx->desc_dma);
  656. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  657. priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
  658. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  659. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  660. priv_tx->desc_dma);
  661. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  662. priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
  663. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  664. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  665. priv_tx->desc_dma);
  666. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  667. priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
  668. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  669. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  670. priv_tx->desc_dma);
  671. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  672. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  673. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  674. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  675. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  676. priv_rx = rt2x00dev->rx->entries[0].priv_data;
  677. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  678. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
  679. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  680. return 0;
  681. }
  682. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  683. {
  684. u32 reg;
  685. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  686. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  687. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  688. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  689. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  690. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  691. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  692. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  693. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  694. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  695. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  696. rt2x00dev->rx->data_size / 128);
  697. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  698. /*
  699. * Always use CWmin and CWmax set in descriptor.
  700. */
  701. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  702. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  703. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  704. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  705. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  706. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  707. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  708. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  709. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  710. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  711. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  712. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  713. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  714. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  715. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  716. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  717. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  718. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  719. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  720. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  721. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  722. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  723. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  724. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  725. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  726. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  727. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  728. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  729. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  730. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  731. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  732. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  733. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  734. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  735. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  736. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  737. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  738. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  739. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  740. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  741. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  742. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  743. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  744. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  745. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  746. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  747. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  748. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  749. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  750. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  751. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  752. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  753. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  754. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  755. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  756. return -EBUSY;
  757. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  758. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  759. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  760. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  761. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  762. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  763. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  764. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  765. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  766. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  767. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  768. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  769. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  770. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  771. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  772. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  773. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  774. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  775. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  776. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  777. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  778. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  779. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  780. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  781. /*
  782. * We must clear the FCS and FIFO error count.
  783. * These registers are cleared on read,
  784. * so we may pass a useless variable to store the value.
  785. */
  786. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  787. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  788. return 0;
  789. }
  790. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  791. {
  792. unsigned int i;
  793. u16 eeprom;
  794. u8 reg_id;
  795. u8 value;
  796. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  797. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  798. if ((value != 0xff) && (value != 0x00))
  799. goto continue_csr_init;
  800. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  801. udelay(REGISTER_BUSY_DELAY);
  802. }
  803. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  804. return -EACCES;
  805. continue_csr_init:
  806. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  807. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  808. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  809. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  810. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  811. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  812. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  813. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  814. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  815. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  816. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  817. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  818. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  819. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  820. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  821. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  822. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  823. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  824. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  825. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  826. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  827. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  828. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  829. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  830. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  831. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  832. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  833. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  834. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  835. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  836. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  837. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  838. if (eeprom != 0xffff && eeprom != 0x0000) {
  839. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  840. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  841. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  842. }
  843. }
  844. return 0;
  845. }
  846. /*
  847. * Device state switch handlers.
  848. */
  849. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  850. enum dev_state state)
  851. {
  852. u32 reg;
  853. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  854. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  855. state == STATE_RADIO_RX_OFF);
  856. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  857. }
  858. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  859. enum dev_state state)
  860. {
  861. int mask = (state == STATE_RADIO_IRQ_OFF);
  862. u32 reg;
  863. /*
  864. * When interrupts are being enabled, the interrupt registers
  865. * should clear the register to assure a clean state.
  866. */
  867. if (state == STATE_RADIO_IRQ_ON) {
  868. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  869. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  870. }
  871. /*
  872. * Only toggle the interrupts bits we are going to use.
  873. * Non-checked interrupt bits are disabled by default.
  874. */
  875. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  876. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  877. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  878. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  879. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  880. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  881. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  882. }
  883. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  884. {
  885. /*
  886. * Initialize all registers.
  887. */
  888. if (rt2500pci_init_queues(rt2x00dev) ||
  889. rt2500pci_init_registers(rt2x00dev) ||
  890. rt2500pci_init_bbp(rt2x00dev)) {
  891. ERROR(rt2x00dev, "Register initialization failed.\n");
  892. return -EIO;
  893. }
  894. /*
  895. * Enable interrupts.
  896. */
  897. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  898. return 0;
  899. }
  900. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  901. {
  902. u32 reg;
  903. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  904. /*
  905. * Disable synchronisation.
  906. */
  907. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  908. /*
  909. * Cancel RX and TX.
  910. */
  911. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  912. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  913. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  914. /*
  915. * Disable interrupts.
  916. */
  917. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  918. }
  919. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  920. enum dev_state state)
  921. {
  922. u32 reg;
  923. unsigned int i;
  924. char put_to_sleep;
  925. char bbp_state;
  926. char rf_state;
  927. put_to_sleep = (state != STATE_AWAKE);
  928. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  929. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  930. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  931. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  932. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  933. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  934. /*
  935. * Device is not guaranteed to be in the requested state yet.
  936. * We must wait until the register indicates that the
  937. * device has entered the correct state.
  938. */
  939. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  940. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  941. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  942. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  943. if (bbp_state == state && rf_state == state)
  944. return 0;
  945. msleep(10);
  946. }
  947. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  948. "current device state: bbp %d and rf %d.\n",
  949. state, bbp_state, rf_state);
  950. return -EBUSY;
  951. }
  952. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  953. enum dev_state state)
  954. {
  955. int retval = 0;
  956. switch (state) {
  957. case STATE_RADIO_ON:
  958. retval = rt2500pci_enable_radio(rt2x00dev);
  959. break;
  960. case STATE_RADIO_OFF:
  961. rt2500pci_disable_radio(rt2x00dev);
  962. break;
  963. case STATE_RADIO_RX_ON:
  964. case STATE_RADIO_RX_ON_LINK:
  965. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  966. break;
  967. case STATE_RADIO_RX_OFF:
  968. case STATE_RADIO_RX_OFF_LINK:
  969. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  970. break;
  971. case STATE_DEEP_SLEEP:
  972. case STATE_SLEEP:
  973. case STATE_STANDBY:
  974. case STATE_AWAKE:
  975. retval = rt2500pci_set_state(rt2x00dev, state);
  976. break;
  977. default:
  978. retval = -ENOTSUPP;
  979. break;
  980. }
  981. return retval;
  982. }
  983. /*
  984. * TX descriptor initialization
  985. */
  986. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  987. struct sk_buff *skb,
  988. struct txentry_desc *txdesc,
  989. struct ieee80211_tx_control *control)
  990. {
  991. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  992. __le32 *txd = skbdesc->desc;
  993. u32 word;
  994. /*
  995. * Start writing the descriptor words.
  996. */
  997. rt2x00_desc_read(txd, 2, &word);
  998. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  999. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  1000. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  1001. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  1002. rt2x00_desc_write(txd, 2, word);
  1003. rt2x00_desc_read(txd, 3, &word);
  1004. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  1005. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  1006. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  1007. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  1008. rt2x00_desc_write(txd, 3, word);
  1009. rt2x00_desc_read(txd, 10, &word);
  1010. rt2x00_set_field32(&word, TXD_W10_RTS,
  1011. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1012. rt2x00_desc_write(txd, 10, word);
  1013. rt2x00_desc_read(txd, 0, &word);
  1014. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1015. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1016. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1017. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1018. rt2x00_set_field32(&word, TXD_W0_ACK,
  1019. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1020. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1021. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1022. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1023. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1024. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1025. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1026. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1027. !!(control->flags &
  1028. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1029. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  1030. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1031. rt2x00_desc_write(txd, 0, word);
  1032. }
  1033. /*
  1034. * TX data initialization
  1035. */
  1036. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1037. const enum data_queue_qid queue)
  1038. {
  1039. u32 reg;
  1040. if (queue == QID_BEACON) {
  1041. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1042. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1043. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  1044. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  1045. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1046. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1047. }
  1048. return;
  1049. }
  1050. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1051. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  1052. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  1053. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  1054. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1055. }
  1056. /*
  1057. * RX control handlers
  1058. */
  1059. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1060. struct rxdone_entry_desc *rxdesc)
  1061. {
  1062. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  1063. u32 word0;
  1064. u32 word2;
  1065. rt2x00_desc_read(priv_rx->desc, 0, &word0);
  1066. rt2x00_desc_read(priv_rx->desc, 2, &word2);
  1067. rxdesc->flags = 0;
  1068. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1069. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1070. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1071. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1072. /*
  1073. * Obtain the status about this packet.
  1074. * When frame was received with an OFDM bitrate,
  1075. * the signal is the PLCP value. If it was received with
  1076. * a CCK bitrate the signal is the rate in 100kbit/s.
  1077. */
  1078. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1079. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1080. entry->queue->rt2x00dev->rssi_offset;
  1081. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1082. rxdesc->dev_flags = 0;
  1083. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1084. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1085. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1086. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1087. }
  1088. /*
  1089. * Interrupt functions.
  1090. */
  1091. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1092. const enum data_queue_qid queue_idx)
  1093. {
  1094. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1095. struct queue_entry_priv_pci_tx *priv_tx;
  1096. struct queue_entry *entry;
  1097. struct txdone_entry_desc txdesc;
  1098. u32 word;
  1099. while (!rt2x00queue_empty(queue)) {
  1100. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1101. priv_tx = entry->priv_data;
  1102. rt2x00_desc_read(priv_tx->desc, 0, &word);
  1103. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1104. !rt2x00_get_field32(word, TXD_W0_VALID))
  1105. break;
  1106. /*
  1107. * Obtain the status about this packet.
  1108. */
  1109. txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
  1110. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1111. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  1112. }
  1113. }
  1114. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1115. {
  1116. struct rt2x00_dev *rt2x00dev = dev_instance;
  1117. u32 reg;
  1118. /*
  1119. * Get the interrupt sources & saved to local variable.
  1120. * Write register value back to clear pending interrupts.
  1121. */
  1122. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1123. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1124. if (!reg)
  1125. return IRQ_NONE;
  1126. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1127. return IRQ_HANDLED;
  1128. /*
  1129. * Handle interrupts, walk through all bits
  1130. * and run the tasks, the bits are checked in order of
  1131. * priority.
  1132. */
  1133. /*
  1134. * 1 - Beacon timer expired interrupt.
  1135. */
  1136. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1137. rt2x00lib_beacondone(rt2x00dev);
  1138. /*
  1139. * 2 - Rx ring done interrupt.
  1140. */
  1141. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1142. rt2x00pci_rxdone(rt2x00dev);
  1143. /*
  1144. * 3 - Atim ring transmit done interrupt.
  1145. */
  1146. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1147. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1148. /*
  1149. * 4 - Priority ring transmit done interrupt.
  1150. */
  1151. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1152. rt2500pci_txdone(rt2x00dev, QID_AC_BE);
  1153. /*
  1154. * 5 - Tx ring transmit done interrupt.
  1155. */
  1156. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1157. rt2500pci_txdone(rt2x00dev, QID_AC_BK);
  1158. return IRQ_HANDLED;
  1159. }
  1160. /*
  1161. * Device probe functions.
  1162. */
  1163. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1164. {
  1165. struct eeprom_93cx6 eeprom;
  1166. u32 reg;
  1167. u16 word;
  1168. u8 *mac;
  1169. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1170. eeprom.data = rt2x00dev;
  1171. eeprom.register_read = rt2500pci_eepromregister_read;
  1172. eeprom.register_write = rt2500pci_eepromregister_write;
  1173. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1174. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1175. eeprom.reg_data_in = 0;
  1176. eeprom.reg_data_out = 0;
  1177. eeprom.reg_data_clock = 0;
  1178. eeprom.reg_chip_select = 0;
  1179. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1180. EEPROM_SIZE / sizeof(u16));
  1181. /*
  1182. * Start validation of the data that has been read.
  1183. */
  1184. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1185. if (!is_valid_ether_addr(mac)) {
  1186. DECLARE_MAC_BUF(macbuf);
  1187. random_ether_addr(mac);
  1188. EEPROM(rt2x00dev, "MAC: %s\n",
  1189. print_mac(macbuf, mac));
  1190. }
  1191. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1192. if (word == 0xffff) {
  1193. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1194. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1195. ANTENNA_SW_DIVERSITY);
  1196. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1197. ANTENNA_SW_DIVERSITY);
  1198. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1199. LED_MODE_DEFAULT);
  1200. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1201. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1202. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1203. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1204. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1205. }
  1206. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1207. if (word == 0xffff) {
  1208. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1209. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1210. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1211. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1212. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1213. }
  1214. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1215. if (word == 0xffff) {
  1216. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1217. DEFAULT_RSSI_OFFSET);
  1218. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1219. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1220. }
  1221. return 0;
  1222. }
  1223. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1224. {
  1225. u32 reg;
  1226. u16 value;
  1227. u16 eeprom;
  1228. /*
  1229. * Read EEPROM word for configuration.
  1230. */
  1231. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1232. /*
  1233. * Identify RF chipset.
  1234. */
  1235. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1236. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1237. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1238. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1239. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1240. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1241. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1242. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1243. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1244. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1245. return -ENODEV;
  1246. }
  1247. /*
  1248. * Identify default antenna configuration.
  1249. */
  1250. rt2x00dev->default_ant.tx =
  1251. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1252. rt2x00dev->default_ant.rx =
  1253. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1254. /*
  1255. * Store led mode, for correct led behaviour.
  1256. */
  1257. #ifdef CONFIG_RT2500PCI_LEDS
  1258. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1259. rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
  1260. rt2x00dev->led_radio.type = LED_TYPE_RADIO;
  1261. rt2x00dev->led_radio.led_dev.brightness_set =
  1262. rt2500pci_brightness_set;
  1263. rt2x00dev->led_radio.led_dev.blink_set =
  1264. rt2500pci_blink_set;
  1265. rt2x00dev->led_radio.flags = LED_INITIALIZED;
  1266. if (value == LED_MODE_TXRX_ACTIVITY) {
  1267. rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
  1268. rt2x00dev->led_qual.type = LED_TYPE_ACTIVITY;
  1269. rt2x00dev->led_qual.led_dev.brightness_set =
  1270. rt2500pci_brightness_set;
  1271. rt2x00dev->led_qual.led_dev.blink_set =
  1272. rt2500pci_blink_set;
  1273. rt2x00dev->led_qual.flags = LED_INITIALIZED;
  1274. }
  1275. #endif /* CONFIG_RT2500PCI_LEDS */
  1276. /*
  1277. * Detect if this device has an hardware controlled radio.
  1278. */
  1279. #ifdef CONFIG_RT2500PCI_RFKILL
  1280. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1281. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1282. #endif /* CONFIG_RT2500PCI_RFKILL */
  1283. /*
  1284. * Check if the BBP tuning should be enabled.
  1285. */
  1286. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1287. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1288. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1289. /*
  1290. * Read the RSSI <-> dBm offset information.
  1291. */
  1292. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1293. rt2x00dev->rssi_offset =
  1294. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1295. return 0;
  1296. }
  1297. /*
  1298. * RF value list for RF2522
  1299. * Supports: 2.4 GHz
  1300. */
  1301. static const struct rf_channel rf_vals_bg_2522[] = {
  1302. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1303. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1304. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1305. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1306. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1307. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1308. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1309. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1310. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1311. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1312. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1313. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1314. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1315. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1316. };
  1317. /*
  1318. * RF value list for RF2523
  1319. * Supports: 2.4 GHz
  1320. */
  1321. static const struct rf_channel rf_vals_bg_2523[] = {
  1322. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1323. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1324. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1325. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1326. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1327. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1328. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1329. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1330. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1331. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1332. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1333. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1334. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1335. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1336. };
  1337. /*
  1338. * RF value list for RF2524
  1339. * Supports: 2.4 GHz
  1340. */
  1341. static const struct rf_channel rf_vals_bg_2524[] = {
  1342. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1343. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1344. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1345. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1346. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1347. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1348. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1349. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1350. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1351. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1352. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1353. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1354. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1355. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1356. };
  1357. /*
  1358. * RF value list for RF2525
  1359. * Supports: 2.4 GHz
  1360. */
  1361. static const struct rf_channel rf_vals_bg_2525[] = {
  1362. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1363. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1364. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1365. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1366. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1367. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1368. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1369. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1370. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1371. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1372. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1373. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1374. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1375. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1376. };
  1377. /*
  1378. * RF value list for RF2525e
  1379. * Supports: 2.4 GHz
  1380. */
  1381. static const struct rf_channel rf_vals_bg_2525e[] = {
  1382. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1383. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1384. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1385. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1386. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1387. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1388. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1389. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1390. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1391. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1392. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1393. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1394. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1395. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1396. };
  1397. /*
  1398. * RF value list for RF5222
  1399. * Supports: 2.4 GHz & 5.2 GHz
  1400. */
  1401. static const struct rf_channel rf_vals_5222[] = {
  1402. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1403. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1404. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1405. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1406. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1407. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1408. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1409. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1410. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1411. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1412. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1413. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1414. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1415. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1416. /* 802.11 UNI / HyperLan 2 */
  1417. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1418. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1419. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1420. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1421. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1422. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1423. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1424. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1425. /* 802.11 HyperLan 2 */
  1426. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1427. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1428. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1429. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1430. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1431. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1432. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1433. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1434. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1435. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1436. /* 802.11 UNII */
  1437. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1438. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1439. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1440. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1441. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1442. };
  1443. static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1444. {
  1445. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1446. u8 *txpower;
  1447. unsigned int i;
  1448. /*
  1449. * Initialize all hw fields.
  1450. */
  1451. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1452. rt2x00dev->hw->extra_tx_headroom = 0;
  1453. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1454. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1455. rt2x00dev->hw->queues = 2;
  1456. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1457. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1458. rt2x00_eeprom_addr(rt2x00dev,
  1459. EEPROM_MAC_ADDR_0));
  1460. /*
  1461. * Convert tx_power array in eeprom.
  1462. */
  1463. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1464. for (i = 0; i < 14; i++)
  1465. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1466. /*
  1467. * Initialize hw_mode information.
  1468. */
  1469. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1470. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1471. spec->tx_power_a = NULL;
  1472. spec->tx_power_bg = txpower;
  1473. spec->tx_power_default = DEFAULT_TXPOWER;
  1474. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1475. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1476. spec->channels = rf_vals_bg_2522;
  1477. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1478. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1479. spec->channels = rf_vals_bg_2523;
  1480. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1481. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1482. spec->channels = rf_vals_bg_2524;
  1483. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1484. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1485. spec->channels = rf_vals_bg_2525;
  1486. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1487. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1488. spec->channels = rf_vals_bg_2525e;
  1489. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1490. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1491. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1492. spec->channels = rf_vals_5222;
  1493. }
  1494. }
  1495. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1496. {
  1497. int retval;
  1498. /*
  1499. * Allocate eeprom data.
  1500. */
  1501. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1502. if (retval)
  1503. return retval;
  1504. retval = rt2500pci_init_eeprom(rt2x00dev);
  1505. if (retval)
  1506. return retval;
  1507. /*
  1508. * Initialize hw specifications.
  1509. */
  1510. rt2500pci_probe_hw_mode(rt2x00dev);
  1511. /*
  1512. * This device requires the atim queue
  1513. */
  1514. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1515. /*
  1516. * Set the rssi offset.
  1517. */
  1518. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1519. return 0;
  1520. }
  1521. /*
  1522. * IEEE80211 stack callback functions.
  1523. */
  1524. static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
  1525. u32 short_retry, u32 long_retry)
  1526. {
  1527. struct rt2x00_dev *rt2x00dev = hw->priv;
  1528. u32 reg;
  1529. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1530. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1531. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1532. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1533. return 0;
  1534. }
  1535. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1536. {
  1537. struct rt2x00_dev *rt2x00dev = hw->priv;
  1538. u64 tsf;
  1539. u32 reg;
  1540. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1541. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1542. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1543. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1544. return tsf;
  1545. }
  1546. static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
  1547. struct ieee80211_tx_control *control)
  1548. {
  1549. struct rt2x00_dev *rt2x00dev = hw->priv;
  1550. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  1551. struct queue_entry_priv_pci_tx *priv_tx;
  1552. struct skb_frame_desc *skbdesc;
  1553. u32 reg;
  1554. if (unlikely(!intf->beacon))
  1555. return -ENOBUFS;
  1556. priv_tx = intf->beacon->priv_data;
  1557. /*
  1558. * Fill in skb descriptor
  1559. */
  1560. skbdesc = get_skb_frame_desc(skb);
  1561. memset(skbdesc, 0, sizeof(*skbdesc));
  1562. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  1563. skbdesc->data = skb->data;
  1564. skbdesc->data_len = skb->len;
  1565. skbdesc->desc = priv_tx->desc;
  1566. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1567. skbdesc->entry = intf->beacon;
  1568. /*
  1569. * Disable beaconing while we are reloading the beacon data,
  1570. * otherwise we might be sending out invalid data.
  1571. */
  1572. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1573. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  1574. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  1575. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1576. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1577. /*
  1578. * Enable beacon generation.
  1579. * Write entire beacon with descriptor to register,
  1580. * and kick the beacon generator.
  1581. */
  1582. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  1583. memcpy(priv_tx->data, skb->data, skb->len);
  1584. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
  1585. return 0;
  1586. }
  1587. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1588. {
  1589. struct rt2x00_dev *rt2x00dev = hw->priv;
  1590. u32 reg;
  1591. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1592. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1593. }
  1594. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1595. .tx = rt2x00mac_tx,
  1596. .start = rt2x00mac_start,
  1597. .stop = rt2x00mac_stop,
  1598. .add_interface = rt2x00mac_add_interface,
  1599. .remove_interface = rt2x00mac_remove_interface,
  1600. .config = rt2x00mac_config,
  1601. .config_interface = rt2x00mac_config_interface,
  1602. .configure_filter = rt2x00mac_configure_filter,
  1603. .get_stats = rt2x00mac_get_stats,
  1604. .set_retry_limit = rt2500pci_set_retry_limit,
  1605. .bss_info_changed = rt2x00mac_bss_info_changed,
  1606. .conf_tx = rt2x00mac_conf_tx,
  1607. .get_tx_stats = rt2x00mac_get_tx_stats,
  1608. .get_tsf = rt2500pci_get_tsf,
  1609. .beacon_update = rt2500pci_beacon_update,
  1610. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1611. };
  1612. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1613. .irq_handler = rt2500pci_interrupt,
  1614. .probe_hw = rt2500pci_probe_hw,
  1615. .initialize = rt2x00pci_initialize,
  1616. .uninitialize = rt2x00pci_uninitialize,
  1617. .init_rxentry = rt2500pci_init_rxentry,
  1618. .init_txentry = rt2500pci_init_txentry,
  1619. .set_device_state = rt2500pci_set_device_state,
  1620. .rfkill_poll = rt2500pci_rfkill_poll,
  1621. .link_stats = rt2500pci_link_stats,
  1622. .reset_tuner = rt2500pci_reset_tuner,
  1623. .link_tuner = rt2500pci_link_tuner,
  1624. .write_tx_desc = rt2500pci_write_tx_desc,
  1625. .write_tx_data = rt2x00pci_write_tx_data,
  1626. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1627. .fill_rxdone = rt2500pci_fill_rxdone,
  1628. .config_filter = rt2500pci_config_filter,
  1629. .config_intf = rt2500pci_config_intf,
  1630. .config_erp = rt2500pci_config_erp,
  1631. .config = rt2500pci_config,
  1632. };
  1633. static const struct data_queue_desc rt2500pci_queue_rx = {
  1634. .entry_num = RX_ENTRIES,
  1635. .data_size = DATA_FRAME_SIZE,
  1636. .desc_size = RXD_DESC_SIZE,
  1637. .priv_size = sizeof(struct queue_entry_priv_pci_rx),
  1638. };
  1639. static const struct data_queue_desc rt2500pci_queue_tx = {
  1640. .entry_num = TX_ENTRIES,
  1641. .data_size = DATA_FRAME_SIZE,
  1642. .desc_size = TXD_DESC_SIZE,
  1643. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1644. };
  1645. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1646. .entry_num = BEACON_ENTRIES,
  1647. .data_size = MGMT_FRAME_SIZE,
  1648. .desc_size = TXD_DESC_SIZE,
  1649. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1650. };
  1651. static const struct data_queue_desc rt2500pci_queue_atim = {
  1652. .entry_num = ATIM_ENTRIES,
  1653. .data_size = DATA_FRAME_SIZE,
  1654. .desc_size = TXD_DESC_SIZE,
  1655. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1656. };
  1657. static const struct rt2x00_ops rt2500pci_ops = {
  1658. .name = KBUILD_MODNAME,
  1659. .max_sta_intf = 1,
  1660. .max_ap_intf = 1,
  1661. .eeprom_size = EEPROM_SIZE,
  1662. .rf_size = RF_SIZE,
  1663. .rx = &rt2500pci_queue_rx,
  1664. .tx = &rt2500pci_queue_tx,
  1665. .bcn = &rt2500pci_queue_bcn,
  1666. .atim = &rt2500pci_queue_atim,
  1667. .lib = &rt2500pci_rt2x00_ops,
  1668. .hw = &rt2500pci_mac80211_ops,
  1669. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1670. .debugfs = &rt2500pci_rt2x00debug,
  1671. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1672. };
  1673. /*
  1674. * RT2500pci module information.
  1675. */
  1676. static struct pci_device_id rt2500pci_device_table[] = {
  1677. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1678. { 0, }
  1679. };
  1680. MODULE_AUTHOR(DRV_PROJECT);
  1681. MODULE_VERSION(DRV_VERSION);
  1682. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1683. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1684. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1685. MODULE_LICENSE("GPL");
  1686. static struct pci_driver rt2500pci_driver = {
  1687. .name = KBUILD_MODNAME,
  1688. .id_table = rt2500pci_device_table,
  1689. .probe = rt2x00pci_probe,
  1690. .remove = __devexit_p(rt2x00pci_remove),
  1691. .suspend = rt2x00pci_suspend,
  1692. .resume = rt2x00pci_resume,
  1693. };
  1694. static int __init rt2500pci_init(void)
  1695. {
  1696. return pci_register_driver(&rt2500pci_driver);
  1697. }
  1698. static void __exit rt2500pci_exit(void)
  1699. {
  1700. pci_unregister_driver(&rt2500pci_driver);
  1701. }
  1702. module_init(rt2500pci_init);
  1703. module_exit(rt2500pci_exit);