kvm_main.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <asm/processor.h>
  44. #include <asm/io.h>
  45. #include <asm/uaccess.h>
  46. #include <asm/pgtable.h>
  47. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  48. #include "coalesced_mmio.h"
  49. #endif
  50. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  51. #include <linux/pci.h>
  52. #include <linux/interrupt.h>
  53. #include "irq.h"
  54. #endif
  55. MODULE_AUTHOR("Qumranet");
  56. MODULE_LICENSE("GPL");
  57. DEFINE_SPINLOCK(kvm_lock);
  58. LIST_HEAD(vm_list);
  59. static cpumask_var_t cpus_hardware_enabled;
  60. struct kmem_cache *kvm_vcpu_cache;
  61. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  62. static __read_mostly struct preempt_ops kvm_preempt_ops;
  63. struct dentry *kvm_debugfs_dir;
  64. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  65. unsigned long arg);
  66. static bool kvm_rebooting;
  67. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  68. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  69. int assigned_dev_id)
  70. {
  71. struct list_head *ptr;
  72. struct kvm_assigned_dev_kernel *match;
  73. list_for_each(ptr, head) {
  74. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  75. if (match->assigned_dev_id == assigned_dev_id)
  76. return match;
  77. }
  78. return NULL;
  79. }
  80. static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
  81. *assigned_dev, int irq)
  82. {
  83. int i, index;
  84. struct msix_entry *host_msix_entries;
  85. host_msix_entries = assigned_dev->host_msix_entries;
  86. index = -1;
  87. for (i = 0; i < assigned_dev->entries_nr; i++)
  88. if (irq == host_msix_entries[i].vector) {
  89. index = i;
  90. break;
  91. }
  92. if (index < 0) {
  93. printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
  94. return 0;
  95. }
  96. return index;
  97. }
  98. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  99. {
  100. struct kvm_assigned_dev_kernel *assigned_dev;
  101. struct kvm *kvm;
  102. int irq, i;
  103. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  104. interrupt_work);
  105. kvm = assigned_dev->kvm;
  106. /* This is taken to safely inject irq inside the guest. When
  107. * the interrupt injection (or the ioapic code) uses a
  108. * finer-grained lock, update this
  109. */
  110. mutex_lock(&kvm->lock);
  111. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  112. struct kvm_guest_msix_entry *guest_entries =
  113. assigned_dev->guest_msix_entries;
  114. for (i = 0; i < assigned_dev->entries_nr; i++) {
  115. if (!(guest_entries[i].flags &
  116. KVM_ASSIGNED_MSIX_PENDING))
  117. continue;
  118. guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
  119. kvm_set_irq(assigned_dev->kvm,
  120. assigned_dev->irq_source_id,
  121. guest_entries[i].vector, 1);
  122. irq = assigned_dev->host_msix_entries[i].vector;
  123. if (irq != 0)
  124. enable_irq(irq);
  125. assigned_dev->host_irq_disabled = false;
  126. }
  127. } else {
  128. kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
  129. assigned_dev->guest_irq, 1);
  130. if (assigned_dev->irq_requested_type &
  131. KVM_DEV_IRQ_GUEST_MSI) {
  132. enable_irq(assigned_dev->host_irq);
  133. assigned_dev->host_irq_disabled = false;
  134. }
  135. }
  136. mutex_unlock(&assigned_dev->kvm->lock);
  137. }
  138. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  139. {
  140. struct kvm_assigned_dev_kernel *assigned_dev =
  141. (struct kvm_assigned_dev_kernel *) dev_id;
  142. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  143. int index = find_index_from_host_irq(assigned_dev, irq);
  144. if (index < 0)
  145. return IRQ_HANDLED;
  146. assigned_dev->guest_msix_entries[index].flags |=
  147. KVM_ASSIGNED_MSIX_PENDING;
  148. }
  149. schedule_work(&assigned_dev->interrupt_work);
  150. disable_irq_nosync(irq);
  151. assigned_dev->host_irq_disabled = true;
  152. return IRQ_HANDLED;
  153. }
  154. /* Ack the irq line for an assigned device */
  155. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  156. {
  157. struct kvm_assigned_dev_kernel *dev;
  158. if (kian->gsi == -1)
  159. return;
  160. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  161. ack_notifier);
  162. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  163. /* The guest irq may be shared so this ack may be
  164. * from another device.
  165. */
  166. if (dev->host_irq_disabled) {
  167. enable_irq(dev->host_irq);
  168. dev->host_irq_disabled = false;
  169. }
  170. }
  171. static void deassign_guest_irq(struct kvm *kvm,
  172. struct kvm_assigned_dev_kernel *assigned_dev)
  173. {
  174. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  175. assigned_dev->ack_notifier.gsi = -1;
  176. if (assigned_dev->irq_source_id != -1)
  177. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  178. assigned_dev->irq_source_id = -1;
  179. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
  180. }
  181. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  182. static void deassign_host_irq(struct kvm *kvm,
  183. struct kvm_assigned_dev_kernel *assigned_dev)
  184. {
  185. /*
  186. * In kvm_free_device_irq, cancel_work_sync return true if:
  187. * 1. work is scheduled, and then cancelled.
  188. * 2. work callback is executed.
  189. *
  190. * The first one ensured that the irq is disabled and no more events
  191. * would happen. But for the second one, the irq may be enabled (e.g.
  192. * for MSI). So we disable irq here to prevent further events.
  193. *
  194. * Notice this maybe result in nested disable if the interrupt type is
  195. * INTx, but it's OK for we are going to free it.
  196. *
  197. * If this function is a part of VM destroy, please ensure that till
  198. * now, the kvm state is still legal for probably we also have to wait
  199. * interrupt_work done.
  200. */
  201. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  202. int i;
  203. for (i = 0; i < assigned_dev->entries_nr; i++)
  204. disable_irq_nosync(assigned_dev->
  205. host_msix_entries[i].vector);
  206. cancel_work_sync(&assigned_dev->interrupt_work);
  207. for (i = 0; i < assigned_dev->entries_nr; i++)
  208. free_irq(assigned_dev->host_msix_entries[i].vector,
  209. (void *)assigned_dev);
  210. assigned_dev->entries_nr = 0;
  211. kfree(assigned_dev->host_msix_entries);
  212. kfree(assigned_dev->guest_msix_entries);
  213. pci_disable_msix(assigned_dev->dev);
  214. } else {
  215. /* Deal with MSI and INTx */
  216. disable_irq_nosync(assigned_dev->host_irq);
  217. cancel_work_sync(&assigned_dev->interrupt_work);
  218. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  219. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
  220. pci_disable_msi(assigned_dev->dev);
  221. }
  222. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
  223. }
  224. static int kvm_deassign_irq(struct kvm *kvm,
  225. struct kvm_assigned_dev_kernel *assigned_dev,
  226. unsigned long irq_requested_type)
  227. {
  228. unsigned long guest_irq_type, host_irq_type;
  229. if (!irqchip_in_kernel(kvm))
  230. return -EINVAL;
  231. /* no irq assignment to deassign */
  232. if (!assigned_dev->irq_requested_type)
  233. return -ENXIO;
  234. host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
  235. guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
  236. if (host_irq_type)
  237. deassign_host_irq(kvm, assigned_dev);
  238. if (guest_irq_type)
  239. deassign_guest_irq(kvm, assigned_dev);
  240. return 0;
  241. }
  242. static void kvm_free_assigned_irq(struct kvm *kvm,
  243. struct kvm_assigned_dev_kernel *assigned_dev)
  244. {
  245. kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
  246. }
  247. static void kvm_free_assigned_device(struct kvm *kvm,
  248. struct kvm_assigned_dev_kernel
  249. *assigned_dev)
  250. {
  251. kvm_free_assigned_irq(kvm, assigned_dev);
  252. pci_reset_function(assigned_dev->dev);
  253. pci_release_regions(assigned_dev->dev);
  254. pci_disable_device(assigned_dev->dev);
  255. pci_dev_put(assigned_dev->dev);
  256. list_del(&assigned_dev->list);
  257. kfree(assigned_dev);
  258. }
  259. void kvm_free_all_assigned_devices(struct kvm *kvm)
  260. {
  261. struct list_head *ptr, *ptr2;
  262. struct kvm_assigned_dev_kernel *assigned_dev;
  263. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  264. assigned_dev = list_entry(ptr,
  265. struct kvm_assigned_dev_kernel,
  266. list);
  267. kvm_free_assigned_device(kvm, assigned_dev);
  268. }
  269. }
  270. static int assigned_device_enable_host_intx(struct kvm *kvm,
  271. struct kvm_assigned_dev_kernel *dev)
  272. {
  273. dev->host_irq = dev->dev->irq;
  274. /* Even though this is PCI, we don't want to use shared
  275. * interrupts. Sharing host devices with guest-assigned devices
  276. * on the same interrupt line is not a happy situation: there
  277. * are going to be long delays in accepting, acking, etc.
  278. */
  279. if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
  280. 0, "kvm_assigned_intx_device", (void *)dev))
  281. return -EIO;
  282. return 0;
  283. }
  284. #ifdef __KVM_HAVE_MSI
  285. static int assigned_device_enable_host_msi(struct kvm *kvm,
  286. struct kvm_assigned_dev_kernel *dev)
  287. {
  288. int r;
  289. if (!dev->dev->msi_enabled) {
  290. r = pci_enable_msi(dev->dev);
  291. if (r)
  292. return r;
  293. }
  294. dev->host_irq = dev->dev->irq;
  295. if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
  296. "kvm_assigned_msi_device", (void *)dev)) {
  297. pci_disable_msi(dev->dev);
  298. return -EIO;
  299. }
  300. return 0;
  301. }
  302. #endif
  303. #ifdef __KVM_HAVE_MSIX
  304. static int assigned_device_enable_host_msix(struct kvm *kvm,
  305. struct kvm_assigned_dev_kernel *dev)
  306. {
  307. int i, r = -EINVAL;
  308. /* host_msix_entries and guest_msix_entries should have been
  309. * initialized */
  310. if (dev->entries_nr == 0)
  311. return r;
  312. r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
  313. if (r)
  314. return r;
  315. for (i = 0; i < dev->entries_nr; i++) {
  316. r = request_irq(dev->host_msix_entries[i].vector,
  317. kvm_assigned_dev_intr, 0,
  318. "kvm_assigned_msix_device",
  319. (void *)dev);
  320. /* FIXME: free requested_irq's on failure */
  321. if (r)
  322. return r;
  323. }
  324. return 0;
  325. }
  326. #endif
  327. static int assigned_device_enable_guest_intx(struct kvm *kvm,
  328. struct kvm_assigned_dev_kernel *dev,
  329. struct kvm_assigned_irq *irq)
  330. {
  331. dev->guest_irq = irq->guest_irq;
  332. dev->ack_notifier.gsi = irq->guest_irq;
  333. return 0;
  334. }
  335. #ifdef __KVM_HAVE_MSI
  336. static int assigned_device_enable_guest_msi(struct kvm *kvm,
  337. struct kvm_assigned_dev_kernel *dev,
  338. struct kvm_assigned_irq *irq)
  339. {
  340. dev->guest_irq = irq->guest_irq;
  341. dev->ack_notifier.gsi = -1;
  342. return 0;
  343. }
  344. #endif
  345. #ifdef __KVM_HAVE_MSIX
  346. static int assigned_device_enable_guest_msix(struct kvm *kvm,
  347. struct kvm_assigned_dev_kernel *dev,
  348. struct kvm_assigned_irq *irq)
  349. {
  350. dev->guest_irq = irq->guest_irq;
  351. dev->ack_notifier.gsi = -1;
  352. return 0;
  353. }
  354. #endif
  355. static int assign_host_irq(struct kvm *kvm,
  356. struct kvm_assigned_dev_kernel *dev,
  357. __u32 host_irq_type)
  358. {
  359. int r = -EEXIST;
  360. if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
  361. return r;
  362. switch (host_irq_type) {
  363. case KVM_DEV_IRQ_HOST_INTX:
  364. r = assigned_device_enable_host_intx(kvm, dev);
  365. break;
  366. #ifdef __KVM_HAVE_MSI
  367. case KVM_DEV_IRQ_HOST_MSI:
  368. r = assigned_device_enable_host_msi(kvm, dev);
  369. break;
  370. #endif
  371. #ifdef __KVM_HAVE_MSIX
  372. case KVM_DEV_IRQ_HOST_MSIX:
  373. r = assigned_device_enable_host_msix(kvm, dev);
  374. break;
  375. #endif
  376. default:
  377. r = -EINVAL;
  378. }
  379. if (!r)
  380. dev->irq_requested_type |= host_irq_type;
  381. return r;
  382. }
  383. static int assign_guest_irq(struct kvm *kvm,
  384. struct kvm_assigned_dev_kernel *dev,
  385. struct kvm_assigned_irq *irq,
  386. unsigned long guest_irq_type)
  387. {
  388. int id;
  389. int r = -EEXIST;
  390. if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
  391. return r;
  392. id = kvm_request_irq_source_id(kvm);
  393. if (id < 0)
  394. return id;
  395. dev->irq_source_id = id;
  396. switch (guest_irq_type) {
  397. case KVM_DEV_IRQ_GUEST_INTX:
  398. r = assigned_device_enable_guest_intx(kvm, dev, irq);
  399. break;
  400. #ifdef __KVM_HAVE_MSI
  401. case KVM_DEV_IRQ_GUEST_MSI:
  402. r = assigned_device_enable_guest_msi(kvm, dev, irq);
  403. break;
  404. #endif
  405. #ifdef __KVM_HAVE_MSIX
  406. case KVM_DEV_IRQ_GUEST_MSIX:
  407. r = assigned_device_enable_guest_msix(kvm, dev, irq);
  408. break;
  409. #endif
  410. default:
  411. r = -EINVAL;
  412. }
  413. if (!r) {
  414. dev->irq_requested_type |= guest_irq_type;
  415. kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
  416. } else
  417. kvm_free_irq_source_id(kvm, dev->irq_source_id);
  418. return r;
  419. }
  420. /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
  421. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  422. struct kvm_assigned_irq *assigned_irq)
  423. {
  424. int r = -EINVAL;
  425. struct kvm_assigned_dev_kernel *match;
  426. unsigned long host_irq_type, guest_irq_type;
  427. if (!capable(CAP_SYS_RAWIO))
  428. return -EPERM;
  429. if (!irqchip_in_kernel(kvm))
  430. return r;
  431. mutex_lock(&kvm->lock);
  432. r = -ENODEV;
  433. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  434. assigned_irq->assigned_dev_id);
  435. if (!match)
  436. goto out;
  437. host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
  438. guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
  439. r = -EINVAL;
  440. /* can only assign one type at a time */
  441. if (hweight_long(host_irq_type) > 1)
  442. goto out;
  443. if (hweight_long(guest_irq_type) > 1)
  444. goto out;
  445. if (host_irq_type == 0 && guest_irq_type == 0)
  446. goto out;
  447. r = 0;
  448. if (host_irq_type)
  449. r = assign_host_irq(kvm, match, host_irq_type);
  450. if (r)
  451. goto out;
  452. if (guest_irq_type)
  453. r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
  454. out:
  455. mutex_unlock(&kvm->lock);
  456. return r;
  457. }
  458. static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
  459. struct kvm_assigned_irq
  460. *assigned_irq)
  461. {
  462. int r = -ENODEV;
  463. struct kvm_assigned_dev_kernel *match;
  464. mutex_lock(&kvm->lock);
  465. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  466. assigned_irq->assigned_dev_id);
  467. if (!match)
  468. goto out;
  469. r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
  470. out:
  471. mutex_unlock(&kvm->lock);
  472. return r;
  473. }
  474. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  475. struct kvm_assigned_pci_dev *assigned_dev)
  476. {
  477. int r = 0;
  478. struct kvm_assigned_dev_kernel *match;
  479. struct pci_dev *dev;
  480. down_read(&kvm->slots_lock);
  481. mutex_lock(&kvm->lock);
  482. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  483. assigned_dev->assigned_dev_id);
  484. if (match) {
  485. /* device already assigned */
  486. r = -EEXIST;
  487. goto out;
  488. }
  489. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  490. if (match == NULL) {
  491. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  492. __func__);
  493. r = -ENOMEM;
  494. goto out;
  495. }
  496. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  497. assigned_dev->devfn);
  498. if (!dev) {
  499. printk(KERN_INFO "%s: host device not found\n", __func__);
  500. r = -EINVAL;
  501. goto out_free;
  502. }
  503. if (pci_enable_device(dev)) {
  504. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  505. r = -EBUSY;
  506. goto out_put;
  507. }
  508. r = pci_request_regions(dev, "kvm_assigned_device");
  509. if (r) {
  510. printk(KERN_INFO "%s: Could not get access to device regions\n",
  511. __func__);
  512. goto out_disable;
  513. }
  514. pci_reset_function(dev);
  515. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  516. match->host_busnr = assigned_dev->busnr;
  517. match->host_devfn = assigned_dev->devfn;
  518. match->flags = assigned_dev->flags;
  519. match->dev = dev;
  520. match->irq_source_id = -1;
  521. match->kvm = kvm;
  522. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  523. INIT_WORK(&match->interrupt_work,
  524. kvm_assigned_dev_interrupt_work_handler);
  525. list_add(&match->list, &kvm->arch.assigned_dev_head);
  526. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  527. if (!kvm->arch.iommu_domain) {
  528. r = kvm_iommu_map_guest(kvm);
  529. if (r)
  530. goto out_list_del;
  531. }
  532. r = kvm_assign_device(kvm, match);
  533. if (r)
  534. goto out_list_del;
  535. }
  536. out:
  537. mutex_unlock(&kvm->lock);
  538. up_read(&kvm->slots_lock);
  539. return r;
  540. out_list_del:
  541. list_del(&match->list);
  542. pci_release_regions(dev);
  543. out_disable:
  544. pci_disable_device(dev);
  545. out_put:
  546. pci_dev_put(dev);
  547. out_free:
  548. kfree(match);
  549. mutex_unlock(&kvm->lock);
  550. up_read(&kvm->slots_lock);
  551. return r;
  552. }
  553. #endif
  554. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  555. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  556. struct kvm_assigned_pci_dev *assigned_dev)
  557. {
  558. int r = 0;
  559. struct kvm_assigned_dev_kernel *match;
  560. mutex_lock(&kvm->lock);
  561. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  562. assigned_dev->assigned_dev_id);
  563. if (!match) {
  564. printk(KERN_INFO "%s: device hasn't been assigned before, "
  565. "so cannot be deassigned\n", __func__);
  566. r = -EINVAL;
  567. goto out;
  568. }
  569. if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  570. kvm_deassign_device(kvm, match);
  571. kvm_free_assigned_device(kvm, match);
  572. out:
  573. mutex_unlock(&kvm->lock);
  574. return r;
  575. }
  576. #endif
  577. static inline int valid_vcpu(int n)
  578. {
  579. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  580. }
  581. inline int kvm_is_mmio_pfn(pfn_t pfn)
  582. {
  583. if (pfn_valid(pfn)) {
  584. struct page *page = compound_head(pfn_to_page(pfn));
  585. return PageReserved(page);
  586. }
  587. return true;
  588. }
  589. /*
  590. * Switches to specified vcpu, until a matching vcpu_put()
  591. */
  592. void vcpu_load(struct kvm_vcpu *vcpu)
  593. {
  594. int cpu;
  595. mutex_lock(&vcpu->mutex);
  596. cpu = get_cpu();
  597. preempt_notifier_register(&vcpu->preempt_notifier);
  598. kvm_arch_vcpu_load(vcpu, cpu);
  599. put_cpu();
  600. }
  601. void vcpu_put(struct kvm_vcpu *vcpu)
  602. {
  603. preempt_disable();
  604. kvm_arch_vcpu_put(vcpu);
  605. preempt_notifier_unregister(&vcpu->preempt_notifier);
  606. preempt_enable();
  607. mutex_unlock(&vcpu->mutex);
  608. }
  609. static void ack_flush(void *_completed)
  610. {
  611. }
  612. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  613. {
  614. int i, cpu, me;
  615. cpumask_var_t cpus;
  616. bool called = true;
  617. struct kvm_vcpu *vcpu;
  618. if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
  619. cpumask_clear(cpus);
  620. me = get_cpu();
  621. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  622. vcpu = kvm->vcpus[i];
  623. if (!vcpu)
  624. continue;
  625. if (test_and_set_bit(req, &vcpu->requests))
  626. continue;
  627. cpu = vcpu->cpu;
  628. if (cpus != NULL && cpu != -1 && cpu != me)
  629. cpumask_set_cpu(cpu, cpus);
  630. }
  631. if (unlikely(cpus == NULL))
  632. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  633. else if (!cpumask_empty(cpus))
  634. smp_call_function_many(cpus, ack_flush, NULL, 1);
  635. else
  636. called = false;
  637. put_cpu();
  638. free_cpumask_var(cpus);
  639. return called;
  640. }
  641. void kvm_flush_remote_tlbs(struct kvm *kvm)
  642. {
  643. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  644. ++kvm->stat.remote_tlb_flush;
  645. }
  646. void kvm_reload_remote_mmus(struct kvm *kvm)
  647. {
  648. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  649. }
  650. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  651. {
  652. struct page *page;
  653. int r;
  654. mutex_init(&vcpu->mutex);
  655. vcpu->cpu = -1;
  656. vcpu->kvm = kvm;
  657. vcpu->vcpu_id = id;
  658. init_waitqueue_head(&vcpu->wq);
  659. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  660. if (!page) {
  661. r = -ENOMEM;
  662. goto fail;
  663. }
  664. vcpu->run = page_address(page);
  665. r = kvm_arch_vcpu_init(vcpu);
  666. if (r < 0)
  667. goto fail_free_run;
  668. return 0;
  669. fail_free_run:
  670. free_page((unsigned long)vcpu->run);
  671. fail:
  672. return r;
  673. }
  674. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  675. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  676. {
  677. kvm_arch_vcpu_uninit(vcpu);
  678. free_page((unsigned long)vcpu->run);
  679. }
  680. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  681. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  682. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  683. {
  684. return container_of(mn, struct kvm, mmu_notifier);
  685. }
  686. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  687. struct mm_struct *mm,
  688. unsigned long address)
  689. {
  690. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  691. int need_tlb_flush;
  692. /*
  693. * When ->invalidate_page runs, the linux pte has been zapped
  694. * already but the page is still allocated until
  695. * ->invalidate_page returns. So if we increase the sequence
  696. * here the kvm page fault will notice if the spte can't be
  697. * established because the page is going to be freed. If
  698. * instead the kvm page fault establishes the spte before
  699. * ->invalidate_page runs, kvm_unmap_hva will release it
  700. * before returning.
  701. *
  702. * The sequence increase only need to be seen at spin_unlock
  703. * time, and not at spin_lock time.
  704. *
  705. * Increasing the sequence after the spin_unlock would be
  706. * unsafe because the kvm page fault could then establish the
  707. * pte after kvm_unmap_hva returned, without noticing the page
  708. * is going to be freed.
  709. */
  710. spin_lock(&kvm->mmu_lock);
  711. kvm->mmu_notifier_seq++;
  712. need_tlb_flush = kvm_unmap_hva(kvm, address);
  713. spin_unlock(&kvm->mmu_lock);
  714. /* we've to flush the tlb before the pages can be freed */
  715. if (need_tlb_flush)
  716. kvm_flush_remote_tlbs(kvm);
  717. }
  718. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  719. struct mm_struct *mm,
  720. unsigned long start,
  721. unsigned long end)
  722. {
  723. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  724. int need_tlb_flush = 0;
  725. spin_lock(&kvm->mmu_lock);
  726. /*
  727. * The count increase must become visible at unlock time as no
  728. * spte can be established without taking the mmu_lock and
  729. * count is also read inside the mmu_lock critical section.
  730. */
  731. kvm->mmu_notifier_count++;
  732. for (; start < end; start += PAGE_SIZE)
  733. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  734. spin_unlock(&kvm->mmu_lock);
  735. /* we've to flush the tlb before the pages can be freed */
  736. if (need_tlb_flush)
  737. kvm_flush_remote_tlbs(kvm);
  738. }
  739. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  740. struct mm_struct *mm,
  741. unsigned long start,
  742. unsigned long end)
  743. {
  744. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  745. spin_lock(&kvm->mmu_lock);
  746. /*
  747. * This sequence increase will notify the kvm page fault that
  748. * the page that is going to be mapped in the spte could have
  749. * been freed.
  750. */
  751. kvm->mmu_notifier_seq++;
  752. /*
  753. * The above sequence increase must be visible before the
  754. * below count decrease but both values are read by the kvm
  755. * page fault under mmu_lock spinlock so we don't need to add
  756. * a smb_wmb() here in between the two.
  757. */
  758. kvm->mmu_notifier_count--;
  759. spin_unlock(&kvm->mmu_lock);
  760. BUG_ON(kvm->mmu_notifier_count < 0);
  761. }
  762. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  763. struct mm_struct *mm,
  764. unsigned long address)
  765. {
  766. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  767. int young;
  768. spin_lock(&kvm->mmu_lock);
  769. young = kvm_age_hva(kvm, address);
  770. spin_unlock(&kvm->mmu_lock);
  771. if (young)
  772. kvm_flush_remote_tlbs(kvm);
  773. return young;
  774. }
  775. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  776. struct mm_struct *mm)
  777. {
  778. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  779. kvm_arch_flush_shadow(kvm);
  780. }
  781. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  782. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  783. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  784. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  785. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  786. .release = kvm_mmu_notifier_release,
  787. };
  788. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  789. static struct kvm *kvm_create_vm(void)
  790. {
  791. struct kvm *kvm = kvm_arch_create_vm();
  792. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  793. struct page *page;
  794. #endif
  795. if (IS_ERR(kvm))
  796. goto out;
  797. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  798. INIT_LIST_HEAD(&kvm->irq_routing);
  799. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  800. #endif
  801. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  802. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  803. if (!page) {
  804. kfree(kvm);
  805. return ERR_PTR(-ENOMEM);
  806. }
  807. kvm->coalesced_mmio_ring =
  808. (struct kvm_coalesced_mmio_ring *)page_address(page);
  809. #endif
  810. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  811. {
  812. int err;
  813. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  814. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  815. if (err) {
  816. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  817. put_page(page);
  818. #endif
  819. kfree(kvm);
  820. return ERR_PTR(err);
  821. }
  822. }
  823. #endif
  824. kvm->mm = current->mm;
  825. atomic_inc(&kvm->mm->mm_count);
  826. spin_lock_init(&kvm->mmu_lock);
  827. kvm_io_bus_init(&kvm->pio_bus);
  828. mutex_init(&kvm->lock);
  829. kvm_io_bus_init(&kvm->mmio_bus);
  830. init_rwsem(&kvm->slots_lock);
  831. atomic_set(&kvm->users_count, 1);
  832. spin_lock(&kvm_lock);
  833. list_add(&kvm->vm_list, &vm_list);
  834. spin_unlock(&kvm_lock);
  835. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  836. kvm_coalesced_mmio_init(kvm);
  837. #endif
  838. out:
  839. return kvm;
  840. }
  841. /*
  842. * Free any memory in @free but not in @dont.
  843. */
  844. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  845. struct kvm_memory_slot *dont)
  846. {
  847. if (!dont || free->rmap != dont->rmap)
  848. vfree(free->rmap);
  849. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  850. vfree(free->dirty_bitmap);
  851. if (!dont || free->lpage_info != dont->lpage_info)
  852. vfree(free->lpage_info);
  853. free->npages = 0;
  854. free->dirty_bitmap = NULL;
  855. free->rmap = NULL;
  856. free->lpage_info = NULL;
  857. }
  858. void kvm_free_physmem(struct kvm *kvm)
  859. {
  860. int i;
  861. for (i = 0; i < kvm->nmemslots; ++i)
  862. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  863. }
  864. static void kvm_destroy_vm(struct kvm *kvm)
  865. {
  866. struct mm_struct *mm = kvm->mm;
  867. kvm_arch_sync_events(kvm);
  868. spin_lock(&kvm_lock);
  869. list_del(&kvm->vm_list);
  870. spin_unlock(&kvm_lock);
  871. kvm_free_irq_routing(kvm);
  872. kvm_io_bus_destroy(&kvm->pio_bus);
  873. kvm_io_bus_destroy(&kvm->mmio_bus);
  874. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  875. if (kvm->coalesced_mmio_ring != NULL)
  876. free_page((unsigned long)kvm->coalesced_mmio_ring);
  877. #endif
  878. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  879. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  880. #endif
  881. kvm_arch_destroy_vm(kvm);
  882. mmdrop(mm);
  883. }
  884. void kvm_get_kvm(struct kvm *kvm)
  885. {
  886. atomic_inc(&kvm->users_count);
  887. }
  888. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  889. void kvm_put_kvm(struct kvm *kvm)
  890. {
  891. if (atomic_dec_and_test(&kvm->users_count))
  892. kvm_destroy_vm(kvm);
  893. }
  894. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  895. static int kvm_vm_release(struct inode *inode, struct file *filp)
  896. {
  897. struct kvm *kvm = filp->private_data;
  898. kvm_put_kvm(kvm);
  899. return 0;
  900. }
  901. /*
  902. * Allocate some memory and give it an address in the guest physical address
  903. * space.
  904. *
  905. * Discontiguous memory is allowed, mostly for framebuffers.
  906. *
  907. * Must be called holding mmap_sem for write.
  908. */
  909. int __kvm_set_memory_region(struct kvm *kvm,
  910. struct kvm_userspace_memory_region *mem,
  911. int user_alloc)
  912. {
  913. int r;
  914. gfn_t base_gfn;
  915. unsigned long npages;
  916. int largepages;
  917. unsigned long i;
  918. struct kvm_memory_slot *memslot;
  919. struct kvm_memory_slot old, new;
  920. r = -EINVAL;
  921. /* General sanity checks */
  922. if (mem->memory_size & (PAGE_SIZE - 1))
  923. goto out;
  924. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  925. goto out;
  926. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  927. goto out;
  928. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  929. goto out;
  930. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  931. goto out;
  932. memslot = &kvm->memslots[mem->slot];
  933. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  934. npages = mem->memory_size >> PAGE_SHIFT;
  935. if (!npages)
  936. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  937. new = old = *memslot;
  938. new.base_gfn = base_gfn;
  939. new.npages = npages;
  940. new.flags = mem->flags;
  941. /* Disallow changing a memory slot's size. */
  942. r = -EINVAL;
  943. if (npages && old.npages && npages != old.npages)
  944. goto out_free;
  945. /* Check for overlaps */
  946. r = -EEXIST;
  947. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  948. struct kvm_memory_slot *s = &kvm->memslots[i];
  949. if (s == memslot || !s->npages)
  950. continue;
  951. if (!((base_gfn + npages <= s->base_gfn) ||
  952. (base_gfn >= s->base_gfn + s->npages)))
  953. goto out_free;
  954. }
  955. /* Free page dirty bitmap if unneeded */
  956. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  957. new.dirty_bitmap = NULL;
  958. r = -ENOMEM;
  959. /* Allocate if a slot is being created */
  960. #ifndef CONFIG_S390
  961. if (npages && !new.rmap) {
  962. new.rmap = vmalloc(npages * sizeof(struct page *));
  963. if (!new.rmap)
  964. goto out_free;
  965. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  966. new.user_alloc = user_alloc;
  967. /*
  968. * hva_to_rmmap() serialzies with the mmu_lock and to be
  969. * safe it has to ignore memslots with !user_alloc &&
  970. * !userspace_addr.
  971. */
  972. if (user_alloc)
  973. new.userspace_addr = mem->userspace_addr;
  974. else
  975. new.userspace_addr = 0;
  976. }
  977. if (npages && !new.lpage_info) {
  978. largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
  979. largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
  980. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  981. if (!new.lpage_info)
  982. goto out_free;
  983. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  984. if (base_gfn % KVM_PAGES_PER_HPAGE)
  985. new.lpage_info[0].write_count = 1;
  986. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  987. new.lpage_info[largepages-1].write_count = 1;
  988. }
  989. /* Allocate page dirty bitmap if needed */
  990. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  991. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  992. new.dirty_bitmap = vmalloc(dirty_bytes);
  993. if (!new.dirty_bitmap)
  994. goto out_free;
  995. memset(new.dirty_bitmap, 0, dirty_bytes);
  996. }
  997. #endif /* not defined CONFIG_S390 */
  998. if (!npages)
  999. kvm_arch_flush_shadow(kvm);
  1000. spin_lock(&kvm->mmu_lock);
  1001. if (mem->slot >= kvm->nmemslots)
  1002. kvm->nmemslots = mem->slot + 1;
  1003. *memslot = new;
  1004. spin_unlock(&kvm->mmu_lock);
  1005. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  1006. if (r) {
  1007. spin_lock(&kvm->mmu_lock);
  1008. *memslot = old;
  1009. spin_unlock(&kvm->mmu_lock);
  1010. goto out_free;
  1011. }
  1012. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  1013. /* Slot deletion case: we have to update the current slot */
  1014. if (!npages)
  1015. *memslot = old;
  1016. #ifdef CONFIG_DMAR
  1017. /* map the pages in iommu page table */
  1018. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  1019. if (r)
  1020. goto out;
  1021. #endif
  1022. return 0;
  1023. out_free:
  1024. kvm_free_physmem_slot(&new, &old);
  1025. out:
  1026. return r;
  1027. }
  1028. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  1029. int kvm_set_memory_region(struct kvm *kvm,
  1030. struct kvm_userspace_memory_region *mem,
  1031. int user_alloc)
  1032. {
  1033. int r;
  1034. down_write(&kvm->slots_lock);
  1035. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  1036. up_write(&kvm->slots_lock);
  1037. return r;
  1038. }
  1039. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  1040. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  1041. struct
  1042. kvm_userspace_memory_region *mem,
  1043. int user_alloc)
  1044. {
  1045. if (mem->slot >= KVM_MEMORY_SLOTS)
  1046. return -EINVAL;
  1047. return kvm_set_memory_region(kvm, mem, user_alloc);
  1048. }
  1049. int kvm_get_dirty_log(struct kvm *kvm,
  1050. struct kvm_dirty_log *log, int *is_dirty)
  1051. {
  1052. struct kvm_memory_slot *memslot;
  1053. int r, i;
  1054. int n;
  1055. unsigned long any = 0;
  1056. r = -EINVAL;
  1057. if (log->slot >= KVM_MEMORY_SLOTS)
  1058. goto out;
  1059. memslot = &kvm->memslots[log->slot];
  1060. r = -ENOENT;
  1061. if (!memslot->dirty_bitmap)
  1062. goto out;
  1063. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1064. for (i = 0; !any && i < n/sizeof(long); ++i)
  1065. any = memslot->dirty_bitmap[i];
  1066. r = -EFAULT;
  1067. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1068. goto out;
  1069. if (any)
  1070. *is_dirty = 1;
  1071. r = 0;
  1072. out:
  1073. return r;
  1074. }
  1075. int is_error_page(struct page *page)
  1076. {
  1077. return page == bad_page;
  1078. }
  1079. EXPORT_SYMBOL_GPL(is_error_page);
  1080. int is_error_pfn(pfn_t pfn)
  1081. {
  1082. return pfn == bad_pfn;
  1083. }
  1084. EXPORT_SYMBOL_GPL(is_error_pfn);
  1085. static inline unsigned long bad_hva(void)
  1086. {
  1087. return PAGE_OFFSET;
  1088. }
  1089. int kvm_is_error_hva(unsigned long addr)
  1090. {
  1091. return addr == bad_hva();
  1092. }
  1093. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1094. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1095. {
  1096. int i;
  1097. for (i = 0; i < kvm->nmemslots; ++i) {
  1098. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1099. if (gfn >= memslot->base_gfn
  1100. && gfn < memslot->base_gfn + memslot->npages)
  1101. return memslot;
  1102. }
  1103. return NULL;
  1104. }
  1105. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1106. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1107. {
  1108. gfn = unalias_gfn(kvm, gfn);
  1109. return gfn_to_memslot_unaliased(kvm, gfn);
  1110. }
  1111. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1112. {
  1113. int i;
  1114. gfn = unalias_gfn(kvm, gfn);
  1115. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1116. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1117. if (gfn >= memslot->base_gfn
  1118. && gfn < memslot->base_gfn + memslot->npages)
  1119. return 1;
  1120. }
  1121. return 0;
  1122. }
  1123. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1124. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1125. {
  1126. struct kvm_memory_slot *slot;
  1127. gfn = unalias_gfn(kvm, gfn);
  1128. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1129. if (!slot)
  1130. return bad_hva();
  1131. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1132. }
  1133. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1134. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1135. {
  1136. struct page *page[1];
  1137. unsigned long addr;
  1138. int npages;
  1139. pfn_t pfn;
  1140. might_sleep();
  1141. addr = gfn_to_hva(kvm, gfn);
  1142. if (kvm_is_error_hva(addr)) {
  1143. get_page(bad_page);
  1144. return page_to_pfn(bad_page);
  1145. }
  1146. npages = get_user_pages_fast(addr, 1, 1, page);
  1147. if (unlikely(npages != 1)) {
  1148. struct vm_area_struct *vma;
  1149. down_read(&current->mm->mmap_sem);
  1150. vma = find_vma(current->mm, addr);
  1151. if (vma == NULL || addr < vma->vm_start ||
  1152. !(vma->vm_flags & VM_PFNMAP)) {
  1153. up_read(&current->mm->mmap_sem);
  1154. get_page(bad_page);
  1155. return page_to_pfn(bad_page);
  1156. }
  1157. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1158. up_read(&current->mm->mmap_sem);
  1159. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1160. } else
  1161. pfn = page_to_pfn(page[0]);
  1162. return pfn;
  1163. }
  1164. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1165. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1166. {
  1167. pfn_t pfn;
  1168. pfn = gfn_to_pfn(kvm, gfn);
  1169. if (!kvm_is_mmio_pfn(pfn))
  1170. return pfn_to_page(pfn);
  1171. WARN_ON(kvm_is_mmio_pfn(pfn));
  1172. get_page(bad_page);
  1173. return bad_page;
  1174. }
  1175. EXPORT_SYMBOL_GPL(gfn_to_page);
  1176. void kvm_release_page_clean(struct page *page)
  1177. {
  1178. kvm_release_pfn_clean(page_to_pfn(page));
  1179. }
  1180. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1181. void kvm_release_pfn_clean(pfn_t pfn)
  1182. {
  1183. if (!kvm_is_mmio_pfn(pfn))
  1184. put_page(pfn_to_page(pfn));
  1185. }
  1186. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1187. void kvm_release_page_dirty(struct page *page)
  1188. {
  1189. kvm_release_pfn_dirty(page_to_pfn(page));
  1190. }
  1191. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1192. void kvm_release_pfn_dirty(pfn_t pfn)
  1193. {
  1194. kvm_set_pfn_dirty(pfn);
  1195. kvm_release_pfn_clean(pfn);
  1196. }
  1197. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1198. void kvm_set_page_dirty(struct page *page)
  1199. {
  1200. kvm_set_pfn_dirty(page_to_pfn(page));
  1201. }
  1202. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1203. void kvm_set_pfn_dirty(pfn_t pfn)
  1204. {
  1205. if (!kvm_is_mmio_pfn(pfn)) {
  1206. struct page *page = pfn_to_page(pfn);
  1207. if (!PageReserved(page))
  1208. SetPageDirty(page);
  1209. }
  1210. }
  1211. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1212. void kvm_set_pfn_accessed(pfn_t pfn)
  1213. {
  1214. if (!kvm_is_mmio_pfn(pfn))
  1215. mark_page_accessed(pfn_to_page(pfn));
  1216. }
  1217. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1218. void kvm_get_pfn(pfn_t pfn)
  1219. {
  1220. if (!kvm_is_mmio_pfn(pfn))
  1221. get_page(pfn_to_page(pfn));
  1222. }
  1223. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1224. static int next_segment(unsigned long len, int offset)
  1225. {
  1226. if (len > PAGE_SIZE - offset)
  1227. return PAGE_SIZE - offset;
  1228. else
  1229. return len;
  1230. }
  1231. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1232. int len)
  1233. {
  1234. int r;
  1235. unsigned long addr;
  1236. addr = gfn_to_hva(kvm, gfn);
  1237. if (kvm_is_error_hva(addr))
  1238. return -EFAULT;
  1239. r = copy_from_user(data, (void __user *)addr + offset, len);
  1240. if (r)
  1241. return -EFAULT;
  1242. return 0;
  1243. }
  1244. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1245. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1246. {
  1247. gfn_t gfn = gpa >> PAGE_SHIFT;
  1248. int seg;
  1249. int offset = offset_in_page(gpa);
  1250. int ret;
  1251. while ((seg = next_segment(len, offset)) != 0) {
  1252. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1253. if (ret < 0)
  1254. return ret;
  1255. offset = 0;
  1256. len -= seg;
  1257. data += seg;
  1258. ++gfn;
  1259. }
  1260. return 0;
  1261. }
  1262. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1263. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1264. unsigned long len)
  1265. {
  1266. int r;
  1267. unsigned long addr;
  1268. gfn_t gfn = gpa >> PAGE_SHIFT;
  1269. int offset = offset_in_page(gpa);
  1270. addr = gfn_to_hva(kvm, gfn);
  1271. if (kvm_is_error_hva(addr))
  1272. return -EFAULT;
  1273. pagefault_disable();
  1274. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1275. pagefault_enable();
  1276. if (r)
  1277. return -EFAULT;
  1278. return 0;
  1279. }
  1280. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1281. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1282. int offset, int len)
  1283. {
  1284. int r;
  1285. unsigned long addr;
  1286. addr = gfn_to_hva(kvm, gfn);
  1287. if (kvm_is_error_hva(addr))
  1288. return -EFAULT;
  1289. r = copy_to_user((void __user *)addr + offset, data, len);
  1290. if (r)
  1291. return -EFAULT;
  1292. mark_page_dirty(kvm, gfn);
  1293. return 0;
  1294. }
  1295. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1296. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1297. unsigned long len)
  1298. {
  1299. gfn_t gfn = gpa >> PAGE_SHIFT;
  1300. int seg;
  1301. int offset = offset_in_page(gpa);
  1302. int ret;
  1303. while ((seg = next_segment(len, offset)) != 0) {
  1304. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1305. if (ret < 0)
  1306. return ret;
  1307. offset = 0;
  1308. len -= seg;
  1309. data += seg;
  1310. ++gfn;
  1311. }
  1312. return 0;
  1313. }
  1314. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1315. {
  1316. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1317. }
  1318. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1319. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1320. {
  1321. gfn_t gfn = gpa >> PAGE_SHIFT;
  1322. int seg;
  1323. int offset = offset_in_page(gpa);
  1324. int ret;
  1325. while ((seg = next_segment(len, offset)) != 0) {
  1326. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1327. if (ret < 0)
  1328. return ret;
  1329. offset = 0;
  1330. len -= seg;
  1331. ++gfn;
  1332. }
  1333. return 0;
  1334. }
  1335. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1336. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1337. {
  1338. struct kvm_memory_slot *memslot;
  1339. gfn = unalias_gfn(kvm, gfn);
  1340. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1341. if (memslot && memslot->dirty_bitmap) {
  1342. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1343. /* avoid RMW */
  1344. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1345. set_bit(rel_gfn, memslot->dirty_bitmap);
  1346. }
  1347. }
  1348. /*
  1349. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1350. */
  1351. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1352. {
  1353. DEFINE_WAIT(wait);
  1354. for (;;) {
  1355. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1356. if (kvm_cpu_has_interrupt(vcpu) ||
  1357. kvm_cpu_has_pending_timer(vcpu) ||
  1358. kvm_arch_vcpu_runnable(vcpu)) {
  1359. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1360. break;
  1361. }
  1362. if (signal_pending(current))
  1363. break;
  1364. vcpu_put(vcpu);
  1365. schedule();
  1366. vcpu_load(vcpu);
  1367. }
  1368. finish_wait(&vcpu->wq, &wait);
  1369. }
  1370. void kvm_resched(struct kvm_vcpu *vcpu)
  1371. {
  1372. if (!need_resched())
  1373. return;
  1374. cond_resched();
  1375. }
  1376. EXPORT_SYMBOL_GPL(kvm_resched);
  1377. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1378. {
  1379. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1380. struct page *page;
  1381. if (vmf->pgoff == 0)
  1382. page = virt_to_page(vcpu->run);
  1383. #ifdef CONFIG_X86
  1384. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1385. page = virt_to_page(vcpu->arch.pio_data);
  1386. #endif
  1387. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1388. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1389. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1390. #endif
  1391. else
  1392. return VM_FAULT_SIGBUS;
  1393. get_page(page);
  1394. vmf->page = page;
  1395. return 0;
  1396. }
  1397. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1398. .fault = kvm_vcpu_fault,
  1399. };
  1400. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1401. {
  1402. vma->vm_ops = &kvm_vcpu_vm_ops;
  1403. return 0;
  1404. }
  1405. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1406. {
  1407. struct kvm_vcpu *vcpu = filp->private_data;
  1408. kvm_put_kvm(vcpu->kvm);
  1409. return 0;
  1410. }
  1411. static struct file_operations kvm_vcpu_fops = {
  1412. .release = kvm_vcpu_release,
  1413. .unlocked_ioctl = kvm_vcpu_ioctl,
  1414. .compat_ioctl = kvm_vcpu_ioctl,
  1415. .mmap = kvm_vcpu_mmap,
  1416. };
  1417. /*
  1418. * Allocates an inode for the vcpu.
  1419. */
  1420. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1421. {
  1422. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1423. if (fd < 0)
  1424. kvm_put_kvm(vcpu->kvm);
  1425. return fd;
  1426. }
  1427. /*
  1428. * Creates some virtual cpus. Good luck creating more than one.
  1429. */
  1430. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1431. {
  1432. int r;
  1433. struct kvm_vcpu *vcpu;
  1434. if (!valid_vcpu(n))
  1435. return -EINVAL;
  1436. vcpu = kvm_arch_vcpu_create(kvm, n);
  1437. if (IS_ERR(vcpu))
  1438. return PTR_ERR(vcpu);
  1439. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1440. r = kvm_arch_vcpu_setup(vcpu);
  1441. if (r)
  1442. return r;
  1443. mutex_lock(&kvm->lock);
  1444. if (kvm->vcpus[n]) {
  1445. r = -EEXIST;
  1446. goto vcpu_destroy;
  1447. }
  1448. kvm->vcpus[n] = vcpu;
  1449. mutex_unlock(&kvm->lock);
  1450. /* Now it's all set up, let userspace reach it */
  1451. kvm_get_kvm(kvm);
  1452. r = create_vcpu_fd(vcpu);
  1453. if (r < 0)
  1454. goto unlink;
  1455. return r;
  1456. unlink:
  1457. mutex_lock(&kvm->lock);
  1458. kvm->vcpus[n] = NULL;
  1459. vcpu_destroy:
  1460. mutex_unlock(&kvm->lock);
  1461. kvm_arch_vcpu_destroy(vcpu);
  1462. return r;
  1463. }
  1464. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1465. {
  1466. if (sigset) {
  1467. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1468. vcpu->sigset_active = 1;
  1469. vcpu->sigset = *sigset;
  1470. } else
  1471. vcpu->sigset_active = 0;
  1472. return 0;
  1473. }
  1474. #ifdef __KVM_HAVE_MSIX
  1475. static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
  1476. struct kvm_assigned_msix_nr *entry_nr)
  1477. {
  1478. int r = 0;
  1479. struct kvm_assigned_dev_kernel *adev;
  1480. mutex_lock(&kvm->lock);
  1481. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1482. entry_nr->assigned_dev_id);
  1483. if (!adev) {
  1484. r = -EINVAL;
  1485. goto msix_nr_out;
  1486. }
  1487. if (adev->entries_nr == 0) {
  1488. adev->entries_nr = entry_nr->entry_nr;
  1489. if (adev->entries_nr == 0 ||
  1490. adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
  1491. r = -EINVAL;
  1492. goto msix_nr_out;
  1493. }
  1494. adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
  1495. entry_nr->entry_nr,
  1496. GFP_KERNEL);
  1497. if (!adev->host_msix_entries) {
  1498. r = -ENOMEM;
  1499. goto msix_nr_out;
  1500. }
  1501. adev->guest_msix_entries = kzalloc(
  1502. sizeof(struct kvm_guest_msix_entry) *
  1503. entry_nr->entry_nr, GFP_KERNEL);
  1504. if (!adev->guest_msix_entries) {
  1505. kfree(adev->host_msix_entries);
  1506. r = -ENOMEM;
  1507. goto msix_nr_out;
  1508. }
  1509. } else /* Not allowed set MSI-X number twice */
  1510. r = -EINVAL;
  1511. msix_nr_out:
  1512. mutex_unlock(&kvm->lock);
  1513. return r;
  1514. }
  1515. static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
  1516. struct kvm_assigned_msix_entry *entry)
  1517. {
  1518. int r = 0, i;
  1519. struct kvm_assigned_dev_kernel *adev;
  1520. mutex_lock(&kvm->lock);
  1521. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1522. entry->assigned_dev_id);
  1523. if (!adev) {
  1524. r = -EINVAL;
  1525. goto msix_entry_out;
  1526. }
  1527. for (i = 0; i < adev->entries_nr; i++)
  1528. if (adev->guest_msix_entries[i].vector == 0 ||
  1529. adev->guest_msix_entries[i].entry == entry->entry) {
  1530. adev->guest_msix_entries[i].entry = entry->entry;
  1531. adev->guest_msix_entries[i].vector = entry->gsi;
  1532. adev->host_msix_entries[i].entry = entry->entry;
  1533. break;
  1534. }
  1535. if (i == adev->entries_nr) {
  1536. r = -ENOSPC;
  1537. goto msix_entry_out;
  1538. }
  1539. msix_entry_out:
  1540. mutex_unlock(&kvm->lock);
  1541. return r;
  1542. }
  1543. #endif
  1544. static long kvm_vcpu_ioctl(struct file *filp,
  1545. unsigned int ioctl, unsigned long arg)
  1546. {
  1547. struct kvm_vcpu *vcpu = filp->private_data;
  1548. void __user *argp = (void __user *)arg;
  1549. int r;
  1550. struct kvm_fpu *fpu = NULL;
  1551. struct kvm_sregs *kvm_sregs = NULL;
  1552. if (vcpu->kvm->mm != current->mm)
  1553. return -EIO;
  1554. switch (ioctl) {
  1555. case KVM_RUN:
  1556. r = -EINVAL;
  1557. if (arg)
  1558. goto out;
  1559. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1560. break;
  1561. case KVM_GET_REGS: {
  1562. struct kvm_regs *kvm_regs;
  1563. r = -ENOMEM;
  1564. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1565. if (!kvm_regs)
  1566. goto out;
  1567. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1568. if (r)
  1569. goto out_free1;
  1570. r = -EFAULT;
  1571. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1572. goto out_free1;
  1573. r = 0;
  1574. out_free1:
  1575. kfree(kvm_regs);
  1576. break;
  1577. }
  1578. case KVM_SET_REGS: {
  1579. struct kvm_regs *kvm_regs;
  1580. r = -ENOMEM;
  1581. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1582. if (!kvm_regs)
  1583. goto out;
  1584. r = -EFAULT;
  1585. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1586. goto out_free2;
  1587. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1588. if (r)
  1589. goto out_free2;
  1590. r = 0;
  1591. out_free2:
  1592. kfree(kvm_regs);
  1593. break;
  1594. }
  1595. case KVM_GET_SREGS: {
  1596. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1597. r = -ENOMEM;
  1598. if (!kvm_sregs)
  1599. goto out;
  1600. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1601. if (r)
  1602. goto out;
  1603. r = -EFAULT;
  1604. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1605. goto out;
  1606. r = 0;
  1607. break;
  1608. }
  1609. case KVM_SET_SREGS: {
  1610. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1611. r = -ENOMEM;
  1612. if (!kvm_sregs)
  1613. goto out;
  1614. r = -EFAULT;
  1615. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1616. goto out;
  1617. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1618. if (r)
  1619. goto out;
  1620. r = 0;
  1621. break;
  1622. }
  1623. case KVM_GET_MP_STATE: {
  1624. struct kvm_mp_state mp_state;
  1625. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1626. if (r)
  1627. goto out;
  1628. r = -EFAULT;
  1629. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1630. goto out;
  1631. r = 0;
  1632. break;
  1633. }
  1634. case KVM_SET_MP_STATE: {
  1635. struct kvm_mp_state mp_state;
  1636. r = -EFAULT;
  1637. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1638. goto out;
  1639. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1640. if (r)
  1641. goto out;
  1642. r = 0;
  1643. break;
  1644. }
  1645. case KVM_TRANSLATE: {
  1646. struct kvm_translation tr;
  1647. r = -EFAULT;
  1648. if (copy_from_user(&tr, argp, sizeof tr))
  1649. goto out;
  1650. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1651. if (r)
  1652. goto out;
  1653. r = -EFAULT;
  1654. if (copy_to_user(argp, &tr, sizeof tr))
  1655. goto out;
  1656. r = 0;
  1657. break;
  1658. }
  1659. case KVM_SET_GUEST_DEBUG: {
  1660. struct kvm_guest_debug dbg;
  1661. r = -EFAULT;
  1662. if (copy_from_user(&dbg, argp, sizeof dbg))
  1663. goto out;
  1664. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1665. if (r)
  1666. goto out;
  1667. r = 0;
  1668. break;
  1669. }
  1670. case KVM_SET_SIGNAL_MASK: {
  1671. struct kvm_signal_mask __user *sigmask_arg = argp;
  1672. struct kvm_signal_mask kvm_sigmask;
  1673. sigset_t sigset, *p;
  1674. p = NULL;
  1675. if (argp) {
  1676. r = -EFAULT;
  1677. if (copy_from_user(&kvm_sigmask, argp,
  1678. sizeof kvm_sigmask))
  1679. goto out;
  1680. r = -EINVAL;
  1681. if (kvm_sigmask.len != sizeof sigset)
  1682. goto out;
  1683. r = -EFAULT;
  1684. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1685. sizeof sigset))
  1686. goto out;
  1687. p = &sigset;
  1688. }
  1689. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1690. break;
  1691. }
  1692. case KVM_GET_FPU: {
  1693. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1694. r = -ENOMEM;
  1695. if (!fpu)
  1696. goto out;
  1697. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1698. if (r)
  1699. goto out;
  1700. r = -EFAULT;
  1701. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1702. goto out;
  1703. r = 0;
  1704. break;
  1705. }
  1706. case KVM_SET_FPU: {
  1707. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1708. r = -ENOMEM;
  1709. if (!fpu)
  1710. goto out;
  1711. r = -EFAULT;
  1712. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1713. goto out;
  1714. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1715. if (r)
  1716. goto out;
  1717. r = 0;
  1718. break;
  1719. }
  1720. default:
  1721. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1722. }
  1723. out:
  1724. kfree(fpu);
  1725. kfree(kvm_sregs);
  1726. return r;
  1727. }
  1728. static long kvm_vm_ioctl(struct file *filp,
  1729. unsigned int ioctl, unsigned long arg)
  1730. {
  1731. struct kvm *kvm = filp->private_data;
  1732. void __user *argp = (void __user *)arg;
  1733. int r;
  1734. if (kvm->mm != current->mm)
  1735. return -EIO;
  1736. switch (ioctl) {
  1737. case KVM_CREATE_VCPU:
  1738. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1739. if (r < 0)
  1740. goto out;
  1741. break;
  1742. case KVM_SET_USER_MEMORY_REGION: {
  1743. struct kvm_userspace_memory_region kvm_userspace_mem;
  1744. r = -EFAULT;
  1745. if (copy_from_user(&kvm_userspace_mem, argp,
  1746. sizeof kvm_userspace_mem))
  1747. goto out;
  1748. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1749. if (r)
  1750. goto out;
  1751. break;
  1752. }
  1753. case KVM_GET_DIRTY_LOG: {
  1754. struct kvm_dirty_log log;
  1755. r = -EFAULT;
  1756. if (copy_from_user(&log, argp, sizeof log))
  1757. goto out;
  1758. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1759. if (r)
  1760. goto out;
  1761. break;
  1762. }
  1763. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1764. case KVM_REGISTER_COALESCED_MMIO: {
  1765. struct kvm_coalesced_mmio_zone zone;
  1766. r = -EFAULT;
  1767. if (copy_from_user(&zone, argp, sizeof zone))
  1768. goto out;
  1769. r = -ENXIO;
  1770. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1771. if (r)
  1772. goto out;
  1773. r = 0;
  1774. break;
  1775. }
  1776. case KVM_UNREGISTER_COALESCED_MMIO: {
  1777. struct kvm_coalesced_mmio_zone zone;
  1778. r = -EFAULT;
  1779. if (copy_from_user(&zone, argp, sizeof zone))
  1780. goto out;
  1781. r = -ENXIO;
  1782. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1783. if (r)
  1784. goto out;
  1785. r = 0;
  1786. break;
  1787. }
  1788. #endif
  1789. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1790. case KVM_ASSIGN_PCI_DEVICE: {
  1791. struct kvm_assigned_pci_dev assigned_dev;
  1792. r = -EFAULT;
  1793. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1794. goto out;
  1795. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1796. if (r)
  1797. goto out;
  1798. break;
  1799. }
  1800. case KVM_ASSIGN_IRQ: {
  1801. r = -EOPNOTSUPP;
  1802. break;
  1803. }
  1804. #ifdef KVM_CAP_ASSIGN_DEV_IRQ
  1805. case KVM_ASSIGN_DEV_IRQ: {
  1806. struct kvm_assigned_irq assigned_irq;
  1807. r = -EFAULT;
  1808. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1809. goto out;
  1810. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1811. if (r)
  1812. goto out;
  1813. break;
  1814. }
  1815. case KVM_DEASSIGN_DEV_IRQ: {
  1816. struct kvm_assigned_irq assigned_irq;
  1817. r = -EFAULT;
  1818. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1819. goto out;
  1820. r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
  1821. if (r)
  1822. goto out;
  1823. break;
  1824. }
  1825. #endif
  1826. #endif
  1827. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1828. case KVM_DEASSIGN_PCI_DEVICE: {
  1829. struct kvm_assigned_pci_dev assigned_dev;
  1830. r = -EFAULT;
  1831. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1832. goto out;
  1833. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1834. if (r)
  1835. goto out;
  1836. break;
  1837. }
  1838. #endif
  1839. #ifdef KVM_CAP_IRQ_ROUTING
  1840. case KVM_SET_GSI_ROUTING: {
  1841. struct kvm_irq_routing routing;
  1842. struct kvm_irq_routing __user *urouting;
  1843. struct kvm_irq_routing_entry *entries;
  1844. r = -EFAULT;
  1845. if (copy_from_user(&routing, argp, sizeof(routing)))
  1846. goto out;
  1847. r = -EINVAL;
  1848. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1849. goto out;
  1850. if (routing.flags)
  1851. goto out;
  1852. r = -ENOMEM;
  1853. entries = vmalloc(routing.nr * sizeof(*entries));
  1854. if (!entries)
  1855. goto out;
  1856. r = -EFAULT;
  1857. urouting = argp;
  1858. if (copy_from_user(entries, urouting->entries,
  1859. routing.nr * sizeof(*entries)))
  1860. goto out_free_irq_routing;
  1861. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1862. routing.flags);
  1863. out_free_irq_routing:
  1864. vfree(entries);
  1865. break;
  1866. }
  1867. #ifdef __KVM_HAVE_MSIX
  1868. case KVM_ASSIGN_SET_MSIX_NR: {
  1869. struct kvm_assigned_msix_nr entry_nr;
  1870. r = -EFAULT;
  1871. if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
  1872. goto out;
  1873. r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
  1874. if (r)
  1875. goto out;
  1876. break;
  1877. }
  1878. case KVM_ASSIGN_SET_MSIX_ENTRY: {
  1879. struct kvm_assigned_msix_entry entry;
  1880. r = -EFAULT;
  1881. if (copy_from_user(&entry, argp, sizeof entry))
  1882. goto out;
  1883. r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
  1884. if (r)
  1885. goto out;
  1886. break;
  1887. }
  1888. #endif
  1889. #endif /* KVM_CAP_IRQ_ROUTING */
  1890. default:
  1891. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1892. }
  1893. out:
  1894. return r;
  1895. }
  1896. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1897. {
  1898. struct page *page[1];
  1899. unsigned long addr;
  1900. int npages;
  1901. gfn_t gfn = vmf->pgoff;
  1902. struct kvm *kvm = vma->vm_file->private_data;
  1903. addr = gfn_to_hva(kvm, gfn);
  1904. if (kvm_is_error_hva(addr))
  1905. return VM_FAULT_SIGBUS;
  1906. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1907. NULL);
  1908. if (unlikely(npages != 1))
  1909. return VM_FAULT_SIGBUS;
  1910. vmf->page = page[0];
  1911. return 0;
  1912. }
  1913. static struct vm_operations_struct kvm_vm_vm_ops = {
  1914. .fault = kvm_vm_fault,
  1915. };
  1916. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1917. {
  1918. vma->vm_ops = &kvm_vm_vm_ops;
  1919. return 0;
  1920. }
  1921. static struct file_operations kvm_vm_fops = {
  1922. .release = kvm_vm_release,
  1923. .unlocked_ioctl = kvm_vm_ioctl,
  1924. .compat_ioctl = kvm_vm_ioctl,
  1925. .mmap = kvm_vm_mmap,
  1926. };
  1927. static int kvm_dev_ioctl_create_vm(void)
  1928. {
  1929. int fd;
  1930. struct kvm *kvm;
  1931. kvm = kvm_create_vm();
  1932. if (IS_ERR(kvm))
  1933. return PTR_ERR(kvm);
  1934. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1935. if (fd < 0)
  1936. kvm_put_kvm(kvm);
  1937. return fd;
  1938. }
  1939. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1940. {
  1941. switch (arg) {
  1942. case KVM_CAP_USER_MEMORY:
  1943. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1944. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1945. return 1;
  1946. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1947. case KVM_CAP_IRQ_ROUTING:
  1948. return KVM_MAX_IRQ_ROUTES;
  1949. #endif
  1950. default:
  1951. break;
  1952. }
  1953. return kvm_dev_ioctl_check_extension(arg);
  1954. }
  1955. static long kvm_dev_ioctl(struct file *filp,
  1956. unsigned int ioctl, unsigned long arg)
  1957. {
  1958. long r = -EINVAL;
  1959. switch (ioctl) {
  1960. case KVM_GET_API_VERSION:
  1961. r = -EINVAL;
  1962. if (arg)
  1963. goto out;
  1964. r = KVM_API_VERSION;
  1965. break;
  1966. case KVM_CREATE_VM:
  1967. r = -EINVAL;
  1968. if (arg)
  1969. goto out;
  1970. r = kvm_dev_ioctl_create_vm();
  1971. break;
  1972. case KVM_CHECK_EXTENSION:
  1973. r = kvm_dev_ioctl_check_extension_generic(arg);
  1974. break;
  1975. case KVM_GET_VCPU_MMAP_SIZE:
  1976. r = -EINVAL;
  1977. if (arg)
  1978. goto out;
  1979. r = PAGE_SIZE; /* struct kvm_run */
  1980. #ifdef CONFIG_X86
  1981. r += PAGE_SIZE; /* pio data page */
  1982. #endif
  1983. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1984. r += PAGE_SIZE; /* coalesced mmio ring page */
  1985. #endif
  1986. break;
  1987. case KVM_TRACE_ENABLE:
  1988. case KVM_TRACE_PAUSE:
  1989. case KVM_TRACE_DISABLE:
  1990. r = kvm_trace_ioctl(ioctl, arg);
  1991. break;
  1992. default:
  1993. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1994. }
  1995. out:
  1996. return r;
  1997. }
  1998. static struct file_operations kvm_chardev_ops = {
  1999. .unlocked_ioctl = kvm_dev_ioctl,
  2000. .compat_ioctl = kvm_dev_ioctl,
  2001. };
  2002. static struct miscdevice kvm_dev = {
  2003. KVM_MINOR,
  2004. "kvm",
  2005. &kvm_chardev_ops,
  2006. };
  2007. static void hardware_enable(void *junk)
  2008. {
  2009. int cpu = raw_smp_processor_id();
  2010. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2011. return;
  2012. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2013. kvm_arch_hardware_enable(NULL);
  2014. }
  2015. static void hardware_disable(void *junk)
  2016. {
  2017. int cpu = raw_smp_processor_id();
  2018. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2019. return;
  2020. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2021. kvm_arch_hardware_disable(NULL);
  2022. }
  2023. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2024. void *v)
  2025. {
  2026. int cpu = (long)v;
  2027. val &= ~CPU_TASKS_FROZEN;
  2028. switch (val) {
  2029. case CPU_DYING:
  2030. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2031. cpu);
  2032. hardware_disable(NULL);
  2033. break;
  2034. case CPU_UP_CANCELED:
  2035. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2036. cpu);
  2037. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  2038. break;
  2039. case CPU_ONLINE:
  2040. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2041. cpu);
  2042. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  2043. break;
  2044. }
  2045. return NOTIFY_OK;
  2046. }
  2047. asmlinkage void kvm_handle_fault_on_reboot(void)
  2048. {
  2049. if (kvm_rebooting)
  2050. /* spin while reset goes on */
  2051. while (true)
  2052. ;
  2053. /* Fault while not rebooting. We want the trace. */
  2054. BUG();
  2055. }
  2056. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  2057. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2058. void *v)
  2059. {
  2060. if (val == SYS_RESTART) {
  2061. /*
  2062. * Some (well, at least mine) BIOSes hang on reboot if
  2063. * in vmx root mode.
  2064. */
  2065. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2066. kvm_rebooting = true;
  2067. on_each_cpu(hardware_disable, NULL, 1);
  2068. }
  2069. return NOTIFY_OK;
  2070. }
  2071. static struct notifier_block kvm_reboot_notifier = {
  2072. .notifier_call = kvm_reboot,
  2073. .priority = 0,
  2074. };
  2075. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2076. {
  2077. memset(bus, 0, sizeof(*bus));
  2078. }
  2079. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2080. {
  2081. int i;
  2082. for (i = 0; i < bus->dev_count; i++) {
  2083. struct kvm_io_device *pos = bus->devs[i];
  2084. kvm_iodevice_destructor(pos);
  2085. }
  2086. }
  2087. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  2088. gpa_t addr, int len, int is_write)
  2089. {
  2090. int i;
  2091. for (i = 0; i < bus->dev_count; i++) {
  2092. struct kvm_io_device *pos = bus->devs[i];
  2093. if (pos->in_range(pos, addr, len, is_write))
  2094. return pos;
  2095. }
  2096. return NULL;
  2097. }
  2098. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2099. {
  2100. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2101. bus->devs[bus->dev_count++] = dev;
  2102. }
  2103. static struct notifier_block kvm_cpu_notifier = {
  2104. .notifier_call = kvm_cpu_hotplug,
  2105. .priority = 20, /* must be > scheduler priority */
  2106. };
  2107. static int vm_stat_get(void *_offset, u64 *val)
  2108. {
  2109. unsigned offset = (long)_offset;
  2110. struct kvm *kvm;
  2111. *val = 0;
  2112. spin_lock(&kvm_lock);
  2113. list_for_each_entry(kvm, &vm_list, vm_list)
  2114. *val += *(u32 *)((void *)kvm + offset);
  2115. spin_unlock(&kvm_lock);
  2116. return 0;
  2117. }
  2118. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2119. static int vcpu_stat_get(void *_offset, u64 *val)
  2120. {
  2121. unsigned offset = (long)_offset;
  2122. struct kvm *kvm;
  2123. struct kvm_vcpu *vcpu;
  2124. int i;
  2125. *val = 0;
  2126. spin_lock(&kvm_lock);
  2127. list_for_each_entry(kvm, &vm_list, vm_list)
  2128. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2129. vcpu = kvm->vcpus[i];
  2130. if (vcpu)
  2131. *val += *(u32 *)((void *)vcpu + offset);
  2132. }
  2133. spin_unlock(&kvm_lock);
  2134. return 0;
  2135. }
  2136. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2137. static struct file_operations *stat_fops[] = {
  2138. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2139. [KVM_STAT_VM] = &vm_stat_fops,
  2140. };
  2141. static void kvm_init_debug(void)
  2142. {
  2143. struct kvm_stats_debugfs_item *p;
  2144. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2145. for (p = debugfs_entries; p->name; ++p)
  2146. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2147. (void *)(long)p->offset,
  2148. stat_fops[p->kind]);
  2149. }
  2150. static void kvm_exit_debug(void)
  2151. {
  2152. struct kvm_stats_debugfs_item *p;
  2153. for (p = debugfs_entries; p->name; ++p)
  2154. debugfs_remove(p->dentry);
  2155. debugfs_remove(kvm_debugfs_dir);
  2156. }
  2157. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2158. {
  2159. hardware_disable(NULL);
  2160. return 0;
  2161. }
  2162. static int kvm_resume(struct sys_device *dev)
  2163. {
  2164. hardware_enable(NULL);
  2165. return 0;
  2166. }
  2167. static struct sysdev_class kvm_sysdev_class = {
  2168. .name = "kvm",
  2169. .suspend = kvm_suspend,
  2170. .resume = kvm_resume,
  2171. };
  2172. static struct sys_device kvm_sysdev = {
  2173. .id = 0,
  2174. .cls = &kvm_sysdev_class,
  2175. };
  2176. struct page *bad_page;
  2177. pfn_t bad_pfn;
  2178. static inline
  2179. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2180. {
  2181. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2182. }
  2183. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2184. {
  2185. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2186. kvm_arch_vcpu_load(vcpu, cpu);
  2187. }
  2188. static void kvm_sched_out(struct preempt_notifier *pn,
  2189. struct task_struct *next)
  2190. {
  2191. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2192. kvm_arch_vcpu_put(vcpu);
  2193. }
  2194. int kvm_init(void *opaque, unsigned int vcpu_size,
  2195. struct module *module)
  2196. {
  2197. int r;
  2198. int cpu;
  2199. kvm_init_debug();
  2200. r = kvm_arch_init(opaque);
  2201. if (r)
  2202. goto out_fail;
  2203. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2204. if (bad_page == NULL) {
  2205. r = -ENOMEM;
  2206. goto out;
  2207. }
  2208. bad_pfn = page_to_pfn(bad_page);
  2209. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2210. r = -ENOMEM;
  2211. goto out_free_0;
  2212. }
  2213. cpumask_clear(cpus_hardware_enabled);
  2214. r = kvm_arch_hardware_setup();
  2215. if (r < 0)
  2216. goto out_free_0a;
  2217. for_each_online_cpu(cpu) {
  2218. smp_call_function_single(cpu,
  2219. kvm_arch_check_processor_compat,
  2220. &r, 1);
  2221. if (r < 0)
  2222. goto out_free_1;
  2223. }
  2224. on_each_cpu(hardware_enable, NULL, 1);
  2225. r = register_cpu_notifier(&kvm_cpu_notifier);
  2226. if (r)
  2227. goto out_free_2;
  2228. register_reboot_notifier(&kvm_reboot_notifier);
  2229. r = sysdev_class_register(&kvm_sysdev_class);
  2230. if (r)
  2231. goto out_free_3;
  2232. r = sysdev_register(&kvm_sysdev);
  2233. if (r)
  2234. goto out_free_4;
  2235. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2236. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2237. __alignof__(struct kvm_vcpu),
  2238. 0, NULL);
  2239. if (!kvm_vcpu_cache) {
  2240. r = -ENOMEM;
  2241. goto out_free_5;
  2242. }
  2243. kvm_chardev_ops.owner = module;
  2244. kvm_vm_fops.owner = module;
  2245. kvm_vcpu_fops.owner = module;
  2246. r = misc_register(&kvm_dev);
  2247. if (r) {
  2248. printk(KERN_ERR "kvm: misc device register failed\n");
  2249. goto out_free;
  2250. }
  2251. kvm_preempt_ops.sched_in = kvm_sched_in;
  2252. kvm_preempt_ops.sched_out = kvm_sched_out;
  2253. return 0;
  2254. out_free:
  2255. kmem_cache_destroy(kvm_vcpu_cache);
  2256. out_free_5:
  2257. sysdev_unregister(&kvm_sysdev);
  2258. out_free_4:
  2259. sysdev_class_unregister(&kvm_sysdev_class);
  2260. out_free_3:
  2261. unregister_reboot_notifier(&kvm_reboot_notifier);
  2262. unregister_cpu_notifier(&kvm_cpu_notifier);
  2263. out_free_2:
  2264. on_each_cpu(hardware_disable, NULL, 1);
  2265. out_free_1:
  2266. kvm_arch_hardware_unsetup();
  2267. out_free_0a:
  2268. free_cpumask_var(cpus_hardware_enabled);
  2269. out_free_0:
  2270. __free_page(bad_page);
  2271. out:
  2272. kvm_arch_exit();
  2273. kvm_exit_debug();
  2274. out_fail:
  2275. return r;
  2276. }
  2277. EXPORT_SYMBOL_GPL(kvm_init);
  2278. void kvm_exit(void)
  2279. {
  2280. kvm_trace_cleanup();
  2281. misc_deregister(&kvm_dev);
  2282. kmem_cache_destroy(kvm_vcpu_cache);
  2283. sysdev_unregister(&kvm_sysdev);
  2284. sysdev_class_unregister(&kvm_sysdev_class);
  2285. unregister_reboot_notifier(&kvm_reboot_notifier);
  2286. unregister_cpu_notifier(&kvm_cpu_notifier);
  2287. on_each_cpu(hardware_disable, NULL, 1);
  2288. kvm_arch_hardware_unsetup();
  2289. kvm_arch_exit();
  2290. kvm_exit_debug();
  2291. free_cpumask_var(cpus_hardware_enabled);
  2292. __free_page(bad_page);
  2293. }
  2294. EXPORT_SYMBOL_GPL(kvm_exit);