pci.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112
  1. /*
  2. * Sonics Silicon Backplane PCI-Hostbus related functions.
  3. *
  4. * Copyright (C) 2005-2006 Michael Buesch <m@bues.ch>
  5. * Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
  6. * Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
  7. * Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
  8. * Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
  9. *
  10. * Derived from the Broadcom 4400 device driver.
  11. * Copyright (C) 2002 David S. Miller (davem@redhat.com)
  12. * Fixed by Pekka Pietikainen (pp@ee.oulu.fi)
  13. * Copyright (C) 2006 Broadcom Corporation.
  14. *
  15. * Licensed under the GNU/GPL. See COPYING for details.
  16. */
  17. #include <linux/ssb/ssb.h>
  18. #include <linux/ssb/ssb_regs.h>
  19. #include <linux/slab.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include "ssb_private.h"
  23. /* Define the following to 1 to enable a printk on each coreswitch. */
  24. #define SSB_VERBOSE_PCICORESWITCH_DEBUG 0
  25. /* Lowlevel coreswitching */
  26. int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx)
  27. {
  28. int err;
  29. int attempts = 0;
  30. u32 cur_core;
  31. while (1) {
  32. err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN,
  33. (coreidx * SSB_CORE_SIZE)
  34. + SSB_ENUM_BASE);
  35. if (err)
  36. goto error;
  37. err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN,
  38. &cur_core);
  39. if (err)
  40. goto error;
  41. cur_core = (cur_core - SSB_ENUM_BASE)
  42. / SSB_CORE_SIZE;
  43. if (cur_core == coreidx)
  44. break;
  45. if (attempts++ > SSB_BAR0_MAX_RETRIES)
  46. goto error;
  47. udelay(10);
  48. }
  49. return 0;
  50. error:
  51. ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
  52. return -ENODEV;
  53. }
  54. int ssb_pci_switch_core(struct ssb_bus *bus,
  55. struct ssb_device *dev)
  56. {
  57. int err;
  58. unsigned long flags;
  59. #if SSB_VERBOSE_PCICORESWITCH_DEBUG
  60. ssb_printk(KERN_INFO PFX
  61. "Switching to %s core, index %d\n",
  62. ssb_core_name(dev->id.coreid),
  63. dev->core_index);
  64. #endif
  65. spin_lock_irqsave(&bus->bar_lock, flags);
  66. err = ssb_pci_switch_coreidx(bus, dev->core_index);
  67. if (!err)
  68. bus->mapped_device = dev;
  69. spin_unlock_irqrestore(&bus->bar_lock, flags);
  70. return err;
  71. }
  72. /* Enable/disable the on board crystal oscillator and/or PLL. */
  73. int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on)
  74. {
  75. int err;
  76. u32 in, out, outenable;
  77. u16 pci_status;
  78. if (bus->bustype != SSB_BUSTYPE_PCI)
  79. return 0;
  80. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in);
  81. if (err)
  82. goto err_pci;
  83. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out);
  84. if (err)
  85. goto err_pci;
  86. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable);
  87. if (err)
  88. goto err_pci;
  89. outenable |= what;
  90. if (turn_on) {
  91. /* Avoid glitching the clock if GPRS is already using it.
  92. * We can't actually read the state of the PLLPD so we infer it
  93. * by the value of XTAL_PU which *is* readable via gpioin.
  94. */
  95. if (!(in & SSB_GPIO_XTAL)) {
  96. if (what & SSB_GPIO_XTAL) {
  97. /* Turn the crystal on */
  98. out |= SSB_GPIO_XTAL;
  99. if (what & SSB_GPIO_PLL)
  100. out |= SSB_GPIO_PLL;
  101. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  102. if (err)
  103. goto err_pci;
  104. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE,
  105. outenable);
  106. if (err)
  107. goto err_pci;
  108. msleep(1);
  109. }
  110. if (what & SSB_GPIO_PLL) {
  111. /* Turn the PLL on */
  112. out &= ~SSB_GPIO_PLL;
  113. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  114. if (err)
  115. goto err_pci;
  116. msleep(5);
  117. }
  118. }
  119. err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status);
  120. if (err)
  121. goto err_pci;
  122. pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT;
  123. err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status);
  124. if (err)
  125. goto err_pci;
  126. } else {
  127. if (what & SSB_GPIO_XTAL) {
  128. /* Turn the crystal off */
  129. out &= ~SSB_GPIO_XTAL;
  130. }
  131. if (what & SSB_GPIO_PLL) {
  132. /* Turn the PLL off */
  133. out |= SSB_GPIO_PLL;
  134. }
  135. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  136. if (err)
  137. goto err_pci;
  138. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable);
  139. if (err)
  140. goto err_pci;
  141. }
  142. out:
  143. return err;
  144. err_pci:
  145. printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n");
  146. err = -EBUSY;
  147. goto out;
  148. }
  149. /* Get the word-offset for a SSB_SPROM_XXX define. */
  150. #define SPOFF(offset) ((offset) / sizeof(u16))
  151. /* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */
  152. #define SPEX16(_outvar, _offset, _mask, _shift) \
  153. out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift))
  154. #define SPEX32(_outvar, _offset, _mask, _shift) \
  155. out->_outvar = ((((u32)in[SPOFF((_offset)+2)] << 16 | \
  156. in[SPOFF(_offset)]) & (_mask)) >> (_shift))
  157. #define SPEX(_outvar, _offset, _mask, _shift) \
  158. SPEX16(_outvar, _offset, _mask, _shift)
  159. #define SPEX_ARRAY8(_field, _offset, _mask, _shift) \
  160. do { \
  161. SPEX(_field[0], _offset + 0, _mask, _shift); \
  162. SPEX(_field[1], _offset + 2, _mask, _shift); \
  163. SPEX(_field[2], _offset + 4, _mask, _shift); \
  164. SPEX(_field[3], _offset + 6, _mask, _shift); \
  165. SPEX(_field[4], _offset + 8, _mask, _shift); \
  166. SPEX(_field[5], _offset + 10, _mask, _shift); \
  167. SPEX(_field[6], _offset + 12, _mask, _shift); \
  168. SPEX(_field[7], _offset + 14, _mask, _shift); \
  169. } while (0)
  170. static inline u8 ssb_crc8(u8 crc, u8 data)
  171. {
  172. /* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
  173. static const u8 t[] = {
  174. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  175. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  176. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  177. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  178. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  179. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  180. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  181. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  182. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  183. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  184. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  185. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  186. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  187. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  188. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  189. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  190. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  191. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  192. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  193. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  194. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  195. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  196. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  197. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  198. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  199. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  200. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  201. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  202. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  203. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  204. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  205. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  206. };
  207. return t[crc ^ data];
  208. }
  209. static void sprom_get_mac(char *mac, const u16 *in)
  210. {
  211. int i;
  212. for (i = 0; i < 3; i++) {
  213. *mac++ = in[i];
  214. *mac++ = in[i] >> 8;
  215. }
  216. }
  217. static u8 ssb_sprom_crc(const u16 *sprom, u16 size)
  218. {
  219. int word;
  220. u8 crc = 0xFF;
  221. for (word = 0; word < size - 1; word++) {
  222. crc = ssb_crc8(crc, sprom[word] & 0x00FF);
  223. crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  224. }
  225. crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF);
  226. crc ^= 0xFF;
  227. return crc;
  228. }
  229. static int sprom_check_crc(const u16 *sprom, size_t size)
  230. {
  231. u8 crc;
  232. u8 expected_crc;
  233. u16 tmp;
  234. crc = ssb_sprom_crc(sprom, size);
  235. tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC;
  236. expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
  237. if (crc != expected_crc)
  238. return -EPROTO;
  239. return 0;
  240. }
  241. static int sprom_do_read(struct ssb_bus *bus, u16 *sprom)
  242. {
  243. int i;
  244. for (i = 0; i < bus->sprom_size; i++)
  245. sprom[i] = ioread16(bus->mmio + bus->sprom_offset + (i * 2));
  246. return 0;
  247. }
  248. static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom)
  249. {
  250. struct pci_dev *pdev = bus->host_pci;
  251. int i, err;
  252. u32 spromctl;
  253. u16 size = bus->sprom_size;
  254. ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
  255. err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
  256. if (err)
  257. goto err_ctlreg;
  258. spromctl |= SSB_SPROMCTL_WE;
  259. err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
  260. if (err)
  261. goto err_ctlreg;
  262. ssb_printk(KERN_NOTICE PFX "[ 0%%");
  263. msleep(500);
  264. for (i = 0; i < size; i++) {
  265. if (i == size / 4)
  266. ssb_printk("25%%");
  267. else if (i == size / 2)
  268. ssb_printk("50%%");
  269. else if (i == (size * 3) / 4)
  270. ssb_printk("75%%");
  271. else if (i % 2)
  272. ssb_printk(".");
  273. writew(sprom[i], bus->mmio + bus->sprom_offset + (i * 2));
  274. mmiowb();
  275. msleep(20);
  276. }
  277. err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
  278. if (err)
  279. goto err_ctlreg;
  280. spromctl &= ~SSB_SPROMCTL_WE;
  281. err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
  282. if (err)
  283. goto err_ctlreg;
  284. msleep(500);
  285. ssb_printk("100%% ]\n");
  286. ssb_printk(KERN_NOTICE PFX "SPROM written.\n");
  287. return 0;
  288. err_ctlreg:
  289. ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n");
  290. return err;
  291. }
  292. static s8 r123_extract_antgain(u8 sprom_revision, const u16 *in,
  293. u16 mask, u16 shift)
  294. {
  295. u16 v;
  296. u8 gain;
  297. v = in[SPOFF(SSB_SPROM1_AGAIN)];
  298. gain = (v & mask) >> shift;
  299. if (gain == 0xFF)
  300. gain = 2; /* If unset use 2dBm */
  301. if (sprom_revision == 1) {
  302. /* Convert to Q5.2 */
  303. gain <<= 2;
  304. } else {
  305. /* Q5.2 Fractional part is stored in 0xC0 */
  306. gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2);
  307. }
  308. return (s8)gain;
  309. }
  310. static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in)
  311. {
  312. u16 loc[3];
  313. if (out->revision == 3) /* rev 3 moved MAC */
  314. loc[0] = SSB_SPROM3_IL0MAC;
  315. else {
  316. loc[0] = SSB_SPROM1_IL0MAC;
  317. loc[1] = SSB_SPROM1_ET0MAC;
  318. loc[2] = SSB_SPROM1_ET1MAC;
  319. }
  320. sprom_get_mac(out->il0mac, &in[SPOFF(loc[0])]);
  321. if (out->revision < 3) { /* only rev 1-2 have et0, et1 */
  322. sprom_get_mac(out->et0mac, &in[SPOFF(loc[1])]);
  323. sprom_get_mac(out->et1mac, &in[SPOFF(loc[2])]);
  324. }
  325. SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0);
  326. SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A,
  327. SSB_SPROM1_ETHPHY_ET1A_SHIFT);
  328. SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14);
  329. SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15);
  330. SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0);
  331. if (out->revision == 1)
  332. SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE,
  333. SSB_SPROM1_BINF_CCODE_SHIFT);
  334. SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA,
  335. SSB_SPROM1_BINF_ANTA_SHIFT);
  336. SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG,
  337. SSB_SPROM1_BINF_ANTBG_SHIFT);
  338. SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0);
  339. SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0);
  340. SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0);
  341. SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0);
  342. SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0);
  343. SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0);
  344. SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0);
  345. SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1,
  346. SSB_SPROM1_GPIOA_P1_SHIFT);
  347. SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0);
  348. SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3,
  349. SSB_SPROM1_GPIOB_P3_SHIFT);
  350. SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A,
  351. SSB_SPROM1_MAXPWR_A_SHIFT);
  352. SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0);
  353. SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A,
  354. SSB_SPROM1_ITSSI_A_SHIFT);
  355. SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0);
  356. SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0);
  357. if (out->revision >= 2)
  358. SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0);
  359. SPEX(alpha2[0], SSB_SPROM1_CCODE, 0xff00, 8);
  360. SPEX(alpha2[1], SSB_SPROM1_CCODE, 0x00ff, 0);
  361. /* Extract the antenna gain values. */
  362. out->antenna_gain.a0 = r123_extract_antgain(out->revision, in,
  363. SSB_SPROM1_AGAIN_BG,
  364. SSB_SPROM1_AGAIN_BG_SHIFT);
  365. out->antenna_gain.a1 = r123_extract_antgain(out->revision, in,
  366. SSB_SPROM1_AGAIN_A,
  367. SSB_SPROM1_AGAIN_A_SHIFT);
  368. }
  369. /* Revs 4 5 and 8 have partially shared layout */
  370. static void sprom_extract_r458(struct ssb_sprom *out, const u16 *in)
  371. {
  372. SPEX(txpid2g[0], SSB_SPROM4_TXPID2G01,
  373. SSB_SPROM4_TXPID2G0, SSB_SPROM4_TXPID2G0_SHIFT);
  374. SPEX(txpid2g[1], SSB_SPROM4_TXPID2G01,
  375. SSB_SPROM4_TXPID2G1, SSB_SPROM4_TXPID2G1_SHIFT);
  376. SPEX(txpid2g[2], SSB_SPROM4_TXPID2G23,
  377. SSB_SPROM4_TXPID2G2, SSB_SPROM4_TXPID2G2_SHIFT);
  378. SPEX(txpid2g[3], SSB_SPROM4_TXPID2G23,
  379. SSB_SPROM4_TXPID2G3, SSB_SPROM4_TXPID2G3_SHIFT);
  380. SPEX(txpid5gl[0], SSB_SPROM4_TXPID5GL01,
  381. SSB_SPROM4_TXPID5GL0, SSB_SPROM4_TXPID5GL0_SHIFT);
  382. SPEX(txpid5gl[1], SSB_SPROM4_TXPID5GL01,
  383. SSB_SPROM4_TXPID5GL1, SSB_SPROM4_TXPID5GL1_SHIFT);
  384. SPEX(txpid5gl[2], SSB_SPROM4_TXPID5GL23,
  385. SSB_SPROM4_TXPID5GL2, SSB_SPROM4_TXPID5GL2_SHIFT);
  386. SPEX(txpid5gl[3], SSB_SPROM4_TXPID5GL23,
  387. SSB_SPROM4_TXPID5GL3, SSB_SPROM4_TXPID5GL3_SHIFT);
  388. SPEX(txpid5g[0], SSB_SPROM4_TXPID5G01,
  389. SSB_SPROM4_TXPID5G0, SSB_SPROM4_TXPID5G0_SHIFT);
  390. SPEX(txpid5g[1], SSB_SPROM4_TXPID5G01,
  391. SSB_SPROM4_TXPID5G1, SSB_SPROM4_TXPID5G1_SHIFT);
  392. SPEX(txpid5g[2], SSB_SPROM4_TXPID5G23,
  393. SSB_SPROM4_TXPID5G2, SSB_SPROM4_TXPID5G2_SHIFT);
  394. SPEX(txpid5g[3], SSB_SPROM4_TXPID5G23,
  395. SSB_SPROM4_TXPID5G3, SSB_SPROM4_TXPID5G3_SHIFT);
  396. SPEX(txpid5gh[0], SSB_SPROM4_TXPID5GH01,
  397. SSB_SPROM4_TXPID5GH0, SSB_SPROM4_TXPID5GH0_SHIFT);
  398. SPEX(txpid5gh[1], SSB_SPROM4_TXPID5GH01,
  399. SSB_SPROM4_TXPID5GH1, SSB_SPROM4_TXPID5GH1_SHIFT);
  400. SPEX(txpid5gh[2], SSB_SPROM4_TXPID5GH23,
  401. SSB_SPROM4_TXPID5GH2, SSB_SPROM4_TXPID5GH2_SHIFT);
  402. SPEX(txpid5gh[3], SSB_SPROM4_TXPID5GH23,
  403. SSB_SPROM4_TXPID5GH3, SSB_SPROM4_TXPID5GH3_SHIFT);
  404. }
  405. static void sprom_extract_r45(struct ssb_sprom *out, const u16 *in)
  406. {
  407. u16 il0mac_offset;
  408. if (out->revision == 4)
  409. il0mac_offset = SSB_SPROM4_IL0MAC;
  410. else
  411. il0mac_offset = SSB_SPROM5_IL0MAC;
  412. sprom_get_mac(out->il0mac, &in[SPOFF(il0mac_offset)]);
  413. SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0);
  414. SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A,
  415. SSB_SPROM4_ETHPHY_ET1A_SHIFT);
  416. SPEX(board_rev, SSB_SPROM4_BOARDREV, 0xFFFF, 0);
  417. if (out->revision == 4) {
  418. SPEX(alpha2[0], SSB_SPROM4_CCODE, 0xff00, 8);
  419. SPEX(alpha2[1], SSB_SPROM4_CCODE, 0x00ff, 0);
  420. SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0);
  421. SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0);
  422. SPEX(boardflags2_lo, SSB_SPROM4_BFL2LO, 0xFFFF, 0);
  423. SPEX(boardflags2_hi, SSB_SPROM4_BFL2HI, 0xFFFF, 0);
  424. } else {
  425. SPEX(alpha2[0], SSB_SPROM5_CCODE, 0xff00, 8);
  426. SPEX(alpha2[1], SSB_SPROM5_CCODE, 0x00ff, 0);
  427. SPEX(boardflags_lo, SSB_SPROM5_BFLLO, 0xFFFF, 0);
  428. SPEX(boardflags_hi, SSB_SPROM5_BFLHI, 0xFFFF, 0);
  429. SPEX(boardflags2_lo, SSB_SPROM5_BFL2LO, 0xFFFF, 0);
  430. SPEX(boardflags2_hi, SSB_SPROM5_BFL2HI, 0xFFFF, 0);
  431. }
  432. SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A,
  433. SSB_SPROM4_ANTAVAIL_A_SHIFT);
  434. SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG,
  435. SSB_SPROM4_ANTAVAIL_BG_SHIFT);
  436. SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0);
  437. SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG,
  438. SSB_SPROM4_ITSSI_BG_SHIFT);
  439. SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0);
  440. SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A,
  441. SSB_SPROM4_ITSSI_A_SHIFT);
  442. if (out->revision == 4) {
  443. SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0);
  444. SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1,
  445. SSB_SPROM4_GPIOA_P1_SHIFT);
  446. SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0);
  447. SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3,
  448. SSB_SPROM4_GPIOB_P3_SHIFT);
  449. } else {
  450. SPEX(gpio0, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P0, 0);
  451. SPEX(gpio1, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P1,
  452. SSB_SPROM5_GPIOA_P1_SHIFT);
  453. SPEX(gpio2, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P2, 0);
  454. SPEX(gpio3, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P3,
  455. SSB_SPROM5_GPIOB_P3_SHIFT);
  456. }
  457. /* Extract the antenna gain values. */
  458. SPEX(antenna_gain.a0, SSB_SPROM4_AGAIN01,
  459. SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT);
  460. SPEX(antenna_gain.a1, SSB_SPROM4_AGAIN01,
  461. SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT);
  462. SPEX(antenna_gain.a2, SSB_SPROM4_AGAIN23,
  463. SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT);
  464. SPEX(antenna_gain.a3, SSB_SPROM4_AGAIN23,
  465. SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT);
  466. sprom_extract_r458(out, in);
  467. /* TODO - get remaining rev 4 stuff needed */
  468. }
  469. static void sprom_extract_r8(struct ssb_sprom *out, const u16 *in)
  470. {
  471. int i;
  472. u16 o;
  473. u16 pwr_info_offset[] = {
  474. SSB_SROM8_PWR_INFO_CORE0, SSB_SROM8_PWR_INFO_CORE1,
  475. SSB_SROM8_PWR_INFO_CORE2, SSB_SROM8_PWR_INFO_CORE3
  476. };
  477. BUILD_BUG_ON(ARRAY_SIZE(pwr_info_offset) !=
  478. ARRAY_SIZE(out->core_pwr_info));
  479. /* extract the MAC address */
  480. sprom_get_mac(out->il0mac, &in[SPOFF(SSB_SPROM8_IL0MAC)]);
  481. SPEX(board_rev, SSB_SPROM8_BOARDREV, 0xFFFF, 0);
  482. SPEX(alpha2[0], SSB_SPROM8_CCODE, 0xff00, 8);
  483. SPEX(alpha2[1], SSB_SPROM8_CCODE, 0x00ff, 0);
  484. SPEX(boardflags_lo, SSB_SPROM8_BFLLO, 0xFFFF, 0);
  485. SPEX(boardflags_hi, SSB_SPROM8_BFLHI, 0xFFFF, 0);
  486. SPEX(boardflags2_lo, SSB_SPROM8_BFL2LO, 0xFFFF, 0);
  487. SPEX(boardflags2_hi, SSB_SPROM8_BFL2HI, 0xFFFF, 0);
  488. SPEX(ant_available_a, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_A,
  489. SSB_SPROM8_ANTAVAIL_A_SHIFT);
  490. SPEX(ant_available_bg, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_BG,
  491. SSB_SPROM8_ANTAVAIL_BG_SHIFT);
  492. SPEX(maxpwr_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_MAXP_BG_MASK, 0);
  493. SPEX(itssi_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_ITSSI_BG,
  494. SSB_SPROM8_ITSSI_BG_SHIFT);
  495. SPEX(maxpwr_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_MAXP_A_MASK, 0);
  496. SPEX(itssi_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_ITSSI_A,
  497. SSB_SPROM8_ITSSI_A_SHIFT);
  498. SPEX(maxpwr_ah, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AH_MASK, 0);
  499. SPEX(maxpwr_al, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AL_MASK,
  500. SSB_SPROM8_MAXP_AL_SHIFT);
  501. SPEX(gpio0, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P0, 0);
  502. SPEX(gpio1, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P1,
  503. SSB_SPROM8_GPIOA_P1_SHIFT);
  504. SPEX(gpio2, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P2, 0);
  505. SPEX(gpio3, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P3,
  506. SSB_SPROM8_GPIOB_P3_SHIFT);
  507. SPEX(tri2g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI2G, 0);
  508. SPEX(tri5g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI5G,
  509. SSB_SPROM8_TRI5G_SHIFT);
  510. SPEX(tri5gl, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GL, 0);
  511. SPEX(tri5gh, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GH,
  512. SSB_SPROM8_TRI5GH_SHIFT);
  513. SPEX(rxpo2g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO2G, 0);
  514. SPEX(rxpo5g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO5G,
  515. SSB_SPROM8_RXPO5G_SHIFT);
  516. SPEX(rssismf2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMF2G, 0);
  517. SPEX(rssismc2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMC2G,
  518. SSB_SPROM8_RSSISMC2G_SHIFT);
  519. SPEX(rssisav2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISAV2G,
  520. SSB_SPROM8_RSSISAV2G_SHIFT);
  521. SPEX(bxa2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_BXA2G,
  522. SSB_SPROM8_BXA2G_SHIFT);
  523. SPEX(rssismf5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMF5G, 0);
  524. SPEX(rssismc5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMC5G,
  525. SSB_SPROM8_RSSISMC5G_SHIFT);
  526. SPEX(rssisav5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISAV5G,
  527. SSB_SPROM8_RSSISAV5G_SHIFT);
  528. SPEX(bxa5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_BXA5G,
  529. SSB_SPROM8_BXA5G_SHIFT);
  530. SPEX(pa0b0, SSB_SPROM8_PA0B0, 0xFFFF, 0);
  531. SPEX(pa0b1, SSB_SPROM8_PA0B1, 0xFFFF, 0);
  532. SPEX(pa0b2, SSB_SPROM8_PA0B2, 0xFFFF, 0);
  533. SPEX(pa1b0, SSB_SPROM8_PA1B0, 0xFFFF, 0);
  534. SPEX(pa1b1, SSB_SPROM8_PA1B1, 0xFFFF, 0);
  535. SPEX(pa1b2, SSB_SPROM8_PA1B2, 0xFFFF, 0);
  536. SPEX(pa1lob0, SSB_SPROM8_PA1LOB0, 0xFFFF, 0);
  537. SPEX(pa1lob1, SSB_SPROM8_PA1LOB1, 0xFFFF, 0);
  538. SPEX(pa1lob2, SSB_SPROM8_PA1LOB2, 0xFFFF, 0);
  539. SPEX(pa1hib0, SSB_SPROM8_PA1HIB0, 0xFFFF, 0);
  540. SPEX(pa1hib1, SSB_SPROM8_PA1HIB1, 0xFFFF, 0);
  541. SPEX(pa1hib2, SSB_SPROM8_PA1HIB2, 0xFFFF, 0);
  542. SPEX(cck2gpo, SSB_SPROM8_CCK2GPO, 0xFFFF, 0);
  543. SPEX32(ofdm2gpo, SSB_SPROM8_OFDM2GPO, 0xFFFFFFFF, 0);
  544. SPEX32(ofdm5glpo, SSB_SPROM8_OFDM5GLPO, 0xFFFFFFFF, 0);
  545. SPEX32(ofdm5gpo, SSB_SPROM8_OFDM5GPO, 0xFFFFFFFF, 0);
  546. SPEX32(ofdm5ghpo, SSB_SPROM8_OFDM5GHPO, 0xFFFFFFFF, 0);
  547. /* Extract the antenna gain values. */
  548. SPEX(antenna_gain.a0, SSB_SPROM8_AGAIN01,
  549. SSB_SPROM8_AGAIN0, SSB_SPROM8_AGAIN0_SHIFT);
  550. SPEX(antenna_gain.a1, SSB_SPROM8_AGAIN01,
  551. SSB_SPROM8_AGAIN1, SSB_SPROM8_AGAIN1_SHIFT);
  552. SPEX(antenna_gain.a2, SSB_SPROM8_AGAIN23,
  553. SSB_SPROM8_AGAIN2, SSB_SPROM8_AGAIN2_SHIFT);
  554. SPEX(antenna_gain.a3, SSB_SPROM8_AGAIN23,
  555. SSB_SPROM8_AGAIN3, SSB_SPROM8_AGAIN3_SHIFT);
  556. /* Extract cores power info info */
  557. for (i = 0; i < ARRAY_SIZE(pwr_info_offset); i++) {
  558. o = pwr_info_offset[i];
  559. SPEX(core_pwr_info[i].itssi_2g, o + SSB_SROM8_2G_MAXP_ITSSI,
  560. SSB_SPROM8_2G_ITSSI, SSB_SPROM8_2G_ITSSI_SHIFT);
  561. SPEX(core_pwr_info[i].maxpwr_2g, o + SSB_SROM8_2G_MAXP_ITSSI,
  562. SSB_SPROM8_2G_MAXP, 0);
  563. SPEX(core_pwr_info[i].pa_2g[0], o + SSB_SROM8_2G_PA_0, ~0, 0);
  564. SPEX(core_pwr_info[i].pa_2g[1], o + SSB_SROM8_2G_PA_1, ~0, 0);
  565. SPEX(core_pwr_info[i].pa_2g[2], o + SSB_SROM8_2G_PA_2, ~0, 0);
  566. SPEX(core_pwr_info[i].itssi_5g, o + SSB_SROM8_5G_MAXP_ITSSI,
  567. SSB_SPROM8_5G_ITSSI, SSB_SPROM8_5G_ITSSI_SHIFT);
  568. SPEX(core_pwr_info[i].maxpwr_5g, o + SSB_SROM8_5G_MAXP_ITSSI,
  569. SSB_SPROM8_5G_MAXP, 0);
  570. SPEX(core_pwr_info[i].maxpwr_5gh, o + SSB_SPROM8_5GHL_MAXP,
  571. SSB_SPROM8_5GH_MAXP, 0);
  572. SPEX(core_pwr_info[i].maxpwr_5gl, o + SSB_SPROM8_5GHL_MAXP,
  573. SSB_SPROM8_5GL_MAXP, SSB_SPROM8_5GL_MAXP_SHIFT);
  574. SPEX(core_pwr_info[i].pa_5gl[0], o + SSB_SROM8_5GL_PA_0, ~0, 0);
  575. SPEX(core_pwr_info[i].pa_5gl[1], o + SSB_SROM8_5GL_PA_1, ~0, 0);
  576. SPEX(core_pwr_info[i].pa_5gl[2], o + SSB_SROM8_5GL_PA_2, ~0, 0);
  577. SPEX(core_pwr_info[i].pa_5g[0], o + SSB_SROM8_5G_PA_0, ~0, 0);
  578. SPEX(core_pwr_info[i].pa_5g[1], o + SSB_SROM8_5G_PA_1, ~0, 0);
  579. SPEX(core_pwr_info[i].pa_5g[2], o + SSB_SROM8_5G_PA_2, ~0, 0);
  580. SPEX(core_pwr_info[i].pa_5gh[0], o + SSB_SROM8_5GH_PA_0, ~0, 0);
  581. SPEX(core_pwr_info[i].pa_5gh[1], o + SSB_SROM8_5GH_PA_1, ~0, 0);
  582. SPEX(core_pwr_info[i].pa_5gh[2], o + SSB_SROM8_5GH_PA_2, ~0, 0);
  583. }
  584. /* Extract FEM info */
  585. SPEX(fem.ghz2.tssipos, SSB_SPROM8_FEM2G,
  586. SSB_SROM8_FEM_TSSIPOS, SSB_SROM8_FEM_TSSIPOS_SHIFT);
  587. SPEX(fem.ghz2.extpa_gain, SSB_SPROM8_FEM2G,
  588. SSB_SROM8_FEM_EXTPA_GAIN, SSB_SROM8_FEM_EXTPA_GAIN_SHIFT);
  589. SPEX(fem.ghz2.pdet_range, SSB_SPROM8_FEM2G,
  590. SSB_SROM8_FEM_PDET_RANGE, SSB_SROM8_FEM_PDET_RANGE_SHIFT);
  591. SPEX(fem.ghz2.tr_iso, SSB_SPROM8_FEM2G,
  592. SSB_SROM8_FEM_TR_ISO, SSB_SROM8_FEM_TR_ISO_SHIFT);
  593. SPEX(fem.ghz2.antswlut, SSB_SPROM8_FEM2G,
  594. SSB_SROM8_FEM_ANTSWLUT, SSB_SROM8_FEM_ANTSWLUT_SHIFT);
  595. SPEX(fem.ghz5.tssipos, SSB_SPROM8_FEM5G,
  596. SSB_SROM8_FEM_TSSIPOS, SSB_SROM8_FEM_TSSIPOS_SHIFT);
  597. SPEX(fem.ghz5.extpa_gain, SSB_SPROM8_FEM5G,
  598. SSB_SROM8_FEM_EXTPA_GAIN, SSB_SROM8_FEM_EXTPA_GAIN_SHIFT);
  599. SPEX(fem.ghz5.pdet_range, SSB_SPROM8_FEM5G,
  600. SSB_SROM8_FEM_PDET_RANGE, SSB_SROM8_FEM_PDET_RANGE_SHIFT);
  601. SPEX(fem.ghz5.tr_iso, SSB_SPROM8_FEM5G,
  602. SSB_SROM8_FEM_TR_ISO, SSB_SROM8_FEM_TR_ISO_SHIFT);
  603. SPEX(fem.ghz5.antswlut, SSB_SPROM8_FEM5G,
  604. SSB_SROM8_FEM_ANTSWLUT, SSB_SROM8_FEM_ANTSWLUT_SHIFT);
  605. SPEX(leddc_on_time, SSB_SPROM8_LEDDC, SSB_SPROM8_LEDDC_ON,
  606. SSB_SPROM8_LEDDC_ON_SHIFT);
  607. SPEX(leddc_off_time, SSB_SPROM8_LEDDC, SSB_SPROM8_LEDDC_OFF,
  608. SSB_SPROM8_LEDDC_OFF_SHIFT);
  609. SPEX(txchain, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_TXCHAIN,
  610. SSB_SPROM8_TXRXC_TXCHAIN_SHIFT);
  611. SPEX(rxchain, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_RXCHAIN,
  612. SSB_SPROM8_TXRXC_RXCHAIN_SHIFT);
  613. SPEX(antswitch, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_SWITCH,
  614. SSB_SPROM8_TXRXC_SWITCH_SHIFT);
  615. SPEX(opo, SSB_SPROM8_OFDM2GPO, 0x00ff, 0);
  616. SPEX_ARRAY8(mcs2gpo, SSB_SPROM8_2G_MCSPO, ~0, 0);
  617. SPEX_ARRAY8(mcs5gpo, SSB_SPROM8_5G_MCSPO, ~0, 0);
  618. SPEX_ARRAY8(mcs5glpo, SSB_SPROM8_5GL_MCSPO, ~0, 0);
  619. SPEX_ARRAY8(mcs5ghpo, SSB_SPROM8_5GH_MCSPO, ~0, 0);
  620. SPEX(rawtempsense, SSB_SPROM8_RAWTS, SSB_SPROM8_RAWTS_RAWTEMP,
  621. SSB_SPROM8_RAWTS_RAWTEMP_SHIFT);
  622. SPEX(measpower, SSB_SPROM8_RAWTS, SSB_SPROM8_RAWTS_MEASPOWER,
  623. SSB_SPROM8_RAWTS_MEASPOWER_SHIFT);
  624. SPEX(tempsense_slope, SSB_SPROM8_OPT_CORRX,
  625. SSB_SPROM8_OPT_CORRX_TEMP_SLOPE,
  626. SSB_SPROM8_OPT_CORRX_TEMP_SLOPE_SHIFT);
  627. SPEX(tempcorrx, SSB_SPROM8_OPT_CORRX, SSB_SPROM8_OPT_CORRX_TEMPCORRX,
  628. SSB_SPROM8_OPT_CORRX_TEMPCORRX_SHIFT);
  629. SPEX(tempsense_option, SSB_SPROM8_OPT_CORRX,
  630. SSB_SPROM8_OPT_CORRX_TEMP_OPTION,
  631. SSB_SPROM8_OPT_CORRX_TEMP_OPTION_SHIFT);
  632. SPEX(freqoffset_corr, SSB_SPROM8_HWIQ_IQSWP,
  633. SSB_SPROM8_HWIQ_IQSWP_FREQ_CORR,
  634. SSB_SPROM8_HWIQ_IQSWP_FREQ_CORR_SHIFT);
  635. SPEX(iqcal_swp_dis, SSB_SPROM8_HWIQ_IQSWP,
  636. SSB_SPROM8_HWIQ_IQSWP_IQCAL_SWP,
  637. SSB_SPROM8_HWIQ_IQSWP_IQCAL_SWP_SHIFT);
  638. SPEX(hw_iqcal_en, SSB_SPROM8_HWIQ_IQSWP, SSB_SPROM8_HWIQ_IQSWP_HW_IQCAL,
  639. SSB_SPROM8_HWIQ_IQSWP_HW_IQCAL_SHIFT);
  640. SPEX(bw40po, SSB_SPROM8_BW40PO, ~0, 0);
  641. SPEX(cddpo, SSB_SPROM8_CDDPO, ~0, 0);
  642. SPEX(stbcpo, SSB_SPROM8_STBCPO, ~0, 0);
  643. SPEX(bwduppo, SSB_SPROM8_BWDUPPO, ~0, 0);
  644. SPEX(tempthresh, SSB_SPROM8_THERMAL, SSB_SPROM8_THERMAL_TRESH,
  645. SSB_SPROM8_THERMAL_TRESH_SHIFT);
  646. SPEX(tempoffset, SSB_SPROM8_THERMAL, SSB_SPROM8_THERMAL_OFFSET,
  647. SSB_SPROM8_THERMAL_OFFSET_SHIFT);
  648. SPEX(phycal_tempdelta, SSB_SPROM8_TEMPDELTA,
  649. SSB_SPROM8_TEMPDELTA_PHYCAL,
  650. SSB_SPROM8_TEMPDELTA_PHYCAL_SHIFT);
  651. SPEX(temps_period, SSB_SPROM8_TEMPDELTA, SSB_SPROM8_TEMPDELTA_PERIOD,
  652. SSB_SPROM8_TEMPDELTA_PERIOD_SHIFT);
  653. SPEX(temps_hysteresis, SSB_SPROM8_TEMPDELTA,
  654. SSB_SPROM8_TEMPDELTA_HYSTERESIS,
  655. SSB_SPROM8_TEMPDELTA_HYSTERESIS_SHIFT);
  656. sprom_extract_r458(out, in);
  657. /* TODO - get remaining rev 8 stuff needed */
  658. }
  659. static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out,
  660. const u16 *in, u16 size)
  661. {
  662. memset(out, 0, sizeof(*out));
  663. out->revision = in[size - 1] & 0x00FF;
  664. ssb_dprintk(KERN_DEBUG PFX "SPROM revision %d detected.\n", out->revision);
  665. memset(out->et0mac, 0xFF, 6); /* preset et0 and et1 mac */
  666. memset(out->et1mac, 0xFF, 6);
  667. if ((bus->chip_id & 0xFF00) == 0x4400) {
  668. /* Workaround: The BCM44XX chip has a stupid revision
  669. * number stored in the SPROM.
  670. * Always extract r1. */
  671. out->revision = 1;
  672. ssb_dprintk(KERN_DEBUG PFX "SPROM treated as revision %d\n", out->revision);
  673. }
  674. switch (out->revision) {
  675. case 1:
  676. case 2:
  677. case 3:
  678. sprom_extract_r123(out, in);
  679. break;
  680. case 4:
  681. case 5:
  682. sprom_extract_r45(out, in);
  683. break;
  684. case 8:
  685. sprom_extract_r8(out, in);
  686. break;
  687. default:
  688. ssb_printk(KERN_WARNING PFX "Unsupported SPROM"
  689. " revision %d detected. Will extract"
  690. " v1\n", out->revision);
  691. out->revision = 1;
  692. sprom_extract_r123(out, in);
  693. }
  694. if (out->boardflags_lo == 0xFFFF)
  695. out->boardflags_lo = 0; /* per specs */
  696. if (out->boardflags_hi == 0xFFFF)
  697. out->boardflags_hi = 0; /* per specs */
  698. return 0;
  699. }
  700. static int ssb_pci_sprom_get(struct ssb_bus *bus,
  701. struct ssb_sprom *sprom)
  702. {
  703. int err;
  704. u16 *buf;
  705. if (!ssb_is_sprom_available(bus)) {
  706. ssb_printk(KERN_ERR PFX "No SPROM available!\n");
  707. return -ENODEV;
  708. }
  709. if (bus->chipco.dev) { /* can be unavailable! */
  710. /*
  711. * get SPROM offset: SSB_SPROM_BASE1 except for
  712. * chipcommon rev >= 31 or chip ID is 0x4312 and
  713. * chipcommon status & 3 == 2
  714. */
  715. if (bus->chipco.dev->id.revision >= 31)
  716. bus->sprom_offset = SSB_SPROM_BASE31;
  717. else if (bus->chip_id == 0x4312 &&
  718. (bus->chipco.status & 0x03) == 2)
  719. bus->sprom_offset = SSB_SPROM_BASE31;
  720. else
  721. bus->sprom_offset = SSB_SPROM_BASE1;
  722. } else {
  723. bus->sprom_offset = SSB_SPROM_BASE1;
  724. }
  725. ssb_dprintk(KERN_INFO PFX "SPROM offset is 0x%x\n", bus->sprom_offset);
  726. buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL);
  727. if (!buf)
  728. return -ENOMEM;
  729. bus->sprom_size = SSB_SPROMSIZE_WORDS_R123;
  730. sprom_do_read(bus, buf);
  731. err = sprom_check_crc(buf, bus->sprom_size);
  732. if (err) {
  733. /* try for a 440 byte SPROM - revision 4 and higher */
  734. kfree(buf);
  735. buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16),
  736. GFP_KERNEL);
  737. if (!buf)
  738. return -ENOMEM;
  739. bus->sprom_size = SSB_SPROMSIZE_WORDS_R4;
  740. sprom_do_read(bus, buf);
  741. err = sprom_check_crc(buf, bus->sprom_size);
  742. if (err) {
  743. /* All CRC attempts failed.
  744. * Maybe there is no SPROM on the device?
  745. * Now we ask the arch code if there is some sprom
  746. * available for this device in some other storage */
  747. err = ssb_fill_sprom_with_fallback(bus, sprom);
  748. if (err) {
  749. ssb_printk(KERN_WARNING PFX "WARNING: Using"
  750. " fallback SPROM failed (err %d)\n",
  751. err);
  752. } else {
  753. ssb_dprintk(KERN_DEBUG PFX "Using SPROM"
  754. " revision %d provided by"
  755. " platform.\n", sprom->revision);
  756. err = 0;
  757. goto out_free;
  758. }
  759. ssb_printk(KERN_WARNING PFX "WARNING: Invalid"
  760. " SPROM CRC (corrupt SPROM)\n");
  761. }
  762. }
  763. err = sprom_extract(bus, sprom, buf, bus->sprom_size);
  764. out_free:
  765. kfree(buf);
  766. return err;
  767. }
  768. static void ssb_pci_get_boardinfo(struct ssb_bus *bus,
  769. struct ssb_boardinfo *bi)
  770. {
  771. bi->vendor = bus->host_pci->subsystem_vendor;
  772. bi->type = bus->host_pci->subsystem_device;
  773. }
  774. int ssb_pci_get_invariants(struct ssb_bus *bus,
  775. struct ssb_init_invariants *iv)
  776. {
  777. int err;
  778. err = ssb_pci_sprom_get(bus, &iv->sprom);
  779. if (err)
  780. goto out;
  781. ssb_pci_get_boardinfo(bus, &iv->boardinfo);
  782. out:
  783. return err;
  784. }
  785. #ifdef CONFIG_SSB_DEBUG
  786. static int ssb_pci_assert_buspower(struct ssb_bus *bus)
  787. {
  788. if (likely(bus->powered_up))
  789. return 0;
  790. printk(KERN_ERR PFX "FATAL ERROR: Bus powered down "
  791. "while accessing PCI MMIO space\n");
  792. if (bus->power_warn_count <= 10) {
  793. bus->power_warn_count++;
  794. dump_stack();
  795. }
  796. return -ENODEV;
  797. }
  798. #else /* DEBUG */
  799. static inline int ssb_pci_assert_buspower(struct ssb_bus *bus)
  800. {
  801. return 0;
  802. }
  803. #endif /* DEBUG */
  804. static u8 ssb_pci_read8(struct ssb_device *dev, u16 offset)
  805. {
  806. struct ssb_bus *bus = dev->bus;
  807. if (unlikely(ssb_pci_assert_buspower(bus)))
  808. return 0xFF;
  809. if (unlikely(bus->mapped_device != dev)) {
  810. if (unlikely(ssb_pci_switch_core(bus, dev)))
  811. return 0xFF;
  812. }
  813. return ioread8(bus->mmio + offset);
  814. }
  815. static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset)
  816. {
  817. struct ssb_bus *bus = dev->bus;
  818. if (unlikely(ssb_pci_assert_buspower(bus)))
  819. return 0xFFFF;
  820. if (unlikely(bus->mapped_device != dev)) {
  821. if (unlikely(ssb_pci_switch_core(bus, dev)))
  822. return 0xFFFF;
  823. }
  824. return ioread16(bus->mmio + offset);
  825. }
  826. static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset)
  827. {
  828. struct ssb_bus *bus = dev->bus;
  829. if (unlikely(ssb_pci_assert_buspower(bus)))
  830. return 0xFFFFFFFF;
  831. if (unlikely(bus->mapped_device != dev)) {
  832. if (unlikely(ssb_pci_switch_core(bus, dev)))
  833. return 0xFFFFFFFF;
  834. }
  835. return ioread32(bus->mmio + offset);
  836. }
  837. #ifdef CONFIG_SSB_BLOCKIO
  838. static void ssb_pci_block_read(struct ssb_device *dev, void *buffer,
  839. size_t count, u16 offset, u8 reg_width)
  840. {
  841. struct ssb_bus *bus = dev->bus;
  842. void __iomem *addr = bus->mmio + offset;
  843. if (unlikely(ssb_pci_assert_buspower(bus)))
  844. goto error;
  845. if (unlikely(bus->mapped_device != dev)) {
  846. if (unlikely(ssb_pci_switch_core(bus, dev)))
  847. goto error;
  848. }
  849. switch (reg_width) {
  850. case sizeof(u8):
  851. ioread8_rep(addr, buffer, count);
  852. break;
  853. case sizeof(u16):
  854. SSB_WARN_ON(count & 1);
  855. ioread16_rep(addr, buffer, count >> 1);
  856. break;
  857. case sizeof(u32):
  858. SSB_WARN_ON(count & 3);
  859. ioread32_rep(addr, buffer, count >> 2);
  860. break;
  861. default:
  862. SSB_WARN_ON(1);
  863. }
  864. return;
  865. error:
  866. memset(buffer, 0xFF, count);
  867. }
  868. #endif /* CONFIG_SSB_BLOCKIO */
  869. static void ssb_pci_write8(struct ssb_device *dev, u16 offset, u8 value)
  870. {
  871. struct ssb_bus *bus = dev->bus;
  872. if (unlikely(ssb_pci_assert_buspower(bus)))
  873. return;
  874. if (unlikely(bus->mapped_device != dev)) {
  875. if (unlikely(ssb_pci_switch_core(bus, dev)))
  876. return;
  877. }
  878. iowrite8(value, bus->mmio + offset);
  879. }
  880. static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value)
  881. {
  882. struct ssb_bus *bus = dev->bus;
  883. if (unlikely(ssb_pci_assert_buspower(bus)))
  884. return;
  885. if (unlikely(bus->mapped_device != dev)) {
  886. if (unlikely(ssb_pci_switch_core(bus, dev)))
  887. return;
  888. }
  889. iowrite16(value, bus->mmio + offset);
  890. }
  891. static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value)
  892. {
  893. struct ssb_bus *bus = dev->bus;
  894. if (unlikely(ssb_pci_assert_buspower(bus)))
  895. return;
  896. if (unlikely(bus->mapped_device != dev)) {
  897. if (unlikely(ssb_pci_switch_core(bus, dev)))
  898. return;
  899. }
  900. iowrite32(value, bus->mmio + offset);
  901. }
  902. #ifdef CONFIG_SSB_BLOCKIO
  903. static void ssb_pci_block_write(struct ssb_device *dev, const void *buffer,
  904. size_t count, u16 offset, u8 reg_width)
  905. {
  906. struct ssb_bus *bus = dev->bus;
  907. void __iomem *addr = bus->mmio + offset;
  908. if (unlikely(ssb_pci_assert_buspower(bus)))
  909. return;
  910. if (unlikely(bus->mapped_device != dev)) {
  911. if (unlikely(ssb_pci_switch_core(bus, dev)))
  912. return;
  913. }
  914. switch (reg_width) {
  915. case sizeof(u8):
  916. iowrite8_rep(addr, buffer, count);
  917. break;
  918. case sizeof(u16):
  919. SSB_WARN_ON(count & 1);
  920. iowrite16_rep(addr, buffer, count >> 1);
  921. break;
  922. case sizeof(u32):
  923. SSB_WARN_ON(count & 3);
  924. iowrite32_rep(addr, buffer, count >> 2);
  925. break;
  926. default:
  927. SSB_WARN_ON(1);
  928. }
  929. }
  930. #endif /* CONFIG_SSB_BLOCKIO */
  931. /* Not "static", as it's used in main.c */
  932. const struct ssb_bus_ops ssb_pci_ops = {
  933. .read8 = ssb_pci_read8,
  934. .read16 = ssb_pci_read16,
  935. .read32 = ssb_pci_read32,
  936. .write8 = ssb_pci_write8,
  937. .write16 = ssb_pci_write16,
  938. .write32 = ssb_pci_write32,
  939. #ifdef CONFIG_SSB_BLOCKIO
  940. .block_read = ssb_pci_block_read,
  941. .block_write = ssb_pci_block_write,
  942. #endif
  943. };
  944. static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev,
  945. struct device_attribute *attr,
  946. char *buf)
  947. {
  948. struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
  949. struct ssb_bus *bus;
  950. bus = ssb_pci_dev_to_bus(pdev);
  951. if (!bus)
  952. return -ENODEV;
  953. return ssb_attr_sprom_show(bus, buf, sprom_do_read);
  954. }
  955. static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev,
  956. struct device_attribute *attr,
  957. const char *buf, size_t count)
  958. {
  959. struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
  960. struct ssb_bus *bus;
  961. bus = ssb_pci_dev_to_bus(pdev);
  962. if (!bus)
  963. return -ENODEV;
  964. return ssb_attr_sprom_store(bus, buf, count,
  965. sprom_check_crc, sprom_do_write);
  966. }
  967. static DEVICE_ATTR(ssb_sprom, 0600,
  968. ssb_pci_attr_sprom_show,
  969. ssb_pci_attr_sprom_store);
  970. void ssb_pci_exit(struct ssb_bus *bus)
  971. {
  972. struct pci_dev *pdev;
  973. if (bus->bustype != SSB_BUSTYPE_PCI)
  974. return;
  975. pdev = bus->host_pci;
  976. device_remove_file(&pdev->dev, &dev_attr_ssb_sprom);
  977. }
  978. int ssb_pci_init(struct ssb_bus *bus)
  979. {
  980. struct pci_dev *pdev;
  981. int err;
  982. if (bus->bustype != SSB_BUSTYPE_PCI)
  983. return 0;
  984. pdev = bus->host_pci;
  985. mutex_init(&bus->sprom_mutex);
  986. err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom);
  987. if (err)
  988. goto out;
  989. out:
  990. return err;
  991. }