init.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static char *dev_info = "ath9k";
  18. MODULE_AUTHOR("Atheros Communications");
  19. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  20. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  21. MODULE_LICENSE("Dual BSD/GPL");
  22. static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
  23. module_param_named(debug, ath9k_debug, uint, 0);
  24. MODULE_PARM_DESC(debug, "Debugging mask");
  25. int modparam_nohwcrypt;
  26. module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
  27. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
  28. /* We use the hw_value as an index into our private channel structure */
  29. #define CHAN2G(_freq, _idx) { \
  30. .center_freq = (_freq), \
  31. .hw_value = (_idx), \
  32. .max_power = 20, \
  33. }
  34. #define CHAN5G(_freq, _idx) { \
  35. .band = IEEE80211_BAND_5GHZ, \
  36. .center_freq = (_freq), \
  37. .hw_value = (_idx), \
  38. .max_power = 20, \
  39. }
  40. /* Some 2 GHz radios are actually tunable on 2312-2732
  41. * on 5 MHz steps, we support the channels which we know
  42. * we have calibration data for all cards though to make
  43. * this static */
  44. static struct ieee80211_channel ath9k_2ghz_chantable[] = {
  45. CHAN2G(2412, 0), /* Channel 1 */
  46. CHAN2G(2417, 1), /* Channel 2 */
  47. CHAN2G(2422, 2), /* Channel 3 */
  48. CHAN2G(2427, 3), /* Channel 4 */
  49. CHAN2G(2432, 4), /* Channel 5 */
  50. CHAN2G(2437, 5), /* Channel 6 */
  51. CHAN2G(2442, 6), /* Channel 7 */
  52. CHAN2G(2447, 7), /* Channel 8 */
  53. CHAN2G(2452, 8), /* Channel 9 */
  54. CHAN2G(2457, 9), /* Channel 10 */
  55. CHAN2G(2462, 10), /* Channel 11 */
  56. CHAN2G(2467, 11), /* Channel 12 */
  57. CHAN2G(2472, 12), /* Channel 13 */
  58. CHAN2G(2484, 13), /* Channel 14 */
  59. };
  60. /* Some 5 GHz radios are actually tunable on XXXX-YYYY
  61. * on 5 MHz steps, we support the channels which we know
  62. * we have calibration data for all cards though to make
  63. * this static */
  64. static struct ieee80211_channel ath9k_5ghz_chantable[] = {
  65. /* _We_ call this UNII 1 */
  66. CHAN5G(5180, 14), /* Channel 36 */
  67. CHAN5G(5200, 15), /* Channel 40 */
  68. CHAN5G(5220, 16), /* Channel 44 */
  69. CHAN5G(5240, 17), /* Channel 48 */
  70. /* _We_ call this UNII 2 */
  71. CHAN5G(5260, 18), /* Channel 52 */
  72. CHAN5G(5280, 19), /* Channel 56 */
  73. CHAN5G(5300, 20), /* Channel 60 */
  74. CHAN5G(5320, 21), /* Channel 64 */
  75. /* _We_ call this "Middle band" */
  76. CHAN5G(5500, 22), /* Channel 100 */
  77. CHAN5G(5520, 23), /* Channel 104 */
  78. CHAN5G(5540, 24), /* Channel 108 */
  79. CHAN5G(5560, 25), /* Channel 112 */
  80. CHAN5G(5580, 26), /* Channel 116 */
  81. CHAN5G(5600, 27), /* Channel 120 */
  82. CHAN5G(5620, 28), /* Channel 124 */
  83. CHAN5G(5640, 29), /* Channel 128 */
  84. CHAN5G(5660, 30), /* Channel 132 */
  85. CHAN5G(5680, 31), /* Channel 136 */
  86. CHAN5G(5700, 32), /* Channel 140 */
  87. /* _We_ call this UNII 3 */
  88. CHAN5G(5745, 33), /* Channel 149 */
  89. CHAN5G(5765, 34), /* Channel 153 */
  90. CHAN5G(5785, 35), /* Channel 157 */
  91. CHAN5G(5805, 36), /* Channel 161 */
  92. CHAN5G(5825, 37), /* Channel 165 */
  93. };
  94. /* Atheros hardware rate code addition for short premble */
  95. #define SHPCHECK(__hw_rate, __flags) \
  96. ((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
  97. #define RATE(_bitrate, _hw_rate, _flags) { \
  98. .bitrate = (_bitrate), \
  99. .flags = (_flags), \
  100. .hw_value = (_hw_rate), \
  101. .hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
  102. }
  103. static struct ieee80211_rate ath9k_legacy_rates[] = {
  104. RATE(10, 0x1b, 0),
  105. RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
  106. RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
  107. RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
  108. RATE(60, 0x0b, 0),
  109. RATE(90, 0x0f, 0),
  110. RATE(120, 0x0a, 0),
  111. RATE(180, 0x0e, 0),
  112. RATE(240, 0x09, 0),
  113. RATE(360, 0x0d, 0),
  114. RATE(480, 0x08, 0),
  115. RATE(540, 0x0c, 0),
  116. };
  117. static void ath9k_deinit_softc(struct ath_softc *sc);
  118. /*
  119. * Read and write, they both share the same lock. We do this to serialize
  120. * reads and writes on Atheros 802.11n PCI devices only. This is required
  121. * as the FIFO on these devices can only accept sanely 2 requests.
  122. */
  123. static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
  124. {
  125. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  126. struct ath_common *common = ath9k_hw_common(ah);
  127. struct ath_softc *sc = (struct ath_softc *) common->priv;
  128. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  129. unsigned long flags;
  130. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  131. iowrite32(val, sc->mem + reg_offset);
  132. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  133. } else
  134. iowrite32(val, sc->mem + reg_offset);
  135. }
  136. static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
  137. {
  138. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  139. struct ath_common *common = ath9k_hw_common(ah);
  140. struct ath_softc *sc = (struct ath_softc *) common->priv;
  141. u32 val;
  142. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  143. unsigned long flags;
  144. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  145. val = ioread32(sc->mem + reg_offset);
  146. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  147. } else
  148. val = ioread32(sc->mem + reg_offset);
  149. return val;
  150. }
  151. static const struct ath_ops ath9k_common_ops = {
  152. .read = ath9k_ioread32,
  153. .write = ath9k_iowrite32,
  154. };
  155. /**************************/
  156. /* Initialization */
  157. /**************************/
  158. static void setup_ht_cap(struct ath_softc *sc,
  159. struct ieee80211_sta_ht_cap *ht_info)
  160. {
  161. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  162. u8 tx_streams, rx_streams;
  163. ht_info->ht_supported = true;
  164. ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  165. IEEE80211_HT_CAP_SM_PS |
  166. IEEE80211_HT_CAP_SGI_40 |
  167. IEEE80211_HT_CAP_DSSSCCK40;
  168. ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
  169. ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
  170. /* set up supported mcs set */
  171. memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
  172. tx_streams = !(common->tx_chainmask & (common->tx_chainmask - 1)) ?
  173. 1 : 2;
  174. rx_streams = !(common->rx_chainmask & (common->rx_chainmask - 1)) ?
  175. 1 : 2;
  176. if (tx_streams != rx_streams) {
  177. ath_print(common, ATH_DBG_CONFIG,
  178. "TX streams %d, RX streams: %d\n",
  179. tx_streams, rx_streams);
  180. ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
  181. ht_info->mcs.tx_params |= ((tx_streams - 1) <<
  182. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  183. }
  184. ht_info->mcs.rx_mask[0] = 0xff;
  185. if (rx_streams >= 2)
  186. ht_info->mcs.rx_mask[1] = 0xff;
  187. ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
  188. }
  189. static int ath9k_reg_notifier(struct wiphy *wiphy,
  190. struct regulatory_request *request)
  191. {
  192. struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
  193. struct ath_wiphy *aphy = hw->priv;
  194. struct ath_softc *sc = aphy->sc;
  195. struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
  196. return ath_reg_notifier_apply(wiphy, request, reg);
  197. }
  198. /*
  199. * This function will allocate both the DMA descriptor structure, and the
  200. * buffers it contains. These are used to contain the descriptors used
  201. * by the system.
  202. */
  203. int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
  204. struct list_head *head, const char *name,
  205. int nbuf, int ndesc)
  206. {
  207. #define DS2PHYS(_dd, _ds) \
  208. ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
  209. #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
  210. #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
  211. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  212. struct ath_desc *ds;
  213. struct ath_buf *bf;
  214. int i, bsize, error;
  215. ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
  216. name, nbuf, ndesc);
  217. INIT_LIST_HEAD(head);
  218. /* ath_desc must be a multiple of DWORDs */
  219. if ((sizeof(struct ath_desc) % 4) != 0) {
  220. ath_print(common, ATH_DBG_FATAL,
  221. "ath_desc not DWORD aligned\n");
  222. BUG_ON((sizeof(struct ath_desc) % 4) != 0);
  223. error = -ENOMEM;
  224. goto fail;
  225. }
  226. dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
  227. /*
  228. * Need additional DMA memory because we can't use
  229. * descriptors that cross the 4K page boundary. Assume
  230. * one skipped descriptor per 4K page.
  231. */
  232. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  233. u32 ndesc_skipped =
  234. ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
  235. u32 dma_len;
  236. while (ndesc_skipped) {
  237. dma_len = ndesc_skipped * sizeof(struct ath_desc);
  238. dd->dd_desc_len += dma_len;
  239. ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
  240. };
  241. }
  242. /* allocate descriptors */
  243. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  244. &dd->dd_desc_paddr, GFP_KERNEL);
  245. if (dd->dd_desc == NULL) {
  246. error = -ENOMEM;
  247. goto fail;
  248. }
  249. ds = dd->dd_desc;
  250. ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
  251. name, ds, (u32) dd->dd_desc_len,
  252. ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
  253. /* allocate buffers */
  254. bsize = sizeof(struct ath_buf) * nbuf;
  255. bf = kzalloc(bsize, GFP_KERNEL);
  256. if (bf == NULL) {
  257. error = -ENOMEM;
  258. goto fail2;
  259. }
  260. dd->dd_bufptr = bf;
  261. for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
  262. bf->bf_desc = ds;
  263. bf->bf_daddr = DS2PHYS(dd, ds);
  264. if (!(sc->sc_ah->caps.hw_caps &
  265. ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  266. /*
  267. * Skip descriptor addresses which can cause 4KB
  268. * boundary crossing (addr + length) with a 32 dword
  269. * descriptor fetch.
  270. */
  271. while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
  272. BUG_ON((caddr_t) bf->bf_desc >=
  273. ((caddr_t) dd->dd_desc +
  274. dd->dd_desc_len));
  275. ds += ndesc;
  276. bf->bf_desc = ds;
  277. bf->bf_daddr = DS2PHYS(dd, ds);
  278. }
  279. }
  280. list_add_tail(&bf->list, head);
  281. }
  282. return 0;
  283. fail2:
  284. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  285. dd->dd_desc_paddr);
  286. fail:
  287. memset(dd, 0, sizeof(*dd));
  288. return error;
  289. #undef ATH_DESC_4KB_BOUND_CHECK
  290. #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
  291. #undef DS2PHYS
  292. }
  293. static void ath9k_init_crypto(struct ath_softc *sc)
  294. {
  295. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  296. int i = 0;
  297. /* Get the hardware key cache size. */
  298. common->keymax = sc->sc_ah->caps.keycache_size;
  299. if (common->keymax > ATH_KEYMAX) {
  300. ath_print(common, ATH_DBG_ANY,
  301. "Warning, using only %u entries in %u key cache\n",
  302. ATH_KEYMAX, common->keymax);
  303. common->keymax = ATH_KEYMAX;
  304. }
  305. /*
  306. * Reset the key cache since some parts do not
  307. * reset the contents on initial power up.
  308. */
  309. for (i = 0; i < common->keymax; i++)
  310. ath9k_hw_keyreset(sc->sc_ah, (u16) i);
  311. if (ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_CIPHER,
  312. ATH9K_CIPHER_TKIP, NULL)) {
  313. /*
  314. * Whether we should enable h/w TKIP MIC.
  315. * XXX: if we don't support WME TKIP MIC, then we wouldn't
  316. * report WMM capable, so it's always safe to turn on
  317. * TKIP MIC in this case.
  318. */
  319. ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC, 0, 1, NULL);
  320. }
  321. /*
  322. * Check whether the separate key cache entries
  323. * are required to handle both tx+rx MIC keys.
  324. * With split mic keys the number of stations is limited
  325. * to 27 otherwise 59.
  326. */
  327. if (ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_CIPHER,
  328. ATH9K_CIPHER_TKIP, NULL)
  329. && ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_CIPHER,
  330. ATH9K_CIPHER_MIC, NULL)
  331. && ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_TKIP_SPLIT,
  332. 0, NULL))
  333. common->splitmic = 1;
  334. /* turn on mcast key search if possible */
  335. if (!ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
  336. (void)ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_MCAST_KEYSRCH,
  337. 1, 1, NULL);
  338. }
  339. static int ath9k_init_btcoex(struct ath_softc *sc)
  340. {
  341. int r, qnum;
  342. switch (sc->sc_ah->btcoex_hw.scheme) {
  343. case ATH_BTCOEX_CFG_NONE:
  344. break;
  345. case ATH_BTCOEX_CFG_2WIRE:
  346. ath9k_hw_btcoex_init_2wire(sc->sc_ah);
  347. break;
  348. case ATH_BTCOEX_CFG_3WIRE:
  349. ath9k_hw_btcoex_init_3wire(sc->sc_ah);
  350. r = ath_init_btcoex_timer(sc);
  351. if (r)
  352. return -1;
  353. qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
  354. ath9k_hw_init_btcoex_hw(sc->sc_ah, qnum);
  355. sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
  356. break;
  357. default:
  358. WARN_ON(1);
  359. break;
  360. }
  361. return 0;
  362. }
  363. static int ath9k_init_queues(struct ath_softc *sc)
  364. {
  365. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  366. int i = 0;
  367. for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
  368. sc->tx.hwq_map[i] = -1;
  369. sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
  370. if (sc->beacon.beaconq == -1) {
  371. ath_print(common, ATH_DBG_FATAL,
  372. "Unable to setup a beacon xmit queue\n");
  373. goto err;
  374. }
  375. sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
  376. if (sc->beacon.cabq == NULL) {
  377. ath_print(common, ATH_DBG_FATAL,
  378. "Unable to setup CAB xmit queue\n");
  379. goto err;
  380. }
  381. sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
  382. ath_cabq_update(sc);
  383. if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
  384. ath_print(common, ATH_DBG_FATAL,
  385. "Unable to setup xmit queue for BK traffic\n");
  386. goto err;
  387. }
  388. if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
  389. ath_print(common, ATH_DBG_FATAL,
  390. "Unable to setup xmit queue for BE traffic\n");
  391. goto err;
  392. }
  393. if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
  394. ath_print(common, ATH_DBG_FATAL,
  395. "Unable to setup xmit queue for VI traffic\n");
  396. goto err;
  397. }
  398. if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
  399. ath_print(common, ATH_DBG_FATAL,
  400. "Unable to setup xmit queue for VO traffic\n");
  401. goto err;
  402. }
  403. return 0;
  404. err:
  405. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  406. if (ATH_TXQ_SETUP(sc, i))
  407. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  408. return -EIO;
  409. }
  410. static void ath9k_init_channels_rates(struct ath_softc *sc)
  411. {
  412. if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes)) {
  413. sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
  414. sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
  415. sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
  416. ARRAY_SIZE(ath9k_2ghz_chantable);
  417. sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
  418. sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
  419. ARRAY_SIZE(ath9k_legacy_rates);
  420. }
  421. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
  422. sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
  423. sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
  424. sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
  425. ARRAY_SIZE(ath9k_5ghz_chantable);
  426. sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
  427. ath9k_legacy_rates + 4;
  428. sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
  429. ARRAY_SIZE(ath9k_legacy_rates) - 4;
  430. }
  431. }
  432. static void ath9k_init_misc(struct ath_softc *sc)
  433. {
  434. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  435. int i = 0;
  436. common->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
  437. setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
  438. sc->config.txpowlimit = ATH_TXPOWER_MAX;
  439. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  440. sc->sc_flags |= SC_OP_TXAGGR;
  441. sc->sc_flags |= SC_OP_RXAGGR;
  442. }
  443. common->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
  444. common->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
  445. ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
  446. sc->rx.defant = ath9k_hw_getdefantenna(sc->sc_ah);
  447. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  448. memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
  449. sc->beacon.slottime = ATH9K_SLOT_TIME_9;
  450. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  451. sc->beacon.bslot[i] = NULL;
  452. sc->beacon.bslot_aphy[i] = NULL;
  453. }
  454. }
  455. static int ath9k_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
  456. const struct ath_bus_ops *bus_ops)
  457. {
  458. struct ath_hw *ah = NULL;
  459. struct ath_common *common;
  460. int ret = 0, i;
  461. int csz = 0;
  462. ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
  463. if (!ah)
  464. return -ENOMEM;
  465. ah->hw_version.devid = devid;
  466. ah->hw_version.subsysid = subsysid;
  467. sc->sc_ah = ah;
  468. common = ath9k_hw_common(ah);
  469. common->ops = &ath9k_common_ops;
  470. common->bus_ops = bus_ops;
  471. common->ah = ah;
  472. common->hw = sc->hw;
  473. common->priv = sc;
  474. common->debug_mask = ath9k_debug;
  475. spin_lock_init(&sc->wiphy_lock);
  476. spin_lock_init(&sc->sc_resetlock);
  477. spin_lock_init(&sc->sc_serial_rw);
  478. spin_lock_init(&sc->sc_pm_lock);
  479. mutex_init(&sc->mutex);
  480. tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
  481. tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
  482. (unsigned long)sc);
  483. /*
  484. * Cache line size is used to size and align various
  485. * structures used to communicate with the hardware.
  486. */
  487. ath_read_cachesize(common, &csz);
  488. common->cachelsz = csz << 2; /* convert to bytes */
  489. ret = ath9k_hw_init(ah);
  490. if (ret) {
  491. ath_print(common, ATH_DBG_FATAL,
  492. "Unable to initialize hardware; "
  493. "initialization status: %d\n", ret);
  494. goto err_hw;
  495. }
  496. ret = ath9k_init_debug(ah);
  497. if (ret) {
  498. ath_print(common, ATH_DBG_FATAL,
  499. "Unable to create debugfs files\n");
  500. goto err_debug;
  501. }
  502. ret = ath9k_init_queues(sc);
  503. if (ret)
  504. goto err_queues;
  505. ret = ath9k_init_btcoex(sc);
  506. if (ret)
  507. goto err_btcoex;
  508. ath9k_init_crypto(sc);
  509. ath9k_init_channels_rates(sc);
  510. ath9k_init_misc(sc);
  511. return 0;
  512. err_btcoex:
  513. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  514. if (ATH_TXQ_SETUP(sc, i))
  515. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  516. err_queues:
  517. ath9k_exit_debug(ah);
  518. err_debug:
  519. ath9k_hw_deinit(ah);
  520. err_hw:
  521. tasklet_kill(&sc->intr_tq);
  522. tasklet_kill(&sc->bcon_tasklet);
  523. kfree(ah);
  524. sc->sc_ah = NULL;
  525. return ret;
  526. }
  527. void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
  528. {
  529. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  530. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  531. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  532. IEEE80211_HW_SIGNAL_DBM |
  533. IEEE80211_HW_SUPPORTS_PS |
  534. IEEE80211_HW_PS_NULLFUNC_STACK |
  535. IEEE80211_HW_SPECTRUM_MGMT |
  536. IEEE80211_HW_REPORTS_TX_ACK_STATUS;
  537. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  538. hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
  539. if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
  540. hw->flags |= IEEE80211_HW_MFP_CAPABLE;
  541. hw->wiphy->interface_modes =
  542. BIT(NL80211_IFTYPE_AP) |
  543. BIT(NL80211_IFTYPE_STATION) |
  544. BIT(NL80211_IFTYPE_ADHOC) |
  545. BIT(NL80211_IFTYPE_MESH_POINT);
  546. hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  547. hw->queues = 4;
  548. hw->max_rates = 4;
  549. hw->channel_change_time = 5000;
  550. hw->max_listen_interval = 10;
  551. hw->max_rate_tries = 10;
  552. hw->sta_data_size = sizeof(struct ath_node);
  553. hw->vif_data_size = sizeof(struct ath_vif);
  554. hw->rate_control_algorithm = "ath9k_rate_control";
  555. if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes))
  556. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  557. &sc->sbands[IEEE80211_BAND_2GHZ];
  558. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  559. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  560. &sc->sbands[IEEE80211_BAND_5GHZ];
  561. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  562. if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes))
  563. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
  564. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  565. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
  566. }
  567. SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
  568. }
  569. int ath9k_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
  570. const struct ath_bus_ops *bus_ops)
  571. {
  572. struct ieee80211_hw *hw = sc->hw;
  573. struct ath_common *common;
  574. struct ath_hw *ah;
  575. int error = 0;
  576. struct ath_regulatory *reg;
  577. /* Bring up device */
  578. error = ath9k_init_softc(devid, sc, subsysid, bus_ops);
  579. if (error != 0)
  580. goto error_init;
  581. ah = sc->sc_ah;
  582. common = ath9k_hw_common(ah);
  583. ath9k_set_hw_capab(sc, hw);
  584. /* Initialize regulatory */
  585. error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
  586. ath9k_reg_notifier);
  587. if (error)
  588. goto error_regd;
  589. reg = &common->regulatory;
  590. /* Setup TX DMA */
  591. error = ath_tx_init(sc, ATH_TXBUF);
  592. if (error != 0)
  593. goto error_tx;
  594. /* Setup RX DMA */
  595. error = ath_rx_init(sc, ATH_RXBUF);
  596. if (error != 0)
  597. goto error_rx;
  598. /* Register with mac80211 */
  599. error = ieee80211_register_hw(hw);
  600. if (error)
  601. goto error_register;
  602. /* Handle world regulatory */
  603. if (!ath_is_world_regd(reg)) {
  604. error = regulatory_hint(hw->wiphy, reg->alpha2);
  605. if (error)
  606. goto error_world;
  607. }
  608. INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
  609. INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
  610. sc->wiphy_scheduler_int = msecs_to_jiffies(500);
  611. ath_init_leds(sc);
  612. ath_start_rfkill_poll(sc);
  613. return 0;
  614. error_world:
  615. ieee80211_unregister_hw(hw);
  616. error_register:
  617. ath_rx_cleanup(sc);
  618. error_rx:
  619. ath_tx_cleanup(sc);
  620. error_tx:
  621. /* Nothing */
  622. error_regd:
  623. ath9k_deinit_softc(sc);
  624. error_init:
  625. return error;
  626. }
  627. /*****************************/
  628. /* De-Initialization */
  629. /*****************************/
  630. static void ath9k_deinit_softc(struct ath_softc *sc)
  631. {
  632. int i = 0;
  633. if ((sc->btcoex.no_stomp_timer) &&
  634. sc->sc_ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
  635. ath_gen_timer_free(sc->sc_ah, sc->btcoex.no_stomp_timer);
  636. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  637. if (ATH_TXQ_SETUP(sc, i))
  638. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  639. ath9k_exit_debug(sc->sc_ah);
  640. ath9k_hw_deinit(sc->sc_ah);
  641. tasklet_kill(&sc->intr_tq);
  642. tasklet_kill(&sc->bcon_tasklet);
  643. }
  644. void ath9k_deinit_device(struct ath_softc *sc)
  645. {
  646. struct ieee80211_hw *hw = sc->hw;
  647. int i = 0;
  648. ath9k_ps_wakeup(sc);
  649. wiphy_rfkill_stop_polling(sc->hw->wiphy);
  650. ath_deinit_leds(sc);
  651. for (i = 0; i < sc->num_sec_wiphy; i++) {
  652. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  653. if (aphy == NULL)
  654. continue;
  655. sc->sec_wiphy[i] = NULL;
  656. ieee80211_unregister_hw(aphy->hw);
  657. ieee80211_free_hw(aphy->hw);
  658. }
  659. kfree(sc->sec_wiphy);
  660. ieee80211_unregister_hw(hw);
  661. ath_rx_cleanup(sc);
  662. ath_tx_cleanup(sc);
  663. ath9k_deinit_softc(sc);
  664. }
  665. void ath_descdma_cleanup(struct ath_softc *sc,
  666. struct ath_descdma *dd,
  667. struct list_head *head)
  668. {
  669. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  670. dd->dd_desc_paddr);
  671. INIT_LIST_HEAD(head);
  672. kfree(dd->dd_bufptr);
  673. memset(dd, 0, sizeof(*dd));
  674. }
  675. /************************/
  676. /* Module Hooks */
  677. /************************/
  678. static int __init ath9k_init(void)
  679. {
  680. int error;
  681. /* Register rate control algorithm */
  682. error = ath_rate_control_register();
  683. if (error != 0) {
  684. printk(KERN_ERR
  685. "ath9k: Unable to register rate control "
  686. "algorithm: %d\n",
  687. error);
  688. goto err_out;
  689. }
  690. error = ath9k_debug_create_root();
  691. if (error) {
  692. printk(KERN_ERR
  693. "ath9k: Unable to create debugfs root: %d\n",
  694. error);
  695. goto err_rate_unregister;
  696. }
  697. error = ath_pci_init();
  698. if (error < 0) {
  699. printk(KERN_ERR
  700. "ath9k: No PCI devices found, driver not installed.\n");
  701. error = -ENODEV;
  702. goto err_remove_root;
  703. }
  704. error = ath_ahb_init();
  705. if (error < 0) {
  706. error = -ENODEV;
  707. goto err_pci_exit;
  708. }
  709. return 0;
  710. err_pci_exit:
  711. ath_pci_exit();
  712. err_remove_root:
  713. ath9k_debug_remove_root();
  714. err_rate_unregister:
  715. ath_rate_control_unregister();
  716. err_out:
  717. return error;
  718. }
  719. module_init(ath9k_init);
  720. static void __exit ath9k_exit(void)
  721. {
  722. ath_ahb_exit();
  723. ath_pci_exit();
  724. ath9k_debug_remove_root();
  725. ath_rate_control_unregister();
  726. printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
  727. }
  728. module_exit(ath9k_exit);