eeprom.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include "ath5k.h"
  23. #include "reg.h"
  24. #include "debug.h"
  25. #include "base.h"
  26. /*
  27. * Read from eeprom
  28. */
  29. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  30. {
  31. u32 status, timeout;
  32. ATH5K_TRACE(ah->ah_sc);
  33. /*
  34. * Initialize EEPROM access
  35. */
  36. if (ah->ah_version == AR5K_AR5210) {
  37. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  38. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  39. } else {
  40. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  41. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  42. AR5K_EEPROM_CMD_READ);
  43. }
  44. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  45. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  46. if (status & AR5K_EEPROM_STAT_RDDONE) {
  47. if (status & AR5K_EEPROM_STAT_RDERR)
  48. return -EIO;
  49. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  50. 0xffff);
  51. return 0;
  52. }
  53. udelay(15);
  54. }
  55. return -ETIMEDOUT;
  56. }
  57. /*
  58. * Translate binary channel representation in EEPROM to frequency
  59. */
  60. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  61. unsigned int mode)
  62. {
  63. u16 val;
  64. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  65. return bin;
  66. if (mode == AR5K_EEPROM_MODE_11A) {
  67. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  68. val = (5 * bin) + 4800;
  69. else
  70. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  71. (bin * 10) + 5100;
  72. } else {
  73. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  74. val = bin + 2300;
  75. else
  76. val = bin + 2400;
  77. }
  78. return val;
  79. }
  80. /*
  81. * Initialize eeprom & capabilities structs
  82. */
  83. static int
  84. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  85. {
  86. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  87. int ret;
  88. u16 val;
  89. u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  90. /*
  91. * Read values from EEPROM and store them in the capability structure
  92. */
  93. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  94. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  95. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  96. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  97. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  98. /* Return if we have an old EEPROM */
  99. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  100. return 0;
  101. /*
  102. * Validate the checksum of the EEPROM date. There are some
  103. * devices with invalid EEPROMs.
  104. */
  105. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  106. if (val) {
  107. eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  108. AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
  109. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
  110. eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
  111. /*
  112. * Fail safe check to prevent stupid loops due
  113. * to busted EEPROMs. XXX: This value is likely too
  114. * big still, waiting on a better value.
  115. */
  116. if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
  117. ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
  118. "%d (0x%04x) max expected: %d (0x%04x)\n",
  119. eep_max, eep_max,
  120. 3 * AR5K_EEPROM_INFO_MAX,
  121. 3 * AR5K_EEPROM_INFO_MAX);
  122. return -EIO;
  123. }
  124. }
  125. for (cksum = 0, offset = 0; offset < eep_max; offset++) {
  126. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  127. cksum ^= val;
  128. }
  129. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  130. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
  131. "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
  132. cksum, eep_max,
  133. eep_max == AR5K_EEPROM_INFO_MAX ?
  134. "default size" : "custom size");
  135. return -EIO;
  136. }
  137. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  138. ee_ant_gain);
  139. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  140. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  141. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  142. /* XXX: Don't know which versions include these two */
  143. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  144. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  145. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  146. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  147. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  148. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  149. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  150. }
  151. }
  152. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  153. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  154. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  155. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  156. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  157. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  158. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  159. }
  160. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  161. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  162. ee->ee_is_hb63 = true;
  163. else
  164. ee->ee_is_hb63 = false;
  165. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  166. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  167. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  168. /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
  169. * and enable serdes programming if needed.
  170. *
  171. * XXX: Serdes values seem to be fixed so
  172. * no need to read them here, we write them
  173. * during ath5k_hw_attach */
  174. AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
  175. ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
  176. true : false;
  177. return 0;
  178. }
  179. /*
  180. * Read antenna infos from eeprom
  181. */
  182. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  183. unsigned int mode)
  184. {
  185. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  186. u32 o = *offset;
  187. u16 val;
  188. int ret, i = 0;
  189. AR5K_EEPROM_READ(o++, val);
  190. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  191. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  192. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  193. AR5K_EEPROM_READ(o++, val);
  194. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  195. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  196. ee->ee_ant_control[mode][i++] = val & 0x3f;
  197. AR5K_EEPROM_READ(o++, val);
  198. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  199. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  200. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  201. AR5K_EEPROM_READ(o++, val);
  202. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  203. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  204. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  205. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  206. AR5K_EEPROM_READ(o++, val);
  207. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  208. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  209. ee->ee_ant_control[mode][i++] = val & 0x3f;
  210. /* Get antenna switch tables */
  211. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  212. (ee->ee_ant_control[mode][0] << 4);
  213. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  214. ee->ee_ant_control[mode][1] |
  215. (ee->ee_ant_control[mode][2] << 6) |
  216. (ee->ee_ant_control[mode][3] << 12) |
  217. (ee->ee_ant_control[mode][4] << 18) |
  218. (ee->ee_ant_control[mode][5] << 24);
  219. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  220. ee->ee_ant_control[mode][6] |
  221. (ee->ee_ant_control[mode][7] << 6) |
  222. (ee->ee_ant_control[mode][8] << 12) |
  223. (ee->ee_ant_control[mode][9] << 18) |
  224. (ee->ee_ant_control[mode][10] << 24);
  225. /* return new offset */
  226. *offset = o;
  227. return 0;
  228. }
  229. /*
  230. * Read supported modes and some mode-specific calibration data
  231. * from eeprom
  232. */
  233. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  234. unsigned int mode)
  235. {
  236. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  237. u32 o = *offset;
  238. u16 val;
  239. int ret;
  240. ee->ee_n_piers[mode] = 0;
  241. AR5K_EEPROM_READ(o++, val);
  242. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  243. switch(mode) {
  244. case AR5K_EEPROM_MODE_11A:
  245. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  246. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  247. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  248. AR5K_EEPROM_READ(o++, val);
  249. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  250. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  251. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  252. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  253. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  254. ee->ee_db[mode][0] = val & 0x7;
  255. break;
  256. case AR5K_EEPROM_MODE_11G:
  257. case AR5K_EEPROM_MODE_11B:
  258. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  259. ee->ee_db[mode][1] = val & 0x7;
  260. break;
  261. }
  262. AR5K_EEPROM_READ(o++, val);
  263. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  264. ee->ee_thr_62[mode] = val & 0xff;
  265. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  266. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  267. AR5K_EEPROM_READ(o++, val);
  268. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  269. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  270. AR5K_EEPROM_READ(o++, val);
  271. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  272. if ((val & 0xff) & 0x80)
  273. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  274. else
  275. ee->ee_noise_floor_thr[mode] = val & 0xff;
  276. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  277. ee->ee_noise_floor_thr[mode] =
  278. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  279. AR5K_EEPROM_READ(o++, val);
  280. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  281. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  282. ee->ee_xpd[mode] = val & 0x1;
  283. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
  284. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  285. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  286. AR5K_EEPROM_READ(o++, val);
  287. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  288. if (mode == AR5K_EEPROM_MODE_11A)
  289. ee->ee_xr_power[mode] = val & 0x3f;
  290. else {
  291. ee->ee_ob[mode][0] = val & 0x7;
  292. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  293. }
  294. }
  295. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  296. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  297. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  298. } else {
  299. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  300. AR5K_EEPROM_READ(o++, val);
  301. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  302. if (mode == AR5K_EEPROM_MODE_11G) {
  303. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  304. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  305. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  306. }
  307. }
  308. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  309. mode == AR5K_EEPROM_MODE_11A) {
  310. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  311. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  312. }
  313. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  314. goto done;
  315. /* Note: >= v5 have bg freq piers on another location
  316. * so these freq piers are ignored for >= v5 (should be 0xff
  317. * anyway) */
  318. switch(mode) {
  319. case AR5K_EEPROM_MODE_11A:
  320. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  321. break;
  322. AR5K_EEPROM_READ(o++, val);
  323. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  324. break;
  325. case AR5K_EEPROM_MODE_11B:
  326. AR5K_EEPROM_READ(o++, val);
  327. ee->ee_pwr_cal_b[0].freq =
  328. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  329. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  330. ee->ee_n_piers[mode]++;
  331. ee->ee_pwr_cal_b[1].freq =
  332. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  333. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  334. ee->ee_n_piers[mode]++;
  335. AR5K_EEPROM_READ(o++, val);
  336. ee->ee_pwr_cal_b[2].freq =
  337. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  338. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  339. ee->ee_n_piers[mode]++;
  340. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  341. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  342. break;
  343. case AR5K_EEPROM_MODE_11G:
  344. AR5K_EEPROM_READ(o++, val);
  345. ee->ee_pwr_cal_g[0].freq =
  346. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  347. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  348. ee->ee_n_piers[mode]++;
  349. ee->ee_pwr_cal_g[1].freq =
  350. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  351. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  352. ee->ee_n_piers[mode]++;
  353. AR5K_EEPROM_READ(o++, val);
  354. ee->ee_turbo_max_power[mode] = val & 0x7f;
  355. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  356. AR5K_EEPROM_READ(o++, val);
  357. ee->ee_pwr_cal_g[2].freq =
  358. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  359. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  360. ee->ee_n_piers[mode]++;
  361. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  362. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  363. AR5K_EEPROM_READ(o++, val);
  364. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  365. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  366. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  367. AR5K_EEPROM_READ(o++, val);
  368. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  369. }
  370. break;
  371. }
  372. /*
  373. * Read turbo mode information on newer EEPROM versions
  374. */
  375. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  376. goto done;
  377. switch (mode){
  378. case AR5K_EEPROM_MODE_11A:
  379. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  380. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  381. AR5K_EEPROM_READ(o++, val);
  382. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  383. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  384. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  385. AR5K_EEPROM_READ(o++, val);
  386. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  387. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  388. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  389. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  390. break;
  391. case AR5K_EEPROM_MODE_11G:
  392. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  393. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  394. AR5K_EEPROM_READ(o++, val);
  395. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  396. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  397. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  398. AR5K_EEPROM_READ(o++, val);
  399. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  400. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  401. break;
  402. }
  403. done:
  404. /* return new offset */
  405. *offset = o;
  406. return 0;
  407. }
  408. /* Read mode-specific data (except power calibration data) */
  409. static int
  410. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  411. {
  412. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  413. u32 mode_offset[3];
  414. unsigned int mode;
  415. u32 offset;
  416. int ret;
  417. /*
  418. * Get values for all modes
  419. */
  420. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  421. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  422. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  423. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  424. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  425. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  426. offset = mode_offset[mode];
  427. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  428. if (ret)
  429. return ret;
  430. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  431. if (ret)
  432. return ret;
  433. }
  434. /* override for older eeprom versions for better performance */
  435. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  436. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  437. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  438. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  439. }
  440. return 0;
  441. }
  442. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  443. * frequency mask) */
  444. static inline int
  445. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  446. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  447. {
  448. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  449. int o = *offset;
  450. int i = 0;
  451. u8 freq1, freq2;
  452. int ret;
  453. u16 val;
  454. ee->ee_n_piers[mode] = 0;
  455. while(i < max) {
  456. AR5K_EEPROM_READ(o++, val);
  457. freq1 = val & 0xff;
  458. if (!freq1)
  459. break;
  460. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  461. freq1, mode);
  462. ee->ee_n_piers[mode]++;
  463. freq2 = (val >> 8) & 0xff;
  464. if (!freq2)
  465. break;
  466. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  467. freq2, mode);
  468. ee->ee_n_piers[mode]++;
  469. }
  470. /* return new offset */
  471. *offset = o;
  472. return 0;
  473. }
  474. /* Read frequency piers for 802.11a */
  475. static int
  476. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  477. {
  478. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  479. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  480. int i, ret;
  481. u16 val;
  482. u8 mask;
  483. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  484. ath5k_eeprom_read_freq_list(ah, &offset,
  485. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  486. AR5K_EEPROM_MODE_11A);
  487. } else {
  488. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  489. AR5K_EEPROM_READ(offset++, val);
  490. pcal[0].freq = (val >> 9) & mask;
  491. pcal[1].freq = (val >> 2) & mask;
  492. pcal[2].freq = (val << 5) & mask;
  493. AR5K_EEPROM_READ(offset++, val);
  494. pcal[2].freq |= (val >> 11) & 0x1f;
  495. pcal[3].freq = (val >> 4) & mask;
  496. pcal[4].freq = (val << 3) & mask;
  497. AR5K_EEPROM_READ(offset++, val);
  498. pcal[4].freq |= (val >> 13) & 0x7;
  499. pcal[5].freq = (val >> 6) & mask;
  500. pcal[6].freq = (val << 1) & mask;
  501. AR5K_EEPROM_READ(offset++, val);
  502. pcal[6].freq |= (val >> 15) & 0x1;
  503. pcal[7].freq = (val >> 8) & mask;
  504. pcal[8].freq = (val >> 1) & mask;
  505. pcal[9].freq = (val << 6) & mask;
  506. AR5K_EEPROM_READ(offset++, val);
  507. pcal[9].freq |= (val >> 10) & 0x3f;
  508. /* Fixed number of piers */
  509. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  510. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  511. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  512. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  513. }
  514. }
  515. return 0;
  516. }
  517. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  518. static inline int
  519. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  520. {
  521. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  522. struct ath5k_chan_pcal_info *pcal;
  523. switch(mode) {
  524. case AR5K_EEPROM_MODE_11B:
  525. pcal = ee->ee_pwr_cal_b;
  526. break;
  527. case AR5K_EEPROM_MODE_11G:
  528. pcal = ee->ee_pwr_cal_g;
  529. break;
  530. default:
  531. return -EINVAL;
  532. }
  533. ath5k_eeprom_read_freq_list(ah, &offset,
  534. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  535. mode);
  536. return 0;
  537. }
  538. /*
  539. * Read power calibration for RF5111 chips
  540. *
  541. * For RF5111 we have an XPD -eXternal Power Detector- curve
  542. * for each calibrated channel. Each curve has 0,5dB Power steps
  543. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  544. * exponential function. To recreate the curve we read 11 points
  545. * here and interpolate later.
  546. */
  547. /* Used to match PCDAC steps with power values on RF5111 chips
  548. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  549. * steps that match with the power values we read from eeprom. On
  550. * older eeprom versions (< 3.2) these steps are equaly spaced at
  551. * 10% of the pcdac curve -until the curve reaches it's maximum-
  552. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  553. * these 11 steps are spaced in a different way. This function returns
  554. * the pcdac steps based on eeprom version and curve min/max so that we
  555. * can have pcdac/pwr points.
  556. */
  557. static inline void
  558. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  559. {
  560. static const u16 intercepts3[] =
  561. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  562. static const u16 intercepts3_2[] =
  563. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  564. const u16 *ip;
  565. int i;
  566. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  567. ip = intercepts3_2;
  568. else
  569. ip = intercepts3;
  570. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  571. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  572. }
  573. /* Convert RF5111 specific data to generic raw data
  574. * used by interpolation code */
  575. static int
  576. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  577. struct ath5k_chan_pcal_info *chinfo)
  578. {
  579. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  580. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  581. struct ath5k_pdgain_info *pd;
  582. u8 pier, point, idx;
  583. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  584. /* Fill raw data for each calibration pier */
  585. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  586. pcinfo = &chinfo[pier].rf5111_info;
  587. /* Allocate pd_curves for this cal pier */
  588. chinfo[pier].pd_curves =
  589. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  590. sizeof(struct ath5k_pdgain_info),
  591. GFP_KERNEL);
  592. if (!chinfo[pier].pd_curves)
  593. return -ENOMEM;
  594. /* Only one curve for RF5111
  595. * find out which one and place
  596. * in in pd_curves.
  597. * Note: ee_x_gain is reversed here */
  598. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  599. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  600. pdgain_idx[0] = idx;
  601. break;
  602. }
  603. }
  604. ee->ee_pd_gains[mode] = 1;
  605. pd = &chinfo[pier].pd_curves[idx];
  606. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  607. /* Allocate pd points for this curve */
  608. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  609. sizeof(u8), GFP_KERNEL);
  610. if (!pd->pd_step)
  611. return -ENOMEM;
  612. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  613. sizeof(s16), GFP_KERNEL);
  614. if (!pd->pd_pwr)
  615. return -ENOMEM;
  616. /* Fill raw dataset
  617. * (convert power to 0.25dB units
  618. * for RF5112 combatibility) */
  619. for (point = 0; point < pd->pd_points; point++) {
  620. /* Absolute values */
  621. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  622. /* Already sorted */
  623. pd->pd_step[point] = pcinfo->pcdac[point];
  624. }
  625. /* Set min/max pwr */
  626. chinfo[pier].min_pwr = pd->pd_pwr[0];
  627. chinfo[pier].max_pwr = pd->pd_pwr[10];
  628. }
  629. return 0;
  630. }
  631. /* Parse EEPROM data */
  632. static int
  633. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  634. {
  635. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  636. struct ath5k_chan_pcal_info *pcal;
  637. int offset, ret;
  638. int i;
  639. u16 val;
  640. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  641. switch(mode) {
  642. case AR5K_EEPROM_MODE_11A:
  643. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  644. return 0;
  645. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  646. offset + AR5K_EEPROM_GROUP1_OFFSET);
  647. if (ret < 0)
  648. return ret;
  649. offset += AR5K_EEPROM_GROUP2_OFFSET;
  650. pcal = ee->ee_pwr_cal_a;
  651. break;
  652. case AR5K_EEPROM_MODE_11B:
  653. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  654. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  655. return 0;
  656. pcal = ee->ee_pwr_cal_b;
  657. offset += AR5K_EEPROM_GROUP3_OFFSET;
  658. /* fixed piers */
  659. pcal[0].freq = 2412;
  660. pcal[1].freq = 2447;
  661. pcal[2].freq = 2484;
  662. ee->ee_n_piers[mode] = 3;
  663. break;
  664. case AR5K_EEPROM_MODE_11G:
  665. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  666. return 0;
  667. pcal = ee->ee_pwr_cal_g;
  668. offset += AR5K_EEPROM_GROUP4_OFFSET;
  669. /* fixed piers */
  670. pcal[0].freq = 2312;
  671. pcal[1].freq = 2412;
  672. pcal[2].freq = 2484;
  673. ee->ee_n_piers[mode] = 3;
  674. break;
  675. default:
  676. return -EINVAL;
  677. }
  678. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  679. struct ath5k_chan_pcal_info_rf5111 *cdata =
  680. &pcal[i].rf5111_info;
  681. AR5K_EEPROM_READ(offset++, val);
  682. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  683. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  684. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  685. AR5K_EEPROM_READ(offset++, val);
  686. cdata->pwr[0] |= ((val >> 14) & 0x3);
  687. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  688. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  689. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  690. AR5K_EEPROM_READ(offset++, val);
  691. cdata->pwr[3] |= ((val >> 12) & 0xf);
  692. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  693. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  694. AR5K_EEPROM_READ(offset++, val);
  695. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  696. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  697. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  698. AR5K_EEPROM_READ(offset++, val);
  699. cdata->pwr[8] |= ((val >> 14) & 0x3);
  700. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  701. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  702. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  703. cdata->pcdac_max, cdata->pcdac);
  704. }
  705. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  706. }
  707. /*
  708. * Read power calibration for RF5112 chips
  709. *
  710. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  711. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  712. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  713. * power steps on x axis and PCDAC steps on y axis and looks like a
  714. * linear function. To recreate the curve and pass the power values
  715. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  716. * and 3 points for xpd 3 (higher gain -> lower power) here and
  717. * interpolate later.
  718. *
  719. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  720. */
  721. /* Convert RF5112 specific data to generic raw data
  722. * used by interpolation code */
  723. static int
  724. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  725. struct ath5k_chan_pcal_info *chinfo)
  726. {
  727. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  728. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  729. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  730. unsigned int pier, pdg, point;
  731. /* Fill raw data for each calibration pier */
  732. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  733. pcinfo = &chinfo[pier].rf5112_info;
  734. /* Allocate pd_curves for this cal pier */
  735. chinfo[pier].pd_curves =
  736. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  737. sizeof(struct ath5k_pdgain_info),
  738. GFP_KERNEL);
  739. if (!chinfo[pier].pd_curves)
  740. return -ENOMEM;
  741. /* Fill pd_curves */
  742. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  743. u8 idx = pdgain_idx[pdg];
  744. struct ath5k_pdgain_info *pd =
  745. &chinfo[pier].pd_curves[idx];
  746. /* Lowest gain curve (max power) */
  747. if (pdg == 0) {
  748. /* One more point for better accuracy */
  749. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  750. /* Allocate pd points for this curve */
  751. pd->pd_step = kcalloc(pd->pd_points,
  752. sizeof(u8), GFP_KERNEL);
  753. if (!pd->pd_step)
  754. return -ENOMEM;
  755. pd->pd_pwr = kcalloc(pd->pd_points,
  756. sizeof(s16), GFP_KERNEL);
  757. if (!pd->pd_pwr)
  758. return -ENOMEM;
  759. /* Fill raw dataset
  760. * (all power levels are in 0.25dB units) */
  761. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  762. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  763. for (point = 1; point < pd->pd_points;
  764. point++) {
  765. /* Absolute values */
  766. pd->pd_pwr[point] =
  767. pcinfo->pwr_x0[point];
  768. /* Deltas */
  769. pd->pd_step[point] =
  770. pd->pd_step[point - 1] +
  771. pcinfo->pcdac_x0[point];
  772. }
  773. /* Set min power for this frequency */
  774. chinfo[pier].min_pwr = pd->pd_pwr[0];
  775. /* Highest gain curve (min power) */
  776. } else if (pdg == 1) {
  777. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  778. /* Allocate pd points for this curve */
  779. pd->pd_step = kcalloc(pd->pd_points,
  780. sizeof(u8), GFP_KERNEL);
  781. if (!pd->pd_step)
  782. return -ENOMEM;
  783. pd->pd_pwr = kcalloc(pd->pd_points,
  784. sizeof(s16), GFP_KERNEL);
  785. if (!pd->pd_pwr)
  786. return -ENOMEM;
  787. /* Fill raw dataset
  788. * (all power levels are in 0.25dB units) */
  789. for (point = 0; point < pd->pd_points;
  790. point++) {
  791. /* Absolute values */
  792. pd->pd_pwr[point] =
  793. pcinfo->pwr_x3[point];
  794. /* Fixed points */
  795. pd->pd_step[point] =
  796. pcinfo->pcdac_x3[point];
  797. }
  798. /* Since we have a higher gain curve
  799. * override min power */
  800. chinfo[pier].min_pwr = pd->pd_pwr[0];
  801. }
  802. }
  803. }
  804. return 0;
  805. }
  806. /* Parse EEPROM data */
  807. static int
  808. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  809. {
  810. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  811. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  812. struct ath5k_chan_pcal_info *gen_chan_info;
  813. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  814. u32 offset;
  815. u8 i, c;
  816. u16 val;
  817. int ret;
  818. u8 pd_gains = 0;
  819. /* Count how many curves we have and
  820. * identify them (which one of the 4
  821. * available curves we have on each count).
  822. * Curves are stored from lower (x0) to
  823. * higher (x3) gain */
  824. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  825. /* ee_x_gain[mode] is x gain mask */
  826. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  827. pdgain_idx[pd_gains++] = i;
  828. }
  829. ee->ee_pd_gains[mode] = pd_gains;
  830. if (pd_gains == 0 || pd_gains > 2)
  831. return -EINVAL;
  832. switch (mode) {
  833. case AR5K_EEPROM_MODE_11A:
  834. /*
  835. * Read 5GHz EEPROM channels
  836. */
  837. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  838. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  839. offset += AR5K_EEPROM_GROUP2_OFFSET;
  840. gen_chan_info = ee->ee_pwr_cal_a;
  841. break;
  842. case AR5K_EEPROM_MODE_11B:
  843. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  844. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  845. offset += AR5K_EEPROM_GROUP3_OFFSET;
  846. /* NB: frequency piers parsed during mode init */
  847. gen_chan_info = ee->ee_pwr_cal_b;
  848. break;
  849. case AR5K_EEPROM_MODE_11G:
  850. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  851. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  852. offset += AR5K_EEPROM_GROUP4_OFFSET;
  853. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  854. offset += AR5K_EEPROM_GROUP2_OFFSET;
  855. /* NB: frequency piers parsed during mode init */
  856. gen_chan_info = ee->ee_pwr_cal_g;
  857. break;
  858. default:
  859. return -EINVAL;
  860. }
  861. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  862. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  863. /* Power values in quarter dB
  864. * for the lower xpd gain curve
  865. * (0 dBm -> higher output power) */
  866. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  867. AR5K_EEPROM_READ(offset++, val);
  868. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  869. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  870. }
  871. /* PCDAC steps
  872. * corresponding to the above power
  873. * measurements */
  874. AR5K_EEPROM_READ(offset++, val);
  875. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  876. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  877. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  878. /* Power values in quarter dB
  879. * for the higher xpd gain curve
  880. * (18 dBm -> lower output power) */
  881. AR5K_EEPROM_READ(offset++, val);
  882. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  883. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  884. AR5K_EEPROM_READ(offset++, val);
  885. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  886. /* PCDAC steps
  887. * corresponding to the above power
  888. * measurements (fixed) */
  889. chan_pcal_info->pcdac_x3[0] = 20;
  890. chan_pcal_info->pcdac_x3[1] = 35;
  891. chan_pcal_info->pcdac_x3[2] = 63;
  892. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  893. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  894. /* Last xpd0 power level is also channel maximum */
  895. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  896. } else {
  897. chan_pcal_info->pcdac_x0[0] = 1;
  898. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  899. }
  900. }
  901. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  902. }
  903. /*
  904. * Read power calibration for RF2413 chips
  905. *
  906. * For RF2413 we have a Power to PDDAC table (Power Detector)
  907. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  908. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  909. * axis and looks like an exponential function like the RF5111 curve.
  910. *
  911. * To recreate the curves we read here the points and interpolate
  912. * later. Note that in most cases only 2 (higher and lower) curves are
  913. * used (like RF5112) but vendors have the oportunity to include all
  914. * 4 curves on eeprom. The final curve (higher power) has an extra
  915. * point for better accuracy like RF5112.
  916. */
  917. /* For RF2413 power calibration data doesn't start on a fixed location and
  918. * if a mode is not supported, it's section is missing -not zeroed-.
  919. * So we need to calculate the starting offset for each section by using
  920. * these two functions */
  921. /* Return the size of each section based on the mode and the number of pd
  922. * gains available (maximum 4). */
  923. static inline unsigned int
  924. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  925. {
  926. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  927. unsigned int sz;
  928. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  929. sz *= ee->ee_n_piers[mode];
  930. return sz;
  931. }
  932. /* Return the starting offset for a section based on the modes supported
  933. * and each section's size. */
  934. static unsigned int
  935. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  936. {
  937. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  938. switch(mode) {
  939. case AR5K_EEPROM_MODE_11G:
  940. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  941. offset += ath5k_pdgains_size_2413(ee,
  942. AR5K_EEPROM_MODE_11B) +
  943. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  944. /* fall through */
  945. case AR5K_EEPROM_MODE_11B:
  946. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  947. offset += ath5k_pdgains_size_2413(ee,
  948. AR5K_EEPROM_MODE_11A) +
  949. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  950. /* fall through */
  951. case AR5K_EEPROM_MODE_11A:
  952. break;
  953. default:
  954. break;
  955. }
  956. return offset;
  957. }
  958. /* Convert RF2413 specific data to generic raw data
  959. * used by interpolation code */
  960. static int
  961. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  962. struct ath5k_chan_pcal_info *chinfo)
  963. {
  964. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  965. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  966. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  967. unsigned int pier, pdg, point;
  968. /* Fill raw data for each calibration pier */
  969. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  970. pcinfo = &chinfo[pier].rf2413_info;
  971. /* Allocate pd_curves for this cal pier */
  972. chinfo[pier].pd_curves =
  973. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  974. sizeof(struct ath5k_pdgain_info),
  975. GFP_KERNEL);
  976. if (!chinfo[pier].pd_curves)
  977. return -ENOMEM;
  978. /* Fill pd_curves */
  979. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  980. u8 idx = pdgain_idx[pdg];
  981. struct ath5k_pdgain_info *pd =
  982. &chinfo[pier].pd_curves[idx];
  983. /* One more point for the highest power
  984. * curve (lowest gain) */
  985. if (pdg == ee->ee_pd_gains[mode] - 1)
  986. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  987. else
  988. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  989. /* Allocate pd points for this curve */
  990. pd->pd_step = kcalloc(pd->pd_points,
  991. sizeof(u8), GFP_KERNEL);
  992. if (!pd->pd_step)
  993. return -ENOMEM;
  994. pd->pd_pwr = kcalloc(pd->pd_points,
  995. sizeof(s16), GFP_KERNEL);
  996. if (!pd->pd_pwr)
  997. return -ENOMEM;
  998. /* Fill raw dataset
  999. * convert all pwr levels to
  1000. * quarter dB for RF5112 combatibility */
  1001. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  1002. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  1003. for (point = 1; point < pd->pd_points; point++) {
  1004. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  1005. 2 * pcinfo->pwr[pdg][point - 1];
  1006. pd->pd_step[point] = pd->pd_step[point - 1] +
  1007. pcinfo->pddac[pdg][point - 1];
  1008. }
  1009. /* Highest gain curve -> min power */
  1010. if (pdg == 0)
  1011. chinfo[pier].min_pwr = pd->pd_pwr[0];
  1012. /* Lowest gain curve -> max power */
  1013. if (pdg == ee->ee_pd_gains[mode] - 1)
  1014. chinfo[pier].max_pwr =
  1015. pd->pd_pwr[pd->pd_points - 1];
  1016. }
  1017. }
  1018. return 0;
  1019. }
  1020. /* Parse EEPROM data */
  1021. static int
  1022. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  1023. {
  1024. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1025. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1026. struct ath5k_chan_pcal_info *chinfo;
  1027. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1028. u32 offset;
  1029. int idx, i, ret;
  1030. u16 val;
  1031. u8 pd_gains = 0;
  1032. /* Count how many curves we have and
  1033. * identify them (which one of the 4
  1034. * available curves we have on each count).
  1035. * Curves are stored from higher to
  1036. * lower gain so we go backwards */
  1037. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1038. /* ee_x_gain[mode] is x gain mask */
  1039. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1040. pdgain_idx[pd_gains++] = idx;
  1041. }
  1042. ee->ee_pd_gains[mode] = pd_gains;
  1043. if (pd_gains == 0)
  1044. return -EINVAL;
  1045. offset = ath5k_cal_data_offset_2413(ee, mode);
  1046. switch (mode) {
  1047. case AR5K_EEPROM_MODE_11A:
  1048. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1049. return 0;
  1050. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1051. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1052. chinfo = ee->ee_pwr_cal_a;
  1053. break;
  1054. case AR5K_EEPROM_MODE_11B:
  1055. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1056. return 0;
  1057. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1058. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1059. chinfo = ee->ee_pwr_cal_b;
  1060. break;
  1061. case AR5K_EEPROM_MODE_11G:
  1062. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1063. return 0;
  1064. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1065. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1066. chinfo = ee->ee_pwr_cal_g;
  1067. break;
  1068. default:
  1069. return -EINVAL;
  1070. }
  1071. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1072. pcinfo = &chinfo[i].rf2413_info;
  1073. /*
  1074. * Read pwr_i, pddac_i and the first
  1075. * 2 pd points (pwr, pddac)
  1076. */
  1077. AR5K_EEPROM_READ(offset++, val);
  1078. pcinfo->pwr_i[0] = val & 0x1f;
  1079. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1080. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1081. AR5K_EEPROM_READ(offset++, val);
  1082. pcinfo->pddac[0][0] = val & 0x3f;
  1083. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1084. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1085. AR5K_EEPROM_READ(offset++, val);
  1086. pcinfo->pwr[0][2] = val & 0xf;
  1087. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1088. pcinfo->pwr[0][3] = 0;
  1089. pcinfo->pddac[0][3] = 0;
  1090. if (pd_gains > 1) {
  1091. /*
  1092. * Pd gain 0 is not the last pd gain
  1093. * so it only has 2 pd points.
  1094. * Continue wih pd gain 1.
  1095. */
  1096. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1097. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1098. AR5K_EEPROM_READ(offset++, val);
  1099. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1100. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1101. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1102. AR5K_EEPROM_READ(offset++, val);
  1103. pcinfo->pwr[1][1] = val & 0xf;
  1104. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1105. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1106. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1107. AR5K_EEPROM_READ(offset++, val);
  1108. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1109. pcinfo->pwr[1][3] = 0;
  1110. pcinfo->pddac[1][3] = 0;
  1111. } else if (pd_gains == 1) {
  1112. /*
  1113. * Pd gain 0 is the last one so
  1114. * read the extra point.
  1115. */
  1116. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1117. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1118. AR5K_EEPROM_READ(offset++, val);
  1119. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1120. }
  1121. /*
  1122. * Proceed with the other pd_gains
  1123. * as above.
  1124. */
  1125. if (pd_gains > 2) {
  1126. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1127. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1128. AR5K_EEPROM_READ(offset++, val);
  1129. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1130. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1131. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1132. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1133. AR5K_EEPROM_READ(offset++, val);
  1134. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1135. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1136. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1137. pcinfo->pwr[2][3] = 0;
  1138. pcinfo->pddac[2][3] = 0;
  1139. } else if (pd_gains == 2) {
  1140. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1141. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1142. }
  1143. if (pd_gains > 3) {
  1144. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1145. AR5K_EEPROM_READ(offset++, val);
  1146. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1147. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1148. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1149. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1150. AR5K_EEPROM_READ(offset++, val);
  1151. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1152. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1153. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1154. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1155. AR5K_EEPROM_READ(offset++, val);
  1156. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1157. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1158. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1159. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1160. AR5K_EEPROM_READ(offset++, val);
  1161. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1162. } else if (pd_gains == 3) {
  1163. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1164. AR5K_EEPROM_READ(offset++, val);
  1165. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1166. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1167. }
  1168. }
  1169. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1170. }
  1171. /*
  1172. * Read per rate target power (this is the maximum tx power
  1173. * supported by the card). This info is used when setting
  1174. * tx power, no matter the channel.
  1175. *
  1176. * This also works for v5 EEPROMs.
  1177. */
  1178. static int
  1179. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1180. {
  1181. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1182. struct ath5k_rate_pcal_info *rate_pcal_info;
  1183. u8 *rate_target_pwr_num;
  1184. u32 offset;
  1185. u16 val;
  1186. int ret, i;
  1187. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1188. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1189. switch (mode) {
  1190. case AR5K_EEPROM_MODE_11A:
  1191. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1192. rate_pcal_info = ee->ee_rate_tpwr_a;
  1193. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1194. break;
  1195. case AR5K_EEPROM_MODE_11B:
  1196. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1197. rate_pcal_info = ee->ee_rate_tpwr_b;
  1198. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1199. break;
  1200. case AR5K_EEPROM_MODE_11G:
  1201. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1202. rate_pcal_info = ee->ee_rate_tpwr_g;
  1203. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1204. break;
  1205. default:
  1206. return -EINVAL;
  1207. }
  1208. /* Different freq mask for older eeproms (<= v3.2) */
  1209. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1210. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1211. AR5K_EEPROM_READ(offset++, val);
  1212. rate_pcal_info[i].freq =
  1213. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1214. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1215. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1216. AR5K_EEPROM_READ(offset++, val);
  1217. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1218. val == 0) {
  1219. (*rate_target_pwr_num) = i;
  1220. break;
  1221. }
  1222. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1223. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1224. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1225. }
  1226. } else {
  1227. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1228. AR5K_EEPROM_READ(offset++, val);
  1229. rate_pcal_info[i].freq =
  1230. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1231. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1232. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1233. AR5K_EEPROM_READ(offset++, val);
  1234. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1235. val == 0) {
  1236. (*rate_target_pwr_num) = i;
  1237. break;
  1238. }
  1239. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1240. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1241. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1242. }
  1243. }
  1244. return 0;
  1245. }
  1246. /*
  1247. * Read per channel calibration info from EEPROM
  1248. *
  1249. * This info is used to calibrate the baseband power table. Imagine
  1250. * that for each channel there is a power curve that's hw specific
  1251. * (depends on amplifier etc) and we try to "correct" this curve using
  1252. * offsets we pass on to phy chip (baseband -> before amplifier) so that
  1253. * it can use accurate power values when setting tx power (takes amplifier's
  1254. * performance on each channel into account).
  1255. *
  1256. * EEPROM provides us with the offsets for some pre-calibrated channels
  1257. * and we have to interpolate to create the full table for these channels and
  1258. * also the table for any channel.
  1259. */
  1260. static int
  1261. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1262. {
  1263. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1264. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1265. int mode;
  1266. int err;
  1267. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1268. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1269. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1270. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1271. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1272. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1273. else
  1274. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1275. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1276. mode++) {
  1277. err = read_pcal(ah, mode);
  1278. if (err)
  1279. return err;
  1280. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1281. if (err < 0)
  1282. return err;
  1283. }
  1284. return 0;
  1285. }
  1286. static int
  1287. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1288. {
  1289. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1290. struct ath5k_chan_pcal_info *chinfo;
  1291. u8 pier, pdg;
  1292. switch (mode) {
  1293. case AR5K_EEPROM_MODE_11A:
  1294. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1295. return 0;
  1296. chinfo = ee->ee_pwr_cal_a;
  1297. break;
  1298. case AR5K_EEPROM_MODE_11B:
  1299. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1300. return 0;
  1301. chinfo = ee->ee_pwr_cal_b;
  1302. break;
  1303. case AR5K_EEPROM_MODE_11G:
  1304. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1305. return 0;
  1306. chinfo = ee->ee_pwr_cal_g;
  1307. break;
  1308. default:
  1309. return -EINVAL;
  1310. }
  1311. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1312. if (!chinfo[pier].pd_curves)
  1313. continue;
  1314. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1315. struct ath5k_pdgain_info *pd =
  1316. &chinfo[pier].pd_curves[pdg];
  1317. if (pd != NULL) {
  1318. kfree(pd->pd_step);
  1319. kfree(pd->pd_pwr);
  1320. }
  1321. }
  1322. kfree(chinfo[pier].pd_curves);
  1323. }
  1324. return 0;
  1325. }
  1326. void
  1327. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1328. {
  1329. u8 mode;
  1330. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1331. ath5k_eeprom_free_pcal_info(ah, mode);
  1332. }
  1333. /* Read conformance test limits used for regulatory control */
  1334. static int
  1335. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1336. {
  1337. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1338. struct ath5k_edge_power *rep;
  1339. unsigned int fmask, pmask;
  1340. unsigned int ctl_mode;
  1341. int ret, i, j;
  1342. u32 offset;
  1343. u16 val;
  1344. pmask = AR5K_EEPROM_POWER_M;
  1345. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1346. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1347. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1348. for (i = 0; i < ee->ee_ctls; i += 2) {
  1349. AR5K_EEPROM_READ(offset++, val);
  1350. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1351. ee->ee_ctl[i + 1] = val & 0xff;
  1352. }
  1353. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1354. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1355. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1356. AR5K_EEPROM_GROUP5_OFFSET;
  1357. else
  1358. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1359. rep = ee->ee_ctl_pwr;
  1360. for(i = 0; i < ee->ee_ctls; i++) {
  1361. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1362. case AR5K_CTL_11A:
  1363. case AR5K_CTL_TURBO:
  1364. ctl_mode = AR5K_EEPROM_MODE_11A;
  1365. break;
  1366. default:
  1367. ctl_mode = AR5K_EEPROM_MODE_11G;
  1368. break;
  1369. }
  1370. if (ee->ee_ctl[i] == 0) {
  1371. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1372. offset += 8;
  1373. else
  1374. offset += 7;
  1375. rep += AR5K_EEPROM_N_EDGES;
  1376. continue;
  1377. }
  1378. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1379. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1380. AR5K_EEPROM_READ(offset++, val);
  1381. rep[j].freq = (val >> 8) & fmask;
  1382. rep[j + 1].freq = val & fmask;
  1383. }
  1384. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1385. AR5K_EEPROM_READ(offset++, val);
  1386. rep[j].edge = (val >> 8) & pmask;
  1387. rep[j].flag = (val >> 14) & 1;
  1388. rep[j + 1].edge = val & pmask;
  1389. rep[j + 1].flag = (val >> 6) & 1;
  1390. }
  1391. } else {
  1392. AR5K_EEPROM_READ(offset++, val);
  1393. rep[0].freq = (val >> 9) & fmask;
  1394. rep[1].freq = (val >> 2) & fmask;
  1395. rep[2].freq = (val << 5) & fmask;
  1396. AR5K_EEPROM_READ(offset++, val);
  1397. rep[2].freq |= (val >> 11) & 0x1f;
  1398. rep[3].freq = (val >> 4) & fmask;
  1399. rep[4].freq = (val << 3) & fmask;
  1400. AR5K_EEPROM_READ(offset++, val);
  1401. rep[4].freq |= (val >> 13) & 0x7;
  1402. rep[5].freq = (val >> 6) & fmask;
  1403. rep[6].freq = (val << 1) & fmask;
  1404. AR5K_EEPROM_READ(offset++, val);
  1405. rep[6].freq |= (val >> 15) & 0x1;
  1406. rep[7].freq = (val >> 8) & fmask;
  1407. rep[0].edge = (val >> 2) & pmask;
  1408. rep[1].edge = (val << 4) & pmask;
  1409. AR5K_EEPROM_READ(offset++, val);
  1410. rep[1].edge |= (val >> 12) & 0xf;
  1411. rep[2].edge = (val >> 6) & pmask;
  1412. rep[3].edge = val & pmask;
  1413. AR5K_EEPROM_READ(offset++, val);
  1414. rep[4].edge = (val >> 10) & pmask;
  1415. rep[5].edge = (val >> 4) & pmask;
  1416. rep[6].edge = (val << 2) & pmask;
  1417. AR5K_EEPROM_READ(offset++, val);
  1418. rep[6].edge |= (val >> 14) & 0x3;
  1419. rep[7].edge = (val >> 8) & pmask;
  1420. }
  1421. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1422. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1423. rep[j].freq, ctl_mode);
  1424. }
  1425. rep += AR5K_EEPROM_N_EDGES;
  1426. }
  1427. return 0;
  1428. }
  1429. static int
  1430. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1431. {
  1432. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1433. u32 offset;
  1434. u16 val;
  1435. int ret = 0, i;
  1436. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1437. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1438. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1439. /* No spur info for 5GHz */
  1440. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1441. /* 2 channels for 2GHz (2464/2420) */
  1442. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1443. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1444. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1445. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1446. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1447. AR5K_EEPROM_READ(offset, val);
  1448. ee->ee_spur_chans[i][0] = val;
  1449. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1450. val);
  1451. ee->ee_spur_chans[i][1] = val;
  1452. offset++;
  1453. }
  1454. }
  1455. return ret;
  1456. }
  1457. /*
  1458. * Initialize eeprom data structure
  1459. */
  1460. int
  1461. ath5k_eeprom_init(struct ath5k_hw *ah)
  1462. {
  1463. int err;
  1464. err = ath5k_eeprom_init_header(ah);
  1465. if (err < 0)
  1466. return err;
  1467. err = ath5k_eeprom_init_modes(ah);
  1468. if (err < 0)
  1469. return err;
  1470. err = ath5k_eeprom_read_pcal_info(ah);
  1471. if (err < 0)
  1472. return err;
  1473. err = ath5k_eeprom_read_ctl_info(ah);
  1474. if (err < 0)
  1475. return err;
  1476. err = ath5k_eeprom_read_spur_chans(ah);
  1477. if (err < 0)
  1478. return err;
  1479. return 0;
  1480. }
  1481. /*
  1482. * Read the MAC address from eeprom
  1483. */
  1484. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1485. {
  1486. u8 mac_d[ETH_ALEN] = {};
  1487. u32 total, offset;
  1488. u16 data;
  1489. int octet, ret;
  1490. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1491. if (ret)
  1492. return ret;
  1493. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1494. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1495. if (ret)
  1496. return ret;
  1497. total += data;
  1498. mac_d[octet + 1] = data & 0xff;
  1499. mac_d[octet] = data >> 8;
  1500. octet += 2;
  1501. }
  1502. if (!total || total == 3 * 0xffff)
  1503. return -EINVAL;
  1504. memcpy(mac, mac_d, ETH_ALEN);
  1505. return 0;
  1506. }