mmu.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. #include <asm/vmx.h>
  34. /*
  35. * When setting this variable to true it enables Two-Dimensional-Paging
  36. * where the hardware walks 2 page tables:
  37. * 1. the guest-virtual to guest-physical
  38. * 2. while doing 1. it walks guest-physical to host-physical
  39. * If the hardware supports that we don't need to do shadow paging.
  40. */
  41. bool tdp_enabled = false;
  42. #undef MMU_DEBUG
  43. #undef AUDIT
  44. #ifdef AUDIT
  45. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  46. #else
  47. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  48. #endif
  49. #ifdef MMU_DEBUG
  50. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  51. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  52. #else
  53. #define pgprintk(x...) do { } while (0)
  54. #define rmap_printk(x...) do { } while (0)
  55. #endif
  56. #if defined(MMU_DEBUG) || defined(AUDIT)
  57. static int dbg = 0;
  58. module_param(dbg, bool, 0644);
  59. #endif
  60. static int oos_shadow = 1;
  61. module_param(oos_shadow, bool, 0644);
  62. #ifndef MMU_DEBUG
  63. #define ASSERT(x) do { } while (0)
  64. #else
  65. #define ASSERT(x) \
  66. if (!(x)) { \
  67. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  68. __FILE__, __LINE__, #x); \
  69. }
  70. #endif
  71. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  72. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  73. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  74. #define PT64_LEVEL_BITS 9
  75. #define PT64_LEVEL_SHIFT(level) \
  76. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  77. #define PT64_LEVEL_MASK(level) \
  78. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  79. #define PT64_INDEX(address, level)\
  80. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  81. #define PT32_LEVEL_BITS 10
  82. #define PT32_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  84. #define PT32_LEVEL_MASK(level) \
  85. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  86. #define PT32_LVL_OFFSET_MASK(level) \
  87. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  88. * PT32_LEVEL_BITS))) - 1))
  89. #define PT32_INDEX(address, level)\
  90. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  91. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  92. #define PT64_DIR_BASE_ADDR_MASK \
  93. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  94. #define PT64_LVL_ADDR_MASK(level) \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  96. * PT64_LEVEL_BITS))) - 1))
  97. #define PT64_LVL_OFFSET_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT32_BASE_ADDR_MASK PAGE_MASK
  101. #define PT32_DIR_BASE_ADDR_MASK \
  102. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  103. #define PT32_LVL_ADDR_MASK(level) \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  105. * PT32_LEVEL_BITS))) - 1))
  106. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  107. | PT64_NX_MASK)
  108. #define PFERR_PRESENT_MASK (1U << 0)
  109. #define PFERR_WRITE_MASK (1U << 1)
  110. #define PFERR_USER_MASK (1U << 2)
  111. #define PFERR_RSVD_MASK (1U << 3)
  112. #define PFERR_FETCH_MASK (1U << 4)
  113. #define PT_PDPE_LEVEL 3
  114. #define PT_DIRECTORY_LEVEL 2
  115. #define PT_PAGE_TABLE_LEVEL 1
  116. #define RMAP_EXT 4
  117. #define ACC_EXEC_MASK 1
  118. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  119. #define ACC_USER_MASK PT_USER_MASK
  120. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  121. #define CREATE_TRACE_POINTS
  122. #include "mmutrace.h"
  123. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  124. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  125. struct kvm_rmap_desc {
  126. u64 *sptes[RMAP_EXT];
  127. struct kvm_rmap_desc *more;
  128. };
  129. struct kvm_shadow_walk_iterator {
  130. u64 addr;
  131. hpa_t shadow_addr;
  132. int level;
  133. u64 *sptep;
  134. unsigned index;
  135. };
  136. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  137. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  138. shadow_walk_okay(&(_walker)); \
  139. shadow_walk_next(&(_walker)))
  140. struct kvm_unsync_walk {
  141. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  142. };
  143. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  144. static struct kmem_cache *pte_chain_cache;
  145. static struct kmem_cache *rmap_desc_cache;
  146. static struct kmem_cache *mmu_page_header_cache;
  147. static u64 __read_mostly shadow_trap_nonpresent_pte;
  148. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  149. static u64 __read_mostly shadow_base_present_pte;
  150. static u64 __read_mostly shadow_nx_mask;
  151. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  152. static u64 __read_mostly shadow_user_mask;
  153. static u64 __read_mostly shadow_accessed_mask;
  154. static u64 __read_mostly shadow_dirty_mask;
  155. static inline u64 rsvd_bits(int s, int e)
  156. {
  157. return ((1ULL << (e - s + 1)) - 1) << s;
  158. }
  159. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  160. {
  161. shadow_trap_nonpresent_pte = trap_pte;
  162. shadow_notrap_nonpresent_pte = notrap_pte;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  165. void kvm_mmu_set_base_ptes(u64 base_pte)
  166. {
  167. shadow_base_present_pte = base_pte;
  168. }
  169. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  170. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  171. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  172. {
  173. shadow_user_mask = user_mask;
  174. shadow_accessed_mask = accessed_mask;
  175. shadow_dirty_mask = dirty_mask;
  176. shadow_nx_mask = nx_mask;
  177. shadow_x_mask = x_mask;
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  180. static int is_write_protection(struct kvm_vcpu *vcpu)
  181. {
  182. return vcpu->arch.cr0 & X86_CR0_WP;
  183. }
  184. static int is_cpuid_PSE36(void)
  185. {
  186. return 1;
  187. }
  188. static int is_nx(struct kvm_vcpu *vcpu)
  189. {
  190. return vcpu->arch.shadow_efer & EFER_NX;
  191. }
  192. static int is_shadow_present_pte(u64 pte)
  193. {
  194. return pte != shadow_trap_nonpresent_pte
  195. && pte != shadow_notrap_nonpresent_pte;
  196. }
  197. static int is_large_pte(u64 pte)
  198. {
  199. return pte & PT_PAGE_SIZE_MASK;
  200. }
  201. static int is_writeble_pte(unsigned long pte)
  202. {
  203. return pte & PT_WRITABLE_MASK;
  204. }
  205. static int is_dirty_gpte(unsigned long pte)
  206. {
  207. return pte & PT_DIRTY_MASK;
  208. }
  209. static int is_rmap_spte(u64 pte)
  210. {
  211. return is_shadow_present_pte(pte);
  212. }
  213. static int is_last_spte(u64 pte, int level)
  214. {
  215. if (level == PT_PAGE_TABLE_LEVEL)
  216. return 1;
  217. if (is_large_pte(pte))
  218. return 1;
  219. return 0;
  220. }
  221. static pfn_t spte_to_pfn(u64 pte)
  222. {
  223. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  224. }
  225. static gfn_t pse36_gfn_delta(u32 gpte)
  226. {
  227. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  228. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  229. }
  230. static void __set_spte(u64 *sptep, u64 spte)
  231. {
  232. #ifdef CONFIG_X86_64
  233. set_64bit((unsigned long *)sptep, spte);
  234. #else
  235. set_64bit((unsigned long long *)sptep, spte);
  236. #endif
  237. }
  238. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  239. struct kmem_cache *base_cache, int min)
  240. {
  241. void *obj;
  242. if (cache->nobjs >= min)
  243. return 0;
  244. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  245. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  246. if (!obj)
  247. return -ENOMEM;
  248. cache->objects[cache->nobjs++] = obj;
  249. }
  250. return 0;
  251. }
  252. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  253. {
  254. while (mc->nobjs)
  255. kfree(mc->objects[--mc->nobjs]);
  256. }
  257. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  258. int min)
  259. {
  260. struct page *page;
  261. if (cache->nobjs >= min)
  262. return 0;
  263. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  264. page = alloc_page(GFP_KERNEL);
  265. if (!page)
  266. return -ENOMEM;
  267. set_page_private(page, 0);
  268. cache->objects[cache->nobjs++] = page_address(page);
  269. }
  270. return 0;
  271. }
  272. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  273. {
  274. while (mc->nobjs)
  275. free_page((unsigned long)mc->objects[--mc->nobjs]);
  276. }
  277. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  278. {
  279. int r;
  280. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  281. pte_chain_cache, 4);
  282. if (r)
  283. goto out;
  284. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  285. rmap_desc_cache, 4);
  286. if (r)
  287. goto out;
  288. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  289. if (r)
  290. goto out;
  291. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  292. mmu_page_header_cache, 4);
  293. out:
  294. return r;
  295. }
  296. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  297. {
  298. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  299. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  300. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  301. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  302. }
  303. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  304. size_t size)
  305. {
  306. void *p;
  307. BUG_ON(!mc->nobjs);
  308. p = mc->objects[--mc->nobjs];
  309. return p;
  310. }
  311. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  312. {
  313. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  314. sizeof(struct kvm_pte_chain));
  315. }
  316. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  317. {
  318. kfree(pc);
  319. }
  320. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  321. {
  322. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  323. sizeof(struct kvm_rmap_desc));
  324. }
  325. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  326. {
  327. kfree(rd);
  328. }
  329. /*
  330. * Return the pointer to the largepage write count for a given
  331. * gfn, handling slots that are not large page aligned.
  332. */
  333. static int *slot_largepage_idx(gfn_t gfn,
  334. struct kvm_memory_slot *slot,
  335. int level)
  336. {
  337. unsigned long idx;
  338. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  339. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  340. return &slot->lpage_info[level - 2][idx].write_count;
  341. }
  342. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  343. {
  344. struct kvm_memory_slot *slot;
  345. int *write_count;
  346. int i;
  347. gfn = unalias_gfn(kvm, gfn);
  348. slot = gfn_to_memslot_unaliased(kvm, gfn);
  349. for (i = PT_DIRECTORY_LEVEL;
  350. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  351. write_count = slot_largepage_idx(gfn, slot, i);
  352. *write_count += 1;
  353. }
  354. }
  355. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  356. {
  357. struct kvm_memory_slot *slot;
  358. int *write_count;
  359. int i;
  360. gfn = unalias_gfn(kvm, gfn);
  361. for (i = PT_DIRECTORY_LEVEL;
  362. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  363. slot = gfn_to_memslot_unaliased(kvm, gfn);
  364. write_count = slot_largepage_idx(gfn, slot, i);
  365. *write_count -= 1;
  366. WARN_ON(*write_count < 0);
  367. }
  368. }
  369. static int has_wrprotected_page(struct kvm *kvm,
  370. gfn_t gfn,
  371. int level)
  372. {
  373. struct kvm_memory_slot *slot;
  374. int *largepage_idx;
  375. gfn = unalias_gfn(kvm, gfn);
  376. slot = gfn_to_memslot_unaliased(kvm, gfn);
  377. if (slot) {
  378. largepage_idx = slot_largepage_idx(gfn, slot, level);
  379. return *largepage_idx;
  380. }
  381. return 1;
  382. }
  383. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  384. {
  385. unsigned long page_size = PAGE_SIZE;
  386. struct vm_area_struct *vma;
  387. unsigned long addr;
  388. int i, ret = 0;
  389. addr = gfn_to_hva(kvm, gfn);
  390. if (kvm_is_error_hva(addr))
  391. return PT_PAGE_TABLE_LEVEL;
  392. down_read(&current->mm->mmap_sem);
  393. vma = find_vma(current->mm, addr);
  394. if (!vma)
  395. goto out;
  396. page_size = vma_kernel_pagesize(vma);
  397. out:
  398. up_read(&current->mm->mmap_sem);
  399. for (i = PT_PAGE_TABLE_LEVEL;
  400. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  401. if (page_size >= KVM_HPAGE_SIZE(i))
  402. ret = i;
  403. else
  404. break;
  405. }
  406. return ret;
  407. }
  408. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  409. {
  410. struct kvm_memory_slot *slot;
  411. int host_level;
  412. int level = PT_PAGE_TABLE_LEVEL;
  413. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  414. if (slot && slot->dirty_bitmap)
  415. return PT_PAGE_TABLE_LEVEL;
  416. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  417. if (host_level == PT_PAGE_TABLE_LEVEL)
  418. return host_level;
  419. for (level = PT_DIRECTORY_LEVEL; level <= host_level; ++level)
  420. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  421. break;
  422. return level - 1;
  423. }
  424. /*
  425. * Take gfn and return the reverse mapping to it.
  426. * Note: gfn must be unaliased before this function get called
  427. */
  428. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  429. {
  430. struct kvm_memory_slot *slot;
  431. unsigned long idx;
  432. slot = gfn_to_memslot(kvm, gfn);
  433. if (likely(level == PT_PAGE_TABLE_LEVEL))
  434. return &slot->rmap[gfn - slot->base_gfn];
  435. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  436. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  437. return &slot->lpage_info[level - 2][idx].rmap_pde;
  438. }
  439. /*
  440. * Reverse mapping data structures:
  441. *
  442. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  443. * that points to page_address(page).
  444. *
  445. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  446. * containing more mappings.
  447. *
  448. * Returns the number of rmap entries before the spte was added or zero if
  449. * the spte was not added.
  450. *
  451. */
  452. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  453. {
  454. struct kvm_mmu_page *sp;
  455. struct kvm_rmap_desc *desc;
  456. unsigned long *rmapp;
  457. int i, count = 0;
  458. if (!is_rmap_spte(*spte))
  459. return count;
  460. gfn = unalias_gfn(vcpu->kvm, gfn);
  461. sp = page_header(__pa(spte));
  462. sp->gfns[spte - sp->spt] = gfn;
  463. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  464. if (!*rmapp) {
  465. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  466. *rmapp = (unsigned long)spte;
  467. } else if (!(*rmapp & 1)) {
  468. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  469. desc = mmu_alloc_rmap_desc(vcpu);
  470. desc->sptes[0] = (u64 *)*rmapp;
  471. desc->sptes[1] = spte;
  472. *rmapp = (unsigned long)desc | 1;
  473. } else {
  474. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  475. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  476. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  477. desc = desc->more;
  478. count += RMAP_EXT;
  479. }
  480. if (desc->sptes[RMAP_EXT-1]) {
  481. desc->more = mmu_alloc_rmap_desc(vcpu);
  482. desc = desc->more;
  483. }
  484. for (i = 0; desc->sptes[i]; ++i)
  485. ;
  486. desc->sptes[i] = spte;
  487. }
  488. return count;
  489. }
  490. static void rmap_desc_remove_entry(unsigned long *rmapp,
  491. struct kvm_rmap_desc *desc,
  492. int i,
  493. struct kvm_rmap_desc *prev_desc)
  494. {
  495. int j;
  496. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  497. ;
  498. desc->sptes[i] = desc->sptes[j];
  499. desc->sptes[j] = NULL;
  500. if (j != 0)
  501. return;
  502. if (!prev_desc && !desc->more)
  503. *rmapp = (unsigned long)desc->sptes[0];
  504. else
  505. if (prev_desc)
  506. prev_desc->more = desc->more;
  507. else
  508. *rmapp = (unsigned long)desc->more | 1;
  509. mmu_free_rmap_desc(desc);
  510. }
  511. static void rmap_remove(struct kvm *kvm, u64 *spte)
  512. {
  513. struct kvm_rmap_desc *desc;
  514. struct kvm_rmap_desc *prev_desc;
  515. struct kvm_mmu_page *sp;
  516. pfn_t pfn;
  517. unsigned long *rmapp;
  518. int i;
  519. if (!is_rmap_spte(*spte))
  520. return;
  521. sp = page_header(__pa(spte));
  522. pfn = spte_to_pfn(*spte);
  523. if (*spte & shadow_accessed_mask)
  524. kvm_set_pfn_accessed(pfn);
  525. if (is_writeble_pte(*spte))
  526. kvm_set_pfn_dirty(pfn);
  527. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  528. if (!*rmapp) {
  529. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  530. BUG();
  531. } else if (!(*rmapp & 1)) {
  532. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  533. if ((u64 *)*rmapp != spte) {
  534. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  535. spte, *spte);
  536. BUG();
  537. }
  538. *rmapp = 0;
  539. } else {
  540. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  541. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  542. prev_desc = NULL;
  543. while (desc) {
  544. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  545. if (desc->sptes[i] == spte) {
  546. rmap_desc_remove_entry(rmapp,
  547. desc, i,
  548. prev_desc);
  549. return;
  550. }
  551. prev_desc = desc;
  552. desc = desc->more;
  553. }
  554. BUG();
  555. }
  556. }
  557. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  558. {
  559. struct kvm_rmap_desc *desc;
  560. struct kvm_rmap_desc *prev_desc;
  561. u64 *prev_spte;
  562. int i;
  563. if (!*rmapp)
  564. return NULL;
  565. else if (!(*rmapp & 1)) {
  566. if (!spte)
  567. return (u64 *)*rmapp;
  568. return NULL;
  569. }
  570. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  571. prev_desc = NULL;
  572. prev_spte = NULL;
  573. while (desc) {
  574. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  575. if (prev_spte == spte)
  576. return desc->sptes[i];
  577. prev_spte = desc->sptes[i];
  578. }
  579. desc = desc->more;
  580. }
  581. return NULL;
  582. }
  583. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  584. {
  585. unsigned long *rmapp;
  586. u64 *spte;
  587. int i, write_protected = 0;
  588. gfn = unalias_gfn(kvm, gfn);
  589. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  590. spte = rmap_next(kvm, rmapp, NULL);
  591. while (spte) {
  592. BUG_ON(!spte);
  593. BUG_ON(!(*spte & PT_PRESENT_MASK));
  594. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  595. if (is_writeble_pte(*spte)) {
  596. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  597. write_protected = 1;
  598. }
  599. spte = rmap_next(kvm, rmapp, spte);
  600. }
  601. if (write_protected) {
  602. pfn_t pfn;
  603. spte = rmap_next(kvm, rmapp, NULL);
  604. pfn = spte_to_pfn(*spte);
  605. kvm_set_pfn_dirty(pfn);
  606. }
  607. /* check for huge page mappings */
  608. for (i = PT_DIRECTORY_LEVEL;
  609. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  610. rmapp = gfn_to_rmap(kvm, gfn, i);
  611. spte = rmap_next(kvm, rmapp, NULL);
  612. while (spte) {
  613. BUG_ON(!spte);
  614. BUG_ON(!(*spte & PT_PRESENT_MASK));
  615. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  616. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  617. if (is_writeble_pte(*spte)) {
  618. rmap_remove(kvm, spte);
  619. --kvm->stat.lpages;
  620. __set_spte(spte, shadow_trap_nonpresent_pte);
  621. spte = NULL;
  622. write_protected = 1;
  623. }
  624. spte = rmap_next(kvm, rmapp, spte);
  625. }
  626. }
  627. return write_protected;
  628. }
  629. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  630. unsigned long data)
  631. {
  632. u64 *spte;
  633. int need_tlb_flush = 0;
  634. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  635. BUG_ON(!(*spte & PT_PRESENT_MASK));
  636. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  637. rmap_remove(kvm, spte);
  638. __set_spte(spte, shadow_trap_nonpresent_pte);
  639. need_tlb_flush = 1;
  640. }
  641. return need_tlb_flush;
  642. }
  643. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  644. unsigned long data)
  645. {
  646. int need_flush = 0;
  647. u64 *spte, new_spte;
  648. pte_t *ptep = (pte_t *)data;
  649. pfn_t new_pfn;
  650. WARN_ON(pte_huge(*ptep));
  651. new_pfn = pte_pfn(*ptep);
  652. spte = rmap_next(kvm, rmapp, NULL);
  653. while (spte) {
  654. BUG_ON(!is_shadow_present_pte(*spte));
  655. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  656. need_flush = 1;
  657. if (pte_write(*ptep)) {
  658. rmap_remove(kvm, spte);
  659. __set_spte(spte, shadow_trap_nonpresent_pte);
  660. spte = rmap_next(kvm, rmapp, NULL);
  661. } else {
  662. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  663. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  664. new_spte &= ~PT_WRITABLE_MASK;
  665. new_spte &= ~SPTE_HOST_WRITEABLE;
  666. if (is_writeble_pte(*spte))
  667. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  668. __set_spte(spte, new_spte);
  669. spte = rmap_next(kvm, rmapp, spte);
  670. }
  671. }
  672. if (need_flush)
  673. kvm_flush_remote_tlbs(kvm);
  674. return 0;
  675. }
  676. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  677. unsigned long data,
  678. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  679. unsigned long data))
  680. {
  681. int i, j;
  682. int retval = 0;
  683. /*
  684. * If mmap_sem isn't taken, we can look the memslots with only
  685. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  686. */
  687. for (i = 0; i < kvm->nmemslots; i++) {
  688. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  689. unsigned long start = memslot->userspace_addr;
  690. unsigned long end;
  691. /* mmu_lock protects userspace_addr */
  692. if (!start)
  693. continue;
  694. end = start + (memslot->npages << PAGE_SHIFT);
  695. if (hva >= start && hva < end) {
  696. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  697. retval |= handler(kvm, &memslot->rmap[gfn_offset],
  698. data);
  699. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  700. int idx = gfn_offset;
  701. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  702. retval |= handler(kvm,
  703. &memslot->lpage_info[j][idx].rmap_pde,
  704. data);
  705. }
  706. }
  707. }
  708. return retval;
  709. }
  710. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  711. {
  712. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  713. }
  714. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  715. {
  716. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  717. }
  718. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  719. unsigned long data)
  720. {
  721. u64 *spte;
  722. int young = 0;
  723. /* always return old for EPT */
  724. if (!shadow_accessed_mask)
  725. return 0;
  726. spte = rmap_next(kvm, rmapp, NULL);
  727. while (spte) {
  728. int _young;
  729. u64 _spte = *spte;
  730. BUG_ON(!(_spte & PT_PRESENT_MASK));
  731. _young = _spte & PT_ACCESSED_MASK;
  732. if (_young) {
  733. young = 1;
  734. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  735. }
  736. spte = rmap_next(kvm, rmapp, spte);
  737. }
  738. return young;
  739. }
  740. #define RMAP_RECYCLE_THRESHOLD 1000
  741. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  742. {
  743. unsigned long *rmapp;
  744. struct kvm_mmu_page *sp;
  745. sp = page_header(__pa(spte));
  746. gfn = unalias_gfn(vcpu->kvm, gfn);
  747. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  748. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  749. kvm_flush_remote_tlbs(vcpu->kvm);
  750. }
  751. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  752. {
  753. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  754. }
  755. #ifdef MMU_DEBUG
  756. static int is_empty_shadow_page(u64 *spt)
  757. {
  758. u64 *pos;
  759. u64 *end;
  760. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  761. if (is_shadow_present_pte(*pos)) {
  762. printk(KERN_ERR "%s: %p %llx\n", __func__,
  763. pos, *pos);
  764. return 0;
  765. }
  766. return 1;
  767. }
  768. #endif
  769. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  770. {
  771. ASSERT(is_empty_shadow_page(sp->spt));
  772. list_del(&sp->link);
  773. __free_page(virt_to_page(sp->spt));
  774. __free_page(virt_to_page(sp->gfns));
  775. kfree(sp);
  776. ++kvm->arch.n_free_mmu_pages;
  777. }
  778. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  779. {
  780. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  781. }
  782. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  783. u64 *parent_pte)
  784. {
  785. struct kvm_mmu_page *sp;
  786. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  787. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  788. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  789. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  790. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  791. INIT_LIST_HEAD(&sp->oos_link);
  792. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  793. sp->multimapped = 0;
  794. sp->parent_pte = parent_pte;
  795. --vcpu->kvm->arch.n_free_mmu_pages;
  796. return sp;
  797. }
  798. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  799. struct kvm_mmu_page *sp, u64 *parent_pte)
  800. {
  801. struct kvm_pte_chain *pte_chain;
  802. struct hlist_node *node;
  803. int i;
  804. if (!parent_pte)
  805. return;
  806. if (!sp->multimapped) {
  807. u64 *old = sp->parent_pte;
  808. if (!old) {
  809. sp->parent_pte = parent_pte;
  810. return;
  811. }
  812. sp->multimapped = 1;
  813. pte_chain = mmu_alloc_pte_chain(vcpu);
  814. INIT_HLIST_HEAD(&sp->parent_ptes);
  815. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  816. pte_chain->parent_ptes[0] = old;
  817. }
  818. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  819. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  820. continue;
  821. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  822. if (!pte_chain->parent_ptes[i]) {
  823. pte_chain->parent_ptes[i] = parent_pte;
  824. return;
  825. }
  826. }
  827. pte_chain = mmu_alloc_pte_chain(vcpu);
  828. BUG_ON(!pte_chain);
  829. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  830. pte_chain->parent_ptes[0] = parent_pte;
  831. }
  832. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  833. u64 *parent_pte)
  834. {
  835. struct kvm_pte_chain *pte_chain;
  836. struct hlist_node *node;
  837. int i;
  838. if (!sp->multimapped) {
  839. BUG_ON(sp->parent_pte != parent_pte);
  840. sp->parent_pte = NULL;
  841. return;
  842. }
  843. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  844. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  845. if (!pte_chain->parent_ptes[i])
  846. break;
  847. if (pte_chain->parent_ptes[i] != parent_pte)
  848. continue;
  849. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  850. && pte_chain->parent_ptes[i + 1]) {
  851. pte_chain->parent_ptes[i]
  852. = pte_chain->parent_ptes[i + 1];
  853. ++i;
  854. }
  855. pte_chain->parent_ptes[i] = NULL;
  856. if (i == 0) {
  857. hlist_del(&pte_chain->link);
  858. mmu_free_pte_chain(pte_chain);
  859. if (hlist_empty(&sp->parent_ptes)) {
  860. sp->multimapped = 0;
  861. sp->parent_pte = NULL;
  862. }
  863. }
  864. return;
  865. }
  866. BUG();
  867. }
  868. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  869. mmu_parent_walk_fn fn)
  870. {
  871. struct kvm_pte_chain *pte_chain;
  872. struct hlist_node *node;
  873. struct kvm_mmu_page *parent_sp;
  874. int i;
  875. if (!sp->multimapped && sp->parent_pte) {
  876. parent_sp = page_header(__pa(sp->parent_pte));
  877. fn(vcpu, parent_sp);
  878. mmu_parent_walk(vcpu, parent_sp, fn);
  879. return;
  880. }
  881. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  882. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  883. if (!pte_chain->parent_ptes[i])
  884. break;
  885. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  886. fn(vcpu, parent_sp);
  887. mmu_parent_walk(vcpu, parent_sp, fn);
  888. }
  889. }
  890. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  891. {
  892. unsigned int index;
  893. struct kvm_mmu_page *sp = page_header(__pa(spte));
  894. index = spte - sp->spt;
  895. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  896. sp->unsync_children++;
  897. WARN_ON(!sp->unsync_children);
  898. }
  899. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  900. {
  901. struct kvm_pte_chain *pte_chain;
  902. struct hlist_node *node;
  903. int i;
  904. if (!sp->parent_pte)
  905. return;
  906. if (!sp->multimapped) {
  907. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  908. return;
  909. }
  910. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  911. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  912. if (!pte_chain->parent_ptes[i])
  913. break;
  914. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  915. }
  916. }
  917. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  918. {
  919. kvm_mmu_update_parents_unsync(sp);
  920. return 1;
  921. }
  922. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  923. struct kvm_mmu_page *sp)
  924. {
  925. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  926. kvm_mmu_update_parents_unsync(sp);
  927. }
  928. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  929. struct kvm_mmu_page *sp)
  930. {
  931. int i;
  932. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  933. sp->spt[i] = shadow_trap_nonpresent_pte;
  934. }
  935. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  936. struct kvm_mmu_page *sp)
  937. {
  938. return 1;
  939. }
  940. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  941. {
  942. }
  943. #define KVM_PAGE_ARRAY_NR 16
  944. struct kvm_mmu_pages {
  945. struct mmu_page_and_offset {
  946. struct kvm_mmu_page *sp;
  947. unsigned int idx;
  948. } page[KVM_PAGE_ARRAY_NR];
  949. unsigned int nr;
  950. };
  951. #define for_each_unsync_children(bitmap, idx) \
  952. for (idx = find_first_bit(bitmap, 512); \
  953. idx < 512; \
  954. idx = find_next_bit(bitmap, 512, idx+1))
  955. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  956. int idx)
  957. {
  958. int i;
  959. if (sp->unsync)
  960. for (i=0; i < pvec->nr; i++)
  961. if (pvec->page[i].sp == sp)
  962. return 0;
  963. pvec->page[pvec->nr].sp = sp;
  964. pvec->page[pvec->nr].idx = idx;
  965. pvec->nr++;
  966. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  967. }
  968. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  969. struct kvm_mmu_pages *pvec)
  970. {
  971. int i, ret, nr_unsync_leaf = 0;
  972. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  973. u64 ent = sp->spt[i];
  974. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  975. struct kvm_mmu_page *child;
  976. child = page_header(ent & PT64_BASE_ADDR_MASK);
  977. if (child->unsync_children) {
  978. if (mmu_pages_add(pvec, child, i))
  979. return -ENOSPC;
  980. ret = __mmu_unsync_walk(child, pvec);
  981. if (!ret)
  982. __clear_bit(i, sp->unsync_child_bitmap);
  983. else if (ret > 0)
  984. nr_unsync_leaf += ret;
  985. else
  986. return ret;
  987. }
  988. if (child->unsync) {
  989. nr_unsync_leaf++;
  990. if (mmu_pages_add(pvec, child, i))
  991. return -ENOSPC;
  992. }
  993. }
  994. }
  995. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  996. sp->unsync_children = 0;
  997. return nr_unsync_leaf;
  998. }
  999. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1000. struct kvm_mmu_pages *pvec)
  1001. {
  1002. if (!sp->unsync_children)
  1003. return 0;
  1004. mmu_pages_add(pvec, sp, 0);
  1005. return __mmu_unsync_walk(sp, pvec);
  1006. }
  1007. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  1008. {
  1009. unsigned index;
  1010. struct hlist_head *bucket;
  1011. struct kvm_mmu_page *sp;
  1012. struct hlist_node *node;
  1013. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1014. index = kvm_page_table_hashfn(gfn);
  1015. bucket = &kvm->arch.mmu_page_hash[index];
  1016. hlist_for_each_entry(sp, node, bucket, hash_link)
  1017. if (sp->gfn == gfn && !sp->role.direct
  1018. && !sp->role.invalid) {
  1019. pgprintk("%s: found role %x\n",
  1020. __func__, sp->role.word);
  1021. return sp;
  1022. }
  1023. return NULL;
  1024. }
  1025. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1026. {
  1027. WARN_ON(!sp->unsync);
  1028. sp->unsync = 0;
  1029. --kvm->stat.mmu_unsync;
  1030. }
  1031. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1032. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1033. {
  1034. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  1035. kvm_mmu_zap_page(vcpu->kvm, sp);
  1036. return 1;
  1037. }
  1038. trace_kvm_mmu_sync_page(sp);
  1039. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1040. kvm_flush_remote_tlbs(vcpu->kvm);
  1041. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1042. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1043. kvm_mmu_zap_page(vcpu->kvm, sp);
  1044. return 1;
  1045. }
  1046. kvm_mmu_flush_tlb(vcpu);
  1047. return 0;
  1048. }
  1049. struct mmu_page_path {
  1050. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1051. unsigned int idx[PT64_ROOT_LEVEL-1];
  1052. };
  1053. #define for_each_sp(pvec, sp, parents, i) \
  1054. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1055. sp = pvec.page[i].sp; \
  1056. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1057. i = mmu_pages_next(&pvec, &parents, i))
  1058. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1059. struct mmu_page_path *parents,
  1060. int i)
  1061. {
  1062. int n;
  1063. for (n = i+1; n < pvec->nr; n++) {
  1064. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1065. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1066. parents->idx[0] = pvec->page[n].idx;
  1067. return n;
  1068. }
  1069. parents->parent[sp->role.level-2] = sp;
  1070. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1071. }
  1072. return n;
  1073. }
  1074. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1075. {
  1076. struct kvm_mmu_page *sp;
  1077. unsigned int level = 0;
  1078. do {
  1079. unsigned int idx = parents->idx[level];
  1080. sp = parents->parent[level];
  1081. if (!sp)
  1082. return;
  1083. --sp->unsync_children;
  1084. WARN_ON((int)sp->unsync_children < 0);
  1085. __clear_bit(idx, sp->unsync_child_bitmap);
  1086. level++;
  1087. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1088. }
  1089. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1090. struct mmu_page_path *parents,
  1091. struct kvm_mmu_pages *pvec)
  1092. {
  1093. parents->parent[parent->role.level-1] = NULL;
  1094. pvec->nr = 0;
  1095. }
  1096. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1097. struct kvm_mmu_page *parent)
  1098. {
  1099. int i;
  1100. struct kvm_mmu_page *sp;
  1101. struct mmu_page_path parents;
  1102. struct kvm_mmu_pages pages;
  1103. kvm_mmu_pages_init(parent, &parents, &pages);
  1104. while (mmu_unsync_walk(parent, &pages)) {
  1105. int protected = 0;
  1106. for_each_sp(pages, sp, parents, i)
  1107. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1108. if (protected)
  1109. kvm_flush_remote_tlbs(vcpu->kvm);
  1110. for_each_sp(pages, sp, parents, i) {
  1111. kvm_sync_page(vcpu, sp);
  1112. mmu_pages_clear_parents(&parents);
  1113. }
  1114. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1115. kvm_mmu_pages_init(parent, &parents, &pages);
  1116. }
  1117. }
  1118. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1119. gfn_t gfn,
  1120. gva_t gaddr,
  1121. unsigned level,
  1122. int direct,
  1123. unsigned access,
  1124. u64 *parent_pte)
  1125. {
  1126. union kvm_mmu_page_role role;
  1127. unsigned index;
  1128. unsigned quadrant;
  1129. struct hlist_head *bucket;
  1130. struct kvm_mmu_page *sp;
  1131. struct hlist_node *node, *tmp;
  1132. role = vcpu->arch.mmu.base_role;
  1133. role.level = level;
  1134. role.direct = direct;
  1135. role.access = access;
  1136. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1137. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1138. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1139. role.quadrant = quadrant;
  1140. }
  1141. index = kvm_page_table_hashfn(gfn);
  1142. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1143. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1144. if (sp->gfn == gfn) {
  1145. if (sp->unsync)
  1146. if (kvm_sync_page(vcpu, sp))
  1147. continue;
  1148. if (sp->role.word != role.word)
  1149. continue;
  1150. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1151. if (sp->unsync_children) {
  1152. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1153. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1154. }
  1155. trace_kvm_mmu_get_page(sp, false);
  1156. return sp;
  1157. }
  1158. ++vcpu->kvm->stat.mmu_cache_miss;
  1159. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1160. if (!sp)
  1161. return sp;
  1162. sp->gfn = gfn;
  1163. sp->role = role;
  1164. hlist_add_head(&sp->hash_link, bucket);
  1165. if (!direct) {
  1166. if (rmap_write_protect(vcpu->kvm, gfn))
  1167. kvm_flush_remote_tlbs(vcpu->kvm);
  1168. account_shadowed(vcpu->kvm, gfn);
  1169. }
  1170. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1171. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1172. else
  1173. nonpaging_prefetch_page(vcpu, sp);
  1174. trace_kvm_mmu_get_page(sp, true);
  1175. return sp;
  1176. }
  1177. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1178. struct kvm_vcpu *vcpu, u64 addr)
  1179. {
  1180. iterator->addr = addr;
  1181. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1182. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1183. if (iterator->level == PT32E_ROOT_LEVEL) {
  1184. iterator->shadow_addr
  1185. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1186. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1187. --iterator->level;
  1188. if (!iterator->shadow_addr)
  1189. iterator->level = 0;
  1190. }
  1191. }
  1192. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1193. {
  1194. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1195. return false;
  1196. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1197. if (is_large_pte(*iterator->sptep))
  1198. return false;
  1199. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1200. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1201. return true;
  1202. }
  1203. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1204. {
  1205. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1206. --iterator->level;
  1207. }
  1208. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1209. struct kvm_mmu_page *sp)
  1210. {
  1211. unsigned i;
  1212. u64 *pt;
  1213. u64 ent;
  1214. pt = sp->spt;
  1215. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1216. ent = pt[i];
  1217. if (is_shadow_present_pte(ent)) {
  1218. if (!is_last_spte(ent, sp->role.level)) {
  1219. ent &= PT64_BASE_ADDR_MASK;
  1220. mmu_page_remove_parent_pte(page_header(ent),
  1221. &pt[i]);
  1222. } else {
  1223. if (is_large_pte(ent))
  1224. --kvm->stat.lpages;
  1225. rmap_remove(kvm, &pt[i]);
  1226. }
  1227. }
  1228. pt[i] = shadow_trap_nonpresent_pte;
  1229. }
  1230. }
  1231. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1232. {
  1233. mmu_page_remove_parent_pte(sp, parent_pte);
  1234. }
  1235. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1236. {
  1237. int i;
  1238. struct kvm_vcpu *vcpu;
  1239. kvm_for_each_vcpu(i, vcpu, kvm)
  1240. vcpu->arch.last_pte_updated = NULL;
  1241. }
  1242. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1243. {
  1244. u64 *parent_pte;
  1245. while (sp->multimapped || sp->parent_pte) {
  1246. if (!sp->multimapped)
  1247. parent_pte = sp->parent_pte;
  1248. else {
  1249. struct kvm_pte_chain *chain;
  1250. chain = container_of(sp->parent_ptes.first,
  1251. struct kvm_pte_chain, link);
  1252. parent_pte = chain->parent_ptes[0];
  1253. }
  1254. BUG_ON(!parent_pte);
  1255. kvm_mmu_put_page(sp, parent_pte);
  1256. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1257. }
  1258. }
  1259. static int mmu_zap_unsync_children(struct kvm *kvm,
  1260. struct kvm_mmu_page *parent)
  1261. {
  1262. int i, zapped = 0;
  1263. struct mmu_page_path parents;
  1264. struct kvm_mmu_pages pages;
  1265. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1266. return 0;
  1267. kvm_mmu_pages_init(parent, &parents, &pages);
  1268. while (mmu_unsync_walk(parent, &pages)) {
  1269. struct kvm_mmu_page *sp;
  1270. for_each_sp(pages, sp, parents, i) {
  1271. kvm_mmu_zap_page(kvm, sp);
  1272. mmu_pages_clear_parents(&parents);
  1273. }
  1274. zapped += pages.nr;
  1275. kvm_mmu_pages_init(parent, &parents, &pages);
  1276. }
  1277. return zapped;
  1278. }
  1279. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1280. {
  1281. int ret;
  1282. trace_kvm_mmu_zap_page(sp);
  1283. ++kvm->stat.mmu_shadow_zapped;
  1284. ret = mmu_zap_unsync_children(kvm, sp);
  1285. kvm_mmu_page_unlink_children(kvm, sp);
  1286. kvm_mmu_unlink_parents(kvm, sp);
  1287. kvm_flush_remote_tlbs(kvm);
  1288. if (!sp->role.invalid && !sp->role.direct)
  1289. unaccount_shadowed(kvm, sp->gfn);
  1290. if (sp->unsync)
  1291. kvm_unlink_unsync_page(kvm, sp);
  1292. if (!sp->root_count) {
  1293. hlist_del(&sp->hash_link);
  1294. kvm_mmu_free_page(kvm, sp);
  1295. } else {
  1296. sp->role.invalid = 1;
  1297. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1298. kvm_reload_remote_mmus(kvm);
  1299. }
  1300. kvm_mmu_reset_last_pte_updated(kvm);
  1301. return ret;
  1302. }
  1303. /*
  1304. * Changing the number of mmu pages allocated to the vm
  1305. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1306. */
  1307. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1308. {
  1309. int used_pages;
  1310. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1311. used_pages = max(0, used_pages);
  1312. /*
  1313. * If we set the number of mmu pages to be smaller be than the
  1314. * number of actived pages , we must to free some mmu pages before we
  1315. * change the value
  1316. */
  1317. if (used_pages > kvm_nr_mmu_pages) {
  1318. while (used_pages > kvm_nr_mmu_pages) {
  1319. struct kvm_mmu_page *page;
  1320. page = container_of(kvm->arch.active_mmu_pages.prev,
  1321. struct kvm_mmu_page, link);
  1322. kvm_mmu_zap_page(kvm, page);
  1323. used_pages--;
  1324. }
  1325. kvm->arch.n_free_mmu_pages = 0;
  1326. }
  1327. else
  1328. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1329. - kvm->arch.n_alloc_mmu_pages;
  1330. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1331. }
  1332. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1333. {
  1334. unsigned index;
  1335. struct hlist_head *bucket;
  1336. struct kvm_mmu_page *sp;
  1337. struct hlist_node *node, *n;
  1338. int r;
  1339. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1340. r = 0;
  1341. index = kvm_page_table_hashfn(gfn);
  1342. bucket = &kvm->arch.mmu_page_hash[index];
  1343. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1344. if (sp->gfn == gfn && !sp->role.direct) {
  1345. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1346. sp->role.word);
  1347. r = 1;
  1348. if (kvm_mmu_zap_page(kvm, sp))
  1349. n = bucket->first;
  1350. }
  1351. return r;
  1352. }
  1353. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1354. {
  1355. unsigned index;
  1356. struct hlist_head *bucket;
  1357. struct kvm_mmu_page *sp;
  1358. struct hlist_node *node, *nn;
  1359. index = kvm_page_table_hashfn(gfn);
  1360. bucket = &kvm->arch.mmu_page_hash[index];
  1361. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1362. if (sp->gfn == gfn && !sp->role.direct
  1363. && !sp->role.invalid) {
  1364. pgprintk("%s: zap %lx %x\n",
  1365. __func__, gfn, sp->role.word);
  1366. kvm_mmu_zap_page(kvm, sp);
  1367. }
  1368. }
  1369. }
  1370. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1371. {
  1372. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1373. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1374. __set_bit(slot, sp->slot_bitmap);
  1375. }
  1376. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1377. {
  1378. int i;
  1379. u64 *pt = sp->spt;
  1380. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1381. return;
  1382. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1383. if (pt[i] == shadow_notrap_nonpresent_pte)
  1384. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1385. }
  1386. }
  1387. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1388. {
  1389. struct page *page;
  1390. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1391. if (gpa == UNMAPPED_GVA)
  1392. return NULL;
  1393. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1394. return page;
  1395. }
  1396. /*
  1397. * The function is based on mtrr_type_lookup() in
  1398. * arch/x86/kernel/cpu/mtrr/generic.c
  1399. */
  1400. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1401. u64 start, u64 end)
  1402. {
  1403. int i;
  1404. u64 base, mask;
  1405. u8 prev_match, curr_match;
  1406. int num_var_ranges = KVM_NR_VAR_MTRR;
  1407. if (!mtrr_state->enabled)
  1408. return 0xFF;
  1409. /* Make end inclusive end, instead of exclusive */
  1410. end--;
  1411. /* Look in fixed ranges. Just return the type as per start */
  1412. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1413. int idx;
  1414. if (start < 0x80000) {
  1415. idx = 0;
  1416. idx += (start >> 16);
  1417. return mtrr_state->fixed_ranges[idx];
  1418. } else if (start < 0xC0000) {
  1419. idx = 1 * 8;
  1420. idx += ((start - 0x80000) >> 14);
  1421. return mtrr_state->fixed_ranges[idx];
  1422. } else if (start < 0x1000000) {
  1423. idx = 3 * 8;
  1424. idx += ((start - 0xC0000) >> 12);
  1425. return mtrr_state->fixed_ranges[idx];
  1426. }
  1427. }
  1428. /*
  1429. * Look in variable ranges
  1430. * Look of multiple ranges matching this address and pick type
  1431. * as per MTRR precedence
  1432. */
  1433. if (!(mtrr_state->enabled & 2))
  1434. return mtrr_state->def_type;
  1435. prev_match = 0xFF;
  1436. for (i = 0; i < num_var_ranges; ++i) {
  1437. unsigned short start_state, end_state;
  1438. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1439. continue;
  1440. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1441. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1442. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1443. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1444. start_state = ((start & mask) == (base & mask));
  1445. end_state = ((end & mask) == (base & mask));
  1446. if (start_state != end_state)
  1447. return 0xFE;
  1448. if ((start & mask) != (base & mask))
  1449. continue;
  1450. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1451. if (prev_match == 0xFF) {
  1452. prev_match = curr_match;
  1453. continue;
  1454. }
  1455. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1456. curr_match == MTRR_TYPE_UNCACHABLE)
  1457. return MTRR_TYPE_UNCACHABLE;
  1458. if ((prev_match == MTRR_TYPE_WRBACK &&
  1459. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1460. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1461. curr_match == MTRR_TYPE_WRBACK)) {
  1462. prev_match = MTRR_TYPE_WRTHROUGH;
  1463. curr_match = MTRR_TYPE_WRTHROUGH;
  1464. }
  1465. if (prev_match != curr_match)
  1466. return MTRR_TYPE_UNCACHABLE;
  1467. }
  1468. if (prev_match != 0xFF)
  1469. return prev_match;
  1470. return mtrr_state->def_type;
  1471. }
  1472. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1473. {
  1474. u8 mtrr;
  1475. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1476. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1477. if (mtrr == 0xfe || mtrr == 0xff)
  1478. mtrr = MTRR_TYPE_WRBACK;
  1479. return mtrr;
  1480. }
  1481. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1482. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1483. {
  1484. unsigned index;
  1485. struct hlist_head *bucket;
  1486. struct kvm_mmu_page *s;
  1487. struct hlist_node *node, *n;
  1488. trace_kvm_mmu_unsync_page(sp);
  1489. index = kvm_page_table_hashfn(sp->gfn);
  1490. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1491. /* don't unsync if pagetable is shadowed with multiple roles */
  1492. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1493. if (s->gfn != sp->gfn || s->role.direct)
  1494. continue;
  1495. if (s->role.word != sp->role.word)
  1496. return 1;
  1497. }
  1498. ++vcpu->kvm->stat.mmu_unsync;
  1499. sp->unsync = 1;
  1500. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1501. mmu_convert_notrap(sp);
  1502. return 0;
  1503. }
  1504. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1505. bool can_unsync)
  1506. {
  1507. struct kvm_mmu_page *shadow;
  1508. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1509. if (shadow) {
  1510. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1511. return 1;
  1512. if (shadow->unsync)
  1513. return 0;
  1514. if (can_unsync && oos_shadow)
  1515. return kvm_unsync_page(vcpu, shadow);
  1516. return 1;
  1517. }
  1518. return 0;
  1519. }
  1520. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1521. unsigned pte_access, int user_fault,
  1522. int write_fault, int dirty, int level,
  1523. gfn_t gfn, pfn_t pfn, bool speculative,
  1524. bool can_unsync, bool reset_host_protection)
  1525. {
  1526. u64 spte;
  1527. int ret = 0;
  1528. /*
  1529. * We don't set the accessed bit, since we sometimes want to see
  1530. * whether the guest actually used the pte (in order to detect
  1531. * demand paging).
  1532. */
  1533. spte = shadow_base_present_pte | shadow_dirty_mask;
  1534. if (!speculative)
  1535. spte |= shadow_accessed_mask;
  1536. if (!dirty)
  1537. pte_access &= ~ACC_WRITE_MASK;
  1538. if (pte_access & ACC_EXEC_MASK)
  1539. spte |= shadow_x_mask;
  1540. else
  1541. spte |= shadow_nx_mask;
  1542. if (pte_access & ACC_USER_MASK)
  1543. spte |= shadow_user_mask;
  1544. if (level > PT_PAGE_TABLE_LEVEL)
  1545. spte |= PT_PAGE_SIZE_MASK;
  1546. if (tdp_enabled)
  1547. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1548. kvm_is_mmio_pfn(pfn));
  1549. if (reset_host_protection)
  1550. spte |= SPTE_HOST_WRITEABLE;
  1551. spte |= (u64)pfn << PAGE_SHIFT;
  1552. if ((pte_access & ACC_WRITE_MASK)
  1553. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1554. if (level > PT_PAGE_TABLE_LEVEL &&
  1555. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1556. ret = 1;
  1557. spte = shadow_trap_nonpresent_pte;
  1558. goto set_pte;
  1559. }
  1560. spte |= PT_WRITABLE_MASK;
  1561. /*
  1562. * Optimization: for pte sync, if spte was writable the hash
  1563. * lookup is unnecessary (and expensive). Write protection
  1564. * is responsibility of mmu_get_page / kvm_sync_page.
  1565. * Same reasoning can be applied to dirty page accounting.
  1566. */
  1567. if (!can_unsync && is_writeble_pte(*sptep))
  1568. goto set_pte;
  1569. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1570. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1571. __func__, gfn);
  1572. ret = 1;
  1573. pte_access &= ~ACC_WRITE_MASK;
  1574. if (is_writeble_pte(spte))
  1575. spte &= ~PT_WRITABLE_MASK;
  1576. }
  1577. }
  1578. if (pte_access & ACC_WRITE_MASK)
  1579. mark_page_dirty(vcpu->kvm, gfn);
  1580. set_pte:
  1581. __set_spte(sptep, spte);
  1582. return ret;
  1583. }
  1584. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1585. unsigned pt_access, unsigned pte_access,
  1586. int user_fault, int write_fault, int dirty,
  1587. int *ptwrite, int level, gfn_t gfn,
  1588. pfn_t pfn, bool speculative,
  1589. bool reset_host_protection)
  1590. {
  1591. int was_rmapped = 0;
  1592. int was_writeble = is_writeble_pte(*sptep);
  1593. int rmap_count;
  1594. pgprintk("%s: spte %llx access %x write_fault %d"
  1595. " user_fault %d gfn %lx\n",
  1596. __func__, *sptep, pt_access,
  1597. write_fault, user_fault, gfn);
  1598. if (is_rmap_spte(*sptep)) {
  1599. /*
  1600. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1601. * the parent of the now unreachable PTE.
  1602. */
  1603. if (level > PT_PAGE_TABLE_LEVEL &&
  1604. !is_large_pte(*sptep)) {
  1605. struct kvm_mmu_page *child;
  1606. u64 pte = *sptep;
  1607. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1608. mmu_page_remove_parent_pte(child, sptep);
  1609. } else if (pfn != spte_to_pfn(*sptep)) {
  1610. pgprintk("hfn old %lx new %lx\n",
  1611. spte_to_pfn(*sptep), pfn);
  1612. rmap_remove(vcpu->kvm, sptep);
  1613. } else
  1614. was_rmapped = 1;
  1615. }
  1616. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1617. dirty, level, gfn, pfn, speculative, true,
  1618. reset_host_protection)) {
  1619. if (write_fault)
  1620. *ptwrite = 1;
  1621. kvm_x86_ops->tlb_flush(vcpu);
  1622. }
  1623. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1624. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1625. is_large_pte(*sptep)? "2MB" : "4kB",
  1626. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1627. *sptep, sptep);
  1628. if (!was_rmapped && is_large_pte(*sptep))
  1629. ++vcpu->kvm->stat.lpages;
  1630. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1631. if (!was_rmapped) {
  1632. rmap_count = rmap_add(vcpu, sptep, gfn);
  1633. kvm_release_pfn_clean(pfn);
  1634. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1635. rmap_recycle(vcpu, sptep, gfn);
  1636. } else {
  1637. if (was_writeble)
  1638. kvm_release_pfn_dirty(pfn);
  1639. else
  1640. kvm_release_pfn_clean(pfn);
  1641. }
  1642. if (speculative) {
  1643. vcpu->arch.last_pte_updated = sptep;
  1644. vcpu->arch.last_pte_gfn = gfn;
  1645. }
  1646. }
  1647. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1648. {
  1649. }
  1650. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1651. int level, gfn_t gfn, pfn_t pfn)
  1652. {
  1653. struct kvm_shadow_walk_iterator iterator;
  1654. struct kvm_mmu_page *sp;
  1655. int pt_write = 0;
  1656. gfn_t pseudo_gfn;
  1657. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1658. if (iterator.level == level) {
  1659. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1660. 0, write, 1, &pt_write,
  1661. level, gfn, pfn, false, true);
  1662. ++vcpu->stat.pf_fixed;
  1663. break;
  1664. }
  1665. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1666. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1667. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1668. iterator.level - 1,
  1669. 1, ACC_ALL, iterator.sptep);
  1670. if (!sp) {
  1671. pgprintk("nonpaging_map: ENOMEM\n");
  1672. kvm_release_pfn_clean(pfn);
  1673. return -ENOMEM;
  1674. }
  1675. __set_spte(iterator.sptep,
  1676. __pa(sp->spt)
  1677. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1678. | shadow_user_mask | shadow_x_mask);
  1679. }
  1680. }
  1681. return pt_write;
  1682. }
  1683. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1684. {
  1685. int r;
  1686. int level;
  1687. pfn_t pfn;
  1688. unsigned long mmu_seq;
  1689. level = mapping_level(vcpu, gfn);
  1690. /*
  1691. * This path builds a PAE pagetable - so we can map 2mb pages at
  1692. * maximum. Therefore check if the level is larger than that.
  1693. */
  1694. if (level > PT_DIRECTORY_LEVEL)
  1695. level = PT_DIRECTORY_LEVEL;
  1696. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1697. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1698. smp_rmb();
  1699. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1700. /* mmio */
  1701. if (is_error_pfn(pfn)) {
  1702. kvm_release_pfn_clean(pfn);
  1703. return 1;
  1704. }
  1705. spin_lock(&vcpu->kvm->mmu_lock);
  1706. if (mmu_notifier_retry(vcpu, mmu_seq))
  1707. goto out_unlock;
  1708. kvm_mmu_free_some_pages(vcpu);
  1709. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1710. spin_unlock(&vcpu->kvm->mmu_lock);
  1711. return r;
  1712. out_unlock:
  1713. spin_unlock(&vcpu->kvm->mmu_lock);
  1714. kvm_release_pfn_clean(pfn);
  1715. return 0;
  1716. }
  1717. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1718. {
  1719. int i;
  1720. struct kvm_mmu_page *sp;
  1721. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1722. return;
  1723. spin_lock(&vcpu->kvm->mmu_lock);
  1724. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1725. hpa_t root = vcpu->arch.mmu.root_hpa;
  1726. sp = page_header(root);
  1727. --sp->root_count;
  1728. if (!sp->root_count && sp->role.invalid)
  1729. kvm_mmu_zap_page(vcpu->kvm, sp);
  1730. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1731. spin_unlock(&vcpu->kvm->mmu_lock);
  1732. return;
  1733. }
  1734. for (i = 0; i < 4; ++i) {
  1735. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1736. if (root) {
  1737. root &= PT64_BASE_ADDR_MASK;
  1738. sp = page_header(root);
  1739. --sp->root_count;
  1740. if (!sp->root_count && sp->role.invalid)
  1741. kvm_mmu_zap_page(vcpu->kvm, sp);
  1742. }
  1743. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1744. }
  1745. spin_unlock(&vcpu->kvm->mmu_lock);
  1746. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1747. }
  1748. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1749. {
  1750. int ret = 0;
  1751. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1752. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1753. ret = 1;
  1754. }
  1755. return ret;
  1756. }
  1757. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1758. {
  1759. int i;
  1760. gfn_t root_gfn;
  1761. struct kvm_mmu_page *sp;
  1762. int direct = 0;
  1763. u64 pdptr;
  1764. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1765. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1766. hpa_t root = vcpu->arch.mmu.root_hpa;
  1767. ASSERT(!VALID_PAGE(root));
  1768. if (tdp_enabled)
  1769. direct = 1;
  1770. if (mmu_check_root(vcpu, root_gfn))
  1771. return 1;
  1772. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1773. PT64_ROOT_LEVEL, direct,
  1774. ACC_ALL, NULL);
  1775. root = __pa(sp->spt);
  1776. ++sp->root_count;
  1777. vcpu->arch.mmu.root_hpa = root;
  1778. return 0;
  1779. }
  1780. direct = !is_paging(vcpu);
  1781. if (tdp_enabled)
  1782. direct = 1;
  1783. for (i = 0; i < 4; ++i) {
  1784. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1785. ASSERT(!VALID_PAGE(root));
  1786. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1787. pdptr = kvm_pdptr_read(vcpu, i);
  1788. if (!is_present_gpte(pdptr)) {
  1789. vcpu->arch.mmu.pae_root[i] = 0;
  1790. continue;
  1791. }
  1792. root_gfn = pdptr >> PAGE_SHIFT;
  1793. } else if (vcpu->arch.mmu.root_level == 0)
  1794. root_gfn = 0;
  1795. if (mmu_check_root(vcpu, root_gfn))
  1796. return 1;
  1797. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1798. PT32_ROOT_LEVEL, direct,
  1799. ACC_ALL, NULL);
  1800. root = __pa(sp->spt);
  1801. ++sp->root_count;
  1802. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1803. }
  1804. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1805. return 0;
  1806. }
  1807. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1808. {
  1809. int i;
  1810. struct kvm_mmu_page *sp;
  1811. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1812. return;
  1813. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1814. hpa_t root = vcpu->arch.mmu.root_hpa;
  1815. sp = page_header(root);
  1816. mmu_sync_children(vcpu, sp);
  1817. return;
  1818. }
  1819. for (i = 0; i < 4; ++i) {
  1820. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1821. if (root && VALID_PAGE(root)) {
  1822. root &= PT64_BASE_ADDR_MASK;
  1823. sp = page_header(root);
  1824. mmu_sync_children(vcpu, sp);
  1825. }
  1826. }
  1827. }
  1828. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1829. {
  1830. spin_lock(&vcpu->kvm->mmu_lock);
  1831. mmu_sync_roots(vcpu);
  1832. spin_unlock(&vcpu->kvm->mmu_lock);
  1833. }
  1834. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1835. {
  1836. return vaddr;
  1837. }
  1838. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1839. u32 error_code)
  1840. {
  1841. gfn_t gfn;
  1842. int r;
  1843. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1844. r = mmu_topup_memory_caches(vcpu);
  1845. if (r)
  1846. return r;
  1847. ASSERT(vcpu);
  1848. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1849. gfn = gva >> PAGE_SHIFT;
  1850. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1851. error_code & PFERR_WRITE_MASK, gfn);
  1852. }
  1853. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1854. u32 error_code)
  1855. {
  1856. pfn_t pfn;
  1857. int r;
  1858. int level;
  1859. gfn_t gfn = gpa >> PAGE_SHIFT;
  1860. unsigned long mmu_seq;
  1861. ASSERT(vcpu);
  1862. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1863. r = mmu_topup_memory_caches(vcpu);
  1864. if (r)
  1865. return r;
  1866. level = mapping_level(vcpu, gfn);
  1867. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1868. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1869. smp_rmb();
  1870. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1871. if (is_error_pfn(pfn)) {
  1872. kvm_release_pfn_clean(pfn);
  1873. return 1;
  1874. }
  1875. spin_lock(&vcpu->kvm->mmu_lock);
  1876. if (mmu_notifier_retry(vcpu, mmu_seq))
  1877. goto out_unlock;
  1878. kvm_mmu_free_some_pages(vcpu);
  1879. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1880. level, gfn, pfn);
  1881. spin_unlock(&vcpu->kvm->mmu_lock);
  1882. return r;
  1883. out_unlock:
  1884. spin_unlock(&vcpu->kvm->mmu_lock);
  1885. kvm_release_pfn_clean(pfn);
  1886. return 0;
  1887. }
  1888. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1889. {
  1890. mmu_free_roots(vcpu);
  1891. }
  1892. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1893. {
  1894. struct kvm_mmu *context = &vcpu->arch.mmu;
  1895. context->new_cr3 = nonpaging_new_cr3;
  1896. context->page_fault = nonpaging_page_fault;
  1897. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1898. context->free = nonpaging_free;
  1899. context->prefetch_page = nonpaging_prefetch_page;
  1900. context->sync_page = nonpaging_sync_page;
  1901. context->invlpg = nonpaging_invlpg;
  1902. context->root_level = 0;
  1903. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1904. context->root_hpa = INVALID_PAGE;
  1905. return 0;
  1906. }
  1907. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1908. {
  1909. ++vcpu->stat.tlb_flush;
  1910. kvm_x86_ops->tlb_flush(vcpu);
  1911. }
  1912. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1913. {
  1914. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1915. mmu_free_roots(vcpu);
  1916. }
  1917. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1918. u64 addr,
  1919. u32 err_code)
  1920. {
  1921. kvm_inject_page_fault(vcpu, addr, err_code);
  1922. }
  1923. static void paging_free(struct kvm_vcpu *vcpu)
  1924. {
  1925. nonpaging_free(vcpu);
  1926. }
  1927. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1928. {
  1929. int bit7;
  1930. bit7 = (gpte >> 7) & 1;
  1931. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1932. }
  1933. #define PTTYPE 64
  1934. #include "paging_tmpl.h"
  1935. #undef PTTYPE
  1936. #define PTTYPE 32
  1937. #include "paging_tmpl.h"
  1938. #undef PTTYPE
  1939. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1940. {
  1941. struct kvm_mmu *context = &vcpu->arch.mmu;
  1942. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1943. u64 exb_bit_rsvd = 0;
  1944. if (!is_nx(vcpu))
  1945. exb_bit_rsvd = rsvd_bits(63, 63);
  1946. switch (level) {
  1947. case PT32_ROOT_LEVEL:
  1948. /* no rsvd bits for 2 level 4K page table entries */
  1949. context->rsvd_bits_mask[0][1] = 0;
  1950. context->rsvd_bits_mask[0][0] = 0;
  1951. if (is_cpuid_PSE36())
  1952. /* 36bits PSE 4MB page */
  1953. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1954. else
  1955. /* 32 bits PSE 4MB page */
  1956. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1957. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1958. break;
  1959. case PT32E_ROOT_LEVEL:
  1960. context->rsvd_bits_mask[0][2] =
  1961. rsvd_bits(maxphyaddr, 63) |
  1962. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1963. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1964. rsvd_bits(maxphyaddr, 62); /* PDE */
  1965. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1966. rsvd_bits(maxphyaddr, 62); /* PTE */
  1967. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1968. rsvd_bits(maxphyaddr, 62) |
  1969. rsvd_bits(13, 20); /* large page */
  1970. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1971. break;
  1972. case PT64_ROOT_LEVEL:
  1973. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1974. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1975. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1976. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1977. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1978. rsvd_bits(maxphyaddr, 51);
  1979. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1980. rsvd_bits(maxphyaddr, 51);
  1981. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1982. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1983. rsvd_bits(maxphyaddr, 51) |
  1984. rsvd_bits(13, 29);
  1985. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1986. rsvd_bits(maxphyaddr, 51) |
  1987. rsvd_bits(13, 20); /* large page */
  1988. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1989. break;
  1990. }
  1991. }
  1992. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1993. {
  1994. struct kvm_mmu *context = &vcpu->arch.mmu;
  1995. ASSERT(is_pae(vcpu));
  1996. context->new_cr3 = paging_new_cr3;
  1997. context->page_fault = paging64_page_fault;
  1998. context->gva_to_gpa = paging64_gva_to_gpa;
  1999. context->prefetch_page = paging64_prefetch_page;
  2000. context->sync_page = paging64_sync_page;
  2001. context->invlpg = paging64_invlpg;
  2002. context->free = paging_free;
  2003. context->root_level = level;
  2004. context->shadow_root_level = level;
  2005. context->root_hpa = INVALID_PAGE;
  2006. return 0;
  2007. }
  2008. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2009. {
  2010. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2011. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2012. }
  2013. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2014. {
  2015. struct kvm_mmu *context = &vcpu->arch.mmu;
  2016. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2017. context->new_cr3 = paging_new_cr3;
  2018. context->page_fault = paging32_page_fault;
  2019. context->gva_to_gpa = paging32_gva_to_gpa;
  2020. context->free = paging_free;
  2021. context->prefetch_page = paging32_prefetch_page;
  2022. context->sync_page = paging32_sync_page;
  2023. context->invlpg = paging32_invlpg;
  2024. context->root_level = PT32_ROOT_LEVEL;
  2025. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2026. context->root_hpa = INVALID_PAGE;
  2027. return 0;
  2028. }
  2029. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2030. {
  2031. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2032. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2033. }
  2034. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2035. {
  2036. struct kvm_mmu *context = &vcpu->arch.mmu;
  2037. context->new_cr3 = nonpaging_new_cr3;
  2038. context->page_fault = tdp_page_fault;
  2039. context->free = nonpaging_free;
  2040. context->prefetch_page = nonpaging_prefetch_page;
  2041. context->sync_page = nonpaging_sync_page;
  2042. context->invlpg = nonpaging_invlpg;
  2043. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2044. context->root_hpa = INVALID_PAGE;
  2045. if (!is_paging(vcpu)) {
  2046. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2047. context->root_level = 0;
  2048. } else if (is_long_mode(vcpu)) {
  2049. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2050. context->gva_to_gpa = paging64_gva_to_gpa;
  2051. context->root_level = PT64_ROOT_LEVEL;
  2052. } else if (is_pae(vcpu)) {
  2053. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2054. context->gva_to_gpa = paging64_gva_to_gpa;
  2055. context->root_level = PT32E_ROOT_LEVEL;
  2056. } else {
  2057. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2058. context->gva_to_gpa = paging32_gva_to_gpa;
  2059. context->root_level = PT32_ROOT_LEVEL;
  2060. }
  2061. return 0;
  2062. }
  2063. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2064. {
  2065. int r;
  2066. ASSERT(vcpu);
  2067. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2068. if (!is_paging(vcpu))
  2069. r = nonpaging_init_context(vcpu);
  2070. else if (is_long_mode(vcpu))
  2071. r = paging64_init_context(vcpu);
  2072. else if (is_pae(vcpu))
  2073. r = paging32E_init_context(vcpu);
  2074. else
  2075. r = paging32_init_context(vcpu);
  2076. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  2077. return r;
  2078. }
  2079. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2080. {
  2081. vcpu->arch.update_pte.pfn = bad_pfn;
  2082. if (tdp_enabled)
  2083. return init_kvm_tdp_mmu(vcpu);
  2084. else
  2085. return init_kvm_softmmu(vcpu);
  2086. }
  2087. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2088. {
  2089. ASSERT(vcpu);
  2090. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2091. vcpu->arch.mmu.free(vcpu);
  2092. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2093. }
  2094. }
  2095. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2096. {
  2097. destroy_kvm_mmu(vcpu);
  2098. return init_kvm_mmu(vcpu);
  2099. }
  2100. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2101. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2102. {
  2103. int r;
  2104. r = mmu_topup_memory_caches(vcpu);
  2105. if (r)
  2106. goto out;
  2107. spin_lock(&vcpu->kvm->mmu_lock);
  2108. kvm_mmu_free_some_pages(vcpu);
  2109. r = mmu_alloc_roots(vcpu);
  2110. mmu_sync_roots(vcpu);
  2111. spin_unlock(&vcpu->kvm->mmu_lock);
  2112. if (r)
  2113. goto out;
  2114. /* set_cr3() should ensure TLB has been flushed */
  2115. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2116. out:
  2117. return r;
  2118. }
  2119. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2120. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2121. {
  2122. mmu_free_roots(vcpu);
  2123. }
  2124. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2125. struct kvm_mmu_page *sp,
  2126. u64 *spte)
  2127. {
  2128. u64 pte;
  2129. struct kvm_mmu_page *child;
  2130. pte = *spte;
  2131. if (is_shadow_present_pte(pte)) {
  2132. if (is_last_spte(pte, sp->role.level))
  2133. rmap_remove(vcpu->kvm, spte);
  2134. else {
  2135. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2136. mmu_page_remove_parent_pte(child, spte);
  2137. }
  2138. }
  2139. __set_spte(spte, shadow_trap_nonpresent_pte);
  2140. if (is_large_pte(pte))
  2141. --vcpu->kvm->stat.lpages;
  2142. }
  2143. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2144. struct kvm_mmu_page *sp,
  2145. u64 *spte,
  2146. const void *new)
  2147. {
  2148. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2149. ++vcpu->kvm->stat.mmu_pde_zapped;
  2150. return;
  2151. }
  2152. ++vcpu->kvm->stat.mmu_pte_updated;
  2153. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2154. paging32_update_pte(vcpu, sp, spte, new);
  2155. else
  2156. paging64_update_pte(vcpu, sp, spte, new);
  2157. }
  2158. static bool need_remote_flush(u64 old, u64 new)
  2159. {
  2160. if (!is_shadow_present_pte(old))
  2161. return false;
  2162. if (!is_shadow_present_pte(new))
  2163. return true;
  2164. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2165. return true;
  2166. old ^= PT64_NX_MASK;
  2167. new ^= PT64_NX_MASK;
  2168. return (old & ~new & PT64_PERM_MASK) != 0;
  2169. }
  2170. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2171. {
  2172. if (need_remote_flush(old, new))
  2173. kvm_flush_remote_tlbs(vcpu->kvm);
  2174. else
  2175. kvm_mmu_flush_tlb(vcpu);
  2176. }
  2177. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2178. {
  2179. u64 *spte = vcpu->arch.last_pte_updated;
  2180. return !!(spte && (*spte & shadow_accessed_mask));
  2181. }
  2182. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2183. const u8 *new, int bytes)
  2184. {
  2185. gfn_t gfn;
  2186. int r;
  2187. u64 gpte = 0;
  2188. pfn_t pfn;
  2189. if (bytes != 4 && bytes != 8)
  2190. return;
  2191. /*
  2192. * Assume that the pte write on a page table of the same type
  2193. * as the current vcpu paging mode. This is nearly always true
  2194. * (might be false while changing modes). Note it is verified later
  2195. * by update_pte().
  2196. */
  2197. if (is_pae(vcpu)) {
  2198. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2199. if ((bytes == 4) && (gpa % 4 == 0)) {
  2200. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2201. if (r)
  2202. return;
  2203. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2204. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2205. memcpy((void *)&gpte, new, 8);
  2206. }
  2207. } else {
  2208. if ((bytes == 4) && (gpa % 4 == 0))
  2209. memcpy((void *)&gpte, new, 4);
  2210. }
  2211. if (!is_present_gpte(gpte))
  2212. return;
  2213. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2214. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2215. smp_rmb();
  2216. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2217. if (is_error_pfn(pfn)) {
  2218. kvm_release_pfn_clean(pfn);
  2219. return;
  2220. }
  2221. vcpu->arch.update_pte.gfn = gfn;
  2222. vcpu->arch.update_pte.pfn = pfn;
  2223. }
  2224. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2225. {
  2226. u64 *spte = vcpu->arch.last_pte_updated;
  2227. if (spte
  2228. && vcpu->arch.last_pte_gfn == gfn
  2229. && shadow_accessed_mask
  2230. && !(*spte & shadow_accessed_mask)
  2231. && is_shadow_present_pte(*spte))
  2232. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2233. }
  2234. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2235. const u8 *new, int bytes,
  2236. bool guest_initiated)
  2237. {
  2238. gfn_t gfn = gpa >> PAGE_SHIFT;
  2239. struct kvm_mmu_page *sp;
  2240. struct hlist_node *node, *n;
  2241. struct hlist_head *bucket;
  2242. unsigned index;
  2243. u64 entry, gentry;
  2244. u64 *spte;
  2245. unsigned offset = offset_in_page(gpa);
  2246. unsigned pte_size;
  2247. unsigned page_offset;
  2248. unsigned misaligned;
  2249. unsigned quadrant;
  2250. int level;
  2251. int flooded = 0;
  2252. int npte;
  2253. int r;
  2254. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2255. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2256. spin_lock(&vcpu->kvm->mmu_lock);
  2257. kvm_mmu_access_page(vcpu, gfn);
  2258. kvm_mmu_free_some_pages(vcpu);
  2259. ++vcpu->kvm->stat.mmu_pte_write;
  2260. kvm_mmu_audit(vcpu, "pre pte write");
  2261. if (guest_initiated) {
  2262. if (gfn == vcpu->arch.last_pt_write_gfn
  2263. && !last_updated_pte_accessed(vcpu)) {
  2264. ++vcpu->arch.last_pt_write_count;
  2265. if (vcpu->arch.last_pt_write_count >= 3)
  2266. flooded = 1;
  2267. } else {
  2268. vcpu->arch.last_pt_write_gfn = gfn;
  2269. vcpu->arch.last_pt_write_count = 1;
  2270. vcpu->arch.last_pte_updated = NULL;
  2271. }
  2272. }
  2273. index = kvm_page_table_hashfn(gfn);
  2274. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2275. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2276. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2277. continue;
  2278. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2279. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2280. misaligned |= bytes < 4;
  2281. if (misaligned || flooded) {
  2282. /*
  2283. * Misaligned accesses are too much trouble to fix
  2284. * up; also, they usually indicate a page is not used
  2285. * as a page table.
  2286. *
  2287. * If we're seeing too many writes to a page,
  2288. * it may no longer be a page table, or we may be
  2289. * forking, in which case it is better to unmap the
  2290. * page.
  2291. */
  2292. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2293. gpa, bytes, sp->role.word);
  2294. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2295. n = bucket->first;
  2296. ++vcpu->kvm->stat.mmu_flooded;
  2297. continue;
  2298. }
  2299. page_offset = offset;
  2300. level = sp->role.level;
  2301. npte = 1;
  2302. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2303. page_offset <<= 1; /* 32->64 */
  2304. /*
  2305. * A 32-bit pde maps 4MB while the shadow pdes map
  2306. * only 2MB. So we need to double the offset again
  2307. * and zap two pdes instead of one.
  2308. */
  2309. if (level == PT32_ROOT_LEVEL) {
  2310. page_offset &= ~7; /* kill rounding error */
  2311. page_offset <<= 1;
  2312. npte = 2;
  2313. }
  2314. quadrant = page_offset >> PAGE_SHIFT;
  2315. page_offset &= ~PAGE_MASK;
  2316. if (quadrant != sp->role.quadrant)
  2317. continue;
  2318. }
  2319. spte = &sp->spt[page_offset / sizeof(*spte)];
  2320. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2321. gentry = 0;
  2322. r = kvm_read_guest_atomic(vcpu->kvm,
  2323. gpa & ~(u64)(pte_size - 1),
  2324. &gentry, pte_size);
  2325. new = (const void *)&gentry;
  2326. if (r < 0)
  2327. new = NULL;
  2328. }
  2329. while (npte--) {
  2330. entry = *spte;
  2331. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2332. if (new)
  2333. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2334. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2335. ++spte;
  2336. }
  2337. }
  2338. kvm_mmu_audit(vcpu, "post pte write");
  2339. spin_unlock(&vcpu->kvm->mmu_lock);
  2340. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2341. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2342. vcpu->arch.update_pte.pfn = bad_pfn;
  2343. }
  2344. }
  2345. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2346. {
  2347. gpa_t gpa;
  2348. int r;
  2349. if (tdp_enabled)
  2350. return 0;
  2351. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2352. spin_lock(&vcpu->kvm->mmu_lock);
  2353. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2354. spin_unlock(&vcpu->kvm->mmu_lock);
  2355. return r;
  2356. }
  2357. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2358. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2359. {
  2360. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2361. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2362. struct kvm_mmu_page *sp;
  2363. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2364. struct kvm_mmu_page, link);
  2365. kvm_mmu_zap_page(vcpu->kvm, sp);
  2366. ++vcpu->kvm->stat.mmu_recycled;
  2367. }
  2368. }
  2369. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2370. {
  2371. int r;
  2372. enum emulation_result er;
  2373. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2374. if (r < 0)
  2375. goto out;
  2376. if (!r) {
  2377. r = 1;
  2378. goto out;
  2379. }
  2380. r = mmu_topup_memory_caches(vcpu);
  2381. if (r)
  2382. goto out;
  2383. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2384. switch (er) {
  2385. case EMULATE_DONE:
  2386. return 1;
  2387. case EMULATE_DO_MMIO:
  2388. ++vcpu->stat.mmio_exits;
  2389. return 0;
  2390. case EMULATE_FAIL:
  2391. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2392. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2393. vcpu->run->internal.ndata = 0;
  2394. return 0;
  2395. default:
  2396. BUG();
  2397. }
  2398. out:
  2399. return r;
  2400. }
  2401. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2402. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2403. {
  2404. vcpu->arch.mmu.invlpg(vcpu, gva);
  2405. kvm_mmu_flush_tlb(vcpu);
  2406. ++vcpu->stat.invlpg;
  2407. }
  2408. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2409. void kvm_enable_tdp(void)
  2410. {
  2411. tdp_enabled = true;
  2412. }
  2413. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2414. void kvm_disable_tdp(void)
  2415. {
  2416. tdp_enabled = false;
  2417. }
  2418. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2419. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2420. {
  2421. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2422. }
  2423. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2424. {
  2425. struct page *page;
  2426. int i;
  2427. ASSERT(vcpu);
  2428. /*
  2429. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2430. * Therefore we need to allocate shadow page tables in the first
  2431. * 4GB of memory, which happens to fit the DMA32 zone.
  2432. */
  2433. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2434. if (!page)
  2435. goto error_1;
  2436. vcpu->arch.mmu.pae_root = page_address(page);
  2437. for (i = 0; i < 4; ++i)
  2438. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2439. return 0;
  2440. error_1:
  2441. free_mmu_pages(vcpu);
  2442. return -ENOMEM;
  2443. }
  2444. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2445. {
  2446. ASSERT(vcpu);
  2447. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2448. return alloc_mmu_pages(vcpu);
  2449. }
  2450. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2451. {
  2452. ASSERT(vcpu);
  2453. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2454. return init_kvm_mmu(vcpu);
  2455. }
  2456. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2457. {
  2458. ASSERT(vcpu);
  2459. destroy_kvm_mmu(vcpu);
  2460. free_mmu_pages(vcpu);
  2461. mmu_free_memory_caches(vcpu);
  2462. }
  2463. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2464. {
  2465. struct kvm_mmu_page *sp;
  2466. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2467. int i;
  2468. u64 *pt;
  2469. if (!test_bit(slot, sp->slot_bitmap))
  2470. continue;
  2471. pt = sp->spt;
  2472. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2473. /* avoid RMW */
  2474. if (pt[i] & PT_WRITABLE_MASK)
  2475. pt[i] &= ~PT_WRITABLE_MASK;
  2476. }
  2477. kvm_flush_remote_tlbs(kvm);
  2478. }
  2479. void kvm_mmu_zap_all(struct kvm *kvm)
  2480. {
  2481. struct kvm_mmu_page *sp, *node;
  2482. spin_lock(&kvm->mmu_lock);
  2483. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2484. if (kvm_mmu_zap_page(kvm, sp))
  2485. node = container_of(kvm->arch.active_mmu_pages.next,
  2486. struct kvm_mmu_page, link);
  2487. spin_unlock(&kvm->mmu_lock);
  2488. kvm_flush_remote_tlbs(kvm);
  2489. }
  2490. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2491. {
  2492. struct kvm_mmu_page *page;
  2493. page = container_of(kvm->arch.active_mmu_pages.prev,
  2494. struct kvm_mmu_page, link);
  2495. kvm_mmu_zap_page(kvm, page);
  2496. }
  2497. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2498. {
  2499. struct kvm *kvm;
  2500. struct kvm *kvm_freed = NULL;
  2501. int cache_count = 0;
  2502. spin_lock(&kvm_lock);
  2503. list_for_each_entry(kvm, &vm_list, vm_list) {
  2504. int npages;
  2505. if (!down_read_trylock(&kvm->slots_lock))
  2506. continue;
  2507. spin_lock(&kvm->mmu_lock);
  2508. npages = kvm->arch.n_alloc_mmu_pages -
  2509. kvm->arch.n_free_mmu_pages;
  2510. cache_count += npages;
  2511. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2512. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2513. cache_count--;
  2514. kvm_freed = kvm;
  2515. }
  2516. nr_to_scan--;
  2517. spin_unlock(&kvm->mmu_lock);
  2518. up_read(&kvm->slots_lock);
  2519. }
  2520. if (kvm_freed)
  2521. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2522. spin_unlock(&kvm_lock);
  2523. return cache_count;
  2524. }
  2525. static struct shrinker mmu_shrinker = {
  2526. .shrink = mmu_shrink,
  2527. .seeks = DEFAULT_SEEKS * 10,
  2528. };
  2529. static void mmu_destroy_caches(void)
  2530. {
  2531. if (pte_chain_cache)
  2532. kmem_cache_destroy(pte_chain_cache);
  2533. if (rmap_desc_cache)
  2534. kmem_cache_destroy(rmap_desc_cache);
  2535. if (mmu_page_header_cache)
  2536. kmem_cache_destroy(mmu_page_header_cache);
  2537. }
  2538. void kvm_mmu_module_exit(void)
  2539. {
  2540. mmu_destroy_caches();
  2541. unregister_shrinker(&mmu_shrinker);
  2542. }
  2543. int kvm_mmu_module_init(void)
  2544. {
  2545. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2546. sizeof(struct kvm_pte_chain),
  2547. 0, 0, NULL);
  2548. if (!pte_chain_cache)
  2549. goto nomem;
  2550. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2551. sizeof(struct kvm_rmap_desc),
  2552. 0, 0, NULL);
  2553. if (!rmap_desc_cache)
  2554. goto nomem;
  2555. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2556. sizeof(struct kvm_mmu_page),
  2557. 0, 0, NULL);
  2558. if (!mmu_page_header_cache)
  2559. goto nomem;
  2560. register_shrinker(&mmu_shrinker);
  2561. return 0;
  2562. nomem:
  2563. mmu_destroy_caches();
  2564. return -ENOMEM;
  2565. }
  2566. /*
  2567. * Caculate mmu pages needed for kvm.
  2568. */
  2569. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2570. {
  2571. int i;
  2572. unsigned int nr_mmu_pages;
  2573. unsigned int nr_pages = 0;
  2574. for (i = 0; i < kvm->nmemslots; i++)
  2575. nr_pages += kvm->memslots[i].npages;
  2576. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2577. nr_mmu_pages = max(nr_mmu_pages,
  2578. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2579. return nr_mmu_pages;
  2580. }
  2581. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2582. unsigned len)
  2583. {
  2584. if (len > buffer->len)
  2585. return NULL;
  2586. return buffer->ptr;
  2587. }
  2588. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2589. unsigned len)
  2590. {
  2591. void *ret;
  2592. ret = pv_mmu_peek_buffer(buffer, len);
  2593. if (!ret)
  2594. return ret;
  2595. buffer->ptr += len;
  2596. buffer->len -= len;
  2597. buffer->processed += len;
  2598. return ret;
  2599. }
  2600. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2601. gpa_t addr, gpa_t value)
  2602. {
  2603. int bytes = 8;
  2604. int r;
  2605. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2606. bytes = 4;
  2607. r = mmu_topup_memory_caches(vcpu);
  2608. if (r)
  2609. return r;
  2610. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2611. return -EFAULT;
  2612. return 1;
  2613. }
  2614. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2615. {
  2616. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2617. return 1;
  2618. }
  2619. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2620. {
  2621. spin_lock(&vcpu->kvm->mmu_lock);
  2622. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2623. spin_unlock(&vcpu->kvm->mmu_lock);
  2624. return 1;
  2625. }
  2626. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2627. struct kvm_pv_mmu_op_buffer *buffer)
  2628. {
  2629. struct kvm_mmu_op_header *header;
  2630. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2631. if (!header)
  2632. return 0;
  2633. switch (header->op) {
  2634. case KVM_MMU_OP_WRITE_PTE: {
  2635. struct kvm_mmu_op_write_pte *wpte;
  2636. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2637. if (!wpte)
  2638. return 0;
  2639. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2640. wpte->pte_val);
  2641. }
  2642. case KVM_MMU_OP_FLUSH_TLB: {
  2643. struct kvm_mmu_op_flush_tlb *ftlb;
  2644. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2645. if (!ftlb)
  2646. return 0;
  2647. return kvm_pv_mmu_flush_tlb(vcpu);
  2648. }
  2649. case KVM_MMU_OP_RELEASE_PT: {
  2650. struct kvm_mmu_op_release_pt *rpt;
  2651. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2652. if (!rpt)
  2653. return 0;
  2654. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2655. }
  2656. default: return 0;
  2657. }
  2658. }
  2659. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2660. gpa_t addr, unsigned long *ret)
  2661. {
  2662. int r;
  2663. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2664. buffer->ptr = buffer->buf;
  2665. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2666. buffer->processed = 0;
  2667. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2668. if (r)
  2669. goto out;
  2670. while (buffer->len) {
  2671. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2672. if (r < 0)
  2673. goto out;
  2674. if (r == 0)
  2675. break;
  2676. }
  2677. r = 1;
  2678. out:
  2679. *ret = buffer->processed;
  2680. return r;
  2681. }
  2682. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2683. {
  2684. struct kvm_shadow_walk_iterator iterator;
  2685. int nr_sptes = 0;
  2686. spin_lock(&vcpu->kvm->mmu_lock);
  2687. for_each_shadow_entry(vcpu, addr, iterator) {
  2688. sptes[iterator.level-1] = *iterator.sptep;
  2689. nr_sptes++;
  2690. if (!is_shadow_present_pte(*iterator.sptep))
  2691. break;
  2692. }
  2693. spin_unlock(&vcpu->kvm->mmu_lock);
  2694. return nr_sptes;
  2695. }
  2696. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2697. #ifdef AUDIT
  2698. static const char *audit_msg;
  2699. static gva_t canonicalize(gva_t gva)
  2700. {
  2701. #ifdef CONFIG_X86_64
  2702. gva = (long long)(gva << 16) >> 16;
  2703. #endif
  2704. return gva;
  2705. }
  2706. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2707. u64 *sptep);
  2708. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2709. inspect_spte_fn fn)
  2710. {
  2711. int i;
  2712. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2713. u64 ent = sp->spt[i];
  2714. if (is_shadow_present_pte(ent)) {
  2715. if (!is_last_spte(ent, sp->role.level)) {
  2716. struct kvm_mmu_page *child;
  2717. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2718. __mmu_spte_walk(kvm, child, fn);
  2719. } else
  2720. fn(kvm, sp, &sp->spt[i]);
  2721. }
  2722. }
  2723. }
  2724. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2725. {
  2726. int i;
  2727. struct kvm_mmu_page *sp;
  2728. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2729. return;
  2730. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2731. hpa_t root = vcpu->arch.mmu.root_hpa;
  2732. sp = page_header(root);
  2733. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2734. return;
  2735. }
  2736. for (i = 0; i < 4; ++i) {
  2737. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2738. if (root && VALID_PAGE(root)) {
  2739. root &= PT64_BASE_ADDR_MASK;
  2740. sp = page_header(root);
  2741. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2742. }
  2743. }
  2744. return;
  2745. }
  2746. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2747. gva_t va, int level)
  2748. {
  2749. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2750. int i;
  2751. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2752. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2753. u64 ent = pt[i];
  2754. if (ent == shadow_trap_nonpresent_pte)
  2755. continue;
  2756. va = canonicalize(va);
  2757. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2758. audit_mappings_page(vcpu, ent, va, level - 1);
  2759. else {
  2760. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2761. gfn_t gfn = gpa >> PAGE_SHIFT;
  2762. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2763. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2764. if (is_error_pfn(pfn)) {
  2765. kvm_release_pfn_clean(pfn);
  2766. continue;
  2767. }
  2768. if (is_shadow_present_pte(ent)
  2769. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2770. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2771. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2772. audit_msg, vcpu->arch.mmu.root_level,
  2773. va, gpa, hpa, ent,
  2774. is_shadow_present_pte(ent));
  2775. else if (ent == shadow_notrap_nonpresent_pte
  2776. && !is_error_hpa(hpa))
  2777. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2778. " valid guest gva %lx\n", audit_msg, va);
  2779. kvm_release_pfn_clean(pfn);
  2780. }
  2781. }
  2782. }
  2783. static void audit_mappings(struct kvm_vcpu *vcpu)
  2784. {
  2785. unsigned i;
  2786. if (vcpu->arch.mmu.root_level == 4)
  2787. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2788. else
  2789. for (i = 0; i < 4; ++i)
  2790. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2791. audit_mappings_page(vcpu,
  2792. vcpu->arch.mmu.pae_root[i],
  2793. i << 30,
  2794. 2);
  2795. }
  2796. static int count_rmaps(struct kvm_vcpu *vcpu)
  2797. {
  2798. int nmaps = 0;
  2799. int i, j, k;
  2800. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2801. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2802. struct kvm_rmap_desc *d;
  2803. for (j = 0; j < m->npages; ++j) {
  2804. unsigned long *rmapp = &m->rmap[j];
  2805. if (!*rmapp)
  2806. continue;
  2807. if (!(*rmapp & 1)) {
  2808. ++nmaps;
  2809. continue;
  2810. }
  2811. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2812. while (d) {
  2813. for (k = 0; k < RMAP_EXT; ++k)
  2814. if (d->sptes[k])
  2815. ++nmaps;
  2816. else
  2817. break;
  2818. d = d->more;
  2819. }
  2820. }
  2821. }
  2822. return nmaps;
  2823. }
  2824. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2825. {
  2826. unsigned long *rmapp;
  2827. struct kvm_mmu_page *rev_sp;
  2828. gfn_t gfn;
  2829. if (*sptep & PT_WRITABLE_MASK) {
  2830. rev_sp = page_header(__pa(sptep));
  2831. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2832. if (!gfn_to_memslot(kvm, gfn)) {
  2833. if (!printk_ratelimit())
  2834. return;
  2835. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2836. audit_msg, gfn);
  2837. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2838. audit_msg, sptep - rev_sp->spt,
  2839. rev_sp->gfn);
  2840. dump_stack();
  2841. return;
  2842. }
  2843. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2844. is_large_pte(*sptep));
  2845. if (!*rmapp) {
  2846. if (!printk_ratelimit())
  2847. return;
  2848. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2849. audit_msg, *sptep);
  2850. dump_stack();
  2851. }
  2852. }
  2853. }
  2854. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2855. {
  2856. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2857. }
  2858. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2859. {
  2860. struct kvm_mmu_page *sp;
  2861. int i;
  2862. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2863. u64 *pt = sp->spt;
  2864. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2865. continue;
  2866. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2867. u64 ent = pt[i];
  2868. if (!(ent & PT_PRESENT_MASK))
  2869. continue;
  2870. if (!(ent & PT_WRITABLE_MASK))
  2871. continue;
  2872. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2873. }
  2874. }
  2875. return;
  2876. }
  2877. static void audit_rmap(struct kvm_vcpu *vcpu)
  2878. {
  2879. check_writable_mappings_rmap(vcpu);
  2880. count_rmaps(vcpu);
  2881. }
  2882. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2883. {
  2884. struct kvm_mmu_page *sp;
  2885. struct kvm_memory_slot *slot;
  2886. unsigned long *rmapp;
  2887. u64 *spte;
  2888. gfn_t gfn;
  2889. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2890. if (sp->role.direct)
  2891. continue;
  2892. if (sp->unsync)
  2893. continue;
  2894. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2895. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2896. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2897. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2898. while (spte) {
  2899. if (*spte & PT_WRITABLE_MASK)
  2900. printk(KERN_ERR "%s: (%s) shadow page has "
  2901. "writable mappings: gfn %lx role %x\n",
  2902. __func__, audit_msg, sp->gfn,
  2903. sp->role.word);
  2904. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2905. }
  2906. }
  2907. }
  2908. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2909. {
  2910. int olddbg = dbg;
  2911. dbg = 0;
  2912. audit_msg = msg;
  2913. audit_rmap(vcpu);
  2914. audit_write_protection(vcpu);
  2915. if (strcmp("pre pte write", audit_msg) != 0)
  2916. audit_mappings(vcpu);
  2917. audit_writable_sptes_have_rmaps(vcpu);
  2918. dbg = olddbg;
  2919. }
  2920. #endif