file.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include "f2fs.h"
  23. #include "node.h"
  24. #include "segment.h"
  25. #include "xattr.h"
  26. #include "acl.h"
  27. #include <trace/events/f2fs.h>
  28. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  29. struct vm_fault *vmf)
  30. {
  31. struct page *page = vmf->page;
  32. struct inode *inode = file_inode(vma->vm_file);
  33. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  34. block_t old_blk_addr;
  35. struct dnode_of_data dn;
  36. int err, ilock;
  37. f2fs_balance_fs(sbi);
  38. sb_start_pagefault(inode->i_sb);
  39. /* block allocation */
  40. ilock = mutex_lock_op(sbi);
  41. set_new_dnode(&dn, inode, NULL, NULL, 0);
  42. err = get_dnode_of_data(&dn, page->index, ALLOC_NODE);
  43. if (err) {
  44. mutex_unlock_op(sbi, ilock);
  45. goto out;
  46. }
  47. old_blk_addr = dn.data_blkaddr;
  48. if (old_blk_addr == NULL_ADDR) {
  49. err = reserve_new_block(&dn);
  50. if (err) {
  51. f2fs_put_dnode(&dn);
  52. mutex_unlock_op(sbi, ilock);
  53. goto out;
  54. }
  55. }
  56. f2fs_put_dnode(&dn);
  57. mutex_unlock_op(sbi, ilock);
  58. file_update_time(vma->vm_file);
  59. lock_page(page);
  60. if (page->mapping != inode->i_mapping ||
  61. page_offset(page) > i_size_read(inode) ||
  62. !PageUptodate(page)) {
  63. unlock_page(page);
  64. err = -EFAULT;
  65. goto out;
  66. }
  67. /*
  68. * check to see if the page is mapped already (no holes)
  69. */
  70. if (PageMappedToDisk(page))
  71. goto mapped;
  72. /* page is wholly or partially inside EOF */
  73. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  74. unsigned offset;
  75. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  76. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  77. }
  78. set_page_dirty(page);
  79. SetPageUptodate(page);
  80. mapped:
  81. /* fill the page */
  82. wait_on_page_writeback(page);
  83. out:
  84. sb_end_pagefault(inode->i_sb);
  85. return block_page_mkwrite_return(err);
  86. }
  87. static const struct vm_operations_struct f2fs_file_vm_ops = {
  88. .fault = filemap_fault,
  89. .page_mkwrite = f2fs_vm_page_mkwrite,
  90. .remap_pages = generic_file_remap_pages,
  91. };
  92. static int get_parent_ino(struct inode *inode, nid_t *pino)
  93. {
  94. struct dentry *dentry;
  95. inode = igrab(inode);
  96. dentry = d_find_any_alias(inode);
  97. iput(inode);
  98. if (!dentry)
  99. return 0;
  100. if (update_dent_inode(inode, &dentry->d_name)) {
  101. dput(dentry);
  102. return 0;
  103. }
  104. *pino = parent_ino(dentry);
  105. dput(dentry);
  106. return 1;
  107. }
  108. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  109. {
  110. struct inode *inode = file->f_mapping->host;
  111. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  112. int ret = 0;
  113. bool need_cp = false;
  114. struct writeback_control wbc = {
  115. .sync_mode = WB_SYNC_ALL,
  116. .nr_to_write = LONG_MAX,
  117. .for_reclaim = 0,
  118. };
  119. if (f2fs_readonly(inode->i_sb))
  120. return 0;
  121. trace_f2fs_sync_file_enter(inode);
  122. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  123. if (ret) {
  124. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  125. return ret;
  126. }
  127. /* guarantee free sections for fsync */
  128. f2fs_balance_fs(sbi);
  129. mutex_lock(&inode->i_mutex);
  130. /*
  131. * Both of fdatasync() and fsync() are able to be recovered from
  132. * sudden-power-off.
  133. */
  134. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  135. need_cp = true;
  136. else if (file_wrong_pino(inode))
  137. need_cp = true;
  138. else if (!space_for_roll_forward(sbi))
  139. need_cp = true;
  140. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  141. need_cp = true;
  142. else if (F2FS_I(inode)->xattr_ver ==
  143. le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver))
  144. need_cp = true;
  145. if (need_cp) {
  146. nid_t pino;
  147. F2FS_I(inode)->xattr_ver = 0;
  148. /* all the dirty node pages should be flushed for POR */
  149. ret = f2fs_sync_fs(inode->i_sb, 1);
  150. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  151. get_parent_ino(inode, &pino)) {
  152. F2FS_I(inode)->i_pino = pino;
  153. file_got_pino(inode);
  154. mark_inode_dirty_sync(inode);
  155. ret = f2fs_write_inode(inode, NULL);
  156. if (ret)
  157. goto out;
  158. }
  159. } else {
  160. /* if there is no written node page, write its inode page */
  161. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  162. mark_inode_dirty_sync(inode);
  163. ret = f2fs_write_inode(inode, NULL);
  164. if (ret)
  165. goto out;
  166. }
  167. filemap_fdatawait_range(sbi->node_inode->i_mapping,
  168. 0, LONG_MAX);
  169. ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
  170. }
  171. out:
  172. mutex_unlock(&inode->i_mutex);
  173. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  174. return ret;
  175. }
  176. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  177. {
  178. file_accessed(file);
  179. vma->vm_ops = &f2fs_file_vm_ops;
  180. return 0;
  181. }
  182. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  183. {
  184. int nr_free = 0, ofs = dn->ofs_in_node;
  185. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  186. struct f2fs_node *raw_node;
  187. __le32 *addr;
  188. raw_node = F2FS_NODE(dn->node_page);
  189. addr = blkaddr_in_node(raw_node) + ofs;
  190. for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
  191. block_t blkaddr = le32_to_cpu(*addr);
  192. if (blkaddr == NULL_ADDR)
  193. continue;
  194. update_extent_cache(NULL_ADDR, dn);
  195. invalidate_blocks(sbi, blkaddr);
  196. nr_free++;
  197. }
  198. if (nr_free) {
  199. dec_valid_block_count(sbi, dn->inode, nr_free);
  200. set_page_dirty(dn->node_page);
  201. sync_inode_page(dn);
  202. }
  203. dn->ofs_in_node = ofs;
  204. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  205. dn->ofs_in_node, nr_free);
  206. return nr_free;
  207. }
  208. void truncate_data_blocks(struct dnode_of_data *dn)
  209. {
  210. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  211. }
  212. static void truncate_partial_data_page(struct inode *inode, u64 from)
  213. {
  214. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  215. struct page *page;
  216. if (!offset)
  217. return;
  218. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
  219. if (IS_ERR(page))
  220. return;
  221. lock_page(page);
  222. if (page->mapping != inode->i_mapping) {
  223. f2fs_put_page(page, 1);
  224. return;
  225. }
  226. wait_on_page_writeback(page);
  227. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  228. set_page_dirty(page);
  229. f2fs_put_page(page, 1);
  230. }
  231. static int truncate_blocks(struct inode *inode, u64 from)
  232. {
  233. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  234. unsigned int blocksize = inode->i_sb->s_blocksize;
  235. struct dnode_of_data dn;
  236. pgoff_t free_from;
  237. int count = 0, ilock = -1;
  238. int err;
  239. trace_f2fs_truncate_blocks_enter(inode, from);
  240. free_from = (pgoff_t)
  241. ((from + blocksize - 1) >> (sbi->log_blocksize));
  242. ilock = mutex_lock_op(sbi);
  243. set_new_dnode(&dn, inode, NULL, NULL, 0);
  244. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  245. if (err) {
  246. if (err == -ENOENT)
  247. goto free_next;
  248. mutex_unlock_op(sbi, ilock);
  249. trace_f2fs_truncate_blocks_exit(inode, err);
  250. return err;
  251. }
  252. if (IS_INODE(dn.node_page))
  253. count = ADDRS_PER_INODE;
  254. else
  255. count = ADDRS_PER_BLOCK;
  256. count -= dn.ofs_in_node;
  257. BUG_ON(count < 0);
  258. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  259. truncate_data_blocks_range(&dn, count);
  260. free_from += count;
  261. }
  262. f2fs_put_dnode(&dn);
  263. free_next:
  264. err = truncate_inode_blocks(inode, free_from);
  265. mutex_unlock_op(sbi, ilock);
  266. /* lastly zero out the first data page */
  267. truncate_partial_data_page(inode, from);
  268. trace_f2fs_truncate_blocks_exit(inode, err);
  269. return err;
  270. }
  271. void f2fs_truncate(struct inode *inode)
  272. {
  273. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  274. S_ISLNK(inode->i_mode)))
  275. return;
  276. trace_f2fs_truncate(inode);
  277. if (!truncate_blocks(inode, i_size_read(inode))) {
  278. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  279. mark_inode_dirty(inode);
  280. }
  281. }
  282. int f2fs_getattr(struct vfsmount *mnt,
  283. struct dentry *dentry, struct kstat *stat)
  284. {
  285. struct inode *inode = dentry->d_inode;
  286. generic_fillattr(inode, stat);
  287. stat->blocks <<= 3;
  288. return 0;
  289. }
  290. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  291. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  292. {
  293. struct f2fs_inode_info *fi = F2FS_I(inode);
  294. unsigned int ia_valid = attr->ia_valid;
  295. if (ia_valid & ATTR_UID)
  296. inode->i_uid = attr->ia_uid;
  297. if (ia_valid & ATTR_GID)
  298. inode->i_gid = attr->ia_gid;
  299. if (ia_valid & ATTR_ATIME)
  300. inode->i_atime = timespec_trunc(attr->ia_atime,
  301. inode->i_sb->s_time_gran);
  302. if (ia_valid & ATTR_MTIME)
  303. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  304. inode->i_sb->s_time_gran);
  305. if (ia_valid & ATTR_CTIME)
  306. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  307. inode->i_sb->s_time_gran);
  308. if (ia_valid & ATTR_MODE) {
  309. umode_t mode = attr->ia_mode;
  310. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  311. mode &= ~S_ISGID;
  312. set_acl_inode(fi, mode);
  313. }
  314. }
  315. #else
  316. #define __setattr_copy setattr_copy
  317. #endif
  318. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  319. {
  320. struct inode *inode = dentry->d_inode;
  321. struct f2fs_inode_info *fi = F2FS_I(inode);
  322. int err;
  323. err = inode_change_ok(inode, attr);
  324. if (err)
  325. return err;
  326. if ((attr->ia_valid & ATTR_SIZE) &&
  327. attr->ia_size != i_size_read(inode)) {
  328. truncate_setsize(inode, attr->ia_size);
  329. f2fs_truncate(inode);
  330. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  331. }
  332. __setattr_copy(inode, attr);
  333. if (attr->ia_valid & ATTR_MODE) {
  334. err = f2fs_acl_chmod(inode);
  335. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  336. inode->i_mode = fi->i_acl_mode;
  337. clear_inode_flag(fi, FI_ACL_MODE);
  338. }
  339. }
  340. mark_inode_dirty(inode);
  341. return err;
  342. }
  343. const struct inode_operations f2fs_file_inode_operations = {
  344. .getattr = f2fs_getattr,
  345. .setattr = f2fs_setattr,
  346. .get_acl = f2fs_get_acl,
  347. #ifdef CONFIG_F2FS_FS_XATTR
  348. .setxattr = generic_setxattr,
  349. .getxattr = generic_getxattr,
  350. .listxattr = f2fs_listxattr,
  351. .removexattr = generic_removexattr,
  352. #endif
  353. };
  354. static void fill_zero(struct inode *inode, pgoff_t index,
  355. loff_t start, loff_t len)
  356. {
  357. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  358. struct page *page;
  359. int ilock;
  360. if (!len)
  361. return;
  362. f2fs_balance_fs(sbi);
  363. ilock = mutex_lock_op(sbi);
  364. page = get_new_data_page(inode, NULL, index, false);
  365. mutex_unlock_op(sbi, ilock);
  366. if (!IS_ERR(page)) {
  367. wait_on_page_writeback(page);
  368. zero_user(page, start, len);
  369. set_page_dirty(page);
  370. f2fs_put_page(page, 1);
  371. }
  372. }
  373. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  374. {
  375. pgoff_t index;
  376. int err;
  377. for (index = pg_start; index < pg_end; index++) {
  378. struct dnode_of_data dn;
  379. set_new_dnode(&dn, inode, NULL, NULL, 0);
  380. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  381. if (err) {
  382. if (err == -ENOENT)
  383. continue;
  384. return err;
  385. }
  386. if (dn.data_blkaddr != NULL_ADDR)
  387. truncate_data_blocks_range(&dn, 1);
  388. f2fs_put_dnode(&dn);
  389. }
  390. return 0;
  391. }
  392. static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
  393. {
  394. pgoff_t pg_start, pg_end;
  395. loff_t off_start, off_end;
  396. int ret = 0;
  397. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  398. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  399. off_start = offset & (PAGE_CACHE_SIZE - 1);
  400. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  401. if (pg_start == pg_end) {
  402. fill_zero(inode, pg_start, off_start,
  403. off_end - off_start);
  404. } else {
  405. if (off_start)
  406. fill_zero(inode, pg_start++, off_start,
  407. PAGE_CACHE_SIZE - off_start);
  408. if (off_end)
  409. fill_zero(inode, pg_end, 0, off_end);
  410. if (pg_start < pg_end) {
  411. struct address_space *mapping = inode->i_mapping;
  412. loff_t blk_start, blk_end;
  413. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  414. int ilock;
  415. f2fs_balance_fs(sbi);
  416. blk_start = pg_start << PAGE_CACHE_SHIFT;
  417. blk_end = pg_end << PAGE_CACHE_SHIFT;
  418. truncate_inode_pages_range(mapping, blk_start,
  419. blk_end - 1);
  420. ilock = mutex_lock_op(sbi);
  421. ret = truncate_hole(inode, pg_start, pg_end);
  422. mutex_unlock_op(sbi, ilock);
  423. }
  424. }
  425. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  426. i_size_read(inode) <= (offset + len)) {
  427. i_size_write(inode, offset);
  428. mark_inode_dirty(inode);
  429. }
  430. return ret;
  431. }
  432. static int expand_inode_data(struct inode *inode, loff_t offset,
  433. loff_t len, int mode)
  434. {
  435. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  436. pgoff_t index, pg_start, pg_end;
  437. loff_t new_size = i_size_read(inode);
  438. loff_t off_start, off_end;
  439. int ret = 0;
  440. ret = inode_newsize_ok(inode, (len + offset));
  441. if (ret)
  442. return ret;
  443. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  444. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  445. off_start = offset & (PAGE_CACHE_SIZE - 1);
  446. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  447. for (index = pg_start; index <= pg_end; index++) {
  448. struct dnode_of_data dn;
  449. int ilock;
  450. ilock = mutex_lock_op(sbi);
  451. set_new_dnode(&dn, inode, NULL, NULL, 0);
  452. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  453. if (ret) {
  454. mutex_unlock_op(sbi, ilock);
  455. break;
  456. }
  457. if (dn.data_blkaddr == NULL_ADDR) {
  458. ret = reserve_new_block(&dn);
  459. if (ret) {
  460. f2fs_put_dnode(&dn);
  461. mutex_unlock_op(sbi, ilock);
  462. break;
  463. }
  464. }
  465. f2fs_put_dnode(&dn);
  466. mutex_unlock_op(sbi, ilock);
  467. if (pg_start == pg_end)
  468. new_size = offset + len;
  469. else if (index == pg_start && off_start)
  470. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  471. else if (index == pg_end)
  472. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  473. else
  474. new_size += PAGE_CACHE_SIZE;
  475. }
  476. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  477. i_size_read(inode) < new_size) {
  478. i_size_write(inode, new_size);
  479. mark_inode_dirty(inode);
  480. }
  481. return ret;
  482. }
  483. static long f2fs_fallocate(struct file *file, int mode,
  484. loff_t offset, loff_t len)
  485. {
  486. struct inode *inode = file_inode(file);
  487. long ret;
  488. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  489. return -EOPNOTSUPP;
  490. if (mode & FALLOC_FL_PUNCH_HOLE)
  491. ret = punch_hole(inode, offset, len, mode);
  492. else
  493. ret = expand_inode_data(inode, offset, len, mode);
  494. if (!ret) {
  495. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  496. mark_inode_dirty(inode);
  497. }
  498. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  499. return ret;
  500. }
  501. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  502. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  503. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  504. {
  505. if (S_ISDIR(mode))
  506. return flags;
  507. else if (S_ISREG(mode))
  508. return flags & F2FS_REG_FLMASK;
  509. else
  510. return flags & F2FS_OTHER_FLMASK;
  511. }
  512. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  513. {
  514. struct inode *inode = file_inode(filp);
  515. struct f2fs_inode_info *fi = F2FS_I(inode);
  516. unsigned int flags;
  517. int ret;
  518. switch (cmd) {
  519. case F2FS_IOC_GETFLAGS:
  520. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  521. return put_user(flags, (int __user *) arg);
  522. case F2FS_IOC_SETFLAGS:
  523. {
  524. unsigned int oldflags;
  525. ret = mnt_want_write_file(filp);
  526. if (ret)
  527. return ret;
  528. if (!inode_owner_or_capable(inode)) {
  529. ret = -EACCES;
  530. goto out;
  531. }
  532. if (get_user(flags, (int __user *) arg)) {
  533. ret = -EFAULT;
  534. goto out;
  535. }
  536. flags = f2fs_mask_flags(inode->i_mode, flags);
  537. mutex_lock(&inode->i_mutex);
  538. oldflags = fi->i_flags;
  539. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  540. if (!capable(CAP_LINUX_IMMUTABLE)) {
  541. mutex_unlock(&inode->i_mutex);
  542. ret = -EPERM;
  543. goto out;
  544. }
  545. }
  546. flags = flags & FS_FL_USER_MODIFIABLE;
  547. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  548. fi->i_flags = flags;
  549. mutex_unlock(&inode->i_mutex);
  550. f2fs_set_inode_flags(inode);
  551. inode->i_ctime = CURRENT_TIME;
  552. mark_inode_dirty(inode);
  553. out:
  554. mnt_drop_write_file(filp);
  555. return ret;
  556. }
  557. default:
  558. return -ENOTTY;
  559. }
  560. }
  561. #ifdef CONFIG_COMPAT
  562. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  563. {
  564. switch (cmd) {
  565. case F2FS_IOC32_GETFLAGS:
  566. cmd = F2FS_IOC_GETFLAGS;
  567. break;
  568. case F2FS_IOC32_SETFLAGS:
  569. cmd = F2FS_IOC_SETFLAGS;
  570. break;
  571. default:
  572. return -ENOIOCTLCMD;
  573. }
  574. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  575. }
  576. #endif
  577. const struct file_operations f2fs_file_operations = {
  578. .llseek = generic_file_llseek,
  579. .read = do_sync_read,
  580. .write = do_sync_write,
  581. .aio_read = generic_file_aio_read,
  582. .aio_write = generic_file_aio_write,
  583. .open = generic_file_open,
  584. .mmap = f2fs_file_mmap,
  585. .fsync = f2fs_sync_file,
  586. .fallocate = f2fs_fallocate,
  587. .unlocked_ioctl = f2fs_ioctl,
  588. #ifdef CONFIG_COMPAT
  589. .compat_ioctl = f2fs_compat_ioctl,
  590. #endif
  591. .splice_read = generic_file_splice_read,
  592. .splice_write = generic_file_splice_write,
  593. };