i915_gem.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. struct shrink_control *sc);
  57. /* some bookkeeping */
  58. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  59. size_t size)
  60. {
  61. dev_priv->mm.object_count++;
  62. dev_priv->mm.object_memory += size;
  63. }
  64. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  65. size_t size)
  66. {
  67. dev_priv->mm.object_count--;
  68. dev_priv->mm.object_memory -= size;
  69. }
  70. static int
  71. i915_gem_wait_for_error(struct drm_device *dev)
  72. {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. struct completion *x = &dev_priv->error_completion;
  75. unsigned long flags;
  76. int ret;
  77. if (!atomic_read(&dev_priv->mm.wedged))
  78. return 0;
  79. ret = wait_for_completion_interruptible(x);
  80. if (ret)
  81. return ret;
  82. if (atomic_read(&dev_priv->mm.wedged)) {
  83. /* GPU is hung, bump the completion count to account for
  84. * the token we just consumed so that we never hit zero and
  85. * end up waiting upon a subsequent completion event that
  86. * will never happen.
  87. */
  88. spin_lock_irqsave(&x->wait.lock, flags);
  89. x->done++;
  90. spin_unlock_irqrestore(&x->wait.lock, flags);
  91. }
  92. return 0;
  93. }
  94. int i915_mutex_lock_interruptible(struct drm_device *dev)
  95. {
  96. int ret;
  97. ret = i915_gem_wait_for_error(dev);
  98. if (ret)
  99. return ret;
  100. ret = mutex_lock_interruptible(&dev->struct_mutex);
  101. if (ret)
  102. return ret;
  103. WARN_ON(i915_verify_lists(dev));
  104. return 0;
  105. }
  106. static inline bool
  107. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  108. {
  109. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  110. }
  111. void i915_gem_do_init(struct drm_device *dev,
  112. unsigned long start,
  113. unsigned long mappable_end,
  114. unsigned long end)
  115. {
  116. drm_i915_private_t *dev_priv = dev->dev_private;
  117. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  118. dev_priv->mm.gtt_start = start;
  119. dev_priv->mm.gtt_mappable_end = mappable_end;
  120. dev_priv->mm.gtt_end = end;
  121. dev_priv->mm.gtt_total = end - start;
  122. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  123. /* Take over this portion of the GTT */
  124. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  125. }
  126. int
  127. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  128. struct drm_file *file)
  129. {
  130. struct drm_i915_gem_init *args = data;
  131. if (args->gtt_start >= args->gtt_end ||
  132. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  133. return -EINVAL;
  134. mutex_lock(&dev->struct_mutex);
  135. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  136. mutex_unlock(&dev->struct_mutex);
  137. return 0;
  138. }
  139. int
  140. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  141. struct drm_file *file)
  142. {
  143. struct drm_i915_private *dev_priv = dev->dev_private;
  144. struct drm_i915_gem_get_aperture *args = data;
  145. struct drm_i915_gem_object *obj;
  146. size_t pinned;
  147. if (!(dev->driver->driver_features & DRIVER_GEM))
  148. return -ENODEV;
  149. pinned = 0;
  150. mutex_lock(&dev->struct_mutex);
  151. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  152. pinned += obj->gtt_space->size;
  153. mutex_unlock(&dev->struct_mutex);
  154. args->aper_size = dev_priv->mm.gtt_total;
  155. args->aper_available_size = args->aper_size -pinned;
  156. return 0;
  157. }
  158. static int
  159. i915_gem_create(struct drm_file *file,
  160. struct drm_device *dev,
  161. uint64_t size,
  162. uint32_t *handle_p)
  163. {
  164. struct drm_i915_gem_object *obj;
  165. int ret;
  166. u32 handle;
  167. size = roundup(size, PAGE_SIZE);
  168. /* Allocate the new object */
  169. obj = i915_gem_alloc_object(dev, size);
  170. if (obj == NULL)
  171. return -ENOMEM;
  172. ret = drm_gem_handle_create(file, &obj->base, &handle);
  173. if (ret) {
  174. drm_gem_object_release(&obj->base);
  175. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  176. kfree(obj);
  177. return ret;
  178. }
  179. /* drop reference from allocate - handle holds it now */
  180. drm_gem_object_unreference(&obj->base);
  181. trace_i915_gem_object_create(obj);
  182. *handle_p = handle;
  183. return 0;
  184. }
  185. int
  186. i915_gem_dumb_create(struct drm_file *file,
  187. struct drm_device *dev,
  188. struct drm_mode_create_dumb *args)
  189. {
  190. /* have to work out size/pitch and return them */
  191. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  192. args->size = args->pitch * args->height;
  193. return i915_gem_create(file, dev,
  194. args->size, &args->handle);
  195. }
  196. int i915_gem_dumb_destroy(struct drm_file *file,
  197. struct drm_device *dev,
  198. uint32_t handle)
  199. {
  200. return drm_gem_handle_delete(file, handle);
  201. }
  202. /**
  203. * Creates a new mm object and returns a handle to it.
  204. */
  205. int
  206. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  207. struct drm_file *file)
  208. {
  209. struct drm_i915_gem_create *args = data;
  210. return i915_gem_create(file, dev,
  211. args->size, &args->handle);
  212. }
  213. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  214. {
  215. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  216. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  217. obj->tiling_mode != I915_TILING_NONE;
  218. }
  219. static inline void
  220. slow_shmem_copy(struct page *dst_page,
  221. int dst_offset,
  222. struct page *src_page,
  223. int src_offset,
  224. int length)
  225. {
  226. char *dst_vaddr, *src_vaddr;
  227. dst_vaddr = kmap(dst_page);
  228. src_vaddr = kmap(src_page);
  229. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  230. kunmap(src_page);
  231. kunmap(dst_page);
  232. }
  233. static inline void
  234. slow_shmem_bit17_copy(struct page *gpu_page,
  235. int gpu_offset,
  236. struct page *cpu_page,
  237. int cpu_offset,
  238. int length,
  239. int is_read)
  240. {
  241. char *gpu_vaddr, *cpu_vaddr;
  242. /* Use the unswizzled path if this page isn't affected. */
  243. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  244. if (is_read)
  245. return slow_shmem_copy(cpu_page, cpu_offset,
  246. gpu_page, gpu_offset, length);
  247. else
  248. return slow_shmem_copy(gpu_page, gpu_offset,
  249. cpu_page, cpu_offset, length);
  250. }
  251. gpu_vaddr = kmap(gpu_page);
  252. cpu_vaddr = kmap(cpu_page);
  253. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  254. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  255. */
  256. while (length > 0) {
  257. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  258. int this_length = min(cacheline_end - gpu_offset, length);
  259. int swizzled_gpu_offset = gpu_offset ^ 64;
  260. if (is_read) {
  261. memcpy(cpu_vaddr + cpu_offset,
  262. gpu_vaddr + swizzled_gpu_offset,
  263. this_length);
  264. } else {
  265. memcpy(gpu_vaddr + swizzled_gpu_offset,
  266. cpu_vaddr + cpu_offset,
  267. this_length);
  268. }
  269. cpu_offset += this_length;
  270. gpu_offset += this_length;
  271. length -= this_length;
  272. }
  273. kunmap(cpu_page);
  274. kunmap(gpu_page);
  275. }
  276. /**
  277. * This is the fast shmem pread path, which attempts to copy_from_user directly
  278. * from the backing pages of the object to the user's address space. On a
  279. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  280. */
  281. static int
  282. i915_gem_shmem_pread_fast(struct drm_device *dev,
  283. struct drm_i915_gem_object *obj,
  284. struct drm_i915_gem_pread *args,
  285. struct drm_file *file)
  286. {
  287. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  288. ssize_t remain;
  289. loff_t offset;
  290. char __user *user_data;
  291. int page_offset, page_length;
  292. user_data = (char __user *) (uintptr_t) args->data_ptr;
  293. remain = args->size;
  294. offset = args->offset;
  295. while (remain > 0) {
  296. struct page *page;
  297. char *vaddr;
  298. int ret;
  299. /* Operation in this page
  300. *
  301. * page_offset = offset within page
  302. * page_length = bytes to copy for this page
  303. */
  304. page_offset = offset_in_page(offset);
  305. page_length = remain;
  306. if ((page_offset + remain) > PAGE_SIZE)
  307. page_length = PAGE_SIZE - page_offset;
  308. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  309. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  310. if (IS_ERR(page))
  311. return PTR_ERR(page);
  312. vaddr = kmap_atomic(page);
  313. ret = __copy_to_user_inatomic(user_data,
  314. vaddr + page_offset,
  315. page_length);
  316. kunmap_atomic(vaddr);
  317. mark_page_accessed(page);
  318. page_cache_release(page);
  319. if (ret)
  320. return -EFAULT;
  321. remain -= page_length;
  322. user_data += page_length;
  323. offset += page_length;
  324. }
  325. return 0;
  326. }
  327. /**
  328. * This is the fallback shmem pread path, which allocates temporary storage
  329. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  330. * can copy out of the object's backing pages while holding the struct mutex
  331. * and not take page faults.
  332. */
  333. static int
  334. i915_gem_shmem_pread_slow(struct drm_device *dev,
  335. struct drm_i915_gem_object *obj,
  336. struct drm_i915_gem_pread *args,
  337. struct drm_file *file)
  338. {
  339. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  340. struct mm_struct *mm = current->mm;
  341. struct page **user_pages;
  342. ssize_t remain;
  343. loff_t offset, pinned_pages, i;
  344. loff_t first_data_page, last_data_page, num_pages;
  345. int shmem_page_offset;
  346. int data_page_index, data_page_offset;
  347. int page_length;
  348. int ret;
  349. uint64_t data_ptr = args->data_ptr;
  350. int do_bit17_swizzling;
  351. remain = args->size;
  352. /* Pin the user pages containing the data. We can't fault while
  353. * holding the struct mutex, yet we want to hold it while
  354. * dereferencing the user data.
  355. */
  356. first_data_page = data_ptr / PAGE_SIZE;
  357. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  358. num_pages = last_data_page - first_data_page + 1;
  359. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  360. if (user_pages == NULL)
  361. return -ENOMEM;
  362. mutex_unlock(&dev->struct_mutex);
  363. down_read(&mm->mmap_sem);
  364. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  365. num_pages, 1, 0, user_pages, NULL);
  366. up_read(&mm->mmap_sem);
  367. mutex_lock(&dev->struct_mutex);
  368. if (pinned_pages < num_pages) {
  369. ret = -EFAULT;
  370. goto out;
  371. }
  372. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  373. args->offset,
  374. args->size);
  375. if (ret)
  376. goto out;
  377. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  378. offset = args->offset;
  379. while (remain > 0) {
  380. struct page *page;
  381. /* Operation in this page
  382. *
  383. * shmem_page_offset = offset within page in shmem file
  384. * data_page_index = page number in get_user_pages return
  385. * data_page_offset = offset with data_page_index page.
  386. * page_length = bytes to copy for this page
  387. */
  388. shmem_page_offset = offset_in_page(offset);
  389. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  390. data_page_offset = offset_in_page(data_ptr);
  391. page_length = remain;
  392. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  393. page_length = PAGE_SIZE - shmem_page_offset;
  394. if ((data_page_offset + page_length) > PAGE_SIZE)
  395. page_length = PAGE_SIZE - data_page_offset;
  396. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  397. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  398. if (IS_ERR(page))
  399. return PTR_ERR(page);
  400. if (do_bit17_swizzling) {
  401. slow_shmem_bit17_copy(page,
  402. shmem_page_offset,
  403. user_pages[data_page_index],
  404. data_page_offset,
  405. page_length,
  406. 1);
  407. } else {
  408. slow_shmem_copy(user_pages[data_page_index],
  409. data_page_offset,
  410. page,
  411. shmem_page_offset,
  412. page_length);
  413. }
  414. mark_page_accessed(page);
  415. page_cache_release(page);
  416. remain -= page_length;
  417. data_ptr += page_length;
  418. offset += page_length;
  419. }
  420. out:
  421. for (i = 0; i < pinned_pages; i++) {
  422. SetPageDirty(user_pages[i]);
  423. mark_page_accessed(user_pages[i]);
  424. page_cache_release(user_pages[i]);
  425. }
  426. drm_free_large(user_pages);
  427. return ret;
  428. }
  429. /**
  430. * Reads data from the object referenced by handle.
  431. *
  432. * On error, the contents of *data are undefined.
  433. */
  434. int
  435. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  436. struct drm_file *file)
  437. {
  438. struct drm_i915_gem_pread *args = data;
  439. struct drm_i915_gem_object *obj;
  440. int ret = 0;
  441. if (args->size == 0)
  442. return 0;
  443. if (!access_ok(VERIFY_WRITE,
  444. (char __user *)(uintptr_t)args->data_ptr,
  445. args->size))
  446. return -EFAULT;
  447. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  448. args->size);
  449. if (ret)
  450. return -EFAULT;
  451. ret = i915_mutex_lock_interruptible(dev);
  452. if (ret)
  453. return ret;
  454. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  455. if (&obj->base == NULL) {
  456. ret = -ENOENT;
  457. goto unlock;
  458. }
  459. /* Bounds check source. */
  460. if (args->offset > obj->base.size ||
  461. args->size > obj->base.size - args->offset) {
  462. ret = -EINVAL;
  463. goto out;
  464. }
  465. trace_i915_gem_object_pread(obj, args->offset, args->size);
  466. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  467. args->offset,
  468. args->size);
  469. if (ret)
  470. goto out;
  471. ret = -EFAULT;
  472. if (!i915_gem_object_needs_bit17_swizzle(obj))
  473. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  474. if (ret == -EFAULT)
  475. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  476. out:
  477. drm_gem_object_unreference(&obj->base);
  478. unlock:
  479. mutex_unlock(&dev->struct_mutex);
  480. return ret;
  481. }
  482. /* This is the fast write path which cannot handle
  483. * page faults in the source data
  484. */
  485. static inline int
  486. fast_user_write(struct io_mapping *mapping,
  487. loff_t page_base, int page_offset,
  488. char __user *user_data,
  489. int length)
  490. {
  491. char *vaddr_atomic;
  492. unsigned long unwritten;
  493. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  494. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  495. user_data, length);
  496. io_mapping_unmap_atomic(vaddr_atomic);
  497. return unwritten;
  498. }
  499. /* Here's the write path which can sleep for
  500. * page faults
  501. */
  502. static inline void
  503. slow_kernel_write(struct io_mapping *mapping,
  504. loff_t gtt_base, int gtt_offset,
  505. struct page *user_page, int user_offset,
  506. int length)
  507. {
  508. char __iomem *dst_vaddr;
  509. char *src_vaddr;
  510. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  511. src_vaddr = kmap(user_page);
  512. memcpy_toio(dst_vaddr + gtt_offset,
  513. src_vaddr + user_offset,
  514. length);
  515. kunmap(user_page);
  516. io_mapping_unmap(dst_vaddr);
  517. }
  518. /**
  519. * This is the fast pwrite path, where we copy the data directly from the
  520. * user into the GTT, uncached.
  521. */
  522. static int
  523. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  524. struct drm_i915_gem_object *obj,
  525. struct drm_i915_gem_pwrite *args,
  526. struct drm_file *file)
  527. {
  528. drm_i915_private_t *dev_priv = dev->dev_private;
  529. ssize_t remain;
  530. loff_t offset, page_base;
  531. char __user *user_data;
  532. int page_offset, page_length;
  533. user_data = (char __user *) (uintptr_t) args->data_ptr;
  534. remain = args->size;
  535. offset = obj->gtt_offset + args->offset;
  536. while (remain > 0) {
  537. /* Operation in this page
  538. *
  539. * page_base = page offset within aperture
  540. * page_offset = offset within page
  541. * page_length = bytes to copy for this page
  542. */
  543. page_base = offset & PAGE_MASK;
  544. page_offset = offset_in_page(offset);
  545. page_length = remain;
  546. if ((page_offset + remain) > PAGE_SIZE)
  547. page_length = PAGE_SIZE - page_offset;
  548. /* If we get a fault while copying data, then (presumably) our
  549. * source page isn't available. Return the error and we'll
  550. * retry in the slow path.
  551. */
  552. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  553. page_offset, user_data, page_length))
  554. return -EFAULT;
  555. remain -= page_length;
  556. user_data += page_length;
  557. offset += page_length;
  558. }
  559. return 0;
  560. }
  561. /**
  562. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  563. * the memory and maps it using kmap_atomic for copying.
  564. *
  565. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  566. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  567. */
  568. static int
  569. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  570. struct drm_i915_gem_object *obj,
  571. struct drm_i915_gem_pwrite *args,
  572. struct drm_file *file)
  573. {
  574. drm_i915_private_t *dev_priv = dev->dev_private;
  575. ssize_t remain;
  576. loff_t gtt_page_base, offset;
  577. loff_t first_data_page, last_data_page, num_pages;
  578. loff_t pinned_pages, i;
  579. struct page **user_pages;
  580. struct mm_struct *mm = current->mm;
  581. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  582. int ret;
  583. uint64_t data_ptr = args->data_ptr;
  584. remain = args->size;
  585. /* Pin the user pages containing the data. We can't fault while
  586. * holding the struct mutex, and all of the pwrite implementations
  587. * want to hold it while dereferencing the user data.
  588. */
  589. first_data_page = data_ptr / PAGE_SIZE;
  590. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  591. num_pages = last_data_page - first_data_page + 1;
  592. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  593. if (user_pages == NULL)
  594. return -ENOMEM;
  595. mutex_unlock(&dev->struct_mutex);
  596. down_read(&mm->mmap_sem);
  597. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  598. num_pages, 0, 0, user_pages, NULL);
  599. up_read(&mm->mmap_sem);
  600. mutex_lock(&dev->struct_mutex);
  601. if (pinned_pages < num_pages) {
  602. ret = -EFAULT;
  603. goto out_unpin_pages;
  604. }
  605. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  606. if (ret)
  607. goto out_unpin_pages;
  608. ret = i915_gem_object_put_fence(obj);
  609. if (ret)
  610. goto out_unpin_pages;
  611. offset = obj->gtt_offset + args->offset;
  612. while (remain > 0) {
  613. /* Operation in this page
  614. *
  615. * gtt_page_base = page offset within aperture
  616. * gtt_page_offset = offset within page in aperture
  617. * data_page_index = page number in get_user_pages return
  618. * data_page_offset = offset with data_page_index page.
  619. * page_length = bytes to copy for this page
  620. */
  621. gtt_page_base = offset & PAGE_MASK;
  622. gtt_page_offset = offset_in_page(offset);
  623. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  624. data_page_offset = offset_in_page(data_ptr);
  625. page_length = remain;
  626. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  627. page_length = PAGE_SIZE - gtt_page_offset;
  628. if ((data_page_offset + page_length) > PAGE_SIZE)
  629. page_length = PAGE_SIZE - data_page_offset;
  630. slow_kernel_write(dev_priv->mm.gtt_mapping,
  631. gtt_page_base, gtt_page_offset,
  632. user_pages[data_page_index],
  633. data_page_offset,
  634. page_length);
  635. remain -= page_length;
  636. offset += page_length;
  637. data_ptr += page_length;
  638. }
  639. out_unpin_pages:
  640. for (i = 0; i < pinned_pages; i++)
  641. page_cache_release(user_pages[i]);
  642. drm_free_large(user_pages);
  643. return ret;
  644. }
  645. /**
  646. * This is the fast shmem pwrite path, which attempts to directly
  647. * copy_from_user into the kmapped pages backing the object.
  648. */
  649. static int
  650. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  651. struct drm_i915_gem_object *obj,
  652. struct drm_i915_gem_pwrite *args,
  653. struct drm_file *file)
  654. {
  655. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  656. ssize_t remain;
  657. loff_t offset;
  658. char __user *user_data;
  659. int page_offset, page_length;
  660. user_data = (char __user *) (uintptr_t) args->data_ptr;
  661. remain = args->size;
  662. offset = args->offset;
  663. obj->dirty = 1;
  664. while (remain > 0) {
  665. struct page *page;
  666. char *vaddr;
  667. int ret;
  668. /* Operation in this page
  669. *
  670. * page_offset = offset within page
  671. * page_length = bytes to copy for this page
  672. */
  673. page_offset = offset_in_page(offset);
  674. page_length = remain;
  675. if ((page_offset + remain) > PAGE_SIZE)
  676. page_length = PAGE_SIZE - page_offset;
  677. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  678. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  679. if (IS_ERR(page))
  680. return PTR_ERR(page);
  681. vaddr = kmap_atomic(page, KM_USER0);
  682. ret = __copy_from_user_inatomic(vaddr + page_offset,
  683. user_data,
  684. page_length);
  685. kunmap_atomic(vaddr, KM_USER0);
  686. set_page_dirty(page);
  687. mark_page_accessed(page);
  688. page_cache_release(page);
  689. /* If we get a fault while copying data, then (presumably) our
  690. * source page isn't available. Return the error and we'll
  691. * retry in the slow path.
  692. */
  693. if (ret)
  694. return -EFAULT;
  695. remain -= page_length;
  696. user_data += page_length;
  697. offset += page_length;
  698. }
  699. return 0;
  700. }
  701. /**
  702. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  703. * the memory and maps it using kmap_atomic for copying.
  704. *
  705. * This avoids taking mmap_sem for faulting on the user's address while the
  706. * struct_mutex is held.
  707. */
  708. static int
  709. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  710. struct drm_i915_gem_object *obj,
  711. struct drm_i915_gem_pwrite *args,
  712. struct drm_file *file)
  713. {
  714. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  715. struct mm_struct *mm = current->mm;
  716. struct page **user_pages;
  717. ssize_t remain;
  718. loff_t offset, pinned_pages, i;
  719. loff_t first_data_page, last_data_page, num_pages;
  720. int shmem_page_offset;
  721. int data_page_index, data_page_offset;
  722. int page_length;
  723. int ret;
  724. uint64_t data_ptr = args->data_ptr;
  725. int do_bit17_swizzling;
  726. remain = args->size;
  727. /* Pin the user pages containing the data. We can't fault while
  728. * holding the struct mutex, and all of the pwrite implementations
  729. * want to hold it while dereferencing the user data.
  730. */
  731. first_data_page = data_ptr / PAGE_SIZE;
  732. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  733. num_pages = last_data_page - first_data_page + 1;
  734. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  735. if (user_pages == NULL)
  736. return -ENOMEM;
  737. mutex_unlock(&dev->struct_mutex);
  738. down_read(&mm->mmap_sem);
  739. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  740. num_pages, 0, 0, user_pages, NULL);
  741. up_read(&mm->mmap_sem);
  742. mutex_lock(&dev->struct_mutex);
  743. if (pinned_pages < num_pages) {
  744. ret = -EFAULT;
  745. goto out;
  746. }
  747. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  748. if (ret)
  749. goto out;
  750. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  751. offset = args->offset;
  752. obj->dirty = 1;
  753. while (remain > 0) {
  754. struct page *page;
  755. /* Operation in this page
  756. *
  757. * shmem_page_offset = offset within page in shmem file
  758. * data_page_index = page number in get_user_pages return
  759. * data_page_offset = offset with data_page_index page.
  760. * page_length = bytes to copy for this page
  761. */
  762. shmem_page_offset = offset_in_page(offset);
  763. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  764. data_page_offset = offset_in_page(data_ptr);
  765. page_length = remain;
  766. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  767. page_length = PAGE_SIZE - shmem_page_offset;
  768. if ((data_page_offset + page_length) > PAGE_SIZE)
  769. page_length = PAGE_SIZE - data_page_offset;
  770. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  771. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  772. if (IS_ERR(page)) {
  773. ret = PTR_ERR(page);
  774. goto out;
  775. }
  776. if (do_bit17_swizzling) {
  777. slow_shmem_bit17_copy(page,
  778. shmem_page_offset,
  779. user_pages[data_page_index],
  780. data_page_offset,
  781. page_length,
  782. 0);
  783. } else {
  784. slow_shmem_copy(page,
  785. shmem_page_offset,
  786. user_pages[data_page_index],
  787. data_page_offset,
  788. page_length);
  789. }
  790. set_page_dirty(page);
  791. mark_page_accessed(page);
  792. page_cache_release(page);
  793. remain -= page_length;
  794. data_ptr += page_length;
  795. offset += page_length;
  796. }
  797. out:
  798. for (i = 0; i < pinned_pages; i++)
  799. page_cache_release(user_pages[i]);
  800. drm_free_large(user_pages);
  801. return ret;
  802. }
  803. /**
  804. * Writes data to the object referenced by handle.
  805. *
  806. * On error, the contents of the buffer that were to be modified are undefined.
  807. */
  808. int
  809. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  810. struct drm_file *file)
  811. {
  812. struct drm_i915_gem_pwrite *args = data;
  813. struct drm_i915_gem_object *obj;
  814. int ret;
  815. if (args->size == 0)
  816. return 0;
  817. if (!access_ok(VERIFY_READ,
  818. (char __user *)(uintptr_t)args->data_ptr,
  819. args->size))
  820. return -EFAULT;
  821. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  822. args->size);
  823. if (ret)
  824. return -EFAULT;
  825. ret = i915_mutex_lock_interruptible(dev);
  826. if (ret)
  827. return ret;
  828. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  829. if (&obj->base == NULL) {
  830. ret = -ENOENT;
  831. goto unlock;
  832. }
  833. /* Bounds check destination. */
  834. if (args->offset > obj->base.size ||
  835. args->size > obj->base.size - args->offset) {
  836. ret = -EINVAL;
  837. goto out;
  838. }
  839. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  840. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  841. * it would end up going through the fenced access, and we'll get
  842. * different detiling behavior between reading and writing.
  843. * pread/pwrite currently are reading and writing from the CPU
  844. * perspective, requiring manual detiling by the client.
  845. */
  846. if (obj->phys_obj)
  847. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  848. else if (obj->gtt_space &&
  849. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  850. ret = i915_gem_object_pin(obj, 0, true);
  851. if (ret)
  852. goto out;
  853. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  854. if (ret)
  855. goto out_unpin;
  856. ret = i915_gem_object_put_fence(obj);
  857. if (ret)
  858. goto out_unpin;
  859. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  860. if (ret == -EFAULT)
  861. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  862. out_unpin:
  863. i915_gem_object_unpin(obj);
  864. } else {
  865. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  866. if (ret)
  867. goto out;
  868. ret = -EFAULT;
  869. if (!i915_gem_object_needs_bit17_swizzle(obj))
  870. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  871. if (ret == -EFAULT)
  872. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  873. }
  874. out:
  875. drm_gem_object_unreference(&obj->base);
  876. unlock:
  877. mutex_unlock(&dev->struct_mutex);
  878. return ret;
  879. }
  880. /**
  881. * Called when user space prepares to use an object with the CPU, either
  882. * through the mmap ioctl's mapping or a GTT mapping.
  883. */
  884. int
  885. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  886. struct drm_file *file)
  887. {
  888. struct drm_i915_gem_set_domain *args = data;
  889. struct drm_i915_gem_object *obj;
  890. uint32_t read_domains = args->read_domains;
  891. uint32_t write_domain = args->write_domain;
  892. int ret;
  893. if (!(dev->driver->driver_features & DRIVER_GEM))
  894. return -ENODEV;
  895. /* Only handle setting domains to types used by the CPU. */
  896. if (write_domain & I915_GEM_GPU_DOMAINS)
  897. return -EINVAL;
  898. if (read_domains & I915_GEM_GPU_DOMAINS)
  899. return -EINVAL;
  900. /* Having something in the write domain implies it's in the read
  901. * domain, and only that read domain. Enforce that in the request.
  902. */
  903. if (write_domain != 0 && read_domains != write_domain)
  904. return -EINVAL;
  905. ret = i915_mutex_lock_interruptible(dev);
  906. if (ret)
  907. return ret;
  908. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  909. if (&obj->base == NULL) {
  910. ret = -ENOENT;
  911. goto unlock;
  912. }
  913. if (read_domains & I915_GEM_DOMAIN_GTT) {
  914. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  915. /* Silently promote "you're not bound, there was nothing to do"
  916. * to success, since the client was just asking us to
  917. * make sure everything was done.
  918. */
  919. if (ret == -EINVAL)
  920. ret = 0;
  921. } else {
  922. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  923. }
  924. drm_gem_object_unreference(&obj->base);
  925. unlock:
  926. mutex_unlock(&dev->struct_mutex);
  927. return ret;
  928. }
  929. /**
  930. * Called when user space has done writes to this buffer
  931. */
  932. int
  933. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  934. struct drm_file *file)
  935. {
  936. struct drm_i915_gem_sw_finish *args = data;
  937. struct drm_i915_gem_object *obj;
  938. int ret = 0;
  939. if (!(dev->driver->driver_features & DRIVER_GEM))
  940. return -ENODEV;
  941. ret = i915_mutex_lock_interruptible(dev);
  942. if (ret)
  943. return ret;
  944. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  945. if (&obj->base == NULL) {
  946. ret = -ENOENT;
  947. goto unlock;
  948. }
  949. /* Pinned buffers may be scanout, so flush the cache */
  950. if (obj->pin_count)
  951. i915_gem_object_flush_cpu_write_domain(obj);
  952. drm_gem_object_unreference(&obj->base);
  953. unlock:
  954. mutex_unlock(&dev->struct_mutex);
  955. return ret;
  956. }
  957. /**
  958. * Maps the contents of an object, returning the address it is mapped
  959. * into.
  960. *
  961. * While the mapping holds a reference on the contents of the object, it doesn't
  962. * imply a ref on the object itself.
  963. */
  964. int
  965. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  966. struct drm_file *file)
  967. {
  968. struct drm_i915_private *dev_priv = dev->dev_private;
  969. struct drm_i915_gem_mmap *args = data;
  970. struct drm_gem_object *obj;
  971. unsigned long addr;
  972. if (!(dev->driver->driver_features & DRIVER_GEM))
  973. return -ENODEV;
  974. obj = drm_gem_object_lookup(dev, file, args->handle);
  975. if (obj == NULL)
  976. return -ENOENT;
  977. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  978. drm_gem_object_unreference_unlocked(obj);
  979. return -E2BIG;
  980. }
  981. down_write(&current->mm->mmap_sem);
  982. addr = do_mmap(obj->filp, 0, args->size,
  983. PROT_READ | PROT_WRITE, MAP_SHARED,
  984. args->offset);
  985. up_write(&current->mm->mmap_sem);
  986. drm_gem_object_unreference_unlocked(obj);
  987. if (IS_ERR((void *)addr))
  988. return addr;
  989. args->addr_ptr = (uint64_t) addr;
  990. return 0;
  991. }
  992. /**
  993. * i915_gem_fault - fault a page into the GTT
  994. * vma: VMA in question
  995. * vmf: fault info
  996. *
  997. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  998. * from userspace. The fault handler takes care of binding the object to
  999. * the GTT (if needed), allocating and programming a fence register (again,
  1000. * only if needed based on whether the old reg is still valid or the object
  1001. * is tiled) and inserting a new PTE into the faulting process.
  1002. *
  1003. * Note that the faulting process may involve evicting existing objects
  1004. * from the GTT and/or fence registers to make room. So performance may
  1005. * suffer if the GTT working set is large or there are few fence registers
  1006. * left.
  1007. */
  1008. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1009. {
  1010. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1011. struct drm_device *dev = obj->base.dev;
  1012. drm_i915_private_t *dev_priv = dev->dev_private;
  1013. pgoff_t page_offset;
  1014. unsigned long pfn;
  1015. int ret = 0;
  1016. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1017. /* We don't use vmf->pgoff since that has the fake offset */
  1018. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1019. PAGE_SHIFT;
  1020. ret = i915_mutex_lock_interruptible(dev);
  1021. if (ret)
  1022. goto out;
  1023. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1024. /* Now bind it into the GTT if needed */
  1025. if (!obj->map_and_fenceable) {
  1026. ret = i915_gem_object_unbind(obj);
  1027. if (ret)
  1028. goto unlock;
  1029. }
  1030. if (!obj->gtt_space) {
  1031. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1032. if (ret)
  1033. goto unlock;
  1034. }
  1035. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1036. if (ret)
  1037. goto unlock;
  1038. if (obj->tiling_mode == I915_TILING_NONE)
  1039. ret = i915_gem_object_put_fence(obj);
  1040. else
  1041. ret = i915_gem_object_get_fence(obj, NULL);
  1042. if (ret)
  1043. goto unlock;
  1044. if (i915_gem_object_is_inactive(obj))
  1045. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1046. obj->fault_mappable = true;
  1047. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1048. page_offset;
  1049. /* Finally, remap it using the new GTT offset */
  1050. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1051. unlock:
  1052. mutex_unlock(&dev->struct_mutex);
  1053. out:
  1054. switch (ret) {
  1055. case -EIO:
  1056. case -EAGAIN:
  1057. /* Give the error handler a chance to run and move the
  1058. * objects off the GPU active list. Next time we service the
  1059. * fault, we should be able to transition the page into the
  1060. * GTT without touching the GPU (and so avoid further
  1061. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1062. * with coherency, just lost writes.
  1063. */
  1064. set_need_resched();
  1065. case 0:
  1066. case -ERESTARTSYS:
  1067. case -EINTR:
  1068. return VM_FAULT_NOPAGE;
  1069. case -ENOMEM:
  1070. return VM_FAULT_OOM;
  1071. default:
  1072. return VM_FAULT_SIGBUS;
  1073. }
  1074. }
  1075. /**
  1076. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1077. * @obj: obj in question
  1078. *
  1079. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1080. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1081. * up the object based on the offset and sets up the various memory mapping
  1082. * structures.
  1083. *
  1084. * This routine allocates and attaches a fake offset for @obj.
  1085. */
  1086. static int
  1087. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1088. {
  1089. struct drm_device *dev = obj->base.dev;
  1090. struct drm_gem_mm *mm = dev->mm_private;
  1091. struct drm_map_list *list;
  1092. struct drm_local_map *map;
  1093. int ret = 0;
  1094. /* Set the object up for mmap'ing */
  1095. list = &obj->base.map_list;
  1096. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1097. if (!list->map)
  1098. return -ENOMEM;
  1099. map = list->map;
  1100. map->type = _DRM_GEM;
  1101. map->size = obj->base.size;
  1102. map->handle = obj;
  1103. /* Get a DRM GEM mmap offset allocated... */
  1104. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1105. obj->base.size / PAGE_SIZE,
  1106. 0, 0);
  1107. if (!list->file_offset_node) {
  1108. DRM_ERROR("failed to allocate offset for bo %d\n",
  1109. obj->base.name);
  1110. ret = -ENOSPC;
  1111. goto out_free_list;
  1112. }
  1113. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1114. obj->base.size / PAGE_SIZE,
  1115. 0);
  1116. if (!list->file_offset_node) {
  1117. ret = -ENOMEM;
  1118. goto out_free_list;
  1119. }
  1120. list->hash.key = list->file_offset_node->start;
  1121. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1122. if (ret) {
  1123. DRM_ERROR("failed to add to map hash\n");
  1124. goto out_free_mm;
  1125. }
  1126. return 0;
  1127. out_free_mm:
  1128. drm_mm_put_block(list->file_offset_node);
  1129. out_free_list:
  1130. kfree(list->map);
  1131. list->map = NULL;
  1132. return ret;
  1133. }
  1134. /**
  1135. * i915_gem_release_mmap - remove physical page mappings
  1136. * @obj: obj in question
  1137. *
  1138. * Preserve the reservation of the mmapping with the DRM core code, but
  1139. * relinquish ownership of the pages back to the system.
  1140. *
  1141. * It is vital that we remove the page mapping if we have mapped a tiled
  1142. * object through the GTT and then lose the fence register due to
  1143. * resource pressure. Similarly if the object has been moved out of the
  1144. * aperture, than pages mapped into userspace must be revoked. Removing the
  1145. * mapping will then trigger a page fault on the next user access, allowing
  1146. * fixup by i915_gem_fault().
  1147. */
  1148. void
  1149. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1150. {
  1151. if (!obj->fault_mappable)
  1152. return;
  1153. if (obj->base.dev->dev_mapping)
  1154. unmap_mapping_range(obj->base.dev->dev_mapping,
  1155. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1156. obj->base.size, 1);
  1157. obj->fault_mappable = false;
  1158. }
  1159. static void
  1160. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1161. {
  1162. struct drm_device *dev = obj->base.dev;
  1163. struct drm_gem_mm *mm = dev->mm_private;
  1164. struct drm_map_list *list = &obj->base.map_list;
  1165. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1166. drm_mm_put_block(list->file_offset_node);
  1167. kfree(list->map);
  1168. list->map = NULL;
  1169. }
  1170. static uint32_t
  1171. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1172. {
  1173. struct drm_device *dev = obj->base.dev;
  1174. uint32_t size;
  1175. if (INTEL_INFO(dev)->gen >= 4 ||
  1176. obj->tiling_mode == I915_TILING_NONE)
  1177. return obj->base.size;
  1178. /* Previous chips need a power-of-two fence region when tiling */
  1179. if (INTEL_INFO(dev)->gen == 3)
  1180. size = 1024*1024;
  1181. else
  1182. size = 512*1024;
  1183. while (size < obj->base.size)
  1184. size <<= 1;
  1185. return size;
  1186. }
  1187. /**
  1188. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1189. * @obj: object to check
  1190. *
  1191. * Return the required GTT alignment for an object, taking into account
  1192. * potential fence register mapping.
  1193. */
  1194. static uint32_t
  1195. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1196. {
  1197. struct drm_device *dev = obj->base.dev;
  1198. /*
  1199. * Minimum alignment is 4k (GTT page size), but might be greater
  1200. * if a fence register is needed for the object.
  1201. */
  1202. if (INTEL_INFO(dev)->gen >= 4 ||
  1203. obj->tiling_mode == I915_TILING_NONE)
  1204. return 4096;
  1205. /*
  1206. * Previous chips need to be aligned to the size of the smallest
  1207. * fence register that can contain the object.
  1208. */
  1209. return i915_gem_get_gtt_size(obj);
  1210. }
  1211. /**
  1212. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1213. * unfenced object
  1214. * @obj: object to check
  1215. *
  1216. * Return the required GTT alignment for an object, only taking into account
  1217. * unfenced tiled surface requirements.
  1218. */
  1219. uint32_t
  1220. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1221. {
  1222. struct drm_device *dev = obj->base.dev;
  1223. int tile_height;
  1224. /*
  1225. * Minimum alignment is 4k (GTT page size) for sane hw.
  1226. */
  1227. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1228. obj->tiling_mode == I915_TILING_NONE)
  1229. return 4096;
  1230. /*
  1231. * Older chips need unfenced tiled buffers to be aligned to the left
  1232. * edge of an even tile row (where tile rows are counted as if the bo is
  1233. * placed in a fenced gtt region).
  1234. */
  1235. if (IS_GEN2(dev))
  1236. tile_height = 16;
  1237. else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1238. tile_height = 32;
  1239. else
  1240. tile_height = 8;
  1241. return tile_height * obj->stride * 2;
  1242. }
  1243. int
  1244. i915_gem_mmap_gtt(struct drm_file *file,
  1245. struct drm_device *dev,
  1246. uint32_t handle,
  1247. uint64_t *offset)
  1248. {
  1249. struct drm_i915_private *dev_priv = dev->dev_private;
  1250. struct drm_i915_gem_object *obj;
  1251. int ret;
  1252. if (!(dev->driver->driver_features & DRIVER_GEM))
  1253. return -ENODEV;
  1254. ret = i915_mutex_lock_interruptible(dev);
  1255. if (ret)
  1256. return ret;
  1257. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1258. if (&obj->base == NULL) {
  1259. ret = -ENOENT;
  1260. goto unlock;
  1261. }
  1262. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1263. ret = -E2BIG;
  1264. goto unlock;
  1265. }
  1266. if (obj->madv != I915_MADV_WILLNEED) {
  1267. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1268. ret = -EINVAL;
  1269. goto out;
  1270. }
  1271. if (!obj->base.map_list.map) {
  1272. ret = i915_gem_create_mmap_offset(obj);
  1273. if (ret)
  1274. goto out;
  1275. }
  1276. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1277. out:
  1278. drm_gem_object_unreference(&obj->base);
  1279. unlock:
  1280. mutex_unlock(&dev->struct_mutex);
  1281. return ret;
  1282. }
  1283. /**
  1284. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1285. * @dev: DRM device
  1286. * @data: GTT mapping ioctl data
  1287. * @file: GEM object info
  1288. *
  1289. * Simply returns the fake offset to userspace so it can mmap it.
  1290. * The mmap call will end up in drm_gem_mmap(), which will set things
  1291. * up so we can get faults in the handler above.
  1292. *
  1293. * The fault handler will take care of binding the object into the GTT
  1294. * (since it may have been evicted to make room for something), allocating
  1295. * a fence register, and mapping the appropriate aperture address into
  1296. * userspace.
  1297. */
  1298. int
  1299. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1300. struct drm_file *file)
  1301. {
  1302. struct drm_i915_gem_mmap_gtt *args = data;
  1303. if (!(dev->driver->driver_features & DRIVER_GEM))
  1304. return -ENODEV;
  1305. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1306. }
  1307. static int
  1308. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1309. gfp_t gfpmask)
  1310. {
  1311. int page_count, i;
  1312. struct address_space *mapping;
  1313. struct inode *inode;
  1314. struct page *page;
  1315. /* Get the list of pages out of our struct file. They'll be pinned
  1316. * at this point until we release them.
  1317. */
  1318. page_count = obj->base.size / PAGE_SIZE;
  1319. BUG_ON(obj->pages != NULL);
  1320. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1321. if (obj->pages == NULL)
  1322. return -ENOMEM;
  1323. inode = obj->base.filp->f_path.dentry->d_inode;
  1324. mapping = inode->i_mapping;
  1325. for (i = 0; i < page_count; i++) {
  1326. page = read_cache_page_gfp(mapping, i,
  1327. GFP_HIGHUSER |
  1328. __GFP_COLD |
  1329. __GFP_RECLAIMABLE |
  1330. gfpmask);
  1331. if (IS_ERR(page))
  1332. goto err_pages;
  1333. obj->pages[i] = page;
  1334. }
  1335. if (obj->tiling_mode != I915_TILING_NONE)
  1336. i915_gem_object_do_bit_17_swizzle(obj);
  1337. return 0;
  1338. err_pages:
  1339. while (i--)
  1340. page_cache_release(obj->pages[i]);
  1341. drm_free_large(obj->pages);
  1342. obj->pages = NULL;
  1343. return PTR_ERR(page);
  1344. }
  1345. static void
  1346. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1347. {
  1348. int page_count = obj->base.size / PAGE_SIZE;
  1349. int i;
  1350. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1351. if (obj->tiling_mode != I915_TILING_NONE)
  1352. i915_gem_object_save_bit_17_swizzle(obj);
  1353. if (obj->madv == I915_MADV_DONTNEED)
  1354. obj->dirty = 0;
  1355. for (i = 0; i < page_count; i++) {
  1356. if (obj->dirty)
  1357. set_page_dirty(obj->pages[i]);
  1358. if (obj->madv == I915_MADV_WILLNEED)
  1359. mark_page_accessed(obj->pages[i]);
  1360. page_cache_release(obj->pages[i]);
  1361. }
  1362. obj->dirty = 0;
  1363. drm_free_large(obj->pages);
  1364. obj->pages = NULL;
  1365. }
  1366. void
  1367. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1368. struct intel_ring_buffer *ring,
  1369. u32 seqno)
  1370. {
  1371. struct drm_device *dev = obj->base.dev;
  1372. struct drm_i915_private *dev_priv = dev->dev_private;
  1373. BUG_ON(ring == NULL);
  1374. obj->ring = ring;
  1375. /* Add a reference if we're newly entering the active list. */
  1376. if (!obj->active) {
  1377. drm_gem_object_reference(&obj->base);
  1378. obj->active = 1;
  1379. }
  1380. /* Move from whatever list we were on to the tail of execution. */
  1381. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1382. list_move_tail(&obj->ring_list, &ring->active_list);
  1383. obj->last_rendering_seqno = seqno;
  1384. if (obj->fenced_gpu_access) {
  1385. struct drm_i915_fence_reg *reg;
  1386. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1387. obj->last_fenced_seqno = seqno;
  1388. obj->last_fenced_ring = ring;
  1389. reg = &dev_priv->fence_regs[obj->fence_reg];
  1390. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1391. }
  1392. }
  1393. static void
  1394. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1395. {
  1396. list_del_init(&obj->ring_list);
  1397. obj->last_rendering_seqno = 0;
  1398. }
  1399. static void
  1400. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1401. {
  1402. struct drm_device *dev = obj->base.dev;
  1403. drm_i915_private_t *dev_priv = dev->dev_private;
  1404. BUG_ON(!obj->active);
  1405. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1406. i915_gem_object_move_off_active(obj);
  1407. }
  1408. static void
  1409. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1410. {
  1411. struct drm_device *dev = obj->base.dev;
  1412. struct drm_i915_private *dev_priv = dev->dev_private;
  1413. if (obj->pin_count != 0)
  1414. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1415. else
  1416. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1417. BUG_ON(!list_empty(&obj->gpu_write_list));
  1418. BUG_ON(!obj->active);
  1419. obj->ring = NULL;
  1420. i915_gem_object_move_off_active(obj);
  1421. obj->fenced_gpu_access = false;
  1422. obj->active = 0;
  1423. obj->pending_gpu_write = false;
  1424. drm_gem_object_unreference(&obj->base);
  1425. WARN_ON(i915_verify_lists(dev));
  1426. }
  1427. /* Immediately discard the backing storage */
  1428. static void
  1429. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1430. {
  1431. struct inode *inode;
  1432. /* Our goal here is to return as much of the memory as
  1433. * is possible back to the system as we are called from OOM.
  1434. * To do this we must instruct the shmfs to drop all of its
  1435. * backing pages, *now*. Here we mirror the actions taken
  1436. * when by shmem_delete_inode() to release the backing store.
  1437. */
  1438. inode = obj->base.filp->f_path.dentry->d_inode;
  1439. truncate_inode_pages(inode->i_mapping, 0);
  1440. if (inode->i_op->truncate_range)
  1441. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1442. obj->madv = __I915_MADV_PURGED;
  1443. }
  1444. static inline int
  1445. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1446. {
  1447. return obj->madv == I915_MADV_DONTNEED;
  1448. }
  1449. static void
  1450. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1451. uint32_t flush_domains)
  1452. {
  1453. struct drm_i915_gem_object *obj, *next;
  1454. list_for_each_entry_safe(obj, next,
  1455. &ring->gpu_write_list,
  1456. gpu_write_list) {
  1457. if (obj->base.write_domain & flush_domains) {
  1458. uint32_t old_write_domain = obj->base.write_domain;
  1459. obj->base.write_domain = 0;
  1460. list_del_init(&obj->gpu_write_list);
  1461. i915_gem_object_move_to_active(obj, ring,
  1462. i915_gem_next_request_seqno(ring));
  1463. trace_i915_gem_object_change_domain(obj,
  1464. obj->base.read_domains,
  1465. old_write_domain);
  1466. }
  1467. }
  1468. }
  1469. int
  1470. i915_add_request(struct intel_ring_buffer *ring,
  1471. struct drm_file *file,
  1472. struct drm_i915_gem_request *request)
  1473. {
  1474. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1475. uint32_t seqno;
  1476. int was_empty;
  1477. int ret;
  1478. BUG_ON(request == NULL);
  1479. ret = ring->add_request(ring, &seqno);
  1480. if (ret)
  1481. return ret;
  1482. trace_i915_gem_request_add(ring, seqno);
  1483. request->seqno = seqno;
  1484. request->ring = ring;
  1485. request->emitted_jiffies = jiffies;
  1486. was_empty = list_empty(&ring->request_list);
  1487. list_add_tail(&request->list, &ring->request_list);
  1488. if (file) {
  1489. struct drm_i915_file_private *file_priv = file->driver_priv;
  1490. spin_lock(&file_priv->mm.lock);
  1491. request->file_priv = file_priv;
  1492. list_add_tail(&request->client_list,
  1493. &file_priv->mm.request_list);
  1494. spin_unlock(&file_priv->mm.lock);
  1495. }
  1496. ring->outstanding_lazy_request = false;
  1497. if (!dev_priv->mm.suspended) {
  1498. mod_timer(&dev_priv->hangcheck_timer,
  1499. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1500. if (was_empty)
  1501. queue_delayed_work(dev_priv->wq,
  1502. &dev_priv->mm.retire_work, HZ);
  1503. }
  1504. return 0;
  1505. }
  1506. static inline void
  1507. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1508. {
  1509. struct drm_i915_file_private *file_priv = request->file_priv;
  1510. if (!file_priv)
  1511. return;
  1512. spin_lock(&file_priv->mm.lock);
  1513. if (request->file_priv) {
  1514. list_del(&request->client_list);
  1515. request->file_priv = NULL;
  1516. }
  1517. spin_unlock(&file_priv->mm.lock);
  1518. }
  1519. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1520. struct intel_ring_buffer *ring)
  1521. {
  1522. while (!list_empty(&ring->request_list)) {
  1523. struct drm_i915_gem_request *request;
  1524. request = list_first_entry(&ring->request_list,
  1525. struct drm_i915_gem_request,
  1526. list);
  1527. list_del(&request->list);
  1528. i915_gem_request_remove_from_client(request);
  1529. kfree(request);
  1530. }
  1531. while (!list_empty(&ring->active_list)) {
  1532. struct drm_i915_gem_object *obj;
  1533. obj = list_first_entry(&ring->active_list,
  1534. struct drm_i915_gem_object,
  1535. ring_list);
  1536. obj->base.write_domain = 0;
  1537. list_del_init(&obj->gpu_write_list);
  1538. i915_gem_object_move_to_inactive(obj);
  1539. }
  1540. }
  1541. static void i915_gem_reset_fences(struct drm_device *dev)
  1542. {
  1543. struct drm_i915_private *dev_priv = dev->dev_private;
  1544. int i;
  1545. for (i = 0; i < 16; i++) {
  1546. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1547. struct drm_i915_gem_object *obj = reg->obj;
  1548. if (!obj)
  1549. continue;
  1550. if (obj->tiling_mode)
  1551. i915_gem_release_mmap(obj);
  1552. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1553. reg->obj->fenced_gpu_access = false;
  1554. reg->obj->last_fenced_seqno = 0;
  1555. reg->obj->last_fenced_ring = NULL;
  1556. i915_gem_clear_fence_reg(dev, reg);
  1557. }
  1558. }
  1559. void i915_gem_reset(struct drm_device *dev)
  1560. {
  1561. struct drm_i915_private *dev_priv = dev->dev_private;
  1562. struct drm_i915_gem_object *obj;
  1563. int i;
  1564. for (i = 0; i < I915_NUM_RINGS; i++)
  1565. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1566. /* Remove anything from the flushing lists. The GPU cache is likely
  1567. * to be lost on reset along with the data, so simply move the
  1568. * lost bo to the inactive list.
  1569. */
  1570. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1571. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1572. struct drm_i915_gem_object,
  1573. mm_list);
  1574. obj->base.write_domain = 0;
  1575. list_del_init(&obj->gpu_write_list);
  1576. i915_gem_object_move_to_inactive(obj);
  1577. }
  1578. /* Move everything out of the GPU domains to ensure we do any
  1579. * necessary invalidation upon reuse.
  1580. */
  1581. list_for_each_entry(obj,
  1582. &dev_priv->mm.inactive_list,
  1583. mm_list)
  1584. {
  1585. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1586. }
  1587. /* The fence registers are invalidated so clear them out */
  1588. i915_gem_reset_fences(dev);
  1589. }
  1590. /**
  1591. * This function clears the request list as sequence numbers are passed.
  1592. */
  1593. static void
  1594. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1595. {
  1596. uint32_t seqno;
  1597. int i;
  1598. if (list_empty(&ring->request_list))
  1599. return;
  1600. WARN_ON(i915_verify_lists(ring->dev));
  1601. seqno = ring->get_seqno(ring);
  1602. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1603. if (seqno >= ring->sync_seqno[i])
  1604. ring->sync_seqno[i] = 0;
  1605. while (!list_empty(&ring->request_list)) {
  1606. struct drm_i915_gem_request *request;
  1607. request = list_first_entry(&ring->request_list,
  1608. struct drm_i915_gem_request,
  1609. list);
  1610. if (!i915_seqno_passed(seqno, request->seqno))
  1611. break;
  1612. trace_i915_gem_request_retire(ring, request->seqno);
  1613. list_del(&request->list);
  1614. i915_gem_request_remove_from_client(request);
  1615. kfree(request);
  1616. }
  1617. /* Move any buffers on the active list that are no longer referenced
  1618. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1619. */
  1620. while (!list_empty(&ring->active_list)) {
  1621. struct drm_i915_gem_object *obj;
  1622. obj= list_first_entry(&ring->active_list,
  1623. struct drm_i915_gem_object,
  1624. ring_list);
  1625. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1626. break;
  1627. if (obj->base.write_domain != 0)
  1628. i915_gem_object_move_to_flushing(obj);
  1629. else
  1630. i915_gem_object_move_to_inactive(obj);
  1631. }
  1632. if (unlikely(ring->trace_irq_seqno &&
  1633. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1634. ring->irq_put(ring);
  1635. ring->trace_irq_seqno = 0;
  1636. }
  1637. WARN_ON(i915_verify_lists(ring->dev));
  1638. }
  1639. void
  1640. i915_gem_retire_requests(struct drm_device *dev)
  1641. {
  1642. drm_i915_private_t *dev_priv = dev->dev_private;
  1643. int i;
  1644. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1645. struct drm_i915_gem_object *obj, *next;
  1646. /* We must be careful that during unbind() we do not
  1647. * accidentally infinitely recurse into retire requests.
  1648. * Currently:
  1649. * retire -> free -> unbind -> wait -> retire_ring
  1650. */
  1651. list_for_each_entry_safe(obj, next,
  1652. &dev_priv->mm.deferred_free_list,
  1653. mm_list)
  1654. i915_gem_free_object_tail(obj);
  1655. }
  1656. for (i = 0; i < I915_NUM_RINGS; i++)
  1657. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1658. }
  1659. static void
  1660. i915_gem_retire_work_handler(struct work_struct *work)
  1661. {
  1662. drm_i915_private_t *dev_priv;
  1663. struct drm_device *dev;
  1664. bool idle;
  1665. int i;
  1666. dev_priv = container_of(work, drm_i915_private_t,
  1667. mm.retire_work.work);
  1668. dev = dev_priv->dev;
  1669. /* Come back later if the device is busy... */
  1670. if (!mutex_trylock(&dev->struct_mutex)) {
  1671. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1672. return;
  1673. }
  1674. i915_gem_retire_requests(dev);
  1675. /* Send a periodic flush down the ring so we don't hold onto GEM
  1676. * objects indefinitely.
  1677. */
  1678. idle = true;
  1679. for (i = 0; i < I915_NUM_RINGS; i++) {
  1680. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1681. if (!list_empty(&ring->gpu_write_list)) {
  1682. struct drm_i915_gem_request *request;
  1683. int ret;
  1684. ret = i915_gem_flush_ring(ring,
  1685. 0, I915_GEM_GPU_DOMAINS);
  1686. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1687. if (ret || request == NULL ||
  1688. i915_add_request(ring, NULL, request))
  1689. kfree(request);
  1690. }
  1691. idle &= list_empty(&ring->request_list);
  1692. }
  1693. if (!dev_priv->mm.suspended && !idle)
  1694. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1695. mutex_unlock(&dev->struct_mutex);
  1696. }
  1697. /**
  1698. * Waits for a sequence number to be signaled, and cleans up the
  1699. * request and object lists appropriately for that event.
  1700. */
  1701. int
  1702. i915_wait_request(struct intel_ring_buffer *ring,
  1703. uint32_t seqno)
  1704. {
  1705. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1706. u32 ier;
  1707. int ret = 0;
  1708. BUG_ON(seqno == 0);
  1709. if (atomic_read(&dev_priv->mm.wedged)) {
  1710. struct completion *x = &dev_priv->error_completion;
  1711. bool recovery_complete;
  1712. unsigned long flags;
  1713. /* Give the error handler a chance to run. */
  1714. spin_lock_irqsave(&x->wait.lock, flags);
  1715. recovery_complete = x->done > 0;
  1716. spin_unlock_irqrestore(&x->wait.lock, flags);
  1717. return recovery_complete ? -EIO : -EAGAIN;
  1718. }
  1719. if (seqno == ring->outstanding_lazy_request) {
  1720. struct drm_i915_gem_request *request;
  1721. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1722. if (request == NULL)
  1723. return -ENOMEM;
  1724. ret = i915_add_request(ring, NULL, request);
  1725. if (ret) {
  1726. kfree(request);
  1727. return ret;
  1728. }
  1729. seqno = request->seqno;
  1730. }
  1731. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1732. if (HAS_PCH_SPLIT(ring->dev))
  1733. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1734. else
  1735. ier = I915_READ(IER);
  1736. if (!ier) {
  1737. DRM_ERROR("something (likely vbetool) disabled "
  1738. "interrupts, re-enabling\n");
  1739. i915_driver_irq_preinstall(ring->dev);
  1740. i915_driver_irq_postinstall(ring->dev);
  1741. }
  1742. trace_i915_gem_request_wait_begin(ring, seqno);
  1743. ring->waiting_seqno = seqno;
  1744. if (ring->irq_get(ring)) {
  1745. if (dev_priv->mm.interruptible)
  1746. ret = wait_event_interruptible(ring->irq_queue,
  1747. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1748. || atomic_read(&dev_priv->mm.wedged));
  1749. else
  1750. wait_event(ring->irq_queue,
  1751. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1752. || atomic_read(&dev_priv->mm.wedged));
  1753. ring->irq_put(ring);
  1754. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1755. seqno) ||
  1756. atomic_read(&dev_priv->mm.wedged), 3000))
  1757. ret = -EBUSY;
  1758. ring->waiting_seqno = 0;
  1759. trace_i915_gem_request_wait_end(ring, seqno);
  1760. }
  1761. if (atomic_read(&dev_priv->mm.wedged))
  1762. ret = -EAGAIN;
  1763. if (ret && ret != -ERESTARTSYS)
  1764. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1765. __func__, ret, seqno, ring->get_seqno(ring),
  1766. dev_priv->next_seqno);
  1767. /* Directly dispatch request retiring. While we have the work queue
  1768. * to handle this, the waiter on a request often wants an associated
  1769. * buffer to have made it to the inactive list, and we would need
  1770. * a separate wait queue to handle that.
  1771. */
  1772. if (ret == 0)
  1773. i915_gem_retire_requests_ring(ring);
  1774. return ret;
  1775. }
  1776. /**
  1777. * Ensures that all rendering to the object has completed and the object is
  1778. * safe to unbind from the GTT or access from the CPU.
  1779. */
  1780. int
  1781. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1782. {
  1783. int ret;
  1784. /* This function only exists to support waiting for existing rendering,
  1785. * not for emitting required flushes.
  1786. */
  1787. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1788. /* If there is rendering queued on the buffer being evicted, wait for
  1789. * it.
  1790. */
  1791. if (obj->active) {
  1792. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1793. if (ret)
  1794. return ret;
  1795. }
  1796. return 0;
  1797. }
  1798. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1799. {
  1800. u32 old_write_domain, old_read_domains;
  1801. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1802. return;
  1803. /* Act a barrier for all accesses through the GTT */
  1804. mb();
  1805. /* Force a pagefault for domain tracking on next user access */
  1806. i915_gem_release_mmap(obj);
  1807. old_read_domains = obj->base.read_domains;
  1808. old_write_domain = obj->base.write_domain;
  1809. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1810. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1811. trace_i915_gem_object_change_domain(obj,
  1812. old_read_domains,
  1813. old_write_domain);
  1814. }
  1815. /**
  1816. * Unbinds an object from the GTT aperture.
  1817. */
  1818. int
  1819. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1820. {
  1821. int ret = 0;
  1822. if (obj->gtt_space == NULL)
  1823. return 0;
  1824. if (obj->pin_count != 0) {
  1825. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1826. return -EINVAL;
  1827. }
  1828. ret = i915_gem_object_finish_gpu(obj);
  1829. if (ret == -ERESTARTSYS)
  1830. return ret;
  1831. /* Continue on if we fail due to EIO, the GPU is hung so we
  1832. * should be safe and we need to cleanup or else we might
  1833. * cause memory corruption through use-after-free.
  1834. */
  1835. i915_gem_object_finish_gtt(obj);
  1836. /* Move the object to the CPU domain to ensure that
  1837. * any possible CPU writes while it's not in the GTT
  1838. * are flushed when we go to remap it.
  1839. */
  1840. if (ret == 0)
  1841. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1842. if (ret == -ERESTARTSYS)
  1843. return ret;
  1844. if (ret) {
  1845. /* In the event of a disaster, abandon all caches and
  1846. * hope for the best.
  1847. */
  1848. i915_gem_clflush_object(obj);
  1849. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1850. }
  1851. /* release the fence reg _after_ flushing */
  1852. ret = i915_gem_object_put_fence(obj);
  1853. if (ret == -ERESTARTSYS)
  1854. return ret;
  1855. trace_i915_gem_object_unbind(obj);
  1856. i915_gem_gtt_unbind_object(obj);
  1857. i915_gem_object_put_pages_gtt(obj);
  1858. list_del_init(&obj->gtt_list);
  1859. list_del_init(&obj->mm_list);
  1860. /* Avoid an unnecessary call to unbind on rebind. */
  1861. obj->map_and_fenceable = true;
  1862. drm_mm_put_block(obj->gtt_space);
  1863. obj->gtt_space = NULL;
  1864. obj->gtt_offset = 0;
  1865. if (i915_gem_object_is_purgeable(obj))
  1866. i915_gem_object_truncate(obj);
  1867. return ret;
  1868. }
  1869. int
  1870. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1871. uint32_t invalidate_domains,
  1872. uint32_t flush_domains)
  1873. {
  1874. int ret;
  1875. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1876. return 0;
  1877. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1878. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1879. if (ret)
  1880. return ret;
  1881. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1882. i915_gem_process_flushing_list(ring, flush_domains);
  1883. return 0;
  1884. }
  1885. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1886. {
  1887. int ret;
  1888. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1889. return 0;
  1890. if (!list_empty(&ring->gpu_write_list)) {
  1891. ret = i915_gem_flush_ring(ring,
  1892. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1893. if (ret)
  1894. return ret;
  1895. }
  1896. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1897. }
  1898. int
  1899. i915_gpu_idle(struct drm_device *dev)
  1900. {
  1901. drm_i915_private_t *dev_priv = dev->dev_private;
  1902. bool lists_empty;
  1903. int ret, i;
  1904. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1905. list_empty(&dev_priv->mm.active_list));
  1906. if (lists_empty)
  1907. return 0;
  1908. /* Flush everything onto the inactive list. */
  1909. for (i = 0; i < I915_NUM_RINGS; i++) {
  1910. ret = i915_ring_idle(&dev_priv->ring[i]);
  1911. if (ret)
  1912. return ret;
  1913. }
  1914. return 0;
  1915. }
  1916. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1917. struct intel_ring_buffer *pipelined)
  1918. {
  1919. struct drm_device *dev = obj->base.dev;
  1920. drm_i915_private_t *dev_priv = dev->dev_private;
  1921. u32 size = obj->gtt_space->size;
  1922. int regnum = obj->fence_reg;
  1923. uint64_t val;
  1924. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1925. 0xfffff000) << 32;
  1926. val |= obj->gtt_offset & 0xfffff000;
  1927. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1928. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1929. if (obj->tiling_mode == I915_TILING_Y)
  1930. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1931. val |= I965_FENCE_REG_VALID;
  1932. if (pipelined) {
  1933. int ret = intel_ring_begin(pipelined, 6);
  1934. if (ret)
  1935. return ret;
  1936. intel_ring_emit(pipelined, MI_NOOP);
  1937. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1938. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1939. intel_ring_emit(pipelined, (u32)val);
  1940. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1941. intel_ring_emit(pipelined, (u32)(val >> 32));
  1942. intel_ring_advance(pipelined);
  1943. } else
  1944. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1945. return 0;
  1946. }
  1947. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1948. struct intel_ring_buffer *pipelined)
  1949. {
  1950. struct drm_device *dev = obj->base.dev;
  1951. drm_i915_private_t *dev_priv = dev->dev_private;
  1952. u32 size = obj->gtt_space->size;
  1953. int regnum = obj->fence_reg;
  1954. uint64_t val;
  1955. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1956. 0xfffff000) << 32;
  1957. val |= obj->gtt_offset & 0xfffff000;
  1958. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1959. if (obj->tiling_mode == I915_TILING_Y)
  1960. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1961. val |= I965_FENCE_REG_VALID;
  1962. if (pipelined) {
  1963. int ret = intel_ring_begin(pipelined, 6);
  1964. if (ret)
  1965. return ret;
  1966. intel_ring_emit(pipelined, MI_NOOP);
  1967. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1968. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1969. intel_ring_emit(pipelined, (u32)val);
  1970. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1971. intel_ring_emit(pipelined, (u32)(val >> 32));
  1972. intel_ring_advance(pipelined);
  1973. } else
  1974. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1975. return 0;
  1976. }
  1977. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1978. struct intel_ring_buffer *pipelined)
  1979. {
  1980. struct drm_device *dev = obj->base.dev;
  1981. drm_i915_private_t *dev_priv = dev->dev_private;
  1982. u32 size = obj->gtt_space->size;
  1983. u32 fence_reg, val, pitch_val;
  1984. int tile_width;
  1985. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1986. (size & -size) != size ||
  1987. (obj->gtt_offset & (size - 1)),
  1988. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1989. obj->gtt_offset, obj->map_and_fenceable, size))
  1990. return -EINVAL;
  1991. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1992. tile_width = 128;
  1993. else
  1994. tile_width = 512;
  1995. /* Note: pitch better be a power of two tile widths */
  1996. pitch_val = obj->stride / tile_width;
  1997. pitch_val = ffs(pitch_val) - 1;
  1998. val = obj->gtt_offset;
  1999. if (obj->tiling_mode == I915_TILING_Y)
  2000. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2001. val |= I915_FENCE_SIZE_BITS(size);
  2002. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2003. val |= I830_FENCE_REG_VALID;
  2004. fence_reg = obj->fence_reg;
  2005. if (fence_reg < 8)
  2006. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2007. else
  2008. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2009. if (pipelined) {
  2010. int ret = intel_ring_begin(pipelined, 4);
  2011. if (ret)
  2012. return ret;
  2013. intel_ring_emit(pipelined, MI_NOOP);
  2014. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2015. intel_ring_emit(pipelined, fence_reg);
  2016. intel_ring_emit(pipelined, val);
  2017. intel_ring_advance(pipelined);
  2018. } else
  2019. I915_WRITE(fence_reg, val);
  2020. return 0;
  2021. }
  2022. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  2023. struct intel_ring_buffer *pipelined)
  2024. {
  2025. struct drm_device *dev = obj->base.dev;
  2026. drm_i915_private_t *dev_priv = dev->dev_private;
  2027. u32 size = obj->gtt_space->size;
  2028. int regnum = obj->fence_reg;
  2029. uint32_t val;
  2030. uint32_t pitch_val;
  2031. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2032. (size & -size) != size ||
  2033. (obj->gtt_offset & (size - 1)),
  2034. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2035. obj->gtt_offset, size))
  2036. return -EINVAL;
  2037. pitch_val = obj->stride / 128;
  2038. pitch_val = ffs(pitch_val) - 1;
  2039. val = obj->gtt_offset;
  2040. if (obj->tiling_mode == I915_TILING_Y)
  2041. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2042. val |= I830_FENCE_SIZE_BITS(size);
  2043. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2044. val |= I830_FENCE_REG_VALID;
  2045. if (pipelined) {
  2046. int ret = intel_ring_begin(pipelined, 4);
  2047. if (ret)
  2048. return ret;
  2049. intel_ring_emit(pipelined, MI_NOOP);
  2050. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2051. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  2052. intel_ring_emit(pipelined, val);
  2053. intel_ring_advance(pipelined);
  2054. } else
  2055. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  2056. return 0;
  2057. }
  2058. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  2059. {
  2060. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2061. }
  2062. static int
  2063. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2064. struct intel_ring_buffer *pipelined)
  2065. {
  2066. int ret;
  2067. if (obj->fenced_gpu_access) {
  2068. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2069. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  2070. 0, obj->base.write_domain);
  2071. if (ret)
  2072. return ret;
  2073. }
  2074. obj->fenced_gpu_access = false;
  2075. }
  2076. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2077. if (!ring_passed_seqno(obj->last_fenced_ring,
  2078. obj->last_fenced_seqno)) {
  2079. ret = i915_wait_request(obj->last_fenced_ring,
  2080. obj->last_fenced_seqno);
  2081. if (ret)
  2082. return ret;
  2083. }
  2084. obj->last_fenced_seqno = 0;
  2085. obj->last_fenced_ring = NULL;
  2086. }
  2087. /* Ensure that all CPU reads are completed before installing a fence
  2088. * and all writes before removing the fence.
  2089. */
  2090. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2091. mb();
  2092. return 0;
  2093. }
  2094. int
  2095. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2096. {
  2097. int ret;
  2098. if (obj->tiling_mode)
  2099. i915_gem_release_mmap(obj);
  2100. ret = i915_gem_object_flush_fence(obj, NULL);
  2101. if (ret)
  2102. return ret;
  2103. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2104. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2105. i915_gem_clear_fence_reg(obj->base.dev,
  2106. &dev_priv->fence_regs[obj->fence_reg]);
  2107. obj->fence_reg = I915_FENCE_REG_NONE;
  2108. }
  2109. return 0;
  2110. }
  2111. static struct drm_i915_fence_reg *
  2112. i915_find_fence_reg(struct drm_device *dev,
  2113. struct intel_ring_buffer *pipelined)
  2114. {
  2115. struct drm_i915_private *dev_priv = dev->dev_private;
  2116. struct drm_i915_fence_reg *reg, *first, *avail;
  2117. int i;
  2118. /* First try to find a free reg */
  2119. avail = NULL;
  2120. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2121. reg = &dev_priv->fence_regs[i];
  2122. if (!reg->obj)
  2123. return reg;
  2124. if (!reg->obj->pin_count)
  2125. avail = reg;
  2126. }
  2127. if (avail == NULL)
  2128. return NULL;
  2129. /* None available, try to steal one or wait for a user to finish */
  2130. avail = first = NULL;
  2131. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2132. if (reg->obj->pin_count)
  2133. continue;
  2134. if (first == NULL)
  2135. first = reg;
  2136. if (!pipelined ||
  2137. !reg->obj->last_fenced_ring ||
  2138. reg->obj->last_fenced_ring == pipelined) {
  2139. avail = reg;
  2140. break;
  2141. }
  2142. }
  2143. if (avail == NULL)
  2144. avail = first;
  2145. return avail;
  2146. }
  2147. /**
  2148. * i915_gem_object_get_fence - set up a fence reg for an object
  2149. * @obj: object to map through a fence reg
  2150. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2151. * @interruptible: must we wait uninterruptibly for the register to retire?
  2152. *
  2153. * When mapping objects through the GTT, userspace wants to be able to write
  2154. * to them without having to worry about swizzling if the object is tiled.
  2155. *
  2156. * This function walks the fence regs looking for a free one for @obj,
  2157. * stealing one if it can't find any.
  2158. *
  2159. * It then sets up the reg based on the object's properties: address, pitch
  2160. * and tiling format.
  2161. */
  2162. int
  2163. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2164. struct intel_ring_buffer *pipelined)
  2165. {
  2166. struct drm_device *dev = obj->base.dev;
  2167. struct drm_i915_private *dev_priv = dev->dev_private;
  2168. struct drm_i915_fence_reg *reg;
  2169. int ret;
  2170. /* XXX disable pipelining. There are bugs. Shocking. */
  2171. pipelined = NULL;
  2172. /* Just update our place in the LRU if our fence is getting reused. */
  2173. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2174. reg = &dev_priv->fence_regs[obj->fence_reg];
  2175. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2176. if (obj->tiling_changed) {
  2177. ret = i915_gem_object_flush_fence(obj, pipelined);
  2178. if (ret)
  2179. return ret;
  2180. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2181. pipelined = NULL;
  2182. if (pipelined) {
  2183. reg->setup_seqno =
  2184. i915_gem_next_request_seqno(pipelined);
  2185. obj->last_fenced_seqno = reg->setup_seqno;
  2186. obj->last_fenced_ring = pipelined;
  2187. }
  2188. goto update;
  2189. }
  2190. if (!pipelined) {
  2191. if (reg->setup_seqno) {
  2192. if (!ring_passed_seqno(obj->last_fenced_ring,
  2193. reg->setup_seqno)) {
  2194. ret = i915_wait_request(obj->last_fenced_ring,
  2195. reg->setup_seqno);
  2196. if (ret)
  2197. return ret;
  2198. }
  2199. reg->setup_seqno = 0;
  2200. }
  2201. } else if (obj->last_fenced_ring &&
  2202. obj->last_fenced_ring != pipelined) {
  2203. ret = i915_gem_object_flush_fence(obj, pipelined);
  2204. if (ret)
  2205. return ret;
  2206. }
  2207. return 0;
  2208. }
  2209. reg = i915_find_fence_reg(dev, pipelined);
  2210. if (reg == NULL)
  2211. return -ENOSPC;
  2212. ret = i915_gem_object_flush_fence(obj, pipelined);
  2213. if (ret)
  2214. return ret;
  2215. if (reg->obj) {
  2216. struct drm_i915_gem_object *old = reg->obj;
  2217. drm_gem_object_reference(&old->base);
  2218. if (old->tiling_mode)
  2219. i915_gem_release_mmap(old);
  2220. ret = i915_gem_object_flush_fence(old, pipelined);
  2221. if (ret) {
  2222. drm_gem_object_unreference(&old->base);
  2223. return ret;
  2224. }
  2225. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2226. pipelined = NULL;
  2227. old->fence_reg = I915_FENCE_REG_NONE;
  2228. old->last_fenced_ring = pipelined;
  2229. old->last_fenced_seqno =
  2230. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2231. drm_gem_object_unreference(&old->base);
  2232. } else if (obj->last_fenced_seqno == 0)
  2233. pipelined = NULL;
  2234. reg->obj = obj;
  2235. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2236. obj->fence_reg = reg - dev_priv->fence_regs;
  2237. obj->last_fenced_ring = pipelined;
  2238. reg->setup_seqno =
  2239. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2240. obj->last_fenced_seqno = reg->setup_seqno;
  2241. update:
  2242. obj->tiling_changed = false;
  2243. switch (INTEL_INFO(dev)->gen) {
  2244. case 7:
  2245. case 6:
  2246. ret = sandybridge_write_fence_reg(obj, pipelined);
  2247. break;
  2248. case 5:
  2249. case 4:
  2250. ret = i965_write_fence_reg(obj, pipelined);
  2251. break;
  2252. case 3:
  2253. ret = i915_write_fence_reg(obj, pipelined);
  2254. break;
  2255. case 2:
  2256. ret = i830_write_fence_reg(obj, pipelined);
  2257. break;
  2258. }
  2259. return ret;
  2260. }
  2261. /**
  2262. * i915_gem_clear_fence_reg - clear out fence register info
  2263. * @obj: object to clear
  2264. *
  2265. * Zeroes out the fence register itself and clears out the associated
  2266. * data structures in dev_priv and obj.
  2267. */
  2268. static void
  2269. i915_gem_clear_fence_reg(struct drm_device *dev,
  2270. struct drm_i915_fence_reg *reg)
  2271. {
  2272. drm_i915_private_t *dev_priv = dev->dev_private;
  2273. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2274. switch (INTEL_INFO(dev)->gen) {
  2275. case 7:
  2276. case 6:
  2277. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2278. break;
  2279. case 5:
  2280. case 4:
  2281. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2282. break;
  2283. case 3:
  2284. if (fence_reg >= 8)
  2285. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2286. else
  2287. case 2:
  2288. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2289. I915_WRITE(fence_reg, 0);
  2290. break;
  2291. }
  2292. list_del_init(&reg->lru_list);
  2293. reg->obj = NULL;
  2294. reg->setup_seqno = 0;
  2295. }
  2296. /**
  2297. * Finds free space in the GTT aperture and binds the object there.
  2298. */
  2299. static int
  2300. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2301. unsigned alignment,
  2302. bool map_and_fenceable)
  2303. {
  2304. struct drm_device *dev = obj->base.dev;
  2305. drm_i915_private_t *dev_priv = dev->dev_private;
  2306. struct drm_mm_node *free_space;
  2307. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2308. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2309. bool mappable, fenceable;
  2310. int ret;
  2311. if (obj->madv != I915_MADV_WILLNEED) {
  2312. DRM_ERROR("Attempting to bind a purgeable object\n");
  2313. return -EINVAL;
  2314. }
  2315. fence_size = i915_gem_get_gtt_size(obj);
  2316. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2317. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2318. if (alignment == 0)
  2319. alignment = map_and_fenceable ? fence_alignment :
  2320. unfenced_alignment;
  2321. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2322. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2323. return -EINVAL;
  2324. }
  2325. size = map_and_fenceable ? fence_size : obj->base.size;
  2326. /* If the object is bigger than the entire aperture, reject it early
  2327. * before evicting everything in a vain attempt to find space.
  2328. */
  2329. if (obj->base.size >
  2330. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2331. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2332. return -E2BIG;
  2333. }
  2334. search_free:
  2335. if (map_and_fenceable)
  2336. free_space =
  2337. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2338. size, alignment, 0,
  2339. dev_priv->mm.gtt_mappable_end,
  2340. 0);
  2341. else
  2342. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2343. size, alignment, 0);
  2344. if (free_space != NULL) {
  2345. if (map_and_fenceable)
  2346. obj->gtt_space =
  2347. drm_mm_get_block_range_generic(free_space,
  2348. size, alignment, 0,
  2349. dev_priv->mm.gtt_mappable_end,
  2350. 0);
  2351. else
  2352. obj->gtt_space =
  2353. drm_mm_get_block(free_space, size, alignment);
  2354. }
  2355. if (obj->gtt_space == NULL) {
  2356. /* If the gtt is empty and we're still having trouble
  2357. * fitting our object in, we're out of memory.
  2358. */
  2359. ret = i915_gem_evict_something(dev, size, alignment,
  2360. map_and_fenceable);
  2361. if (ret)
  2362. return ret;
  2363. goto search_free;
  2364. }
  2365. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2366. if (ret) {
  2367. drm_mm_put_block(obj->gtt_space);
  2368. obj->gtt_space = NULL;
  2369. if (ret == -ENOMEM) {
  2370. /* first try to reclaim some memory by clearing the GTT */
  2371. ret = i915_gem_evict_everything(dev, false);
  2372. if (ret) {
  2373. /* now try to shrink everyone else */
  2374. if (gfpmask) {
  2375. gfpmask = 0;
  2376. goto search_free;
  2377. }
  2378. return -ENOMEM;
  2379. }
  2380. goto search_free;
  2381. }
  2382. return ret;
  2383. }
  2384. ret = i915_gem_gtt_bind_object(obj);
  2385. if (ret) {
  2386. i915_gem_object_put_pages_gtt(obj);
  2387. drm_mm_put_block(obj->gtt_space);
  2388. obj->gtt_space = NULL;
  2389. if (i915_gem_evict_everything(dev, false))
  2390. return ret;
  2391. goto search_free;
  2392. }
  2393. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2394. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2395. /* Assert that the object is not currently in any GPU domain. As it
  2396. * wasn't in the GTT, there shouldn't be any way it could have been in
  2397. * a GPU cache
  2398. */
  2399. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2400. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2401. obj->gtt_offset = obj->gtt_space->start;
  2402. fenceable =
  2403. obj->gtt_space->size == fence_size &&
  2404. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2405. mappable =
  2406. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2407. obj->map_and_fenceable = mappable && fenceable;
  2408. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2409. return 0;
  2410. }
  2411. void
  2412. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2413. {
  2414. /* If we don't have a page list set up, then we're not pinned
  2415. * to GPU, and we can ignore the cache flush because it'll happen
  2416. * again at bind time.
  2417. */
  2418. if (obj->pages == NULL)
  2419. return;
  2420. /* If the GPU is snooping the contents of the CPU cache,
  2421. * we do not need to manually clear the CPU cache lines. However,
  2422. * the caches are only snooped when the render cache is
  2423. * flushed/invalidated. As we always have to emit invalidations
  2424. * and flushes when moving into and out of the RENDER domain, correct
  2425. * snooping behaviour occurs naturally as the result of our domain
  2426. * tracking.
  2427. */
  2428. if (obj->cache_level != I915_CACHE_NONE)
  2429. return;
  2430. trace_i915_gem_object_clflush(obj);
  2431. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2432. }
  2433. /** Flushes any GPU write domain for the object if it's dirty. */
  2434. static int
  2435. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2436. {
  2437. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2438. return 0;
  2439. /* Queue the GPU write cache flushing we need. */
  2440. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2441. }
  2442. /** Flushes the GTT write domain for the object if it's dirty. */
  2443. static void
  2444. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2445. {
  2446. uint32_t old_write_domain;
  2447. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2448. return;
  2449. /* No actual flushing is required for the GTT write domain. Writes
  2450. * to it immediately go to main memory as far as we know, so there's
  2451. * no chipset flush. It also doesn't land in render cache.
  2452. *
  2453. * However, we do have to enforce the order so that all writes through
  2454. * the GTT land before any writes to the device, such as updates to
  2455. * the GATT itself.
  2456. */
  2457. wmb();
  2458. i915_gem_release_mmap(obj);
  2459. old_write_domain = obj->base.write_domain;
  2460. obj->base.write_domain = 0;
  2461. trace_i915_gem_object_change_domain(obj,
  2462. obj->base.read_domains,
  2463. old_write_domain);
  2464. }
  2465. /** Flushes the CPU write domain for the object if it's dirty. */
  2466. static void
  2467. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2468. {
  2469. uint32_t old_write_domain;
  2470. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2471. return;
  2472. i915_gem_clflush_object(obj);
  2473. intel_gtt_chipset_flush();
  2474. old_write_domain = obj->base.write_domain;
  2475. obj->base.write_domain = 0;
  2476. trace_i915_gem_object_change_domain(obj,
  2477. obj->base.read_domains,
  2478. old_write_domain);
  2479. }
  2480. /**
  2481. * Moves a single object to the GTT read, and possibly write domain.
  2482. *
  2483. * This function returns when the move is complete, including waiting on
  2484. * flushes to occur.
  2485. */
  2486. int
  2487. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2488. {
  2489. uint32_t old_write_domain, old_read_domains;
  2490. int ret;
  2491. /* Not valid to be called on unbound objects. */
  2492. if (obj->gtt_space == NULL)
  2493. return -EINVAL;
  2494. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2495. return 0;
  2496. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2497. if (ret)
  2498. return ret;
  2499. if (obj->pending_gpu_write || write) {
  2500. ret = i915_gem_object_wait_rendering(obj);
  2501. if (ret)
  2502. return ret;
  2503. }
  2504. i915_gem_object_flush_cpu_write_domain(obj);
  2505. old_write_domain = obj->base.write_domain;
  2506. old_read_domains = obj->base.read_domains;
  2507. /* It should now be out of any other write domains, and we can update
  2508. * the domain values for our changes.
  2509. */
  2510. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2511. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2512. if (write) {
  2513. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2514. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2515. obj->dirty = 1;
  2516. }
  2517. trace_i915_gem_object_change_domain(obj,
  2518. old_read_domains,
  2519. old_write_domain);
  2520. return 0;
  2521. }
  2522. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2523. enum i915_cache_level cache_level)
  2524. {
  2525. int ret;
  2526. if (obj->cache_level == cache_level)
  2527. return 0;
  2528. if (obj->pin_count) {
  2529. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2530. return -EBUSY;
  2531. }
  2532. if (obj->gtt_space) {
  2533. ret = i915_gem_object_finish_gpu(obj);
  2534. if (ret)
  2535. return ret;
  2536. i915_gem_object_finish_gtt(obj);
  2537. /* Before SandyBridge, you could not use tiling or fence
  2538. * registers with snooped memory, so relinquish any fences
  2539. * currently pointing to our region in the aperture.
  2540. */
  2541. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2542. ret = i915_gem_object_put_fence(obj);
  2543. if (ret)
  2544. return ret;
  2545. }
  2546. i915_gem_gtt_rebind_object(obj, cache_level);
  2547. }
  2548. if (cache_level == I915_CACHE_NONE) {
  2549. u32 old_read_domains, old_write_domain;
  2550. /* If we're coming from LLC cached, then we haven't
  2551. * actually been tracking whether the data is in the
  2552. * CPU cache or not, since we only allow one bit set
  2553. * in obj->write_domain and have been skipping the clflushes.
  2554. * Just set it to the CPU cache for now.
  2555. */
  2556. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2557. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2558. old_read_domains = obj->base.read_domains;
  2559. old_write_domain = obj->base.write_domain;
  2560. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2561. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2562. trace_i915_gem_object_change_domain(obj,
  2563. old_read_domains,
  2564. old_write_domain);
  2565. }
  2566. obj->cache_level = cache_level;
  2567. return 0;
  2568. }
  2569. /*
  2570. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2571. * wait, as in modesetting process we're not supposed to be interrupted.
  2572. */
  2573. int
  2574. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2575. struct intel_ring_buffer *pipelined)
  2576. {
  2577. uint32_t old_read_domains;
  2578. int ret;
  2579. /* Not valid to be called on unbound objects. */
  2580. if (obj->gtt_space == NULL)
  2581. return -EINVAL;
  2582. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2583. if (ret)
  2584. return ret;
  2585. /* Currently, we are always called from an non-interruptible context. */
  2586. if (pipelined != obj->ring) {
  2587. ret = i915_gem_object_wait_rendering(obj);
  2588. if (ret)
  2589. return ret;
  2590. }
  2591. i915_gem_object_flush_cpu_write_domain(obj);
  2592. old_read_domains = obj->base.read_domains;
  2593. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2594. trace_i915_gem_object_change_domain(obj,
  2595. old_read_domains,
  2596. obj->base.write_domain);
  2597. return 0;
  2598. }
  2599. int
  2600. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2601. {
  2602. int ret;
  2603. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2604. return 0;
  2605. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2606. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2607. if (ret)
  2608. return ret;
  2609. }
  2610. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2611. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2612. return i915_gem_object_wait_rendering(obj);
  2613. }
  2614. /**
  2615. * Moves a single object to the CPU read, and possibly write domain.
  2616. *
  2617. * This function returns when the move is complete, including waiting on
  2618. * flushes to occur.
  2619. */
  2620. static int
  2621. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2622. {
  2623. uint32_t old_write_domain, old_read_domains;
  2624. int ret;
  2625. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2626. return 0;
  2627. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2628. if (ret)
  2629. return ret;
  2630. ret = i915_gem_object_wait_rendering(obj);
  2631. if (ret)
  2632. return ret;
  2633. i915_gem_object_flush_gtt_write_domain(obj);
  2634. /* If we have a partially-valid cache of the object in the CPU,
  2635. * finish invalidating it and free the per-page flags.
  2636. */
  2637. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2638. old_write_domain = obj->base.write_domain;
  2639. old_read_domains = obj->base.read_domains;
  2640. /* Flush the CPU cache if it's still invalid. */
  2641. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2642. i915_gem_clflush_object(obj);
  2643. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2644. }
  2645. /* It should now be out of any other write domains, and we can update
  2646. * the domain values for our changes.
  2647. */
  2648. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2649. /* If we're writing through the CPU, then the GPU read domains will
  2650. * need to be invalidated at next use.
  2651. */
  2652. if (write) {
  2653. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2654. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2655. }
  2656. trace_i915_gem_object_change_domain(obj,
  2657. old_read_domains,
  2658. old_write_domain);
  2659. return 0;
  2660. }
  2661. /**
  2662. * Moves the object from a partially CPU read to a full one.
  2663. *
  2664. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2665. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2666. */
  2667. static void
  2668. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2669. {
  2670. if (!obj->page_cpu_valid)
  2671. return;
  2672. /* If we're partially in the CPU read domain, finish moving it in.
  2673. */
  2674. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2675. int i;
  2676. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2677. if (obj->page_cpu_valid[i])
  2678. continue;
  2679. drm_clflush_pages(obj->pages + i, 1);
  2680. }
  2681. }
  2682. /* Free the page_cpu_valid mappings which are now stale, whether
  2683. * or not we've got I915_GEM_DOMAIN_CPU.
  2684. */
  2685. kfree(obj->page_cpu_valid);
  2686. obj->page_cpu_valid = NULL;
  2687. }
  2688. /**
  2689. * Set the CPU read domain on a range of the object.
  2690. *
  2691. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2692. * not entirely valid. The page_cpu_valid member of the object flags which
  2693. * pages have been flushed, and will be respected by
  2694. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2695. * of the whole object.
  2696. *
  2697. * This function returns when the move is complete, including waiting on
  2698. * flushes to occur.
  2699. */
  2700. static int
  2701. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2702. uint64_t offset, uint64_t size)
  2703. {
  2704. uint32_t old_read_domains;
  2705. int i, ret;
  2706. if (offset == 0 && size == obj->base.size)
  2707. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2708. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2709. if (ret)
  2710. return ret;
  2711. ret = i915_gem_object_wait_rendering(obj);
  2712. if (ret)
  2713. return ret;
  2714. i915_gem_object_flush_gtt_write_domain(obj);
  2715. /* If we're already fully in the CPU read domain, we're done. */
  2716. if (obj->page_cpu_valid == NULL &&
  2717. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2718. return 0;
  2719. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2720. * newly adding I915_GEM_DOMAIN_CPU
  2721. */
  2722. if (obj->page_cpu_valid == NULL) {
  2723. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2724. GFP_KERNEL);
  2725. if (obj->page_cpu_valid == NULL)
  2726. return -ENOMEM;
  2727. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2728. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2729. /* Flush the cache on any pages that are still invalid from the CPU's
  2730. * perspective.
  2731. */
  2732. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2733. i++) {
  2734. if (obj->page_cpu_valid[i])
  2735. continue;
  2736. drm_clflush_pages(obj->pages + i, 1);
  2737. obj->page_cpu_valid[i] = 1;
  2738. }
  2739. /* It should now be out of any other write domains, and we can update
  2740. * the domain values for our changes.
  2741. */
  2742. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2743. old_read_domains = obj->base.read_domains;
  2744. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2745. trace_i915_gem_object_change_domain(obj,
  2746. old_read_domains,
  2747. obj->base.write_domain);
  2748. return 0;
  2749. }
  2750. /* Throttle our rendering by waiting until the ring has completed our requests
  2751. * emitted over 20 msec ago.
  2752. *
  2753. * Note that if we were to use the current jiffies each time around the loop,
  2754. * we wouldn't escape the function with any frames outstanding if the time to
  2755. * render a frame was over 20ms.
  2756. *
  2757. * This should get us reasonable parallelism between CPU and GPU but also
  2758. * relatively low latency when blocking on a particular request to finish.
  2759. */
  2760. static int
  2761. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2762. {
  2763. struct drm_i915_private *dev_priv = dev->dev_private;
  2764. struct drm_i915_file_private *file_priv = file->driver_priv;
  2765. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2766. struct drm_i915_gem_request *request;
  2767. struct intel_ring_buffer *ring = NULL;
  2768. u32 seqno = 0;
  2769. int ret;
  2770. if (atomic_read(&dev_priv->mm.wedged))
  2771. return -EIO;
  2772. spin_lock(&file_priv->mm.lock);
  2773. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2774. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2775. break;
  2776. ring = request->ring;
  2777. seqno = request->seqno;
  2778. }
  2779. spin_unlock(&file_priv->mm.lock);
  2780. if (seqno == 0)
  2781. return 0;
  2782. ret = 0;
  2783. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2784. /* And wait for the seqno passing without holding any locks and
  2785. * causing extra latency for others. This is safe as the irq
  2786. * generation is designed to be run atomically and so is
  2787. * lockless.
  2788. */
  2789. if (ring->irq_get(ring)) {
  2790. ret = wait_event_interruptible(ring->irq_queue,
  2791. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2792. || atomic_read(&dev_priv->mm.wedged));
  2793. ring->irq_put(ring);
  2794. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2795. ret = -EIO;
  2796. }
  2797. }
  2798. if (ret == 0)
  2799. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2800. return ret;
  2801. }
  2802. int
  2803. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2804. uint32_t alignment,
  2805. bool map_and_fenceable)
  2806. {
  2807. struct drm_device *dev = obj->base.dev;
  2808. struct drm_i915_private *dev_priv = dev->dev_private;
  2809. int ret;
  2810. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2811. WARN_ON(i915_verify_lists(dev));
  2812. if (obj->gtt_space != NULL) {
  2813. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2814. (map_and_fenceable && !obj->map_and_fenceable)) {
  2815. WARN(obj->pin_count,
  2816. "bo is already pinned with incorrect alignment:"
  2817. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2818. " obj->map_and_fenceable=%d\n",
  2819. obj->gtt_offset, alignment,
  2820. map_and_fenceable,
  2821. obj->map_and_fenceable);
  2822. ret = i915_gem_object_unbind(obj);
  2823. if (ret)
  2824. return ret;
  2825. }
  2826. }
  2827. if (obj->gtt_space == NULL) {
  2828. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2829. map_and_fenceable);
  2830. if (ret)
  2831. return ret;
  2832. }
  2833. if (obj->pin_count++ == 0) {
  2834. if (!obj->active)
  2835. list_move_tail(&obj->mm_list,
  2836. &dev_priv->mm.pinned_list);
  2837. }
  2838. obj->pin_mappable |= map_and_fenceable;
  2839. WARN_ON(i915_verify_lists(dev));
  2840. return 0;
  2841. }
  2842. void
  2843. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2844. {
  2845. struct drm_device *dev = obj->base.dev;
  2846. drm_i915_private_t *dev_priv = dev->dev_private;
  2847. WARN_ON(i915_verify_lists(dev));
  2848. BUG_ON(obj->pin_count == 0);
  2849. BUG_ON(obj->gtt_space == NULL);
  2850. if (--obj->pin_count == 0) {
  2851. if (!obj->active)
  2852. list_move_tail(&obj->mm_list,
  2853. &dev_priv->mm.inactive_list);
  2854. obj->pin_mappable = false;
  2855. }
  2856. WARN_ON(i915_verify_lists(dev));
  2857. }
  2858. int
  2859. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2860. struct drm_file *file)
  2861. {
  2862. struct drm_i915_gem_pin *args = data;
  2863. struct drm_i915_gem_object *obj;
  2864. int ret;
  2865. ret = i915_mutex_lock_interruptible(dev);
  2866. if (ret)
  2867. return ret;
  2868. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2869. if (&obj->base == NULL) {
  2870. ret = -ENOENT;
  2871. goto unlock;
  2872. }
  2873. if (obj->madv != I915_MADV_WILLNEED) {
  2874. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2875. ret = -EINVAL;
  2876. goto out;
  2877. }
  2878. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2879. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2880. args->handle);
  2881. ret = -EINVAL;
  2882. goto out;
  2883. }
  2884. obj->user_pin_count++;
  2885. obj->pin_filp = file;
  2886. if (obj->user_pin_count == 1) {
  2887. ret = i915_gem_object_pin(obj, args->alignment, true);
  2888. if (ret)
  2889. goto out;
  2890. }
  2891. /* XXX - flush the CPU caches for pinned objects
  2892. * as the X server doesn't manage domains yet
  2893. */
  2894. i915_gem_object_flush_cpu_write_domain(obj);
  2895. args->offset = obj->gtt_offset;
  2896. out:
  2897. drm_gem_object_unreference(&obj->base);
  2898. unlock:
  2899. mutex_unlock(&dev->struct_mutex);
  2900. return ret;
  2901. }
  2902. int
  2903. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2904. struct drm_file *file)
  2905. {
  2906. struct drm_i915_gem_pin *args = data;
  2907. struct drm_i915_gem_object *obj;
  2908. int ret;
  2909. ret = i915_mutex_lock_interruptible(dev);
  2910. if (ret)
  2911. return ret;
  2912. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2913. if (&obj->base == NULL) {
  2914. ret = -ENOENT;
  2915. goto unlock;
  2916. }
  2917. if (obj->pin_filp != file) {
  2918. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2919. args->handle);
  2920. ret = -EINVAL;
  2921. goto out;
  2922. }
  2923. obj->user_pin_count--;
  2924. if (obj->user_pin_count == 0) {
  2925. obj->pin_filp = NULL;
  2926. i915_gem_object_unpin(obj);
  2927. }
  2928. out:
  2929. drm_gem_object_unreference(&obj->base);
  2930. unlock:
  2931. mutex_unlock(&dev->struct_mutex);
  2932. return ret;
  2933. }
  2934. int
  2935. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2936. struct drm_file *file)
  2937. {
  2938. struct drm_i915_gem_busy *args = data;
  2939. struct drm_i915_gem_object *obj;
  2940. int ret;
  2941. ret = i915_mutex_lock_interruptible(dev);
  2942. if (ret)
  2943. return ret;
  2944. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2945. if (&obj->base == NULL) {
  2946. ret = -ENOENT;
  2947. goto unlock;
  2948. }
  2949. /* Count all active objects as busy, even if they are currently not used
  2950. * by the gpu. Users of this interface expect objects to eventually
  2951. * become non-busy without any further actions, therefore emit any
  2952. * necessary flushes here.
  2953. */
  2954. args->busy = obj->active;
  2955. if (args->busy) {
  2956. /* Unconditionally flush objects, even when the gpu still uses this
  2957. * object. Userspace calling this function indicates that it wants to
  2958. * use this buffer rather sooner than later, so issuing the required
  2959. * flush earlier is beneficial.
  2960. */
  2961. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2962. ret = i915_gem_flush_ring(obj->ring,
  2963. 0, obj->base.write_domain);
  2964. } else if (obj->ring->outstanding_lazy_request ==
  2965. obj->last_rendering_seqno) {
  2966. struct drm_i915_gem_request *request;
  2967. /* This ring is not being cleared by active usage,
  2968. * so emit a request to do so.
  2969. */
  2970. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2971. if (request)
  2972. ret = i915_add_request(obj->ring, NULL,request);
  2973. else
  2974. ret = -ENOMEM;
  2975. }
  2976. /* Update the active list for the hardware's current position.
  2977. * Otherwise this only updates on a delayed timer or when irqs
  2978. * are actually unmasked, and our working set ends up being
  2979. * larger than required.
  2980. */
  2981. i915_gem_retire_requests_ring(obj->ring);
  2982. args->busy = obj->active;
  2983. }
  2984. drm_gem_object_unreference(&obj->base);
  2985. unlock:
  2986. mutex_unlock(&dev->struct_mutex);
  2987. return ret;
  2988. }
  2989. int
  2990. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2991. struct drm_file *file_priv)
  2992. {
  2993. return i915_gem_ring_throttle(dev, file_priv);
  2994. }
  2995. int
  2996. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2997. struct drm_file *file_priv)
  2998. {
  2999. struct drm_i915_gem_madvise *args = data;
  3000. struct drm_i915_gem_object *obj;
  3001. int ret;
  3002. switch (args->madv) {
  3003. case I915_MADV_DONTNEED:
  3004. case I915_MADV_WILLNEED:
  3005. break;
  3006. default:
  3007. return -EINVAL;
  3008. }
  3009. ret = i915_mutex_lock_interruptible(dev);
  3010. if (ret)
  3011. return ret;
  3012. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3013. if (&obj->base == NULL) {
  3014. ret = -ENOENT;
  3015. goto unlock;
  3016. }
  3017. if (obj->pin_count) {
  3018. ret = -EINVAL;
  3019. goto out;
  3020. }
  3021. if (obj->madv != __I915_MADV_PURGED)
  3022. obj->madv = args->madv;
  3023. /* if the object is no longer bound, discard its backing storage */
  3024. if (i915_gem_object_is_purgeable(obj) &&
  3025. obj->gtt_space == NULL)
  3026. i915_gem_object_truncate(obj);
  3027. args->retained = obj->madv != __I915_MADV_PURGED;
  3028. out:
  3029. drm_gem_object_unreference(&obj->base);
  3030. unlock:
  3031. mutex_unlock(&dev->struct_mutex);
  3032. return ret;
  3033. }
  3034. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3035. size_t size)
  3036. {
  3037. struct drm_i915_private *dev_priv = dev->dev_private;
  3038. struct drm_i915_gem_object *obj;
  3039. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3040. if (obj == NULL)
  3041. return NULL;
  3042. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3043. kfree(obj);
  3044. return NULL;
  3045. }
  3046. i915_gem_info_add_obj(dev_priv, size);
  3047. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3048. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3049. obj->cache_level = I915_CACHE_NONE;
  3050. obj->base.driver_private = NULL;
  3051. obj->fence_reg = I915_FENCE_REG_NONE;
  3052. INIT_LIST_HEAD(&obj->mm_list);
  3053. INIT_LIST_HEAD(&obj->gtt_list);
  3054. INIT_LIST_HEAD(&obj->ring_list);
  3055. INIT_LIST_HEAD(&obj->exec_list);
  3056. INIT_LIST_HEAD(&obj->gpu_write_list);
  3057. obj->madv = I915_MADV_WILLNEED;
  3058. /* Avoid an unnecessary call to unbind on the first bind. */
  3059. obj->map_and_fenceable = true;
  3060. return obj;
  3061. }
  3062. int i915_gem_init_object(struct drm_gem_object *obj)
  3063. {
  3064. BUG();
  3065. return 0;
  3066. }
  3067. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  3068. {
  3069. struct drm_device *dev = obj->base.dev;
  3070. drm_i915_private_t *dev_priv = dev->dev_private;
  3071. int ret;
  3072. ret = i915_gem_object_unbind(obj);
  3073. if (ret == -ERESTARTSYS) {
  3074. list_move(&obj->mm_list,
  3075. &dev_priv->mm.deferred_free_list);
  3076. return;
  3077. }
  3078. trace_i915_gem_object_destroy(obj);
  3079. if (obj->base.map_list.map)
  3080. i915_gem_free_mmap_offset(obj);
  3081. drm_gem_object_release(&obj->base);
  3082. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3083. kfree(obj->page_cpu_valid);
  3084. kfree(obj->bit_17);
  3085. kfree(obj);
  3086. }
  3087. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3088. {
  3089. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3090. struct drm_device *dev = obj->base.dev;
  3091. while (obj->pin_count > 0)
  3092. i915_gem_object_unpin(obj);
  3093. if (obj->phys_obj)
  3094. i915_gem_detach_phys_object(dev, obj);
  3095. i915_gem_free_object_tail(obj);
  3096. }
  3097. int
  3098. i915_gem_idle(struct drm_device *dev)
  3099. {
  3100. drm_i915_private_t *dev_priv = dev->dev_private;
  3101. int ret;
  3102. mutex_lock(&dev->struct_mutex);
  3103. if (dev_priv->mm.suspended) {
  3104. mutex_unlock(&dev->struct_mutex);
  3105. return 0;
  3106. }
  3107. ret = i915_gpu_idle(dev);
  3108. if (ret) {
  3109. mutex_unlock(&dev->struct_mutex);
  3110. return ret;
  3111. }
  3112. /* Under UMS, be paranoid and evict. */
  3113. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3114. ret = i915_gem_evict_inactive(dev, false);
  3115. if (ret) {
  3116. mutex_unlock(&dev->struct_mutex);
  3117. return ret;
  3118. }
  3119. }
  3120. i915_gem_reset_fences(dev);
  3121. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3122. * We need to replace this with a semaphore, or something.
  3123. * And not confound mm.suspended!
  3124. */
  3125. dev_priv->mm.suspended = 1;
  3126. del_timer_sync(&dev_priv->hangcheck_timer);
  3127. i915_kernel_lost_context(dev);
  3128. i915_gem_cleanup_ringbuffer(dev);
  3129. mutex_unlock(&dev->struct_mutex);
  3130. /* Cancel the retire work handler, which should be idle now. */
  3131. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3132. return 0;
  3133. }
  3134. int
  3135. i915_gem_init_ringbuffer(struct drm_device *dev)
  3136. {
  3137. drm_i915_private_t *dev_priv = dev->dev_private;
  3138. int ret;
  3139. ret = intel_init_render_ring_buffer(dev);
  3140. if (ret)
  3141. return ret;
  3142. if (HAS_BSD(dev)) {
  3143. ret = intel_init_bsd_ring_buffer(dev);
  3144. if (ret)
  3145. goto cleanup_render_ring;
  3146. }
  3147. if (HAS_BLT(dev)) {
  3148. ret = intel_init_blt_ring_buffer(dev);
  3149. if (ret)
  3150. goto cleanup_bsd_ring;
  3151. }
  3152. dev_priv->next_seqno = 1;
  3153. return 0;
  3154. cleanup_bsd_ring:
  3155. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3156. cleanup_render_ring:
  3157. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3158. return ret;
  3159. }
  3160. void
  3161. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3162. {
  3163. drm_i915_private_t *dev_priv = dev->dev_private;
  3164. int i;
  3165. for (i = 0; i < I915_NUM_RINGS; i++)
  3166. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3167. }
  3168. int
  3169. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3170. struct drm_file *file_priv)
  3171. {
  3172. drm_i915_private_t *dev_priv = dev->dev_private;
  3173. int ret, i;
  3174. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3175. return 0;
  3176. if (atomic_read(&dev_priv->mm.wedged)) {
  3177. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3178. atomic_set(&dev_priv->mm.wedged, 0);
  3179. }
  3180. mutex_lock(&dev->struct_mutex);
  3181. dev_priv->mm.suspended = 0;
  3182. ret = i915_gem_init_ringbuffer(dev);
  3183. if (ret != 0) {
  3184. mutex_unlock(&dev->struct_mutex);
  3185. return ret;
  3186. }
  3187. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3188. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3189. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3190. for (i = 0; i < I915_NUM_RINGS; i++) {
  3191. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3192. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3193. }
  3194. mutex_unlock(&dev->struct_mutex);
  3195. ret = drm_irq_install(dev);
  3196. if (ret)
  3197. goto cleanup_ringbuffer;
  3198. return 0;
  3199. cleanup_ringbuffer:
  3200. mutex_lock(&dev->struct_mutex);
  3201. i915_gem_cleanup_ringbuffer(dev);
  3202. dev_priv->mm.suspended = 1;
  3203. mutex_unlock(&dev->struct_mutex);
  3204. return ret;
  3205. }
  3206. int
  3207. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3208. struct drm_file *file_priv)
  3209. {
  3210. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3211. return 0;
  3212. drm_irq_uninstall(dev);
  3213. return i915_gem_idle(dev);
  3214. }
  3215. void
  3216. i915_gem_lastclose(struct drm_device *dev)
  3217. {
  3218. int ret;
  3219. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3220. return;
  3221. ret = i915_gem_idle(dev);
  3222. if (ret)
  3223. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3224. }
  3225. static void
  3226. init_ring_lists(struct intel_ring_buffer *ring)
  3227. {
  3228. INIT_LIST_HEAD(&ring->active_list);
  3229. INIT_LIST_HEAD(&ring->request_list);
  3230. INIT_LIST_HEAD(&ring->gpu_write_list);
  3231. }
  3232. void
  3233. i915_gem_load(struct drm_device *dev)
  3234. {
  3235. int i;
  3236. drm_i915_private_t *dev_priv = dev->dev_private;
  3237. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3238. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3239. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3240. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3241. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3242. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3243. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3244. for (i = 0; i < I915_NUM_RINGS; i++)
  3245. init_ring_lists(&dev_priv->ring[i]);
  3246. for (i = 0; i < 16; i++)
  3247. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3248. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3249. i915_gem_retire_work_handler);
  3250. init_completion(&dev_priv->error_completion);
  3251. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3252. if (IS_GEN3(dev)) {
  3253. u32 tmp = I915_READ(MI_ARB_STATE);
  3254. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3255. /* arb state is a masked write, so set bit + bit in mask */
  3256. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3257. I915_WRITE(MI_ARB_STATE, tmp);
  3258. }
  3259. }
  3260. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3261. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3262. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3263. dev_priv->fence_reg_start = 3;
  3264. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3265. dev_priv->num_fence_regs = 16;
  3266. else
  3267. dev_priv->num_fence_regs = 8;
  3268. /* Initialize fence registers to zero */
  3269. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3270. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3271. }
  3272. i915_gem_detect_bit_6_swizzle(dev);
  3273. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3274. dev_priv->mm.interruptible = true;
  3275. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3276. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3277. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3278. }
  3279. /*
  3280. * Create a physically contiguous memory object for this object
  3281. * e.g. for cursor + overlay regs
  3282. */
  3283. static int i915_gem_init_phys_object(struct drm_device *dev,
  3284. int id, int size, int align)
  3285. {
  3286. drm_i915_private_t *dev_priv = dev->dev_private;
  3287. struct drm_i915_gem_phys_object *phys_obj;
  3288. int ret;
  3289. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3290. return 0;
  3291. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3292. if (!phys_obj)
  3293. return -ENOMEM;
  3294. phys_obj->id = id;
  3295. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3296. if (!phys_obj->handle) {
  3297. ret = -ENOMEM;
  3298. goto kfree_obj;
  3299. }
  3300. #ifdef CONFIG_X86
  3301. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3302. #endif
  3303. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3304. return 0;
  3305. kfree_obj:
  3306. kfree(phys_obj);
  3307. return ret;
  3308. }
  3309. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3310. {
  3311. drm_i915_private_t *dev_priv = dev->dev_private;
  3312. struct drm_i915_gem_phys_object *phys_obj;
  3313. if (!dev_priv->mm.phys_objs[id - 1])
  3314. return;
  3315. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3316. if (phys_obj->cur_obj) {
  3317. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3318. }
  3319. #ifdef CONFIG_X86
  3320. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3321. #endif
  3322. drm_pci_free(dev, phys_obj->handle);
  3323. kfree(phys_obj);
  3324. dev_priv->mm.phys_objs[id - 1] = NULL;
  3325. }
  3326. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3327. {
  3328. int i;
  3329. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3330. i915_gem_free_phys_object(dev, i);
  3331. }
  3332. void i915_gem_detach_phys_object(struct drm_device *dev,
  3333. struct drm_i915_gem_object *obj)
  3334. {
  3335. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3336. char *vaddr;
  3337. int i;
  3338. int page_count;
  3339. if (!obj->phys_obj)
  3340. return;
  3341. vaddr = obj->phys_obj->handle->vaddr;
  3342. page_count = obj->base.size / PAGE_SIZE;
  3343. for (i = 0; i < page_count; i++) {
  3344. struct page *page = read_cache_page_gfp(mapping, i,
  3345. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3346. if (!IS_ERR(page)) {
  3347. char *dst = kmap_atomic(page);
  3348. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3349. kunmap_atomic(dst);
  3350. drm_clflush_pages(&page, 1);
  3351. set_page_dirty(page);
  3352. mark_page_accessed(page);
  3353. page_cache_release(page);
  3354. }
  3355. }
  3356. intel_gtt_chipset_flush();
  3357. obj->phys_obj->cur_obj = NULL;
  3358. obj->phys_obj = NULL;
  3359. }
  3360. int
  3361. i915_gem_attach_phys_object(struct drm_device *dev,
  3362. struct drm_i915_gem_object *obj,
  3363. int id,
  3364. int align)
  3365. {
  3366. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3367. drm_i915_private_t *dev_priv = dev->dev_private;
  3368. int ret = 0;
  3369. int page_count;
  3370. int i;
  3371. if (id > I915_MAX_PHYS_OBJECT)
  3372. return -EINVAL;
  3373. if (obj->phys_obj) {
  3374. if (obj->phys_obj->id == id)
  3375. return 0;
  3376. i915_gem_detach_phys_object(dev, obj);
  3377. }
  3378. /* create a new object */
  3379. if (!dev_priv->mm.phys_objs[id - 1]) {
  3380. ret = i915_gem_init_phys_object(dev, id,
  3381. obj->base.size, align);
  3382. if (ret) {
  3383. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3384. id, obj->base.size);
  3385. return ret;
  3386. }
  3387. }
  3388. /* bind to the object */
  3389. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3390. obj->phys_obj->cur_obj = obj;
  3391. page_count = obj->base.size / PAGE_SIZE;
  3392. for (i = 0; i < page_count; i++) {
  3393. struct page *page;
  3394. char *dst, *src;
  3395. page = read_cache_page_gfp(mapping, i,
  3396. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3397. if (IS_ERR(page))
  3398. return PTR_ERR(page);
  3399. src = kmap_atomic(page);
  3400. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3401. memcpy(dst, src, PAGE_SIZE);
  3402. kunmap_atomic(src);
  3403. mark_page_accessed(page);
  3404. page_cache_release(page);
  3405. }
  3406. return 0;
  3407. }
  3408. static int
  3409. i915_gem_phys_pwrite(struct drm_device *dev,
  3410. struct drm_i915_gem_object *obj,
  3411. struct drm_i915_gem_pwrite *args,
  3412. struct drm_file *file_priv)
  3413. {
  3414. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3415. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3416. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3417. unsigned long unwritten;
  3418. /* The physical object once assigned is fixed for the lifetime
  3419. * of the obj, so we can safely drop the lock and continue
  3420. * to access vaddr.
  3421. */
  3422. mutex_unlock(&dev->struct_mutex);
  3423. unwritten = copy_from_user(vaddr, user_data, args->size);
  3424. mutex_lock(&dev->struct_mutex);
  3425. if (unwritten)
  3426. return -EFAULT;
  3427. }
  3428. intel_gtt_chipset_flush();
  3429. return 0;
  3430. }
  3431. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3432. {
  3433. struct drm_i915_file_private *file_priv = file->driver_priv;
  3434. /* Clean up our request list when the client is going away, so that
  3435. * later retire_requests won't dereference our soon-to-be-gone
  3436. * file_priv.
  3437. */
  3438. spin_lock(&file_priv->mm.lock);
  3439. while (!list_empty(&file_priv->mm.request_list)) {
  3440. struct drm_i915_gem_request *request;
  3441. request = list_first_entry(&file_priv->mm.request_list,
  3442. struct drm_i915_gem_request,
  3443. client_list);
  3444. list_del(&request->client_list);
  3445. request->file_priv = NULL;
  3446. }
  3447. spin_unlock(&file_priv->mm.lock);
  3448. }
  3449. static int
  3450. i915_gpu_is_active(struct drm_device *dev)
  3451. {
  3452. drm_i915_private_t *dev_priv = dev->dev_private;
  3453. int lists_empty;
  3454. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3455. list_empty(&dev_priv->mm.active_list);
  3456. return !lists_empty;
  3457. }
  3458. static int
  3459. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3460. {
  3461. struct drm_i915_private *dev_priv =
  3462. container_of(shrinker,
  3463. struct drm_i915_private,
  3464. mm.inactive_shrinker);
  3465. struct drm_device *dev = dev_priv->dev;
  3466. struct drm_i915_gem_object *obj, *next;
  3467. int nr_to_scan = sc->nr_to_scan;
  3468. int cnt;
  3469. if (!mutex_trylock(&dev->struct_mutex))
  3470. return 0;
  3471. /* "fast-path" to count number of available objects */
  3472. if (nr_to_scan == 0) {
  3473. cnt = 0;
  3474. list_for_each_entry(obj,
  3475. &dev_priv->mm.inactive_list,
  3476. mm_list)
  3477. cnt++;
  3478. mutex_unlock(&dev->struct_mutex);
  3479. return cnt / 100 * sysctl_vfs_cache_pressure;
  3480. }
  3481. rescan:
  3482. /* first scan for clean buffers */
  3483. i915_gem_retire_requests(dev);
  3484. list_for_each_entry_safe(obj, next,
  3485. &dev_priv->mm.inactive_list,
  3486. mm_list) {
  3487. if (i915_gem_object_is_purgeable(obj)) {
  3488. if (i915_gem_object_unbind(obj) == 0 &&
  3489. --nr_to_scan == 0)
  3490. break;
  3491. }
  3492. }
  3493. /* second pass, evict/count anything still on the inactive list */
  3494. cnt = 0;
  3495. list_for_each_entry_safe(obj, next,
  3496. &dev_priv->mm.inactive_list,
  3497. mm_list) {
  3498. if (nr_to_scan &&
  3499. i915_gem_object_unbind(obj) == 0)
  3500. nr_to_scan--;
  3501. else
  3502. cnt++;
  3503. }
  3504. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3505. /*
  3506. * We are desperate for pages, so as a last resort, wait
  3507. * for the GPU to finish and discard whatever we can.
  3508. * This has a dramatic impact to reduce the number of
  3509. * OOM-killer events whilst running the GPU aggressively.
  3510. */
  3511. if (i915_gpu_idle(dev) == 0)
  3512. goto rescan;
  3513. }
  3514. mutex_unlock(&dev->struct_mutex);
  3515. return cnt / 100 * sysctl_vfs_cache_pressure;
  3516. }